1
|
de Leeuw AW, Voet JG, van Erp T, Lamberts RP, de Koning JJ, Knobbe A. Coupling heart rate and power data in professional road cycling: Shorter heart rate response indicate better 10-min time trial power output. J Sports Sci 2025; 43:978-985. [PMID: 40148741 DOI: 10.1080/02640414.2025.2481533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The aim of our study is to investigate whether coupling power output (PO) and heart rate (HR) data of semi-professional road cyclists collected in the field is helpful for optimising the training process. Therefore, HR and PO data during all cycling activities were collected from 23 semi-professional road cyclists for 2 years. Weekly cyclist-specific HR response times (recovery, delay and maximal response time) were extracted from models connecting HR and PO. Linear regression was performed between performance, defined as mean PO during a 1- and 10-min indoor time trial (TT) under controlled circumstances, and weekly HR response times. No significant correlations were found between 1-min TT PO and HR response times. In contrast, significant correlations were obtained between 10-min TT PO and recovery time (r = -0.74, p < 0.01), maximal response time (r = -0.70, p < 0.01) and delay time (r = -0.48, p = 0.03). Moreover, linear relationships were found between 10-min TT PO and delay time (r = -0.68, p < 0.01) or maximal response times (r = -0.61, p = 0.02) within 14 days of the performed lab test. This suggests that HR response times are important physiological characteristics related to 10-min TT PO for cyclists.
Collapse
Affiliation(s)
- Arie-Willem de Leeuw
- Centre of Expertise Health Innovation, The Hague University of Applied Sciences, The Hague, The Netherlands
| | - Jens G Voet
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Teun van Erp
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Robert P Lamberts
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jos J de Koning
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Arno Knobbe
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Voet JG, van Erp T, Viribay A, de Koning JJ, Lamberts RP. Training Characteristics Related to (the Changes in) Durability in Semiprofessional Cyclists. Int J Sports Physiol Perform 2025; 20:644-652. [PMID: 40054482 DOI: 10.1123/ijspp.2024-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE To provide insights into a dose-response relationship between training and time-trial performance, as assessed in both a "fresh" and a "fatigued" state (durability), including proposed underlying factors for durability: gross efficiency and substrate oxidation (FatOx and CarbOx). METHODS Ten male semiprofessional cyclists underwent a performance test in both "fresh" and "fatigued" state (after 38.6 [4.6] kJ·kg-1) before and after an 8-week training period, containing the measurement of gross efficiency, FatOx, and CarbOx at submaximal intensity and maximal time trials of 1 (PO1) and 10 minutes (PO10). Relationships were assessed with the session rating of perceived exertion, kilojoules spent, Lucia training impulse, Training Stress Score, polarization index, and time spent in 3 zones in the intervening period. RESULTS No significant relationship was found between higher training load and performance on PO1 and PO10, with a large variation between assessed training-load measures and individual participants. However, CarbOx showed a strong correlation with training volume in the "fresh" state and with time spent below first-lactate-threshold intensity in the "fatigued" state. Also, the relationship between training load and change in performance between tests showed different trends for "fresh" compared with "fatigued" state, especially for FatOx and CarbOx. CONCLUSIONS The fact that no clear relationships between dose (training) and response (time-trial performance) were shown in this study indicates that a single load measure is not able to predict performance improvements after an 8-week training period. However, the current study shows that the same training can have a different effect on "fresh" versus "fatigued" performance, having implications for the design of training plans.
Collapse
Affiliation(s)
- Jens G Voet
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun van Erp
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Aitor Viribay
- Physiology, Nutrition and Sport, Glut4Science, Vitoria-Gasteiz, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Jos J de Koning
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert P Lamberts
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Mateo-March M, Barranco-Gil D, Leo P, van Erp T, Muriel X, Javaloyes A, Pallarés JG, Lucia A, Valenzuela PL. Sex differences in durability: A field-based study in professional cyclists. J Sci Med Sport 2025:S1440-2440(25)00062-3. [PMID: 40148210 DOI: 10.1016/j.jsams.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Durability is emerging as a key performance determinant in cycling, but scarce evidence exists on the durability of female cyclists, and particularly on whether there are sex differences. We therefore aimed to determine potential sex differences in durability. DESIGN Observational field-based study. METHODS Power output data from training and competitions were registered in female and male professional cyclists (n = 42 each) during 1-5 seasons. Participants' highest power output values achieved for different effort durations (10 s, 1 min, 5 min, and 20 min) (or 'record power profile') were determined under non-fatigued conditions (0 kJ/kg) and after varying levels of accumulated work (10, 20 and 30 kJ/kg). RESULTS A significant reduction in the record power profile compared with non-fatigued conditions was observed after > 10 kJ/kg in both female and male cyclists (p < 0.001), with no significant impairment observed below this level of accumulated work (p > 0.05 for all). A similar relative decay (% decline compared with the fresh condition) was observed between sexes for 10-s efforts (p > 0.05). However, a significantly higher relative decay was observed in female cyclists after 20 kJ/kg for 1-min, 5-min, and 20-min efforts (4 %, 4 % and 2 %, respectively; p < 0.05), with these differences enlarging after 30 kJ/kg (8 %, 6 % and 7 %; p < 0.001). CONCLUSIONS Professional female cyclists show a greater relative decay in the record power profile after a given accumulated work compared to male cyclists, which might reflect a lower durability.
