1
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, United States of America.
| |
Collapse
|
2
|
Ahrens L, Forget A, Shastri VP. Modulation of Short-Term Delivery of Proteins from Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64568-64578. [PMID: 39552122 DOI: 10.1021/acsami.4c15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
For modulation of cellular behavior, systems that can provide controlled delivery of proteins (soluble signals) over a few hours to a few days are highly desirable. Conventional erosion-controlled systems are inadequate as their degradation spans days to months. Conversely, hydrogels offer quicker release but are limited by a high burst release that can lead to cytotoxicity and rapid depletion of the permeant. To avoid burst release and achieve controlled diffusion of proteins, we propose exploiting electrostatic interactions between the hydrogel matrix and proteins. Here we demonstrate this concept using two disparate hydrogel systems: (1) a chemically cross-linked protein (gelatin) matrix and (2) a physically cross-linked polysaccharide (agarose) matrix and three proteins having different isoelectric points. By introducing fixed charges into the hydrogel matrix using carboxylated agarose (CA), the precise and controlled release of BSA, lactoferrin, and FGF2 over a few hours to days is demonstrated. Using electroendosmosis, we further provide evidence for a clear role for CA in modulating the release. Our findings suggest that the paradigm presented herein has the potential to significantly enhance the design of hydrogel systems for the delivery of proteins and RNA therapeutics for vaccines and biomedical applications ranging from tissue engineering to functional coatings for medical devices.
Collapse
Affiliation(s)
- Lucas Ahrens
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Aurélien Forget
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Alidori S, Subramanian R, Holm R. Patient-Centric Long-Acting Injectable and Implantable Platforms─An Industrial Perspective. Mol Pharm 2024; 21:4238-4258. [PMID: 39160132 PMCID: PMC11372838 DOI: 10.1021/acs.molpharmaceut.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The increasing focus on patient centricity in the pharmaceutical industry over the past decade and the changing healthcare landscape, driven by factors such as increased access to information, social media, and evolving patient demands, has necessitated a shift toward greater connectivity and understanding of patients' unique treatment needs. One pharmaceutical technology that has supported these efforts is long acting injectables (LAIs), which lower the administration frequency for the patient's provided convenience, better compliance, and hence better therapeutical treatment for the patients. Furthermore, patients with conditions like the human immunodeficiency virus and schizophrenia have positively expressed the desire for less frequent dosing, such as that obtained through LAI formulations. In this work, a comprehensive analysis of marketed LAIs across therapeutic classes and technologies is conducted. The analysis demonstrated an increasing number of new LAIs being brought to the market, recently most as aqueous suspensions and one as a solution, but many other technology platforms were applied as well, in particular, polymeric microspheres and in situ forming gels. The analysis across the technologies provided an insight into to the physicochemical properties the compounds had per technology class as well as knowledge of the excipients typically used within the individual formulation technology. The principle behind the formulation technologies was discussed with respect to the release mechanism, manufacturing approaches, and the possibility of defining predictive in vitro release methods to obtain in vitro in vivo correlations with an industrial angle. The gaps in the field are still numerous, including better systematic formulation and manufacturing investigations to get a better understanding of potential innovations, but also development of new polymers could facilitate the development of additional compounds. The biggest and most important gaps, however, seem to be the development of predictive in vitro dissolution methods utilizing pharmacopoeia described equipment to enable their use for product development and later in the product cycle for quality-based purposes.
Collapse
Affiliation(s)
- Simone Alidori
- Independent Researcher, Havertown, Pennsylvania 19083, United States
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94403, United States
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
5
|
Kim W, Ngo HV, Nguyen HD, Park JM, Lee KW, Park C, Park JB, Lee BJ. Nanonization and Deformable Behavior of Fattigated Peptide Drug in Mucoadhesive Buccal Films. Pharmaceutics 2024; 16:468. [PMID: 38675128 PMCID: PMC11054133 DOI: 10.3390/pharmaceutics16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
This study was tasked with the design of mucoadhesive buccal films (MBFs) containing a peptide drug, leuprolide (LEU), or its diverse nanoparticles (NPs), for enhanced membrane permeability via self-assembled nanonization and deformable behavior. An LEU-oleic acid conjugate (LOC) and its self-assembled NPs (LON) were developed. Additionally, a deformable variant of LON (d-LON) was originally developed by incorporating l-α-phosphatidylcholine into LON as an edge activator. The physicochemical properties of LON and d-LON, encompassing particle size, zeta potential, and deformability index (DI), were evaluated. MBFs containing LEU, LOC, and NPs (LON, d-LON) were prepared using the solvent casting method by varying the ratio of Eudragit RLPO and hydroxypropyl methylcellulose, with propylene glycol used as a plasticizer. The optimization of MBF formulations was based on their physicochemical properties, including in vitro residence time, dissolution, and permeability. The dissolution results demonstrated that the conjugation of oleic acid to LEU exhibited a more sustained LEU release pattern by cleaving the ester bond of the conjugate, as compared to the native LEU, with reduced variability. Moreover, the LOC and its self-assembled NPs (LON, d-LON), equivalent to 1 mg LEU doses in MBF, exhibited an amorphous state and demonstrated better permeability through the nanonization process than LEU alone, regardless of membrane types. The incorporation of lauroyl-L-carnitine into the films as a permeation enhancer synergistically augmented drug permeability. Most importantly, the d-LON-loaded buccal films showed the highest permeability, due to the deformability of NPs. Overall, MBF-containing peptide NPs and permeation enhancers have the potential to replace parenteral LEU administration by improving LEU druggability and patient compliance.
Collapse
Affiliation(s)
- Woojun Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hai V. Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hy D. Nguyen
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Ji-Min Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Kye Wan Lee
- Dongkook Pharmaceutical Co., Ltd., Seoul 06072, Republic of Korea;
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Wan B, Bao Q, Burgess D. Long-acting PLGA microspheres: advances in excipient and product analysis toward improved product understanding. Adv Drug Deliv Rev 2023; 198:114857. [PMID: 37149041 DOI: 10.1016/j.addr.2023.114857] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) microspheres are a sustained-release drug delivery system with several successful commercial products used for the treatment of a variety of diseases. By utilizing PLGA polymers with different compositions, therapeutic agents can be released over durations varying from several weeks to several months. However, precise quality control of PLGA polymers and a fundamental understanding of all the factors associated with the performance of PLGA microsphere formulations remains challenging. This knowledge gap can hinder product development of both innovator and generic products. In this review, variability of the key release controlling excipient (PLGA), as well as advanced physicochemical characterization techniques for the PLGA polymer and PLGA microspheres are discussed. The relative merits and challenges of different in vitro release testing methods, in vivo pharmacokinetic studies, and in vitro-in vivo correlation development are also summarized. This review is intended to provide an in-depth understanding of long-acting microsphere products and consequently facilitate the development of these complex products.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Diane Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| |
Collapse
|
7
|
Bausart M, Rodella G, Dumont M, Ucakar B, Vanvarenberg K, Malfanti A, Préat V. Combination of local immunogenic cell death-inducing chemotherapy and DNA vaccine increases the survival of glioblastoma-bearing mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102681. [PMID: 37105343 DOI: 10.1016/j.nano.2023.102681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy efficacy as monotherapy is negligible for glioblastoma (GBM). We hypothesized that combining therapeutic vaccination using a plasmid encoding an epitope derived from GBM-associated antigen (pTOP) with local delivery of immunogenic chemotherapy using mitoxantrone-loaded PEGylated PLGA-based nanoparticles (NP-MTX) would improve the survival of GBM-bearing mice by stimulating an antitumor immune response. We first proved that MTX retained its ability to induce cytotoxicity and immunogenic cell death of GBM cells after encapsulation. Intratumoral delivery of MTX or NP-MTX increased the frequency of IFN-γ-secreting CD8 T cells. NP-MTX mixed with free MTX in combination with pTOP DNA vaccine increased the median survival of GL261-bearing mice and increased M1-like macrophages in the brain. The addition of CpG to this combination abolished the survival benefit but led to increased M1 to M2 macrophage ratio and IFN-γ-secreting CD4 T cell frequency. These results highlight the benefits of combination strategies to potentiate immunotherapy and improve GBM outcome.
