1
|
Uttreja P, Karnik I, Adel Ali Youssef A, Narala N, Elkanayati RM, Baisa S, Alshammari ND, Banda S, Vemula SK, Repka MA. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid-A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics 2025; 17:63. [PMID: 39861711 PMCID: PMC11768142 DOI: 10.3390/pharmaceutics17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers. Characterization techniques such as droplet size analysis, dissolution studies, and solid-state evaluations are detailed. Additionally, emerging trends, including 3D printing, hybrid systems, and supersaturable SEDDS (Su-SEDDS), are explored. Liquid SEDDS (L-SEDDS) enhance drug solubility and absorption by forming emulsions upon contact with gastrointestinal fluids. However, they suffer from stability and leakage issues. Transitioning to solid SEDDS (S-SEDDS) has resolved these limitations, offering enhanced stability, scalability, and patient compliance. Innovations such as personalized 3D-printed SEDDS, biologics delivery, and targeted systems demonstrate their potential for diverse therapeutic applications. Computational modeling and in silico approaches further accelerate formulation optimization. SEDDS have revolutionized drug delivery by improving bioavailability and enabling precise, patient-centric therapies. While challenges such as scalability and excipient toxicity persist, emerging technologies and multidisciplinary collaborations are paving the way for next-generation SEDDS. Their adaptability and potential for personalized medicine solidify their role as a cornerstone in modern pharmaceutical development.
Collapse
Affiliation(s)
- Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Indrajeet Karnik
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Rasha M. Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Srikanth Baisa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Nouf D. Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Chen X, Yang H, Shi L, Mao Y, Niu L, Wang J, Chen H, Jia J, Wang J, Xue J, Shen Y, Zheng C, Tian Y, Zheng Y. Self-Microemulsifying Drug Delivery System to Enhance Oral Bioavailability of Berberine Hydrochloride in Rats. Pharmaceutics 2024; 16:1116. [PMID: 39339154 PMCID: PMC11435259 DOI: 10.3390/pharmaceutics16091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Berberine hydrochloride (BH) is a versatile bioactive compound derived from the plants of the Berberis genus, known for its various pharmacological effects. However, its oral bioavailability is low due to its high hydrophilicity and limited permeability. To enhance its clinical efficacy and oral bioavailability, this study designed and prepared a BH-loaded self-microemulsifying drug delivery system (BH-SMEDDS), and characterized its in vitro and in vivo properties. Firstly, the optimal formulation of BH-SMEDDS was selected using solubility evaluations, pseudo-ternary phase diagrams, and particle size analysis. The formulation containing 55% Capmul MCM, 22.5% Kolliphor RH 40, and 22.5% 1,2-propanediol was developed. BH-SMEDDS exhibited stable physicochemical properties, with an average particle size of 47.2 ± 0.10 nm and a self-emulsification time of 26.02 ± 0.24 s. Moreover, in vitro dissolution studies showed significant improvements in BH release in simulated intestinal fluid, achieving 93.1 ± 2.3% release within 300 min. Meanwhile, BH-SMEDDS did not exhibit cytotoxic effects on the Caco-2 cells. Additionally, BH-SMEDDS achieved a 1.63-fold increase in oral bioavailability compared to commercial BH tablets. Therefore, SMEDDS presents a promising strategy for delivering BH with enhanced oral bioavailability, demonstrating significant potential for clinical application.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Yang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Longyu Shi
- College of Life Sciences, China Pharmaceutical University, Nanjing 210009, China;
| | - Yujuan Mao
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Lin Niu
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jing Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiping Jia
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jingxuan Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiajie Xue
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Yu Tian
- School of Medicine, Shanghai University, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 201613, China
| | - Yi Zheng
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| |
Collapse
|
3
|
Holm R, Kuentz M, Ilie-Spiridon AR, Griffin BT. Lipid based formulations as supersaturating oral delivery systems: From current to future industrial applications. Eur J Pharm Sci 2023; 189:106556. [PMID: 37543063 DOI: 10.1016/j.ejps.2023.106556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Lipid-based formulations, in particular supersaturated lipid-based formulations, are important delivery approaches when formulating challenging compounds, as especially low water-soluble compounds profit from delivery in a pre-dissolved state. In this article, the classification of lipid-based formulation is described, followed by a detailed discussion of different supersaturated lipid-based formulations and the recent advances reported in the literature. The supersaturated lipid-based formulations discussed include both the in situ forming supersaturated systems as well as the thermally induced supersaturated lipid-based formulations. The in situ forming drug supersaturation by lipid-based formulations has been widely employed and numerous clinically available products are on the market. There are some scientific gaps in the field, but in general there is a good understanding of the mechanisms driving the success of these systems. For thermally induced supersaturation, the technology is not yet fully understood and developed, hence more research is required in this field to explore the formulations beyond preclinical studies and initial clinical trials.
Collapse
Affiliation(s)
- René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Denmark.
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Hofackerstr. 30, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
4
|
Synthesis, Characterization, and In Vivo Distribution of 99mTc Radiolabelled Docetaxel Loaded Folic Acid-Thiolated Chitosan Enveloped Liposomes. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Lee YZ, Seow EK, Lim SC, Yuen KH, Karim Khan NA. Formulation of oily tocotrienols as a solid self-emulsifying dosage form for improved oral bioavailability in human subjects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Sharma A, Arora K, Mohapatra H, Sindhu RK, Bulzan M, Cavalu S, Paneshar G, Elansary HO, El-Sabrout AM, Mahmoud EA, Alaklabi A. Supersaturation-Based Drug Delivery Systems: Strategy for Bioavailability Enhancement of Poorly Water-Soluble Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092969. [PMID: 35566319 PMCID: PMC9101434 DOI: 10.3390/molecules27092969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
At present, the majority of APIs synthesized today remain challenging tasks for formulation development. Many technologies are being utilized or explored for enhancing solubility, such as chemical modification, novel drug delivery systems (microemulsions, nanoparticles, liposomes, etc.), salt formation, and many more. One promising avenue attaining attention presently is supersaturated drug delivery systems. When exposed to gastrointestinal fluids, drug concentration exceeds equilibrium solubility and a supersaturation state is maintained long enough to be absorbed, enhancing bioavailability. In this review, the latest developments in supersaturated drug delivery systems are addressed in depth.