Collapse
Affiliation(s)
- Manuel Mateo-March
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Spain; Department of Sports Sciences, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Madrid, Spain. https://twitter.com/mmateo_march
| | - David Barranco-Gil
- Department of Sports Sciences, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Madrid, Spain.
| | - Peter Leo
- University Innsbruck, Department Sport Science, Austria. https://twitter.com/peter__leo
| | - Teun van Erp
- Division of Movement Science and Exercise Therapy, Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch Q University, South Africa. https://twitter.com/The_Teun
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Spain. https://twitter.com/xabimu
| | - Alejandro Javaloyes
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Spain. https://twitter.com/alejandro_java
| | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Spain. https://twitter.com/PallaresJG
| | - Alejandro Lucia
- Department of Sports Sciences, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Madrid, Spain; Research Institute of the Hospital 12 de Octubre, Spain
| | - Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Spain; GENUD Toledo Research Group, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain. https://twitter.com/pl_valenzuela
| |
Collapse
|
4
|
Peeters WM, Barrett M, Podlogar T. What is a cycling race simulation anyway: a review on protocols to assess durability in cycling. Eur J Appl Physiol 2025:10.1007/s00421-025-05725-1. [PMID: 39953333 DOI: 10.1007/s00421-025-05725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
Physiological resilience or durability is now recognised as a determinant of endurance performance such as road cycling. Reliable, ecologically valid and standardised performance tests in laboratory-based cycling protocols have to be established to investigate mechanisms underpinning, and interventions improving durability. This review aims to provide an overview of available race simulation protocols in the literature and examines its rigour around themes that influence durability including (i) exercise intensity anchoring and (ii) carbohydrate intake whilst also (iii) inspecting reliability and justification of the developed protocols. Using a systematic search approach, 48 articles were identified that met our criteria as a cycling race simulation. Most protocols presented limitations to be recommended as exercise test to investigate durability, such as not appropriately addressing the influence of exercise intensity domains by anchoring exercise intensity as % peak power or % V ˙ O2max. Ten articles provided reliability data, but only one articles under the appropriate conditions. Most studies sufficiently controlled nutrition during trials but not in the days leading to the trials or just before the trials. Thus, there is a paucity in protocols that combine justification and reliability with optimal nutritional support and mimic the true demands of a road-cycling race. This review lists an overview of protocols that researchers could use with caution to select a protocol for future experiments, but encourages further development of improved protocols, including utilisation of virtual software applications.
Collapse
Affiliation(s)
- W M Peeters
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - M Barrett
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - T Podlogar
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Rogers B, Fleitas-Paniagua PR, Trpcic M, Zagatto AM, Murias JM. Fractal correlation properties of heart rate variability and respiratory frequency as measures of endurance exercise durability. Eur J Appl Physiol 2025:10.1007/s00421-025-05716-2. [PMID: 39904800 DOI: 10.1007/s00421-025-05716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Field-based measures of durability (exercise-related physiologic deterioration over time) for assessing athletic fitness often rely on changes in maximal power profiles or heart rate (HR) drift. This study aimed to determine whether an index of HR variability based on the short-term exponent of Detrended Fluctuation Analysis (DFA a1) along with respiratory frequency (fB) could demonstrate changes in durability during a Time to Task Failure (TTF) Trial. METHODS Ten participants performed a cycling TTF at an intensity of 95% of the respiratory compensation point (RCP) on two occasions, Control and a "Reward" where a monetary incentive was offered when task failure was signaled. Metabolic responses including oxygen uptake (V ˙ O 2 ), lactate and glucose along with HR, DFA a1 and fB were measured and compared over each quarter of the TTF up to the time of signaling (Q1, Q2, Q3, and Q4). RESULTS The elapsed time of TTF sessions was statistically similar (p = 0.54). After initial equilibration, metabolic responses remained largely stable over Q2-Q4. HR, DFA a1 and fB displayed drift over Q2-Q4 with significant ANOVA. Repeatability of quarterly HR, DFA a1, and fB between Control and Reward sessions was high with ICC between 0.73 and 0.94, Pearson's r was between 0.83 and 0.98 with no difference in mean values by paired t testing. CONCLUSION HR, fB and DFA a1 are useful metrics representing alteration in physiologic characteristics demonstrating durability loss during an endurance exercise session. These measures were repeatable across sessions and have the potential to be monitored retrospectively or in real time in the field with low-cost consumer equipment.
Collapse
Affiliation(s)
- Bruce Rogers
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL, 32827, USA.
| | | | | | - Alessandro M Zagatto
- Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru, Brazil
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
6
|
Sánchez-Redondo IR, Alejo LB, Revuelta C, de Pablos R, Ibañez M, Pérez-López A, Lucia A, Barranco-Gil D, Valenzuela PL. Intrasession Caffeine Intake and Cycling Performance After Accumulated Work: A Field-Based Study. Int J Sport Nutr Exerc Metab 2025; 35:61-66. [PMID: 39326860 DOI: 10.1123/ijsnem.2024-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Preexercise caffeine intake has proven to exert ergogenic effects on cycling performance. However, whether these benefits are also observed under fatigue conditions remains largely unexplored. We aimed to assess the effect of caffeine ingested during prolonged cycling on subsequent time-trial performance in trained cyclists. METHODS The study followed a triple-blinded, randomized, placebo-controlled cross-over design. Eleven well-trained junior cyclists (17 ± 1 years) performed a field-based 8-min time trial under "fresh" conditions (i.e., after their usual warm-up) or after two work-matched steady-state cycling sessions (total energy expenditure∼20 kJ/kg and ∼100 min duration). During the latter sessions, participants consumed caffeine (3 mg/kg) or a placebo ∼60 min before the time trial. We assessed power output, heart rate, and rating of perceived exertion during the time trial and mood state (Brunel Mood Scale) before and after each session. RESULTS No significant condition effect was found for the mean power output attained during the time trial (365 ± 25, 369 ± 31, and 364 32 W for "fresh," caffeine, and placebo condition, respectively; p = .669). Similar results were found for the mean heart rate (p = .100) and rating of perceived exertion (p = 1.000) during the time trial and for the different mood domains (all p > .1). CONCLUSIONS Caffeine intake during prolonged exercise seems to exert no ergogenic effects on subsequent time-trial performance in junior cyclists. Future studies should determine whether significant effects can be found with larger caffeine doses or after greater fatigue levels.