Collapse
Affiliation(s)
- Mathilde Bausart
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Mathilde Dumont
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Bernard Ucakar
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| |
Collapse
|
8
|
Zhou J, Schutzman R, Shi NQ, Ackermann R, Olsen K, Wang Y, Schwendeman SP. Influence of encapsulation variables on formation of leuprolide-loaded PLGA microspheres. J Colloid Interface Sci 2023; 636:401-412. [PMID: 36640551 DOI: 10.1016/j.jcis.2022.11.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Emulsion-based solvent evaporation microencapsulation methods for producing PLGA microspheres are complex often leading to empirical optimization. This study aimed to develop a more detailed understanding of the effects of process variables on the complex emulsification processes during encapsulation of leuprolide in PLGA microspheres using a high-shear rotor-stator mixer. Following extensive analysis of previously developed formulation conditions that yield microspheres of equivalent composition to the commercial 1-month Lupron Depot, multiple variables during the formation of primary and secondary emulsion were investigated with the aid of dimensional analysis, including: rotor speed (ω) and time (t), dispersed phase fraction (Φ) and continuous phase viscosity (µc). The dimensionless Sauter mean diameter (d3,2) of primary emulsion was observed to be proportional to the product of several key dimensionless groups (Φ1,We,Re,ω1t1) raised to the appropriate power indices. A new dimensionless group (Θ ) (surface energy/energy input) was used to rationalize insertion of a proportionate time dependence in the scaling of the d3,2. The dimensionless d3,2 of secondary emulsion was found proportional to the product of three dimensionless groups ( [Formula: see text] ) raised to the appropriate power indices. The increased viscosity of the primary emulsion, decreased secondary water phase volume and reduced second homogenization time each elevated encapsulation efficiency of peptide by reducing drug leakage to the outer water phase. These results could be useful for dimensional analysis and improving manufacturing of PLGA microspheres by the solvent evaporation method.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Richard Schutzman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Nian-Qiu Shi
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; School of Pharmacy, Jilin Medical University, Jilin 132013, Jilin Province, China
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Karl Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Sato Y, Moritani T, Inoue R, Takeuchi H. Preparation and evaluation of sustained release formulation of PLGA using a new injection system based on ink-jet injection technology. Int J Pharm 2023; 635:122731. [PMID: 36822339 DOI: 10.1016/j.ijpharm.2023.122731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
We developed a method for the preparation of PLGA particles exhibiting long-term sustained-release of entrapped drugs. The fine droplet drying (FDD) technology using a new injection system based on ink-jet injection technology was adapted as the preparation method. PLGA microspheres containing TRITC-dextran, acetaminophen, and albumin as model drugs were prepared by the FDD technology. The resultant microspheres were uniform in size, with average particle sizes ranging from 16.3 to 33.0 μm and SPAN factors ranging from 0.49 to 0.77. The encapsulation efficiency of drugs showed high values ranging from 75 to 99 wt% of the total amount of water-soluble drug contained in the particles. In an investigation of the optimal operation conditions of the FDD technology, the dew point temperature of the dryer air stream was found to be an important factor for controlling the initial burst of the prepared particles. The TRITC-dextran-containing PLGA microspheres were confirmed to exhibit long-term sustained release for about 90 days, and the mechanism was found to be PLGA degradation rate-limiting. Based on these results, we concluded that long-term sustained-released PLGA particles can be prepared by using FDD technology under a suitable drying condition for controlling the initial burst.
Collapse
Affiliation(s)
- Yuichi Sato
- Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, Gifu 502-8585, Japan; RICOH Co., Ltd., Kanagawa 243-0460, Japan.
| | | | | | - Hirofumi Takeuchi
- Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| |
Collapse
|
10
|
Golfakhrabadi F, Niknejad MR, Kalantari H, Dehghani MA, Shakiba Maram N, Ahangarpour A. Evaluation of the protective effects of berberine and berberine nanoparticle on insulin secretion and oxidative stress induced by carbon nanotubes in isolated mice islets of langerhans: an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21781-21796. [PMID: 36279052 DOI: 10.1007/s11356-022-23508-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of single-walled carbon nanotubes (SWCNT) in various fields highlights the need to investigate the test toxicity of these nanoparticles in humans. Previous documents showed that SWCNT induced oxidative stress. Oxidative stress and reactive oxygen species (ROS) cause cell dysfunction and reduced insulin secretion. Therefore, this study aimed to investigate the effects of SWCNT on oxidative stress and insulin secretion of islets also evaluate the protective effects of berberine (BBR) and berberine nanoparticles (NP-BBR) as antioxidants on pancreatic β-islets. Double emulsion with solvent evaporation was the technique used to prepare nanoparticles in this study. Islets were isolated and pretreated with various concentrations of BBR and NP-BBR and then treated with single dose of SWCNT (160 μg). The results of this study showed that SWCNT decreased cell viability based on MTT assay, reduced insulin secretion of islets, increased malondialdehyde (MDA) amounts, reactive oxygen species (ROS) levels, reduced glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, whereas pretreatment of islets with low doses of BBR (5 and 15 μM) and NP-BBR (5 μM) significantly reversed all changes induced by SWCNT. These findings suggested that SWCNT might trigger other pathways involved in insulin secretion by activating the oxidative stress pathway in the pancreatic islets, reducing insulin secretion, consequently diabetes. BBR and NP-BBR as antioxidants were able to protect pancreatic β-islets and prevent the progression of diabetes.