Collapse
Affiliation(s)
- Arvind Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
- Correspondence: (R.K.S.); (S.C.)
| | - Madalin Bulzan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (R.K.S.); (S.C.)
| | - Gulsheen Paneshar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Hosam O. Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| |
Collapse
|
7
|
Nakmode D, Bhavana V, Thakor P, Madan J, Singh PK, Singh SB, Rosenholm JM, Bansal KK, Mehra NK. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022; 14:pharmaceutics14040831. [PMID: 35456665 PMCID: PMC9025782 DOI: 10.3390/pharmaceutics14040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Poor aqueous solubility of drugs is still a foremost challenge in pharmaceutical product development. The use of lipids in designing formulations provides an opportunity to enhance the aqueous solubility and consequently bioavailability of drugs. Pre-dissolution of drugs in lipids, surfactants, or mixtures of lipid excipients and surfactants eliminate the dissolution/dissolving step, which is likely to be the rate-limiting factor for oral absorption of poorly water-soluble drugs. In this review, we exhaustively summarize the lipids excipients in relation to their classification, absorption mechanisms, and lipid-based product development. Methodologies utilized for the preparation of solid and semi-solid lipid formulations, applications, phase behaviour, and regulatory perspective of lipid excipients are discussed.
Collapse
Affiliation(s)
- Deepa Nakmode
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pankaj Kumar Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (K.K.B.); (N.K.M.)
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
- Correspondence: (K.K.B.); (N.K.M.)
| |
Collapse
|
8
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
9
|
Formulation and In Vivo Evaluation of a Solid Self-Emulsifying Drug Delivery System Using Oily Liquid Tocotrienols as Model Active Substance. Pharmaceutics 2021; 13:pharmaceutics13111777. [PMID: 34834191 PMCID: PMC8621674 DOI: 10.3390/pharmaceutics13111777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDS) can improve the oral bioavailability of poorly water-soluble drugs. Solid self-emulsifying drug delivery systems (s-SEDDS) offer several advantages including improved drug stability, ease of administration, and production. Most compounds employed in developing s-SEDDS are solid in nature, with a high amount of surfactants added. The aim of this study was to develop an s-SEDDS using a tocotrienol-rich fraction (TRF) as the model liquid active substance via a simple adsorption method. The solid formulation was developed using magnesium aluminosilicate as the carrier with 70% TRF and 30% surfactants (poloxamer and Labrasol®). The formulation showed good self-emulsification efficiency with stable emulsion formed, excellent powder flowability, and small emulsion droplet size of 210–277 nm. The s-SEDDS with combined surfactants (poloxamer and Labrasol®) showed a faster absorption rate compared to preparations with only a single surfactant and enhanced oral bioavailability (3.4–3.8 times higher) compared to the non-self-emulsifying oily preparation when administered at a fasted state in rats. In conclusion, an s-SEDDS containing a high amount of TRF was successfully developed. It may serve as a useful alternative to a liquid product with enhanced oral bioavailability and the added advantage of being a solid dosage form.
Collapse
|
10
|
Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2021; 22:951-967. [PMID: 34382530 DOI: 10.2174/1871520621666210811111152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is very imperative for lung cancer treatments. OBJECTIVE The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer. METHODS Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume and concentration were assessed on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction and geometric standard deviation using a two-level factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope. RESULTS FTIR, DSC, and XRD analysis confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio. CONCLUSION In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features are feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.
Collapse
Affiliation(s)
- Elham Ziaei
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Mahboubeh Rezazadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R.. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
11
|
Singh D, Singh AP, Singh D, Kesavan AK, Tiwary AK, Bedi N. Polymeric Precipitation Inhibitor–Based Solid Supersaturable SMEDD Formulation of Canagliflozin: Improved Bioavailability and Anti-diabetic Activity. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Murakami T, Bodor E, Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 2021; 17:555-580. [PMID: 33703995 DOI: 10.1080/17425255.2021.1902986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Expression of P-glycoprotein (P-gp) increases toward the distal small intestine, implying that the duodenum is the preferential absorption site for P-gp substrate drugs. Oral bioavailability of poorly soluble P-gp substrate drugs is low and varied but increases with high-fat meals that supply lipoidal components and bile in the duodenum.Areas covered: Absorption properties of P-gp substrate drugs along with factors and oral dosage formulations affecting their solubility and bioavailability were reviewed with PubMed literature searches. An overview is provided from the viewpoint of the 'spring-and-parachute approach' that generates supersaturation of poorly soluble P-gp substrate drugs.Expert opinion: The oral bioavailability of P-gp substrate drugs is difficult to predict because of their low solubility, preferential absorption sites, and overlapping substrate specificities with CYP3A4, along with the scattered intestinal P-gp expression/function. To attain high and steady oral bioavailability of poorly soluble P-gp substrate drugs, physicochemical modification of drugs to improve solubility, or oral dosage formulations that generate long-lasting supersaturation in the duodenum, is preferred. In particular, supersaturable lipid-based drug delivery systems that can increase passive diffusion and/or lymphatic absorption are effective and applicable to many poorly soluble P-gp substrate drugs.