Collapse
Affiliation(s)
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
| | - Carlos Revuelta
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Raúl de Pablos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Alberto Pérez-López
- Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Universidad de Alcalá, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
| | | | - Pedro L Valenzuela
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, Spain
- Department of Systems Biology, University of Alcalá, Madrid, Spain
| |
Collapse
|
7
|
Lamberts RP, van Vleuten A, Dumoulin T, Delahaije L, van Erp T. Racing Demands for Winning a Grand Tour: Differences and Similarities Between a Female and a Male Winner. Int J Sports Physiol Perform 2024; 19:1209-1217. [PMID: 39069290 DOI: 10.1123/ijspp.2023-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To describe and compare the race characteristics, demands, and durability profile of a male and a female Grand Tour winner. METHODS Overall and stage-type-specific (ie, time trials, flat, semimountainous, and mountain) demands and race characteristics during 2 Grand Tours were determined and compared between the female and male cyclists. In addition, relative power output distribution and pacing, percentage of functional threshold power (FTP), and changes in maximal mean power outputs (MMPs) with increasing levels of kilojoules burned were determined. RESULTS Although many differences were found between course and absolute racing demands between the male (FTP: 413 W; critical power: 417 W) and female (FTP: 297 W; critical power: 297 W) cyclists, similar power distributions and pacing strategies were found if data were expressed relatively. However, the female cyclist rode a higher percentage of her FTP during the first 2 quarters of flat stages (14.7%-15.1%) and the last quarter of mountain stages (9.8%) than the male cyclist. Decrements in MMPs were only observed after burning 30 kJ·kg-1 in the female and 45 kJ·kg-1 in the male Grand Tour winner. CONCLUSIONS Both the male and female Grand Tour winners produced very high 20- to 60-minute MMPs, whereas decrements in MMPs were only observed after having burned 75% (female) and 80% (male) of total kilojoules burned during a stage. These are the latest and lowest in MMPs reported in the scientific literature and highlight the importance of durability in combination with excellent climbing and time-trial skills, which are needed to be able to win a Grand Tour.
Collapse
Affiliation(s)
- Robert P Lamberts
- Division of Movement Science and Exercise Therapy, Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | - Tom Dumoulin
- Former Professional Cyclist, Wageningen, the Netherlands
| | | | - Teun van Erp
- Division of Movement Science and Exercise Therapy, Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Barranco-Gil D, Alejo LB, Revuelta C, de Paz S, Ibañez M, Lucia A, Valenzuela PL. Intensity Matters: Effect of Different Work-Matched Efforts on Subsequent Performance in Cyclists. Int J Sports Physiol Perform 2024; 19:1006-1011. [PMID: 39069285 DOI: 10.1123/ijspp.2023-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To assess the effect of 2 work-matched efforts of different intensities on subsequent performance in well-trained cyclists. METHODS The present study followed a randomized controlled crossover design. Twelve competitive junior cyclists volunteered to participate (age, 17 [1] y; maximum oxygen uptake, 71.0 [4.7] mL·kg-1·min-1). The power-duration relationship was assessed through 2-minute, 5-minute, and 12-minute field tests under fresh conditions (control). On subsequent days and following a randomized order, participants repeated the aforementioned tests after 2 training sessions matched for mechanical work (∼15 kJ/kg) of different intensities (ie, a moderate-intensity continuous-training [60%-70% of critical power; CP] session or a session including high-intensity intervals [3-min repetition bouts at 110%-120% of the CP interspersed by 3-min rest periods]). RESULTS A significantly lower power output was found in the 2-minute test after the high-intensity training session compared not only with the control condition (-8%, P < .001) but also with the moderate-intensity continuous-training session (-7%, P = .003), with no significant differences between the latter conditions. No significant differences between conditions were found for the remaining tests. As a consequence, the high-intensity training session resulted in significantly lower W' values compared to both the control condition (-27%, P = .001) and the moderate-intensity continuous-training session (-26%, P = .012), with no differences between the 2 latter conditions and with no differences for CP. CONCLUSION A session including high-intensity intermittent efforts induces a greater fatigue, particularly in short-duration efforts and W', than a work-matched continuous-training session of moderate intensity.