Collapse
Affiliation(s)
- Fereshteh Golfakhrabadi
- Department of Pharmacognosy, Faculty of Pharmacy, Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Niknejad
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Shakiba Maram
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, Faculty of Medicine, Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Abulateefeh SR. Long-acting injectable PLGA/PLA depots for leuprolide acetate: successful translation from bench to clinic. Drug Deliv Transl Res 2023; 13:520-530. [PMID: 35976565 DOI: 10.1007/s13346-022-01228-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
The excellent properties of polyesters combined with their ease of synthesis and modification enabled their wide use in the pharmaceutical industry. This has been translated into the approval of several injectable depots for clinical use. Long-acting depots for leuprolide acetate were among the first and most successful examples including Lupron Depot® and ELIGARD®. Studying these products is of great interest for researchers in both industry and academia. This will undoubtedly pave the road for the development of new as well as generic long-acting depots for a variety of drugs.
Collapse
|
12
|
Gonella A, Grizot S, Liu F, López Noriega A, Richard J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv 2022; 19:927-944. [PMID: 35899474 DOI: 10.1080/17425247.2022.2105318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of long acting injectables (LAIs) for protein and peptide therapeutics has been a key challenge over the last 20 years. If these molecules offer advantages due to their high specificity and selectivity, their controlled release may confer several additional benefits in terms of extended half-life, local delivery, and patient compliance. AREA COVERED This manuscript aims to give an overview of peptide and protein based LAIs from an industrial perspective, describing both approved and promising technologies (with exceptions of protein engineering strategies and devices), their advantages and potential improvements to aid their access to the market. EXPERT OPINION Many LAIs have been developed for peptides, with formulations on the market for several decades. On the contrary, LAIs for proteins are still far from the market and issues related to manufacturing and sterilization of these products still need to be overcome. In situ forming depots (ISFDs), whose simple manufacturing conditions and easy administration procedures (without reconstitution) are strong advantages, appear as one of the most promising technologies for the delivery of these molecules. In this regard, the approval of ELIGARD® in the early 2000's (which still requires a complex reconstitution process), paved the way for the development of second-generation, ready-to-use ISFD technologies like BEPO® and FluidCrystal®.
Collapse
Affiliation(s)
- Andrea Gonella
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Fang Liu
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Joël Richard
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| |
Collapse
|
13
|
Wan B, Bao Q, Wang R, Burgess DJ. Polymer source affects in vitro-in vivo correlation of leuprolide acetate PLGA microspheres. Int J Pharm 2022; 625:122032. [PMID: 35878870 DOI: 10.1016/j.ijpharm.2022.122032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
Poly(lactic-co-glycolic acid) PLGA (release controlling excipient) plays a dominant role on the performance of PLGA based long-acting parenterals. These types of drug products typically exhibit complex multi-phasic in vitro/in vivo release/absorption characteristics. In particular, owing to their large size, charged state, and hydrophilicity, peptide loaded microspheres can exhibit more complex release mechanisms. Accordingly, it is challenging to develop Level A in vitro-in vivo correlations (IVIVCs) for such complex long-acting parenterals. With the objective of gaining a better understanding of how to achieve IVIVCs for peptide loaded PLGA microspheres, formulations with similar as well as different release characteristics were prepared with PLGAs from different sources. Leuprolide acetate was selected as the model drug. Owning to the different physicochemical properties of the PLGAs (such as inherent viscosity, molecular weight and blockiness), the formulations exhibited significant differences in their critical quality attributes (such as particle size, porosity and pore size) and consequently had different in vitro and in vivo performance. Affirmative conventional IVIVCs were developed that were able to predict the in vivo performance using the corresponding in vitro release profiles. In addition, the developed conventional IVIVCs were able to discriminate between formulations with comparable in vitro/in vivo performance and those that had dissimilar in vitro/in vivo performance. The present work provides a comprehensive understanding of the influence of PLGA source variations on IVIVC development and predictability for peptide loaded PLGA microspheres.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Ruifeng Wang
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Diane J Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| |
Collapse
|
14
|
Lian X, Song C, Wang Y. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Isely C, Atube KJ, Cheung CV, Steege CF, Pellechia PJ, Gower RM. Surface Functionalization of Polymer Particles for Cell Targeting by Modifying Emulsifier Chemistry. ACS APPLIED POLYMER MATERIALS 2022; 4:2269-2282. [PMID: 35493439 PMCID: PMC9049500 DOI: 10.1021/acsapm.1c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oil in water emulsion/solvent extraction method is used to fabricate many FDA approved, polymer particle formulations for drug delivery. However, these formulations do not benefit from surface functionalization that can be achieved through tuning particle surface chemistry. Poly(vinyl alcohol) (PVA) is the emulsifier used for many FDA approved formulations and remains associated with the particle surface after fabrication. We hypothesized that the hydroxyl groups in PVA could be conjugated with biomolecules using isothiocyanate chemistry and that these modifications would endow the particle surface with additional functionality. We demonstrate that fluorescein isothiocyanate and an isothiocyanate derivatized mannose molecule can be covalently attached to PVA in a one-step reaction. The modified PVA polymers perform as well as unmodified PVA in acting as an emulsifier for fabrication of poly(lactide-co-glycolide) particles. Particles made with the fluorescein modified PVA exhibit fluorescence confined to the particle surface, while particles made with mannose modified PVA bind concanavalin A. In addition, mannose modified PVA increases particle association with primary macrophages by three-fold. Taken together, we present a facile method for modifying the surface reactivity of polymer particles widely used for drug delivery in basic research and clinical practice. Given that methods are established for conjugating the isothiocyanate functional group to a wide range of biomolecules, our approach may enable PVA based biomaterials to engage a multitude of biological systems.
Collapse
Affiliation(s)
- Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J. Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Candice V. Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christine F. Steege
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
16
|
Heredia NS, Vizuete K, Flores-Calero M, Pazmiño V. K, Pilaquinga F, Kumar B, Debut A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022; 17:e0264825. [PMID: 35271644 PMCID: PMC8912140 DOI: 10.1371/journal.pone.0264825] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Poly(lactic-co-glycolic acid) is one of the most used polymers for drug delivery systems (DDSs). It shows excellent biocompatibility, biodegradability, and allows spatio-temporal control of the release of a drug by altering its chemistry. In spite of this, few formulations have reached the market. To characterize and optimize the drug release process, mathematical models offer a good alternative as they allow interpreting and predicting experimental findings, saving time and money. However, there is no general model that describes all types of drug release of polymeric DDSs. This study aims to perform a statistical comparison of several mathematical models commonly used in order to find which of them best describes the drug release profile from PLGA particles synthesized by nanoprecipitation method. For this purpose, 40 datasets extracted from scientific articles published since 2016 were collected. Each set was fitted by the models: order zero to fifth order polynomials, Korsmeyer-Peppas, Weibull and Hyperbolic Tangent Function. Some data sets had few observations that do not allow to apply statistic test, thus bootstrap resampling technique was performed. Statistic evidence showed that Hyperbolic Tangent Function model is the one that best fit most of the data.
Collapse
Affiliation(s)
- Nathaly S. Heredia
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- * E-mail:
| | - Marco Flores-Calero
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Katherine Pazmiño V.