Collapse
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, Florida, USA.,College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Timur SS, Gürsoy RN. Design and in vitro evaluation of solid SEDDS for breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Liang X, Hua Y, Liu Q, Li Z, Yu F, Gao J, Zhang H, Zheng A. Solid Self-Emulsifying Drug Delivery System (Solid SEDDS) for Testosterone Undecanoate: In Vitro and In Vivo Evaluation. Curr Drug Deliv 2020; 18:620-633. [PMID: 32887542 DOI: 10.2174/1567201817666200904172626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 08/15/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The current study aimed to investigate the potential of Solid Self-Emulsifying Drug Delivery Systems (solid SEDDS) loaded with Testosterone Undecanoate (TU) (solid TUSEDDS). The solid TU-SEDDS was composed of TU, Medium-Chain Triglycerides (MCT, oil), 2- Chloro-1-(chloromethyl) ethyl carbamate (EL-35, surfactant) and polyethylene glycol (PEG400, cosurfactant). It was expected to improve the dissolution and oral bioavailability of TU, as a result of investigating the feasibility of the clinical application of SEDDS. METHODS First, a TU-SEDDS was developed by using rational blends of components with the good solubilizing ability for TU. Next, a ternary phase diagram was constructed to determine the self-emulsifying region, and the formulation was optimized. Then, the solid TU-SEDDS formulation was established by screening suitable solid adsorptions. Finally, the prepared SEDDS, TUSEDDS and solid TU-SEDDS formulations were evaluated in vitro and in vivo. RESULTS The size of the solid TU-SEDDS was 189.1 ± 0.23 nm. The Transmission Electron Microscopy (TEM) results showed that the oil droplets were homogenous and spherical with good integrity. The Differential Scanning Calorimetry (DSC) and X-Ray Powder Dffraction (XRD) results indicated that the solid TU-SEDDS formulation almost preserves the amorphous state. Scanning Electron Microscopy (SEM) indicated that neusilin US2 successfully adsorbed the TU-SEDDS. Drug release indicated that the dissolution of the solid TU-SEDDS was faster than that of Andriol Testocaps ®. Furthermore, in vivo pharmacokinetic (PK) studies in Sprague-Dawley (SD) rats showed that the Area Under the Curve (AUC) of the solid TU-SEDDS (487.54±208.80 μg/L×h) was higher than that of Andriol Testocaps® (418.93±273.52 μg/L×h, P < 0.05). In beagles not fed a high-fat diet, the AUC of the solid TU-SEDDS (5.81±4.03 μg/L×h) was higher than that of Andriol Testocaps ® (5.53±3.43 μg/L×h, P > 0.05). In beagles fed a high-fat diet, the AUC of the solid TUSEDDS (38.18±21.90 μg/L×h) was higher than that of Andriol Testocaps® (37.17±13.79 μg/L×h, P > 0.05). CONCLUSION According to the results of this research, oral solid TU-SEDDS is expected to be another alternative delivery system for the late-onset hypogonadism. This is beneficial to the transformation of existing drug delivery systems into preclinical and clinical studies.
Collapse
Affiliation(s)
- Xi Liang
- TEAM Academy of Pharmaceutical Sciences Co. Ltd., Beijing 102488, China
| | - Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiguo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fanglin Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
15
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
16
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
17
|
Subramanian P, Rajnikanth PS, Kumar M, Chidambram K. In-Vitro and In-Vivo Evaluation of Supersaturable Self-Nanoemulsifying Drug Delivery System (SNEDDS) of Dutasteride. Curr Drug Deliv 2019; 17:74-86. [PMID: 31721703 DOI: 10.2174/1567201816666191112111610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 10/05/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A novel, Supersaturable Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) has been prepared to improve the Dutasteride's poor aqueous solubility. METHODS By adding Hydroxy Propyl Methyl Cellulose (HPMC) as a precipitation inhibitor to conventional SNEDDS, a supersaturable system was prepared. Firstly, the prepared SNEDDS played an important role in increasing the aqueous solubility and hence oral absorption due to nano-range size. Secondly, the S-SNEDDS found to be advantageous over SNEDDS for having a higher drug load and inhibition of dilution precipitation of Dutasteride. Formulated S-SNEDDS (F1-F9) ranged from 37.42 ± 1.02 to 68.92 ± 0.09 nm with PDI 0.219-0.34 and drug loading of over 95 percent. RESULTS The study of in-vitro dissolution revealed higher dissolution for S-SNEDDS compared to SNEDDS and Avodart soft gelatin capsule as a commercial product. In addition, higher absorption was observed for S-SNEDDS showing approximately 1.28 and 1.27 fold AUC (0-24h) and Cmax compared to commercial products. Therefore, S-SNEDDS has proven as a novel drug delivery system with a higher drug load, higher self-emulsification efficiency, higher stability, higher dissolution and pronounced absorption. CONCLUSION In conclusion, S-SNEDDS could be a newly emerging approach to enhance aqueous solubility in many folds for drugs belonging to BCS Class II and IV and thus absorption and oral bioavailability.
Collapse
Affiliation(s)
| | - P S Rajnikanth
- School of Pharmacy, Taylor's University Lake view Campus, Subang Jaya, Selangor, Malaysia.,Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manish Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Kumarappan Chidambram
- School of Pharmacy, Taylor's University Lake view Campus, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
18
|
Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2019; 1873:188319. [PMID: 31678141 DOI: 10.1016/j.bbcan.2019.188319] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.