Collapse
Affiliation(s)
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group (PAHERG), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carlos Revuelta
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Sabbas de Paz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - María Ibañez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Alimco-Campagnolo U19 Team, Vitoria, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group (PAHERG), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group (PAHERG), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Systems Biology, University of Alcala, Madrid, Spain
| |
Collapse
|
9
|
Pérez-Piñero S, Ramos-Campo DJ, López-Román FJ, Ortolano R, Torregrosa-García A, Luque-Rubia AJ, Ibáñez-Soroa N, Andreu-Caravaca L, Ávila-Gandía V. Effect of high-dose β-Alanine supplementation on uphill cycling performance in World Tour cyclists: A randomised controlled trial. PLoS One 2024; 19:e0309404. [PMID: 39226288 PMCID: PMC11371202 DOI: 10.1371/journal.pone.0309404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Scientists and coaches seek effective ergogenic aids for performance improvement. Cyclists commonly use β-Alanine, which may enhance post-exercise recovery and physical performance. High-dose β-Alanine supplementation's impact on World Tour cyclists during a 7-day camp remains unstudied. This study aimed to analyse the effect of a high dose of β-alanine in World Tour cyclist during a 7-day camp. A double-blinded, randomised controlled trial was conducted. 11 cyclists were included in the final analysis: β-alanine supplementation (n = 5; VO2max: 67.6±1.6 ml/kg/min) and a placebo group (n = 6; VO2max: 68.0±2.4 ml/kg/min). The duration of the supplementation protocol was seven days with four daily intakes. The subjects commenced supplementation after the physical tests (immediately following the snack) and consumed the final intake after breakfast on the day of the final test (a total of 7 days and 3 additional doses, 31 servings in total; 5g per dosage; 155g the total cumulative amount). Before and after seven days of supplementation, the cyclists performed an uphill time trial. Blood lactate, heart rate and rating of perceived exertion were measured during test. β-alanine supplementation improved the relative mean power attained during the time-trial compared with the control group (Z = -2.008; p = 0.045; Δ = 0.060), as well as the time needed to complete this trial (Z = -2.373; p = 0.018). As for physiological and metabolic variables, no significant change was found. In conclusion, the present study supports the effectiveness of one-week high dose of β-alanine during a cycling training in World Tour cyclists to improve their uphill time-trial performance. In addition, it is important to highlight the potential role of β-alanine in improving recovery power. This aspect is particularly relevant in the context of a training camp, where fatigue levels can increase alongside training intensity. Trial registration: This study was registered in ClinicalTrials.gov: (identifier: NCT04427319).
Collapse
Affiliation(s)
- Silvia Pérez-Piñero
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Domingo Jesús Ramos-Campo
- Faculty of Physical Activity and Sport Science-INEF, Department of Health and Human Performance, LFE Research Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Javier López-Román
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Primary Care Research Group, Murcia, Spain
| | - Raquel Ortolano
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Antonio Torregrosa-García
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Antonio Jesús Luque-Rubia
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Natalia Ibáñez-Soroa
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Luis Andreu-Caravaca
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
- Facultad de Deporte, UCAM, Universidad Católica de Murcia, Murcia, Spain
| | - Vicente Ávila-Gandía
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
10
|
Jones AM. The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. J Physiol 2024; 602:4113-4128. [PMID: 37606604 DOI: 10.1113/jp284205] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake (V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation ofV ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
11
|
Voet JG, Lamberts RP, Viribay A, de Koning JJ, van Erp T. Durability and Underlying Physiological Factors: How Do They Change Throughout a Cycling Season in Semiprofessional Cyclists? Int J Sports Physiol Perform 2024; 19:809-819. [PMID: 38871342 DOI: 10.1123/ijspp.2023-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To investigate how cycling time-trial (TT) performance changes over a cycling season, both in a "fresh" state and in a "fatigued" state (durability). Additionally, the aim was to explore whether these changes are related to changes in underlying physiological factors such as gross efficiency, energy expenditure (EE), and substrate oxidation (fat oxidation [FatOx] and carbohydrate oxidation [CarbOx]). METHODS Sixteen male semiprofessional cyclists visited the laboratory on 3 occasions during a cycling season (PRE, START, and IN) and underwent a performance test in both fresh and fatigued states (after 38.1 [4.9] kJ/kg), containing a submaximal warm-up for the measurement of gross efficiency, EE, FatOx, and CarbOx and a maximal TT of 1 (TT1min) and 10 minutes (TT10min). Results were compared across states (fresh vs fatigued) and periods (PRE, START, and IN). RESULTS The average power output (PO) in TT1min decreased (P < .05) from fresh to fatigued state across all observed periods, whereas there was no change in the PO in TT10min. Over the course of the season, the PO in TT1min in the fatigued state improved more compared with the PO in TT1min in the fresh state. Furthermore, while EE did not significantly change, there was an increase in FatOx and a decrease in CarbOx toward the fatigued state. These changes diminished during the cycling season (IN), indicating a greater contribution of CarbOx in the fatigued state. CONCLUSIONS TT1min performance is more sensitive to fatigue compared with TT10min. Also, during a cycling season, durability improves more when compared with fresh maximal POs, which is also observed in the changes in substrate oxidation.
Collapse
Affiliation(s)
- Jens G Voet
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert P Lamberts
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Aitor Viribay
- Physiology, Nutrition and Sport, Glut4Science, Vitoria-Gasteiz, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Jos J de Koning
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Teun van Erp
- Division of Movement Science and Exercise Therapy (MSET), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Gallo G, Faelli EL, Ruggeri P, Filipas L, Codella R, Plews DJ, Maunder E. Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur J Appl Physiol 2024; 124:2353-2364. [PMID: 38483635 PMCID: PMC11322563 DOI: 10.1007/s00421-024-05440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The aims of this study were to: (i) describe the time course of the decrease in power output at the moderate-to-heavy intensity transition during prolonged exercise; (ii) investigate the association between durability of the moderate-to-heavy intensity transition and exercise capacity; and (iii) explore physiological correlates of durability of the moderate-to-heavy intensity transition. METHODS Twelve trained cyclists (age: 40 ± 8 y, V ˙ O2peak: 52.3 ± 5.2 mL·min-1·kg-1) performed an exhaustive cycling protocol involving alternating incremental exercise tests to determine power output at the moderate-to-heavy intensity transition via the first ventilatory threshold (VT1), and 30-min bouts at 90% of the power output at the previously estimated VT1 in the rested state. The individual time course of VT1 was modelled using linear and second-order polynomial functions, and time to a 5% decrease in VT1 (Δ5%VT1) was estimated using the best-fitting model. RESULTS Power output at VT1 decreased according to a second-order polynomial function in 11 of 12 participants. Time-to-task failure (234 ± 66 min) was correlated with Δ5%VT1 (139 ± 78 min, rs = 0.676, p = 0.016), and these were strongly correlated with absolute and relative rates of fat oxidation at specific exercise intensities measured during the incremental test performed in the rested state. CONCLUSIONS These data: (i) identify a non-linear time course of decreases in the moderate-to-heavy intensity transition during prolonged exercise; (ii) support the importance of durability of the moderate-to-heavy intensity transition in prolonged exercise capacity; and (iii) suggest durability of the moderate-to-heavy intensity transition is related to fat oxidation rates.