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Chaibasa, Jharkhand, India
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
17
|
Pawar MA, Vora LK, Kompella P, Pokuri VK, Vavia PR. Long-acting microspheres of Human Chorionic Gonadotropin hormone: In-vitro and in-vivo evaluation. Int J Pharm 2022; 611:121312. [PMID: 34822964 DOI: 10.1016/j.ijpharm.2021.121312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Human Chorionic Gonadotropin (hCG) hormone is used to cause ovulation, treat infertility in women, and increase sperm count in men. Conventional hCG solution formulations require multiple administration of hCG per week and cause patient noncompliance. The long-acting PLGA depot microspheres (MS) approach with hCG can improve patient compliance, increase the efficacy of hCG with a lower total dose and improve quality of life. Therefore, hCG was encapsulated by a modified double emulsion solvent evaporation technique within PLGA MS by high-speed homogenizer and industrially scalable in-line homogenizer, respectively. MS was characterized for particle size, encapsulation efficiency (EE), surface morphology, and in-vitro release. The spherical, dense, non-porous microspheres were obtained with a size of 58.88 ± 0.18 µm. Microspheres showed high EE (77.4% ± 5.9%) with low initial burst release (12.82% ± 2.07%). Circular Dichroism and SDS-PAGE analysis indicated good stability and structural integrity of hCG in the microspheres. Its bioactivity was proven further by a bioassay study in immature Wistar rats. Pharmacokinetic analysis showed that the hCG PLGA MS maintained serum hCG concentration up to 13 days compared to multiple injections of a marketed conventional parenteral injectable formulation of hCG. Thus, it can be ascertained that the hCG PLGA MS may have great potential for clinical use in long-term therapy.
Collapse
Affiliation(s)
- Manoj A Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | - Lalitkumar K Vora
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India
| | | | | | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence- Govt. of Maharashtra, TEQIP Phase III Funded, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
18
|
Spetz MR, Isely C, Gower RM. Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery. J Drug Deliv Sci Technol 2021; 65:S1773-2247(21)00352-X. [PMID: 35096148 PMCID: PMC8793769 DOI: 10.1016/j.jddst.2021.102672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the past several decades, drug-encapsulated polymer particles have been investigated as locally-delivered, long-acting therapies. The most common method of producing such particles is the oil in water solvent extraction technique. Using this technique, we produced poly(lactide-co-glycolide) (PLG) microparticles encapsulating rosiglitazone, a small molecule anti-diabetic drug. We investigated the impact of modulating fabrication parameters, including choice of organic solvent, concentration of polymer, and speed of homogenization and centrifugation on particle morphology and drug loading. Additionally, we studied the ratio of air-water-interface area to the extraction bath volume, a previously unstudied fabrication parameter, and its impact on rosiglitazone loading when using dichloromethane as the organic solvent. Under the conditions tested, drug loading can be increased 5-fold by increasing this ratio, which may be achieved by simply selecting a larger extraction vessel. By changing the organic solvent from dichloromethane to ethyl acetate, we produced particles with 60% higher rosiglitazone loading. Interestingly, the particles made with ethyl acetate appeared phase dark under light microscopy suggesting the presence of internal pores. By increasing the proportion of organic phase in the emulsion we eliminated the aberrant morphology but did not alter drug loading. As a final step in the development of the particles, we established that rosiglitazone remained stable throughout the encapsulation process and its subsequent release from particles by demonstrating that rosiglitazone loaded particles enhanced adipocyte lipid storage and adiponectin secretion. Taken together, for this system, air-water-interface area to volume ratio of the extraction bath and organic solvent both arose as key parameters in maximizing rosiglitazone loading in PLG microparticles. This study of how fabrication parameters impact drug loading and particle morphology may be useful in other investigations to encapsulate small molecules in polymer particles for controlled release applications.
Collapse
Affiliation(s)
- Madeline R. Spetz
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
19
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
20
|
Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Poly(lactic acid) (PLA) and its copolymer, poly(lactic-co-glycolic acid) (PLGA), based aliphatic polyesters have been extensively used for biomedical applications, such as drug delivery system and tissue engineering, thanks to their biodegradability, benign toxicity, renewability, and adjustable mechanical properties. A rapidly growing field of cancer research, the development of therapeutic cancer vaccines or treatment modalities is aimed to deliver immunomodulatory signals that control the quality of immune responses against tumors. Herein, the progress and applications of PLA and PLGA are reviewed in delivering immunotherapeutics to treat cancers.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Ochi M, Wan B, Bao Q, Burgess DJ. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int J Pharm 2021; 599:120450. [PMID: 33675924 DOI: 10.1016/j.ijpharm.2021.120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Poly (lactide-co-glycolide) (PLGA) is a biodegradable copolymer used in many long-acting drug products. The objective of the present study was to investigate the influence of polymer molecular weight distribution differences of PLGA on the in vitro release profile of leuprolide acetate microspheres. Eight microsphere formulations were prepared using the same manufacturing process but with different PLGA polymers. The physicochemical properties (drug loading, particle size and morphology) as well as the in vitro release profiles of the prepared microspheres were evaluated using a sample-and-separate method. The amount of burst release increased with increasing amount of low molecular weight fractions of PLGA, indicating that the drug release profiles appeared to be affected not only by the average molecular weight but also the molecular weight distribution of PLGA. In conclusion, quality control of the molecular weight distribution of PLGA as well as the weight average molecular weight is highly desirable in order to control the burst release.
Collapse
Affiliation(s)
- Masanori Ochi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Bo Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Quanying Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
22
|
Co-delivery of glial cell-derived neurotrophic factor (GDNF) and tauroursodeoxycholic acid (TUDCA) from PLGA microspheres: potential combination therapy for retinal diseases. Drug Deliv Transl Res 2021; 11:566-580. [PMID: 33641047 DOI: 10.1007/s13346-021-00930-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Retinitis pigmentosa (RP) is a group of genetically diverse inherited disorders characterised by the progressive photoreceptors and pigment epithelial cell dysfunction leading to central vision impairment. Although important advances in the understanding of the pathophysiologic pathways involved in RP have been made, drug delivery for the treatment of ocular disorders affecting the posterior segment of the eye is still an unmet clinical need. In the present study, we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating two neuroprotectants agents (glial cell-line-derived neurotrophic factor-GDNF and Tauroursodeoxycholic acid-TUDCA) as a potential therapeutic tool for the treatment of RP. A solid-in-oil-in-water (S/O/W) emulsion solvent extraction-evaporation technique was employed for MS preparation. A combination of PLGA and vitamin E was used to create the microcarriers. The morphology, particle size, encapsulation efficiency and in vitro release profile of the MSs were studied. Encapsulation efficiencies of GDNF and TUDCA for the initial multiloaded MSs, prepared with methylene chloride (MC) as organic solvent and polyvinyl alcohol (PVA) solution in the external phase, were 28.53±0.36% and 45.65±8.01% respectively. Different technological parameters to optimise the formulation such as the incorporation of a water-soluble co-solvent ethanol (EtOH) in the internal organic phase, as well as NaCl concentration, and viscosity using a viscosizing agent (hydroxypropyl methylcellulose-HPMC) in the external aqueous phase were considered. EtOH incorporation and external phase viscosity of the emulsion were critical attributes for improving drug loading of both compounds. In such a way, when using a methylene chloride/EtOH ratio 75:25 into the inner organic phase and the viscosity agent HPMC (1% w/v) in the external aqueous phase, GDNF and TUDCA payloads resulted 48.86±1.49% and 78.58±10.40% respectively, and a decrease in the initial release of GDNF was observed (22.03±1.41% compared with 40.86±6.66% of the initial multi-loaded formulation). These optimised microparticles exhibited sustained in vitro releases over 91 days. These results suggest that the microencapsulation procedure optimised in this work presents a promising technological strategy for the development of multi-loaded intraocular drug delivery systems (IODDS).