Collapse
|
19
|
Almeida SRD, Tippavajhala VK. A Rundown Through Various Methods Used in the Formulation of Solid Self-Emulsifying Drug Delivery Systems (S-SEDDS). AAPS PharmSciTech 2019; 20:323. [PMID: 31654184 DOI: 10.1208/s12249-019-1550-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
The most common route of the drug administration is oral route despite the fact that most drugs have low oral aqueous solubility and bioavailability especially for BCS class II and class IV drugs. Many methods have been developed in recent years to overcome the poor solubility and oral bioavailability which includes self-emulsifying drug delivery systems (SEDDS) as one of the approaches. Not only for hydrophobic drugs, but also for hydrophilic compounds with low permeability, bioavailability can be enhanced by self nanoemulsifying drug delivery systems. Recently, a lot of focus and attention has been put in the conversion of liquid SEDDS (L-SEDDS) to solid SEDDS (S-SEDDS) to overcome the limitations of liquid formulations related to their physical and chemical stability, portability, accurate dosing, and limited choices of dosage forms. This article aims to review the formulation components used in SEDDS, various approaches used in the conversion of L-SEDDS to S-SEDDS, their applications, merits, and demerits.
Collapse
|
20
|
Xu Y, Fang T, Yang Y, Sun L, Shen Q. Preparation of Deoxycholate-Modified Docetaxel-Cimetidine Complex Chitosan Nanoparticles to Improve Oral Bioavailability. AAPS PharmSciTech 2019; 20:302. [PMID: 31489504 DOI: 10.1208/s12249-019-1520-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022] Open
Abstract
Docetaxel (DTX) was effective in the treatment of neoplasm but could only be administered intravenously with the poor oral bioavailability owing to its undesirable solubility, remarkably metabolic conversion, and other factors. Cimetidine (CMD), a classic CYP3A4 isozyme inhibitor, had exhibited a wide range of inhibition on the metabolism of many drugs. The aim of this study was to construct the novel docetaxel-cimetidine (DTX-CMD) complex and the chitosan-deoxycholate nanoparticles based on it to confirm whether this formulation could show advantages in terms of solubility, dissolution rate, small intestinal absorption, and oral bioavailability in comparison with the pure drug. The solid-state characterization was carried out by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), and simultaneous DSC-TGA (SDT). Dissolution rate and kinetic solubility study were determined by evaluating the amount of DTX in distilled water and phosphate buffer solution (pH = 7.4), respectively. And small intestinal absorption and pharmacokinetics study were conducted in rats. The results of this study demonstrated that we successfully constructed DTX-CMD complex and its chitosan-deoxycholate nanoparticles. Furthermore, the DTX-CMD complex increased the solubility of DTX by 2.3-fold and 2.1-fold in distilled water and phosphate buffer solution, respectively. The ultimate accumulative amount of DTX-CMD complex nanoparticles through rat small intestinal in 2 h was approximately 4.9-fold and the oral bioavailability of the novel nanoparticles was enhanced 2.8-fold, compared with the pure DTX. The superior properties of the complex nanoparticles could both improve oral bioavailability and provide much more feasibility for other formulations of DTX.
Collapse
|
21
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
22
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
23
|
Bindhani S, Mohapatra S, Kar R. Self Emulsifying Drug Delivery System: A Recent Approach. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.21569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.
Collapse
Affiliation(s)
- Sabitri Bindhani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - S. Mohapatra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Khandagiri, Bhubhaneswar- 751030, India
| | - R.K. Kar
- Department of of Pharmaceutical Sciences, Dadhichi College of Pharmacy, Cuttack-754002, India
| |
Collapse
|
24
|
Wei Y, Zhou S, Hao T, Zhang J, Gao Y, Qian S. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci 2018; 129:21-30. [PMID: 30590119 DOI: 10.1016/j.ejps.2018.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 01/11/2023]
Abstract
The current study aims to improve the dissolution and oral bioavailability of a BCS IV drug docetaxel (DOC) by coamorphization with a natural P-gp inhibitor myricetin (MYR). A single-phase coamorphous form of DOC with MYR in a 1:1 molar ratio was prepared by solvent-evaporation method and characterized by differential scanning calorimetry, thermogravimetric analysis and powder X-ray diffraction. In comparison to crystalline DOC, amorphous DOC showed similar equilibrium aqueous solubility, temporary improvement in the intrinsic dissolution rate (IDR) and supersaturated dissolution; while coamorphous DOC-MYR exhibited a persistent enhanced IDR and prolonged highly supersaturated dissolution. In addition, coamorphous DOC-MYR demonstrated significantly superior physical stability compared to amorphous DOC under the long-term storage condition and accelerated condition. Compared with oral administration of crystalline DOC to rats, amorphous DOC showed a significant increase in Cmax (2.6-fold) and a marginal increase in AUC (1.3-fold) of DOC; but coamorphous DOC-MYR performed a 3.9-fold higher Cmax and 3.1-fold higher AUC. In conclusion, coamorphization of DOC with MYR was a promising approach to enhance both dissolution and oral absorption of poorly soluble and permeable DOC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengyan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyun Hao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
25
|
Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs. Ther Deliv 2018; 9:873-885. [DOI: 10.4155/tde-2018-0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A supersaturated drug-delivery system is capable of enhancing oral bioavailability of hydrophobic drugs. Maintenance of the supersaturated system both in vitro and in vivo is one of the most challenging parts, for that it is required to keenly understand the nucleation and crystal growth behavior. Polymers are widely used to stabilize supersaturated solutions; screening of polymers is done on the basis of their interaction with drug. Nucleation and crystal growth inhibition and drug–polymer interactions can be investigated by using various spectroscopic methods. Various formulations are prepared as supersaturated systems using different drug-delivery systems utilizing different polymers, which illustrates that supersaturation is worthwhile to increase the solubility and hence oral bioavailability of poorly soluble drugs.