Collapse
Affiliation(s)
- Gabriele Gallo
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Department of Neuroscience, RehabilitationGenoa, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Viale Benedetto XV, 16100, Genoa, Italy
| | | | - Piero Ruggeri
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
13
|
Ørtenblad N, Zachariassen M, Nielsen J, Gejl KD. Substrate utilization and durability during prolonged intermittent exercise in elite road cyclists. Eur J Appl Physiol 2024; 124:2193-2205. [PMID: 38441690 PMCID: PMC11199313 DOI: 10.1007/s00421-024-05437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE This study investigated the effects of prolonged intermittent cycling exercise on peak power output (PPO) and 6-min time-trial (6 min-TT) performance in elite and professional road cyclists. Moreover, the study aimed to determine whether changes in performance in the fatigued state could be predicted from substrate utilization during exercise and laboratory measures obtained in a fresh state. METHODS Twelve cyclists (age: 23 years [21;25]; body mass: 71.5 kg [66.7;76.8]; height: 181 cm [178;185]; V ˙ O2peak: 73.6 ml kg-1 min-1 [71.2;76.0]) completed a graded submaximal cycling test to determine lactate threshold (LT1), gross efficiency (GE), and maximal fat oxidation (MFO) as well as power output during a maximal 6 min-TT (MPO6 min) in a fresh condition. On a separate day, the cyclists completed a 4-h intermittent cycling protocol with a high CHO intake (100 g h-1). Substrate utilization and PPO was measured hourly during the protocol, which was followed by another 6 min-TT. RESULTS MPO6 min and PPO was reduced by 10% [4;15] and 6% [0;6], respectively, after the cycling protocol. These reductions were accompanied by reductions in the anaerobic energy contribution and V ˙ O2peak, whereas the average V ˙ O2 during the 6 min-TT was unchanged. Correlation analyses showed no strong associations between reductions in MPO6 min and PPO and laboratory measures (i.e., LT1, GE, MFO, V ˙ O2peak) obtained in the fresh condition. Additionally, fat oxidation rates during the cycling protocol were not related to changes in neither PPO nor MPO6 min. CONCLUSION PPO and MPO6 min were reduced following prolonged intermittent cycling, but the magnitude of these reductions could not be predicted from laboratory measures obtained in the fresh condition.
Collapse
Affiliation(s)
- Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Magnus Zachariassen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
14
|
Klaris MB, Cubel C, Bruun TR, Stampe D, Rørvik S, Fischer M, Bonne T, Christensen PM, Piil JF, Nybo L. Performance and Fatigue Patterns in Elite Cyclists During 6 h of Simulated Road Racing. Scand J Med Sci Sports 2024; 34:e14699. [PMID: 39011951 DOI: 10.1111/sms.14699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Fatigue resistance is vital for success in elite road cycling, as repeated, intense efforts challenge the athletes' ability to sustain peak performance throughout prolonged races. The present study combined recurrent performance testing and physiological measures during 6 h simulated racing with laboratory testing to investigate factors influencing fatigue resistance. Twelve male national elite cyclists (25 ± 3 years; 76 ± 6 kg and VO2max of 5.2 ± 0.5 L/min) completed incremental power and maximal fat oxidation tests. Subsequently, they underwent field testing with physiological measures and fatigue responses evaluated through peak sprint power and 5 km time trial (TT) testing after 0, 2, 4, and 6 h of exercise. Peak power declined from 1362 ± 176 W in first sprint to 1271 ± 152 W after 2 h (p < 0.01) and then stabilized. In contrast, TT mean power gradually declined from 412 ± 38 W in the first TT to 384 ± 41 W in the final trial, with individual losses ranging from 2% to 14% and moderately correlated (r2 = 0.45) to accumulated exercise time above lactate threshold. High carbohydrate intake (~90 g/h) maintained blood glucose levels, but post-TT [lactate] decreased from 15.1 ± 2 mM to 7.1 ± 2.3 mM, while fat oxidation increased from 0.7 ± 0.3 g/min at 0 h to 1.1 ± 0.1 g/min after 6 h. The study identifies fatigue patterns in national elite cyclists. Peak sprint power stabilized after an initial impairment from 0 to 2 h, while TT power gradually declined over the 6 h simulated race, with increased differentiation in fatigue responses among athletes.