Collapse
|
23
|
Fabrication of biodegradable particles with tunable morphologies by the addition of resveratrol to oil in water emulsions. Int J Pharm 2020; 590:119917. [PMID: 33022356 DOI: 10.1016/j.ijpharm.2020.119917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Particles for biomedical applications can be produced by emulsifying biocompatible polymers dissolved in an organic solvent in water. The emulsion is then transferred to an extraction bath that removes the solvent from the dispersed droplets, which leads to polymer precipitation and particle formation. Typically, the particles are smooth and spherical, likely because the droplets remain fluid throughout the solvent extraction process allowing minimization of surface area as the volume decreases. Few modifications to this technique exist that alter the spherical geometry, even though particle performance, from drug delivery to engaging cells of the body, can be tuned with morphology. Here we demonstrate that incorporation of resveratrol, with the aid of ethanol, into the oil phase of an emulsion of poly(lactide-co-glycolide) and dichloromethane in aqueous poly(vinyl alcohol) leads to a crumpled particle morphology. Video microscopy of particle formation revealed that during solvent extraction the droplet crumples in on itself, which does not occur when only ethanol is added to the emulsion. It is unclear why this occurs with resveratrol, but its hydroxyl groups appear to be optimally positioned because removal of the 4' hydroxyl or addition of a 3' hydroxyl resulted in a loss of crumpled particle morphology. We demonstrate that particle morphology can be tuned from that of a crumpled sheet of paper to a deflated sphere by switching out ethanol for a different cosolvent. We quantify the degree of particle deformation with surface area calculated from krypton adsorption isotherms and BET theory and find surface area correlates with resveratrol loading in the particle. Furthermore, spherical particles are achieved when ethyl acetate is used in lieu of dichloromethane and a cosolvent. We propose that during solvent extraction, resveratrol accumulates at the droplet surface where it inhibits polymer chain motion necessary to maintain a spherical geometry and the role of cosolvent is to redistribute resveratrol from the droplet bulk to its surface. This method of producing nonspherical particles extends to polycaprolactone and poly(L-lactic acid) and is compatible with the encapsulation of a hydrophobic fluorescent dye, suggesting hydrophobic bioactive agents could be encapsulated. Taken together, we demonstrate an ability to control morphology of biocompatible polymer particles produced by the widely practiced oil-in-water/solvent extraction protocol via the addition of resveratrol and a cosolvent to the oil phase. The methodology reported is straight forward, and scalable, and expected to be of utility in applications in which a deviation from the default smooth, spherical morphology is desired.
Collapse
|
24
|
Niwa T, Morisaki M, Kondo K, Nakashima A. [Research on Gliding and Discharge Performance of Suspended Injection from Syringe -Effect of Diameter Ratio of Suspending Particle against Needle Hole on Needle Passageability]. YAKUGAKU ZASSHI 2020; 140:711-722. [PMID: 32378675 DOI: 10.1248/yakushi.19-00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Suspended injectable formulations such as sustained-release luteinizing hormone-releasing hormone (LH-RH) analogue loaded in polylactic acid-glycolic acid copolymer (PLGA) particles have been developed on market. Such formulations have potential issue of suspended particles blocking the injection needle. In this research, two types of injectability tests (gliding force, particles discharge) were developed to evaluate the needle passageability of suspended particles. The model suspension was newly designed using mono-dispersed polyethylene (PE) spheres and qualified dispersing fluid to enhance universality and validity of the test. The suspension-filled syringe, in which three sizes of spheres (L, M, S) were dispersed, was vertically fixed and pushed by auto-compression/tensile tester. The gliding force was continuously detected during testing time and all discharged PE spheres were collected and weighed. The combination of sphere (L, M, S) and injection needle were varied to evaluate the effect of the diameter ratio of sphere against needle hole (D/W) on passageability through needle. These injectability tests revealed that the blockage of a needle hole was occasionally observed when the D/W value increased up to 0.35-0.5, which was detected by jump-up of gliding force and drastic decrease of discharged sphere. In addition, the effect of the formulation properties (concentration of suspended spheres, viscosity of dispersing fluid) and operational factor (injection speed) on injectability was also investigated. The results from this study would be valuable in developing suspended injections and predicting injection trouble at the medical scene.
Collapse
Affiliation(s)
- Toshiyuki Niwa
- Laboratory of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Megumi Morisaki
- Laboratory of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Keita Kondo
- Laboratory of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Atsushi Nakashima
- Laboratory of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| |
Collapse
|
25
|
Aldawsari HM, Fahmy UA, Abd-Allah F, Ahmed OAA. Formulation and Optimization of Avanafil Biodegradable Polymeric Nanoparticles: A Single-Dose Clinical Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E596. [PMID: 32604853 PMCID: PMC7356025 DOI: 10.3390/pharmaceutics12060596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Avanafil (AVA) is a second-generation phosphodiesterase-5 (PDE5) inhibitor. AVA shows high selectivity to penile tissues and fast absorption, but has a bioavailability of about 36%. The aim was to formulate and optimize AVA-biodegradable nanoparticles (NPs) to enhance AVA bioavailability. To assess the impact of variables, the Box-Behnken design was utilized to investigate and optimize the formulation process variables: the AVA:poly (lactic-co-glycolic acid) (PLGA) ratio (w/w, X1); sonication time (min, X2); and polyvinyl alcohol (PVA) concentration (%, X3). Particle size (nm, Y1) and EE% (%, Y2) were the responses. The optimized NPs were characterized for surface morphology and permeation. Furthermore, a single-oral dose (50 mg AVA) pharmacokinetic investigation on healthy volunteers was carried out. Statistical analysis revealed that all the investigated factors exhibited a significant effect on the particle size. Furthermore, the entrapment efficiency (Y2) was significantly affected by both the AVA:PLGA ratio (X1) and PVA concentration (X3). Pharmacokinetic data showed a significant increase in the area under the curve (1.68 folds) and plasma maximum concentration (1.3-fold) for the AVA NPs when compared with raw AVA. The optimization and formulation of AVA as biodegradable NPs prepared using solvent evaporation (SE) proves a successful way to enhance AVA bioavailability.