Collapse
|
26
|
Qiao J, Ji D, Sun S, Zhang G, Liu X, Sun B, Guan Q. Oral Bioavailability and Lymphatic Transport of Pueraria Flavone-Loaded Self-Emulsifying Drug-Delivery Systems Containing Sodium Taurocholate in Rats. Pharmaceutics 2018; 10:pharmaceutics10030147. [PMID: 30189624 PMCID: PMC6161070 DOI: 10.3390/pharmaceutics10030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022] Open
Abstract
We developed self-microemulsifying drug-delivery systems (SMEDDS), including bile salts, to improve the oral bioavailability of pueraria flavones (PFs). The physical properties of the SMEDDS using Cremophor RH 40, and bile salts as mixed surfactants at weight ratios of 10:0⁻0:10 were determined. The particle sizes of PFs-SMEDDSNR containing sodium taurocholate (NaTC) and Cremophor RH 40, and PFs-SMEDDSR containing Cremophor RH 40 were measured upon dilution with deionized water and other aqueous media. Dilution volume presented no remarkable effects on particle size, whereas dilution media slightly influenced particle size. PFs-SMEDDSNR and PFs-SMEDDSR provided similar release rates in pH-1.2 hydrochloride solution. However, the release rate of PFs-SMEDDSNR was faster than that of PFs-SMEDDSR in pH-6.8 phosphate buffer containing 20 mM NaTC and 500 U/mL porcine pancreas lipase. The pharmacokinetics and bioavailability were measured in rats. The oral bioavailability of PFs-SMEDDSNR was 2.57- and 2.28-fold that of a suspension of PFs (PFs-suspension) before and after the blockade of the lymphatic transport route by cycloheximide, respectively. These results suggested PFs-SMEDDSNR could significantly improve the oral relative absorption of PFs via the lymphatic uptake pathway. SMEDDS containing NaTC may provide an effective approach for enhancing the oral bioavailability of PFs.
Collapse
Affiliation(s)
- Jin Qiao
- School of Pharmacy, Jilin University, Changchun 13002, China.
| | - Danyang Ji
- School of Pharmacy, Jilin University, Changchun 13002, China.
| | - Shilin Sun
- Jilin Institute for Drug Control, 657 Zhanjiang Road, Changchun 130031, China.
| | - Guangyuan Zhang
- School of Pharmacy, Jilin University, Changchun 13002, China.
| | - Xin Liu
- School of Pharmacy, Jilin University, Changchun 13002, China.
| | - Bingxue Sun
- School of Pharmacy, Jilin University, Changchun 13002, China.
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, Changchun 13002, China.
| |
Collapse
|
27
|
Din FU, Saleem S, Aleem F, Ahmed R, Huda NU, Ahmed S, Khaleeq N, Shah KU, Ullah I, Zeb A, Aman W. Advanced colloidal technologies for the enhanced bioavailability of drugs. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1480572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sehrish Saleem
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fatima Aleem
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rida Ahmed
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Noor ul Huda
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sohail Ahmed
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Nadra Khaleeq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | | | - Izhar Ullah
- Department of Pharmacy, University of Poonch Rawlakot AJK, Rawlakot, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
28
|
Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine 2018; 13:3145-3161. [PMID: 29922053 PMCID: PMC5997133 DOI: 10.2147/ijn.s164518] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.
Collapse
Affiliation(s)
- Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Mubashar Rehman
- Department of Pharmacy, University of Lahore-Gujrat Campus, Gujrat
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| | - Sara Naveed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore
| | - Omer Salman
- Department of Pharmacy, University of Lahore, Lahore Campus
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad
| |
Collapse
|
29
|
Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res 2018; 8:670-692. [DOI: 10.1007/s13346-018-0514-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Enhanced pharmacokinetic behavior and hepatoprotective function of ginger extract-loaded supersaturable self-emulsifying drug delivery systems. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Gao H, Wang M, Sun D, Sun S, Sun C, Liu J, Guan Q. Evaluation of the cytotoxicity and intestinal absorption of a self-emulsifying drug delivery system containing sodium taurocholate. Eur J Pharm Sci 2017; 106:212-219. [PMID: 28591563 DOI: 10.1016/j.ejps.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
Currently, many surfactants used in self-emulsifying drug delivery systems (SMEDDS) can cause gastrointestinal mucosal irritation and systemic toxicity. In the present study, SMEDDS were loaded with pueraria flavones, using sodium taurocholate to replace polyoxyl 40 dydrogenated castor oil (Cremophor® RH 40) as the surfactant (PF-SMEDDSNR) to reduce the toxicity of SMEDDS using Cremophor® RH 40 as the surfactant (PF-SMEDDSR). The absorption rate constants (Ka) and intestinal permeability coefficients (Peff) were measured. The effects of P-glycoprotein inhibitor (verapamil), adenosine triphosphate (ATP) inhibitor (2,4-dinitrophenol), and carrier inhibitor on Ka and Peff values in the ileum were determined. Biological safety was also evaluated. The Ka and Peff values increased for PF-solution concentrations of 200μg/ml>100μg/ml>400μg/ml in individual segments of the intestines. The results indicated that Peff values of PF-SMEDDSNR were distinctly higher than those of SMEDDS loaded with pueraria flavones using Cremophor®RH 40 as the surfactant (PF-SMEDDSR) and PF-solution in four intestinal segments. However, the Ka values of PF-SMEDDSNR were higher only in the jejunum and ileum segments compared with those of PF-SMEDDSR and PF-solution. The Ka and Peff values without verapamil were significantly lower than those with verapamil. 2,4-Dinitrophenol had no effect on Ka and Peff values. The Ka and Peff values of PF-SMEDDSNR significantly decreased after perfusing B-SMEDDSNR for 1h prior to the study. The cell viabilities after exposure to SMEDDSNR were higher than those of SMEDDSR in the range of 81-324μg/ml. Lactate dehydrogenase release from cells treated with PF-SMEDDSNR or B-SMEDDSNR was significantly lower than that from cells treated with PF-SMEDDSR or B-SMEDDSR at surfactant concentrations of 243 and 324μg/ml. However, there were no differences with SMEDDS treatment at surfactant concentrations of 0-162μg/ml. Hence, we conclude that SMEDDS using sodium taurocholate as the surfactant can reduce the toxicity of SMEDDS, meanwhile, maintain the characteristics of SMEDDS, and enhance intestinal absorption.