Collapse
Affiliation(s)
- Magnus Bak Klaris
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Claes Cubel
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tim Ravn Bruun
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Stampe
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stian Rørvik
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mads Fischer
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bonne
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Team Danmark (Danish Elite Sports Organisation), Copenhagen, Denmark
| | - Jacob Feder Piil
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department for Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Leo P, Mateo-March M, Giorgi A, Muriel X, Javaloyes A, Barranco-Gil D, Pallarés JG, Lucia A, Mujika I, Valenzuela PL. The Influence of High-Intensity Work on the Record Power Profile of Under-23, Pro Team, and World Tour Cyclists. Int J Sports Physiol Perform 2024; 19:545-549. [PMID: 38531349 DOI: 10.1123/ijspp.2023-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Durability (ie, the ability to attenuate the decline in performance after accumulated work) has been identified as a performance determinant in elite cyclists. The aim of the present study was to compare durability in elite cyclists of various performance levels, particularly after high-intensity work, referred to as "high-intensity durability." METHODS Forty-nine (N = 49) male road cyclists were categorized as either under 23 years of age (U23) (N = 11), Pro Team (N = 13), or World Tour (N = 24). The participants' critical power (CP) was assessed during the preseason. Thereafter, the participants' maximum mean power (MMP) values were determined for efforts of different durations (from 5 s to 30 min) after different levels of accumulated work above CP (from 0 to 7.5 kJ·kg-1). RESULTS U23 cyclists showed a significant reduction of all relative MMP values for durations ≥1 minute after ≥5 kJ·kg-1 above CP compared with the "fresh" state (0 kJ·kg-1), whereas in Pro Team and World Tour cyclists, a significant reduction was not observed until 7.5 kJ·kg-1 above CP. In the "fresh" state, both Pro Team and particularly World Tour cyclists attained higher MMP values for efforts ≥10 minutes than U23 riders. However, more differences emerged with greater previous work levels, and indeed after 7.5 kJ·kg-1 above CP World Tour cyclists attained higher MMP values than both U23 and Pro Team cyclists for most efforts (≥30 s). CONCLUSION Pro Team and particularly World Tour cyclists tolerate greater levels of accumulated work at high intensity, which might support the importance of high-intensity durability for performance.
Collapse
Affiliation(s)
- Peter Leo
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia
| | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Andrea Giorgi
- Androni Giocattoli-Sidermec Professional Cycling Team, Siena, Italy
- Department of Internal Medicine, Specialist Medicine and Rehabilitation, Azienda USL Toscana-SouthEast, Siena, Italy
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Alejandro Javaloyes
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group (PAHERG), Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group (PAHERG), Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- Department of Systems Biology, University of Alcalá, Madrid, Spain
| |
Collapse
|
16
|
Mateo-March M, Leo P, Muriel X, Javaloyes A, Mujika I, Barranco-Gil D, Pallarés JG, Lucia A, Valenzuela PL. Is all work the same? Performance after accumulated work of differing intensities in male professional cyclists. J Sci Med Sport 2024; 27:430-434. [PMID: 38604818 DOI: 10.1016/j.jsams.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES Although the ability to attenuate power output (PO) declines after accumulated work (i.e., 'durability') is increasingly recognized as a major determinant of cycling performance, the potential role of the intensity of the previous work is unclear. We assessed the effect of work-matched levels of accumulated work at different intensities on performance in male professional cyclists. DESIGN Observational field-based study. METHODS PO data was registered in 17 cyclists during a competition season, and the critical power (CP) was repeatedly determined every 4 weeks from training sessions and competitions. Participants' maximum mean power (MMP) for different durations (5 s, 5 min, 10 min, and 20 min) and the CP were determined under 'fresh' conditions (0 kJ·kg-1) and after varying levels of accumulated work (2.5, 5.0 and 7.5 kJ·kg-1) at intensities below and above the CP. RESULTS A significant decline was found for all MMP values following all levels of accumulated work above the CP (-4.0 %, -1.7 %, -1.8 %, and -3.2 % for 30s, 5 min, 10 min and 20 min-MMP, respectively; all p < 0.001), versus no change after any level of accumulated work below the CP (all p > 0.05). Similar results were observed for the CP, which decreased after all levels of accumulated work above (-2.2 %, -6.1 %, and -16.2 %, after 2.5, 5.0 and 7.5 kJ·kg-1, p < 0.001) but not below this indicator (p > 0.05). CONCLUSIONS In male professional cyclists, accumulated work above the CP impairs performance compared with work-matched, albeit less intense efforts. This raises concerns on the use of mechanical work per se as a single fatigue/stress indicator in these athletes.
Collapse
Affiliation(s)
- Manuel Mateo-March
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Spain. https://twitter.com/mmateo_march
| | - Peter Leo
- University Innsbruck, Department Sport Science, Austria. https://twitter.com/peter_leo
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Spain. https://twitter.com/xabimu
| | - Alejandro Javaloyes
- Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Spain. https://twitter.com/alejandro_java
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Spain; Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Chile. https://twitter.com/inigomujika
| | | | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Spain. https://twitter.com/dpallaresjg
| | - Alejandro Lucia
- Physical Activity and Health Research Group (PAHERG), Research Institute of the Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group (PAHERG), Research Institute of the Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain. https://twitter.com/pl_valenzuela
| |
Collapse
|
17
|
Gallo G, Mateo-March M, Fuk A, Faelli E, Ruggeri P, Codella R, Filipas L. The Day-by-Day Periodization Strategies of a Giro d'Italia Podium Finisher. Int J Sports Physiol Perform 2024:1-5. [PMID: 38335950 DOI: 10.1123/ijspp.2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE The aim of this study was to describe the day-by-day training and racing characteristics in preparation for the Giro d'Italia of 1 world-class road cyclist who achieved a place on the podium in the final general classification of the Giro d'Italia. METHODS Day-by-day power meter training and racing data of 1 study subject (road cyclist; age 25 y; relative maximum oxygen consumption 81 mL·min-1·kg-1; relative 20-min record power output 6.6 W·kg-1) covering the 152 days leading up to the podium in the Giro d'Italia final general classification were retrospectively analyzed. Daily load, daily volume, and intensity distribution were considered. RESULTS During training a pattern alternating "hard days" versus "easy days" was observed, as significant amounts of medium or high intensity, or load, were not performed for more than 2 consecutive days This pattern was achieved combining high volume (>4 h) with a significant amount of medium and high intensity within the same training sessions. During training, when training load and intensity increased, the density of "easy days" augmented. In 1-week stage races and the Giro d'Italia, 3 to 8 consecutive days with significant amounts of medium and high intensity were performed. A high number of training sessions with small amounts of medium- and high-intensity volume was observed: 38 days accumulating 3 to 10 minutes at medium intensity and 29 days spending 1 to 9 minutes at high intensity. CONCLUSION These data provide novel insights about the day-by-day periodization strategies leading to a top 3 in the Giro d'Italia general classification.