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Fathy Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11865, Egypt;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61111, Egypt
| |
Collapse
|
26
|
Ohya Y, Nishimura K, Sumida H, Yoshizaki Y, Kuzuya A, Mahara A, Yamaoka T. Cellular attachment behavior on biodegradable polymer surface immobilizing endothelial cell-specific peptide. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1475-1488. [PMID: 32338157 DOI: 10.1080/09205063.2020.1762325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-caliber artificial blood vessels with inner diameters of smaller than 4 mm have not been put into practical use because of early thrombus formation and graft occlusion. To realize small-caliber artificial blood vessels with anti-thrombus property and long-term patency, one of the promising approaches is endothelialization of the lumen by tissue engineering approaches. Integrin α4β1 on the endothelial cell membrane is known to act as a receptor for Arg-Glu-Asp-Val (REDV) tetra-peptide, and this peptide can be used as a specific ligand to introduce endothelial cell attachment onto the surfaces of polymer scaffold. In this study, biodegradable polymer surface immobilizing REDV peptide were prepared, and the specific attachment of endothelial cells on it was investigated as a preliminary study for tissue-engineered small-caliber blood vessels in a future application. We synthesized copolymer of ε-caprolactone and depsipeptide having reactive carboxylic acid side-chain groups (PGDCL), and REDV peptide was attached to the copolymer to give PGDCL-REDV. The attachment of human umbilical vein endothelial cells (HUVECs) were investigated for the blend polymer film prepared by mixing PGDCL and PGDCL-REDV. The obtained blend polymer films exhibited sequence- and cell-specific HUVECs attachment through REDV peptide recognition. This technique should be useful not only to obtain artificial blood vessels which induce endothelialization and but also to provide biodegradable scaffolds with specific ligands immobilized surfaces for tissue regeneration.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan.,Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Kazuki Nishimura
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Hiromichi Sumida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan.,Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
27
|
Zhou J, Walker J, Ackermann R, Olsen K, Hong JKY, Wang Y, Schwendeman SP. Effect of Manufacturing Variables and Raw Materials on the Composition-Equivalent PLGA Microspheres for 1-Month Controlled Release of Leuprolide. Mol Pharm 2020; 17:1502-1515. [PMID: 32074448 DOI: 10.1021/acs.molpharmaceut.9b01188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The 1-month Lupron Depot (LD) is a 75/25 acid-capped poly(lactic-co-glycolic acid) (PLGA) microsphere product encapsulating water-soluble leuprolide acetate with no generic products available in the U.S. Composition-equivalent PLGA microsphere formulations to the LD as a function of raw material and manufacturing variables were developed by using the solvent evaporation encapsulation method. The following variables were adjusted: polymer supplier/polymerization type, gelatin supplier/bloom number, polymer concentration, first homogenization speed and time, volume of primary water phase, second homogenization time, volume of secondary water phase, and stirring rate. The loading and encapsulation efficiency (EE) of leuprolide and gelatin were determined to identify a large number of composition-equivalent formulations within a ±10% specification of the LD. Key physical-chemical properties of the formulations (e.g., morphology, particle size distribution, glass transition temperature (Tg), residual moisture and solvent, and porosity) were characterized to determine the effect of manufacturing variables on the product attributes. The EE of gelatin across all formulations prepared (101 ± 1%) was observed to be much higher than the EE of leuprolide (57 ± 1%). Judicious adjustment of polymer concentration, second homogenization time, and volume of second water phase was key to achieving high EE of leuprolide, although EE higher than 70% was not easily achievable owing to the difficulty of emulsifying highly viscous primary emulsion into homogeneous small droplets that could prevent peptide loss during the second homogenization under the conditions and equipment used. The in vitro release kinetics of the formulations was highly similar to the LD in a zero-order manner after ∼20% initial burst release, indicating a critical role of the composition on peptide release in this formulation. The characterization of composition-equivalent formulations described here could be useful for further development of generic leuprolide PLGA microspheres and for guiding decisions on the influence of process variables on product physicochemical attributes and release performance.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Jennifer Walker
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Karl Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Karan S, Debnath S, Kuotsu K, Chatterjee TK. In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int J Biol Macromol 2020; 158:922-936. [PMID: 32335117 DOI: 10.1016/j.ijbiomac.2020.04.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
The aim was to develop oral site-specific rate-controlled anticancer drug delivery to pacify systemic side-effects and offer effective and safe therapy for colon cancer with compressed dose and duration of treatment. The double emulsion solvent evaporation method was employed. To check functionality, DAPI-staining and in-vivo anticancer study of Ehrlich Ascites Carcinoma bearing mice was tested. Histopathology of liver and kidney and Cell morphology of EAC cell was also performed. Formulated and optimized polymeric microsphere of 5-FU showed excellent physicochemical features. In-vitro, DAPI results pointed drug-treated groups displayed the prominent feature of apoptosis. The percentage of apoptotic of entrapped drug played in a dose-dependent manner. Significant decreases in EAC liquid tumors and increased life span of treated mice were observed. Rate of variation of cell morphology was more in 5-FU loaded microsphere than 5-FU injection. Hematological and biochemical parameter's and Histopathology of liver and kidney resulted that due to control released formulation have slow release rate, that gives less trace on liver and kidney function. Finally, we foresee that polymeric microsphere of 5-FU applying natural gum katira could be an assuring micro-carrier for active colon targeting delivery tool with augmented chemotherapeutic efficacy and lowering side effect against colon cancer.
Collapse
Affiliation(s)
- Saumen Karan
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Souvik Debnath
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; Department of Basic Medical Sciences, Purdue University, USA
| | - Ketousetuo Kuotsu
- Division of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tapan Kumar Chatterjee
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; Department of Pharmaceutical Science and Technology, JIS University, Kolkata, India.
| |
Collapse
|
29
|
Dabaghi N, Seyfoddin V, Toliyat T, Ataie Z. Preparation and in vitro release profiling of PLGA microspheres containing BSA as a model protein. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J Control Release 2019; 308:1-13. [DOI: 10.1016/j.jconrel.2019.07.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
31
|
Karan S, Choudhury H, Chakra BK, Chatterjee TK. Polymeric Microsphere Formulation for Colon Targeted Delivery of 5-Fluorouracil Using Biocompatible Natural Gum Katira. Asian Pac J Cancer Prev 2019; 20:2181-2194. [PMID: 31350983 PMCID: PMC6745213 DOI: 10.31557/apjcp.2019.20.7.2181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Controlled release delivery system of chemotherapeutic agents at the site of colon endorses modern drug-entrapped delivery tools, which release the entrappedagents at a controlled rate for anextended period providing patient compliance and additional protection from the degradinggastric environment. Thus, the present study was aimed to develop and optimize a novel polymeric microsphere of 5-fluorouracil (5-FU) using natural gum katira to obtain an optimal therapeutic response at the colon. Due course of experimentation, in-vivo safety profile of the gum katira in an animal model was established. Modified solvent extraction/evaporation technique wasemployed to encapsulate 5-FU in the natural polymeric microsphere and was characterized using in-vitro studies to investigate particle size, morphology, encapsulation efficiency and release of the drug from developed formulation. Formulated and optimized polymeric microsphere of 5-FU using gum katira polymer own optimal physicochemical characteristics with a fine spherical particle with size ranged from 210.37±7.50 to 314.45±7.80 µm.Targeted microsphere exhibited good cytotoxicity and also has high drug entrapment efficiency, and satisfactory release pattern of the drug within a time frame of 12 h. Finally, we foresee that the optimized polymeric gum katiramicrosphere of 5-FU could be a promising micro-carrier for efficient colon drug targeting delivery tool with improved chemotherapeutic efficacy against colon cancer.