Collapse
Affiliation(s)
- Hang Gao
- The First Hosptial of Jilin University, No. 71, Xinmin Street, Changchun 130021, PR China
| | - Miao Wang
- School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, PR China
| | - Dandan Sun
- School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, PR China
| | - Shilin Sun
- School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, PR China
| | - Cheng Sun
- School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, PR China
| | - Jianguo Liu
- The First Hosptial of Jilin University, No. 71, Xinmin Street, Changchun 130021, PR China
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, PR China.
| |
Collapse
|
32
|
Parhizkar E, Daneshamouz S, Mohammadi-Samani S, Sakhteman A, Parhizkar G, Omidi M, Ahmadi F. Synthesis andin vitroassessment of novel water-soluble dextran-docetaxel conjugates as potential pH sensitive system for tumor-targeted delivery. J Appl Polym Sci 2017. [DOI: 10.1002/app.45457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
- Research Center for Nanotechnology in Drug Delivery, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| | - Golnaz Parhizkar
- Department of Chemistry; University of Isfahan; Isfahan 81746-73441 Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
- Research Center for Nanotechnology in Drug Delivery, School of Pharmacy; Shiraz University of Medical Sciences; Shiraz 71468-64685 Iran
| |
Collapse
|
33
|
Ahmad N, Alam MA, Ahmad R, Naqvi AA, Ahmad FJ. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:432-446. [PMID: 28503995 DOI: 10.1080/21691401.2017.1324466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Docetaxel (DTX), a cytotoxic taxane, is a poor water-soluble drug and exhibits less oral bioavailability. Current research investigates the effective transport, for DTX-loaded chitosan (CS)-coated-poly-lactide-co-glycolide (PLGA)-nanoparticles (NPs) (DTX-CS-PLGA-NPs) and DTX-PLGA-NPs as well as a novel third-generation P-gp inhibitor i.e. GF120918 (Elacridar), across intestinal epithelium with its successive uptake by the tumour cells in an in vitro model. The prepared NPs showed a spherical shape particle size i.e. <123.96 nm with polydispersity index (PDI) of <0.290 whereas for CS-coated NPs, the zeta potential was converted from negative to positive value along with a small modification in particle size distribution. The entrapment efficiency observed for DTX-CS-PLGA-NPs was 74.77%, whereas the in vitro release profile revealed an initial rapid DTX release followed by a sustained release pattern. For apparent permeability, DTX-CS-PLGA-NPs and DTX-PLGA-NPs along with GF120918 showed a five-fold (p < .01) and 2.2-fold enhancement, respectively, as observed in rat ileum permeation study. Similarly, for pharmacokinetic (PK) studies, higher oral bioavailability was observed from DTX-CS-PLGA-NPs (5.11-folds) and DTX-PLGA-NPs (3.29-folds) as compared with DTX-suspension (DTX-S). Cell uptake studies on A549 cells as performed for DTX-CS-PLGA-NPs and DTX-PLGA-NPs loaded with rhodamine 123 dye, exhibited enhanced uptake as compared with plain dye solution. The enhanced uptake for DTX-CS-PLGA-NPs and DTX-PLGA-NPs formulations in the presence of GF120918 was confirmed further with the help of confocal laser scanning microscopic images (CLSM). The potential of the third-generation novel P-gp inhibitor (GF120918) investigated for the effective delivery of DTX as well as investigation of permeability and uptake studies whereby a strong potential of GF120918 for effective oral delivery was established.