Collapse
Affiliation(s)
- Gabriele Gallo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Manuel Mateo-March
- Sport Science Department, Miguel Hernández University of Elche, Madrid, Spain
- Spanish Cycling Federation, Madrid, Spain
| | - Andrea Fuk
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Emanuela Faelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
18
|
Lee SJL, Sim MP, VAN Rens FECA, Peiffer JJ. Fatigue Resistance Is Altered during the High-Hormone Phase of Eumenorrheic Females but Not Oral Contraceptive Users. Med Sci Sports Exerc 2024; 56:92-102. [PMID: 37699150 DOI: 10.1249/mss.0000000000003289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PURPOSE This study aimed to examine the effect of ovarian hormones and their synthetic equivalents on substrate utilization and fatigue resistance during a race-specific cycling protocol. METHODS Seventeen well-trained female cyclists (nine eumenorrheic females, eight oral contraceptive users) completed two experimental trials, in a randomized order, in their low- (follicular/sugar pill) and high-hormone (luteal/active pill) phases. Each 91-min trial consisted of a 45-min moderate-intensity component (submaximal cycling, or SMC) followed by 6 min of high-intensity (HIT) and then a fatigue resistance test (FRT): 6 × 1-min all-out efforts with 1-min active recovery. Meals, comprising carbohydrate (CHO) intake of 8 g·kg -1 body mass, were standardized 24-h pretrial. An electrolyte-only solution was provided ad libitum during each trial. RESULTS In eumenorrheic females, a large reduction in average power during FRT was observed in the luteal phase (277 ± 31 vs 287 ± 33 W; P = 0.032). Greater CHO ox (~ 4%, P = 0.020) during SMC and ventilatory inefficiencies during SMC and HIT (~7%, P < 0.001) were also observed in the luteal phase. In contraceptive users, despite some phasal changes in cardiorespiratory and metabolic data in SMC (~6% higher blood glucose and ~2% higher minute ventilation in active pill phase), none of the performance parameters in the FRT were different. CONCLUSIONS Fatigue resistance was compromised only in high-hormone phase of the menstrual cycle, with eumenorrheic females likely susceptible because of increased CHO utilization during SMC. Hormone-induced ventilatory inefficiencies may also have increased metabolic demand. These findings emphasize the need to maintain CHO availability for power production, particularly in high-hormone phases.
Collapse
Affiliation(s)
| | | | - Fleur E C A VAN Rens
- Discipline of Exercise Science, Murdoch University, Perth, Western Australia, AUSTRALIA
| | | |
Collapse
|
19
|
Gallo G, Mateo-March M, Gotti D, Maunder E, Codella R, Ruggeri P, Faelli E, Filipas L. The Weekly Periodization of Top 5 Tour de France General Classification Finishers: A Multiple Case Study. Int J Sports Physiol Perform 2023; 18:1313-1320. [PMID: 37709277 DOI: 10.1123/ijspp.2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE The aim of this study was to describe individual training characteristics, racing strategies, and periodization in preparation for the Tour de France in 2 world-class road cyclists finishing in the top 5 of the general classification. METHODS Week-by-week power meter training and racing data of 2 (A and B) road cyclists (age: 29 and 23 y; maximum oxygen consumption: 83 and 81 mL·min-1·kg-1; and relative 20-min record power output: 6.9 and 6.5 W·kg-1) in the preparation phase (December-July/August) leading up to the Tour de France were retrospectively analyzed. Weekly volume and intensity distribution in power zones were considered. RESULTS Cyclists A and B completed 46 and 19 races, 22.5 (6.3) and 18.2 (5.1) h·wk-1, with a pyramidal intensity distribution of 81.0%-13.3%-5.7%, and 88.8%-7.9%-3.3% in zone 1-zone 2-zone 3. Cyclist B spent 14 days at altitude. Increased high-intensity volume and polarization index occurred during race weeks. During periods without racing, training intensity progressively increased. Strength training was performed during November and December but not during the following months. During tapering, total exercise volume and time at high intensity decreased. CONCLUSION These data provide novel insights into the periodization of world-class road cyclists in advance of a top 5 placing in the Tour de France general classification.
Collapse
Affiliation(s)
- Gabriele Gallo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Manuel Mateo-March
- Sport Science Department, Miguel Hernández University of Elche, Madrid, Spain
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | - Daniel Gotti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Piero Ruggeri
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
20
|
Almquist NW, Hansen J, Rønnestad BR. Development of Cycling Performance Variables and Durability in Female and Male National Team Cyclists: From Junior to Senior. Med Sci Sports Exerc 2023; 55:2053-2063. [PMID: 37259247 DOI: 10.1249/mss.0000000000003232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
AIM This study investigated the development of power profiles and performance-related measures from the junior level (<19 yr) via U23 (19-23 yr) to senior level (>23 yr) in 19 female and 100 male Norwegian national team cyclists. METHODS A total of 285 tests were performed in a 3-d laboratory-standardized testing regime. The tests included power profiles with shorter duration (6-60 s) and longer durations (12-30 min) together with performance-related measures: critical power (CP), work capacity above CP (W'), power output at 4 and 2 mmol·L -1 [BLa - ] (L 4 and L 2 ), maximal aerobic power (W max ), and maximal oxygen uptake (V̇O 2max ), gross efficiency (GE), and pedaling efficiency. RESULTS Females and males evolve similarly when maturing from junior via U23 to senior categories (all P > 0.07), except for V̇O 2max , which increased in females (but not males) from junior to senior level (534 ± 436 mL·min -1 , P = 0.013). In general, only performances of longer durations improved with age (12 and 30 min, P = 0.028 and P = 0.042, respectively). Performance-related measures like W max , V̇O 2max , CP, L 4 , L 2 , and pedaling efficiency in the fresh state improved with age (all P ≤ 0.025). Importantly, performance in the semifatigued state during a 5-min maximal test was also improved with age ( P = 0.045) despite a higher external energy expenditure before the test ( P = 0.026). CONCLUSIONS Junior cyclists show highly developed sprint abilities, and the primary improvements of absolute power outputs and performance-related measures are seen for durations >60 s when maturing to U23 and senior categories. However, the durability, i.e., the capacity to maintain performance in a semifatigued state, is improved with age.