Collapse
Affiliation(s)
- Saumen Karan
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Biplab Kumar Chakra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Tapan Kumar Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India. ,Department of Pharmaceutical Science and Technology, JIS University, Kolkata, India
| |
Collapse
|
32
|
Garland KM, Sevimli S, Kilchrist KV, Duvall CL, Cook RS, Wilson JT. Microparticle Depots for Controlled and Sustained Release of Endosomolytic Nanoparticles. Cell Mol Bioeng 2019; 12:429-442. [PMID: 31719925 DOI: 10.1007/s12195-019-00571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Nucleic acids have gained recognition as promising immunomodulatory therapeutics. However, their potential is limited by several drug delivery barriers, and there is a need for technologies that enhance intracellular delivery of nucleic acid drugs. Furthermore, controlled and sustained release is a significant concern, as the kinetics and localization of immunomodulators can influence resultant immune responses. Here, we describe the design and initial evaluation of poly(lactic-co-glycolic) acid (PLGA) microparticle (MP) depots for enhanced retention and sustained release of endosomolytic nanoparticles that enable the cytosolic delivery of nucleic acids. Methods Endosomolytic p[DMAEMA]10kD-bl-[PAA0.3-co-DMAEMA0.3-co-BMA0.4]25kD diblock copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. Polymers were electrostatically complexed with nucleic acids and resultant nanoparticles (NPs) were encapsulated in PLGA MPs. To modulate release kinetics, ammonium bicarbonate was added as a porogen. Release profiles were quantified in vitro and in vivo via quantification of fluorescently-labeled nucleic acid. Bioactivity of released NPs was assessed using small interfering RNA (siRNA) targeting luciferase as a representative nucleic acid cargo. MPs were incubated with luciferase-expressing 4T1 (4T1-LUC) breast cancer cells in vitro or administered intratumorally to 4T1-LUC breast tumors, and silencing via RNA interference was quantified via longitudinal luminescence imaging. Results Endosomolytic NPs complexed to siRNA were effectively loaded into PLGA MPs and release kinetics could be modulated in vitro and in vivo via control of MP porosity, with porous MPs exhibiting faster cargo release. In vitro, release of NPs from porous MP depots enabled sustained luciferase knockdown in 4T1 breast cancer cells over a five-day treatment period. Administered intratumorally, MPs prolonged the retention of nucleic acid within the injected tumor, resulting in enhanced and sustained silencing of luciferase relative to a single bolus administration of NPs at an equivalent dose. Conclusion This work highlights the potential of PLGA MP depots as a platform for local release of endosomolytic polymer NPs that enhance the cytosolic delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Rebecca S Cook
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
33
|
Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019; 295:31-49. [DOI: 10.1016/j.jconrel.2018.12.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
|
34
|
Zhang H, Pu C, Wang Q, Tan X, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Physicochemical Characterization and Pharmacokinetics of Agomelatine-Loaded PLGA Microspheres for Intramuscular Injection. Pharm Res 2018; 36:9. [PMID: 30411255 DOI: 10.1007/s11095-018-2538-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/29/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to design agomelatine loaded long acting injectable microspheres, with an eventual goal of reducing the frequency of administration and improving patient compliance in treatment of depression. METHODS AGM-loaded microspheres were prepared by an O/W emulsion solvent evaporation method. The physicochemical properties and in vitro performance of the microspheres were characterized. The pharmacokinetics of different formulations with various particle sizes and drug loadings were evaluated. RESULTS AGM-loaded microspheres with drug loading of 23.7% and particle size of 60.2 μm were obtained. The in vitro release profiles showed a small initial burst release (7.36%) followed by a fast release, a period of lag time and a second accelerated release. Pore formation and pore closure were observed in vitro, indicating that the release of drug from microspheres is dominated by water-filled pores. Pharmacokinetic studies showed that AGM microspheres could release up to 30 days in vivo at a steady plasma concentration. As well, particle size and drug loading could significantly influence the in vivo release of AGM microspheres. CONCLUSIONS AGM-loaded microspheres are a promising carrier for the treatment of major depressant disorder.
Collapse
Affiliation(s)
- Hongjuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Chenguang Pu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xinyi Tan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Tian Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanjiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
35
|
Ito F, Yamada H, Kanamura K, Kawakami H. Preparation of Biodegradable Polymer Nanospheres Containing Manganese Porphyrin (Mn-Porphyrin). J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Zhou J, Hirota K, Ackermann R, Walker J, Wang Y, Choi S, Schwendeman A, Schwendeman SP. Reverse Engineering the 1-Month Lupron Depot®. AAPS J 2018; 20:105. [PMID: 30280294 DOI: 10.1208/s12248-018-0253-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 01/16/2023] Open
Abstract
The 1-month Lupron Depot® (LD) encapsulating water-soluble leuprolide in poly(lactic-co-glycolic acid) (PLGA) microspheres is a benchmark product upon which modern long-acting release products are often compared. Despite expiration of patent coverage, no generic product for the LD has been approved in the USA, likely due to the complexity of components and manufacturing processes involved in the product. Here, we describe the reverse engineering of the LD composition and important product attributes. Specific attributes analyzed for microspheres were as follows: leuprolide content by three methods; gelatin content, type, and molecular weight distribution; PLGA content, lactic acid/glycolic acid ratio, and molecular weight distribution; mannitol content; in vitro drug release; residual solvent and moisture content; particle size distribution and morphology; and glass transition temperature. For the diluent, composition, viscosity, and specific gravity were analyzed. Analyzed contents of the formulation and the determined PLGA characteristics matched well with the official numbers stated in the package insert and those found in literature, respectively. The gelatin was identified as type B consistent with ~ 300 bloom. The 11-μm volume-median microspheres in the LD slowly released the drug in vitro in a zero-order manner after ~ 23% initial burst release. Very low content of residual moisture (< 0.5%) and methylene chloride (< 1 ppm) in the product indicates in-water drying is capable of removing solvents to extremely low levels during manufacturing. The rigorous approach of reverse engineering described here may be useful for development of generic leuprolide-PLGA microspheres as well as other new and generic PLGA microsphere formulations.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Keiji Hirota
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
- Production Engineering Department, Chugai Pharmaceutical Co., Ltd., 5-5-1, Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Yan Wang
- Office of Generic Drugs, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA
| | - Stephanie Choi
- Office of Generic Drugs, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
37
|
Takeuchi I, Hida Y, Makino K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Biomed Mater Eng 2018; 29:217-228. [DOI: 10.3233/bme-171724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukari Hida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
38
|
Jenjob R, Seidi F, Crespy D. Encoding materials for programming a temporal sequence of actions. J Mater Chem B 2018; 6:1433-1448. [DOI: 10.1039/c7tb03215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Materials are usually synthesized to allow a function that is either independent of time or that can be triggered in a specific environment.