Collapse
Affiliation(s)
- Niyaz Ahmad
- a Department of Pharmaceutics , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Md Aftab Alam
- b Department of Pharmaceutics, School of Medical and Allied Sciences , Galgotias University , Greater Noida , India
| | - Rizwan Ahmad
- c Department of Natural Products and Alternative Medicine , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Atta Abbas Naqvi
- d Department of Pharmacy Practice , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Farhan Jalees Ahmad
- e Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard , New Delhi , India
| |
Collapse
|
34
|
Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release 2017; 248:71-95. [PMID: 28088572 DOI: 10.1016/j.jconrel.2017.01.014] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
Abstract
BCS class IV drugs (e.g., amphotericin B, furosemide, acetazolamide, ritonavir, paclitaxel) exhibit many characteristics that are problematic for effective oral and per oral delivery. Some of the problems associated include low aqueous solubility, poor permeability, erratic and poor absorption, inter and intra subject variability and significant positive food effect which leads to low and variable bioavailability. Also, most of the class IV drugs are substrate for P-glycoprotein (low permeability) and substrate for CYP3A4 (extensive pre systemic metabolism) which further potentiates the problem of poor therapeutic potential of these drugs. A decade back, extreme examples of class IV compounds were an exception rather than the rule, yet today many drug candidates under development pipeline fall into this category. Formulation and development of an efficacious delivery system for BCS class IV drugs are herculean tasks for any formulator. The inherent hurdles posed by these drugs hamper their translation to actual market. The importance of the formulation composition and design to successful drug development is especially illustrated by the BCS class IV case. To be clinically effective these drugs require the development of a proper delivery system for both oral and per oral delivery. Ideal oral dosage forms should produce both a reasonably high bioavailability and low inter and intra subject variability in absorption. Also, ideal systems for BCS class IV should produce a therapeutic concentration of the drug at reasonable dose volumes for intravenous administration. This article highlights the various techniques and upcoming strategies which can be employed for the development of highly notorious BCS class IV drugs. Some of the techniques employed are lipid based delivery systems, polymer based nanocarriers, crystal engineering (nanocrystals and co-crystals), liquisolid technology, self-emulsifying solid dispersions and miscellaneous techniques addressing the P-gp efflux problem. The review also focuses on the roadblocks in the clinical development of the aforementioned strategies such as problems in scale up, manufacturing under cGMP guidelines, appropriate quality control tests, validation of various processes and variable therein etc. It also brings to forefront the current lack of regulatory guidelines which poses difficulties during preclinical and clinical testing for submission of NDA and subsequent marketing. Today, the pharmaceutical industry has as its disposal a series of reliable and scalable formulation strategies for BCS Class IV drugs. However, due to lack of understanding of the basic physical chemistry behind these strategies formulation development is still driven by trial and error.
Collapse
Affiliation(s)
- Rohan Ghadi
- IPDO, Innovation Plaza, Dr Reddy's Laboratories Ltd., Bachupally, Hyderabad, 500090, India.
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai, 400064, India
| |
Collapse
|
35
|
Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv 2016; 14:1325-1340. [DOI: 10.1080/17425247.2016.1218462] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fiza Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amjad Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
36
|
Fong SYK, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv 2016; 14:403-426. [DOI: 10.1080/17425247.2016.1218465] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Sawicki E, Beijnen JH, Schellens JHM, Nuijen B. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel. Int J Pharm 2016; 511:765-73. [PMID: 27480397 DOI: 10.1016/j.ijpharm.2016.07.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022]
Abstract
Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorphicity of SD and scalability of the production process. To resolve this, a spray drying method for an SD (spSD) containing docetaxel or paclitaxel and subsequently drug products were developed. Highest saturation solubility (Smax), precipitation onset time (Tprecip), amorphicity, purity, residual solvents, yield/efficiency and powder flow of spSDs were studied. Drug products were monitored for purity/content and dissolution during 24 months at +15-25°C. Docetaxel spSD Smax was equal to that of fdSD but Tprecip was 3 times longer. Paclitaxel spSD Smax was 30% increased but Tprecip was equal to fdSD. spSDs were fully amorphous, >99% pure, <5% residual solvents, mean batch yield was 100g and 84%. spSDs had poor powder flow characteristics, which could not be resolved by changing settings, but by using 75% lactose as diluent. The drug product was a tablet with docetaxel or paclitaxel spSD and was stable for at least 24 months. Spray drying is feasible for the production of SD of docetaxel or paclitaxel for upcoming clinical trials.
Collapse
Affiliation(s)
- Emilia Sawicki
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital/MC Slotervaart, Amsterdam, The Netherlands.
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital/MC Slotervaart, Amsterdam, The Netherlands; Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital/MC Slotervaart, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep 2016; 6:26895. [PMID: 27241877 PMCID: PMC4886259 DOI: 10.1038/srep26895] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/11/2016] [Indexed: 12/27/2022] Open
Abstract
Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy.
Collapse
|
39
|
Quan G, Wu Q, Zhang X, Zhan Z, Zhou C, Chen B, Zhang Z, Li G, Pan X, Wu C. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica. Colloids Surf B Biointerfaces 2016; 141:476-482. [DOI: 10.1016/j.colsurfb.2016.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/17/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
|
40
|
Development of a solidified self-microemulsifying drug delivery system (S-SMEDDS) for atorvastatin calcium with improved dissolution and bioavailability. Int J Pharm 2016; 506:302-11. [PMID: 27125455 DOI: 10.1016/j.ijpharm.2016.04.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 11/21/2022]
Abstract
To improve the dissolution and oral bioavailability (BA) of atorvastatin calcium (ATV), we previously introduced an optimized self-microemulsifying drug delivery system (SMEDDS) using Capmul(®) MCM (oil), Tween(®) 20 (surfactant), and tetraglycol (cosurfactant). In this study, various solid carriers were employed to develop a solidified SMEDDS (S-SMEDDS): mannitol (M) and lactose (L) as water-soluble carriers, and Sylysia(®) 350 (S) and Aerosil(®) 200 (A) as water-insoluble carriers. Maximum solidifying capacities (SCmax) of water-insoluble carriers were significantly greater than those of water-soluble carriers were. The resultant powders were free flowing with an angle of repose <40° and Carr's index 5-20%, regardless of the solid carrier types. S-SMEDDS with mannitol (S(M)-SMEDDS) or lactose (S(L)-SMEDDS) had a smaller droplet size and greater dissolution than S-SMEDDS with Sylysia(®) 350 (S(S)-SMEDDS) or Aerosil(®) 200 (S(A)-SMEDDS). Following oral administration of various formulations to rats at a dose equivalent to 25mg/kg of ATV, plasma drug levels were measured by LC-MS/MS. The relative BAs (RBAs) of SMEDDS, S(M)-SMEDDS, and S(S)-SMEDDS were 345%, 216%, and 160%, respectively, compared to that of ATV suspension. Additionally, at a reduced dose of ATV equivalent to 5mg/kg, the RBAs of S(M)-SMEDDS and S(S)-SMEDDS compared to that of SMEDDS were 101% and 65%, respectively. These results suggest that S(M)-SEMDDS offers great potential for the development of solid dosage forms with improved oral absorption of drugs with poor water solubility.