Collapse
Affiliation(s)
- R. Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - F. Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - D. Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| |
Collapse
|
39
|
Catauro M, Tranquillo E, Illiano M, Sapio L, Spina A, Naviglio S. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO₂ Hybrid Materials Synthesized via Sol-Gel Technique. MATERIALS (BASEL, SWITZERLAND) 2017; 10:1186. [PMID: 29039803 PMCID: PMC5666992 DOI: 10.3390/ma10101186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic-inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO₂) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO₂ hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO₂ hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO₂ by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO₂ hybrids differently supports cell proliferation suggests that PCL/ZrO₂ hybrids could be useful tools with different potential clinical applications.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Elisabetta Tranquillo
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
- Department of Biochemistry, Biophysics and General Pathology, Medical School, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, Medical School, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annamaria Spina
- Department of Biochemistry, Biophysics and General Pathology, Medical School, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
40
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
41
|
Benéitez MC, Gil-Alegre ME. Opioid Addiction: Social Problems Associated and Implications of Both Current and Possible Future Treatments, including Polymeric Therapeutics for Giving Up the Habit of Opioid Consumption. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7120815. [PMID: 28607934 PMCID: PMC5451777 DOI: 10.1155/2017/7120815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 04/23/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Detoxification programmes seek to implement the most secure and compassionate ways of withdrawing from opiates so that the inevitable withdrawal symptoms and other complications are minimized. Once detoxification has been achieved, the next stage is to enable the patient to overcome his or her drug addiction by ensuring consumption is permanently and completely abandoned, only after which can the subject be regarded as fully recovered. METHODS A systematic search on the common databases of relevant papers published until 2016 inclusive. RESULTS AND CONCLUSION Our study of the available oral treatments for opioid dependence has revealed that no current treatment can actually claim to be fully effective. These treatments require daily oral administration and, consequently, regular visits to dispensaries, which in most cases results in a lack of patient compliance, which causes fluctuations in drug plasma levels. We then reviewed alternative treatments in the available scientific literature on polymeric sustained release formulations. Research has been done not only on release systems for detoxification but also on release systems for giving up the habit of taking opioids. These efforts have obtained the recent authorization of polymeric systems for use in patients that could help them to reduce their craving for drugs.
Collapse
Affiliation(s)
- M. Cristina Benéitez
- Department of Pharmacy and Pharmaceutical Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - M. Esther Gil-Alegre
- Department of Pharmacy and Pharmaceutical Technology, Complutense University of Madrid, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
42
|
Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel. Food Chem 2017; 220:452-459. [DOI: 10.1016/j.foodchem.2016.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
|
43
|
Nakashima A, Izumi T, Ohya K, Kondo K, Niwa T. Design of Highly Dispersible PLGA Microparticles in Aqueous Fluid for the Development of Long-Acting Release Injectables. Chem Pharm Bull (Tokyo) 2017; 65:157-165. [DOI: 10.1248/cpb.c16-00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Nakashima
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Tomohisa Izumi
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Kazutomi Ohya
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Keita Kondo
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Toshiyuki Niwa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| |
Collapse
|
44
|
Hirota K, Doty AC, Ackermann R, Zhou J, Olsen KF, Feng MR, Wang Y, Choi S, Qu W, Schwendeman AS, Schwendeman SP. Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: In vitro evaluation. J Control Release 2016; 244:302-313. [DOI: 10.1016/j.jconrel.2016.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/07/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
|
45
|
Báez-Santos YM, Otte A, Park K. A Fast and Sensitive Method for the Detection of Leuprolide Acetate: A High-Throughput Approach for the In Vitro Evaluation of Liquid Crystal Formulations. Anal Chem 2016; 88:4613-8. [PMID: 27040983 DOI: 10.1021/acs.analchem.6b00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suitability of using fluorescence spectroscopy to rapidly assay drug release by quantifying the time-dependent increase in total intrinsic protein fluorescence was assessed. Leuprolide acetate, a synthetic nonapeptide analogue of gonadotropin-releasing hormone (GnRH or LHRH), is the active pharmaceutical ingredient used to treat a wide range of sex hormone-related disorders, including advanced prostatic cancer, endometriosis, and precocious puberty. During the in vitro evaluation of drug delivery technologies for leuprolide acetate, one of the most time-consuming steps is the detection and accurate quantification of leuprolide release from formulation candidates. Thus far, the dominant means for leuprolide detection involves conventional multistep high-performance liquid chromatography (HPLC) methods, requiring sampling, dilutions, sample filtration, and chromatography, which can take up to 40 min for each sample. With the increasing demand for assay adaptation to high-throughput format, here we sought to exploit fluorescence spectroscopy as a tool to develop a novel method to rapidly assay the in vitro release of leuprolide acetate. By utilizing the intrinsic fluorescence of the tryptophan (Trp) and tyrosine (Tyr) amino acid residues present in the leuprolide nonapeptide, the in vitro release from liquid crystal formulations was accurately quantified as a function of fluorescence intensity. Here, we demonstrate that assaying leuprolide release using intrinsic protein fluorescence in a 96-well format requiring volumes as low as 100 μL is a cost-effective, rapid, and highly sensitive alternative to conventional HPLC methods. Furthermore, the high signal-to-noise ratios and robust Z'-factors of >0.8 indicate high sensitivity, precision, and feasibility for miniaturization, high-throughput format adaptation, and automation.
Collapse
Affiliation(s)
- Yahira M Báez-Santos
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Andrew Otte
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kinam Park
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States.,Department of Industrial and Physical Pharmacy, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
46
|
Biodegradable microparticles preparation by double emulsification—Solvent extraction method: A Systematic study. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Mohamed F, Doolaanea AA, Kamaruzzaman YB. Preparation, characterization and in vitro release study of BSA-loaded double-walled glucose-poly(lactide-co-glycolide) microspheres. Arch Pharm Res 2016; 39:1242-56. [PMID: 26818028 DOI: 10.1007/s12272-016-0710-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.
Collapse
Affiliation(s)
- Rezaul H Ansary
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia
| | - Mokhlesur M Rahman
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia.
| | - Mohamed B Awang
- Faculty of Pharmacy, Cyberjaya University College of Medical Sciences, 63000, Cyberjaya, Malaysia
| | - Haliza Katas
- Drug Delivery and Novel Targeting Research Group, Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Hazrina Hadi
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia
| | - Farahidah Mohamed
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia
| | - Abd Almonem Doolaanea
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), 25200, Kuantan, Malaysia
| | - Yunus B Kamaruzzaman
- Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| |
Collapse
|
48
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
49
|
Ito F, Kawakami H. Facile technique for the preparation of monodispersed biodegradable polymer nanospheres using a solvent evaporation method. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Guo W, Quan P, Fang L, Cun D, Yang M. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|