Collapse
|
41
|
Patel G, Shelat P, Lalwani A. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment. Drug Deliv 2016; 23:3027-3042. [PMID: 26882014 DOI: 10.3109/10717544.2016.1141260] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Lopinavir (LPV), an antiretroviral protease inhibitor shows poor bioavailability because of poor aqueous solubility and extensive hepatic first-pass metabolism. The aim of the present work was to investigate the potential of the solid self-nanoemulsifying drug delivery system (S-SNEDDS) in improving dissolution rate and oral bioavailability of LPV. MATERIALS AND METHODS Liquid SNEDDS (L-SNEDDS) of LPV were prepared using Capmul MCM C8, Cremophor RH 40 and propylene glycol and their amounts were optimized by Scheffe's mixture design. L-SNEDDS formulations were evaluated for different physicochemical and in vitro drug release parameters. S-SNEDDS were prepared by adsorbing L-SNEDDS on Neusilin US2 and characterized for solid-state properties. In vivo bioavailability of S-SNEDDS, marketed Lopinavir + Ritonavir (LPV/RTV) formulation and pure LPV was studied in Wistar rats. Stability study of S-SNEDDS was performed as per ICH guidelines. RESULTS AND DISCUSSION Optimized L-SNEDDS obtained by Scheffe design had drug loading 160 ± 1.15 mg, globule size 32.9 ± 1.45 nm and drug release >95% within 15 min. Solid state studies suggested the transformation of the crystalline drug to amorphous drug. The size and zeta potential of globules obtained on dilution S-SNEDDS remained similar to L-SNEEDS. In vivo bioavailability study revealed that S-SNEDDS has 2.97 and 1.54-folds higher bioavailability than pure LPV and LPV/RTV formulation, respectively. The optimized S-SNEDDS was found to be stable and had a shelf life of 2.85 years. CONCLUSION The significant increase in drug dissolution and bioavailability by prepared SNEDDS suggest that the developed S-SNEDDS is a useful solid platform for improving oral bioavailability of poorly soluble LPV.
Collapse
Affiliation(s)
- Grishma Patel
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| | - Pragna Shelat
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| | - Anita Lalwani
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| |
Collapse
|
42
|
Development and Evaluation of Liquid and Solid Self-Emulsifying Drug Delivery Systems for Atorvastatin. Molecules 2015; 20:21010-22. [PMID: 26610464 PMCID: PMC6332319 DOI: 10.3390/molecules201219745] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/17/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to design and characterize liquid and solid self-emulsifying drug delivery systems (SEDDS) for poorly soluble atorvastatin. To optimize the composition of liquid atorvastatin-SEDDS, solubility tests, pseudoternary phase diagrams, emulsification studies and other in vitro examinations (thermodynamic stability, droplet size and zeta potential analysis) were performed. Due to the disadvantages of liquid SEDDS (few choices for dosage forms, low stability and portability during the manufacturing process), attempts were also made to obtain solid SEDDS. Solid SEDDS were successfully obtained using the spray drying technique from two optimized liquid formulations, CF3 and OF2. Despite liquid SEDDS formulation, CF3 was characterized by lower turbidity, higher percentage transmittance and better self-emulsifying properties, and based on the in vitro dissolution study it can be concluded that better solubilization properties were exhibited by solid formulation OF2. Overall, the studies demonstrated the possibility of formulating liquid and solid SEEDS as promising carriers of atorvastatin. SEDDS, with their unique solubilization properties, provide the opportunity to deliver lipophilic drugs to the gastrointestinal tract in a solubilized state, avoiding dissolution—a restricting factor in absorption rate of BCS Class 2 drugs, including atorvastatin.
Collapse
|
43
|
Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.05.005] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Patel A, Shelat P, Lalwani A. Development and optimization of solid self-nanoemulsifying drug delivery system (S-SNEDDS) using Scheffe’s design for improvement of oral bioavailability of nelfinavir mesylate. Drug Deliv Transl Res 2014; 4:171-86. [DOI: 10.1007/s13346-014-0191-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Bandyopadhyay S, Katare OP, Singh B. Development of optimized supersaturable self-nanoemulsifying systems of ezetimibe: effect of polymers and efflux transporters. Expert Opin Drug Deliv 2014; 11:479-92. [DOI: 10.1517/17425247.2014.877885] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. J Control Release 2013; 170:15-40. [DOI: 10.1016/j.jconrel.2013.04.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
|
47
|
Tan A, Rao S, Prestidge CA. Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharm Res 2013; 30:2993-3017. [DOI: 10.1007/s11095-013-1107-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
48
|
Yanyu X, Shan W, Yinan C, Qineng P. Self-emulsifying bifendate pellets: preparation, characterization and oral bioavailability in rats. Drug Dev Ind Pharm 2012; 39:724-32. [DOI: 10.3109/03639045.2012.689766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomedicine 2012; 7:1115-25. [PMID: 22403491 PMCID: PMC3292421 DOI: 10.2147/ijn.s28761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. METHODS A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. RESULTS The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor(®) EL:Transcutol(®) P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. CONCLUSION The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|