Collapse
Affiliation(s)
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| |
Collapse
|
21
|
Sanchez-Jimenez JL, Lorente-Casaus C, Jimenez-Perez I, Gandía-Soriano A, Carpes FP, Priego-Quesada JI. Acute effects of fatigue on internal and external load variables determining cyclists' power profile. J Sports Sci 2023:1-10. [PMID: 37379499 DOI: 10.1080/02640414.2023.2227523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The aim of the present study was to determine whether fatigue affects internal and external load variables determining power profile in cyclists. Ten cyclists performed outdoor power profile tests (lasting 1-, 5 and 20-min) on two consecutive days, subject either to a fatigued condition or not. Fatigue was induced by undertaking an effort (10-min at 95% of average power output obtained in a 20-min effort followed by 1-min maximum effort) until the power output decreased by 20% compared to the 1-min power output. Fatigued condition decreased power output (p < 0.05, 1-min: 9.0 ± 3.8%; 5-min: 5.9 ± 2.5%; 20-min: 4.1 ± 1.9%) and cadence in all test durations, without differences in torque. Lactate decreased in longer efforts when a fatigue protocol had previously been conducted (e.g., 20-min: 8.6 ± 3.0 vs. 10.9 ± 2.7, p < 0.05). Regression models (r2 ≥ 0.95, p < 0.001) indicated that a lower variation in load variables of 20-min in fatigued condition compared with the non-fatigued state resulted in a lower decrease in critical power after the fatigue protocol. The results suggest that fatigued condition on power was more evident in shorter efforts and seemed to rely more on a decrease in cadence than on torque.
Collapse
Affiliation(s)
- Jose Luis Sanchez-Jimenez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Carlos Lorente-Casaus
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Irene Jimenez-Perez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Alexis Gandía-Soriano
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Felipe P Carpes
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Hovorka M, Leo P, Simon D, Rumpl C, Nimmerichter A. Physiological Characteristics of Competitive Male Junior Cyclists Transitioning to the Under-23 Level: A Retrospective Comparative Study. Int J Sports Physiol Perform 2023:1-4. [PMID: 37244645 DOI: 10.1123/ijspp.2022-0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The purpose of the current investigation was to retrospectively assess possible differences in physiological performance characteristics between junior cyclists signing a contract with an under-23 (U23) development team versus those failing to sign such a contract. METHODS Twenty-five male junior cyclists (age: 18.1 [0.7] y, stature: 181.9 [6.0] cm, body mass: 69.1 [7.9] kg, peak oxygen uptake: 71.3 [6.2] mL·min-1·kg-1) were assigned to this investigation. Between September and October of the last year in the junior category, each cyclist performed a ramp incremental exercise test to determine certain physiological performance characteristics. Subsequently, participants were divided in 2 groups: (1) those signing a contract with a U23 development team (JUNIORU23) and (2) those failing to sign such a contract (JUNIORNON-U23). Unpaired t tests were used to assess possible between-groups differences in physiological performance characteristics. The level of statistical significance was set at P < .05 two tailed. RESULTS No significant between-groups differences in submaximal (ie, gas exchange threshold, respiratory compensation point) and maximal physiological performance characteristics (ie, peak work rate, peak oxygen uptake) expressed in absolute values (ie, L·min-1, W) were observed (P > .05). However, significant between-groups differences were observed when physiological performance characteristics were expressed relative to the cyclists' body weights (P < .05). CONCLUSIONS The current investigation showed that junior cyclists stepping up to a U23 development team might be retrospectively differentiated from junior cyclists not stepping up based on certain physiological performance characteristics, which might inform practitioners and/or federations working with young cyclists during the long-term athletic development process.
Collapse
Affiliation(s)
- Matthias Hovorka
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
- Center for Sport Science and University Sports, University of Vienna, Vienna,Austria
- Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna,Austria
| | - Peter Leo
- Division of Performance Physiology & Prevention, Department of Sports Science, University of Innsbruck, Innsbruck,Austria
| | - Dieter Simon
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Clemens Rumpl
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
- Center for Sport Science and University Sports, University of Vienna, Vienna,Austria
| |
Collapse
|
23
|
Kholkine L, Latré S, Verdonck T, de Leeuw AW. Age of peak performance in professional road cycling. J Sports Sci 2023; 41:298-306. [PMID: 37139786 DOI: 10.1080/02640414.2023.2208998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we investigated the relationship between age and performance in professional road cycling. We considered 1864 male riders present in the yearly top 500 ranking of ProCyclingStats (PCS) since 1993 until 2021 with more than 700 PCS Points. We applied a data-driven approach for finding natural clusters of the rider's speciality (General Classification, One Day, Sprinter or All-Rounder). For each cluster, we divided the riders into the top 50% and bottom 50% based on their total number of PCS points. The athlete's yearly performance was defined as the average number of points collected per race. Age-performance models were constructed using polynomial regression and we obtained that the top 50% of the riders in each cluster have a statistically significant (p < 0.05) higher peak performance age. Considering the best 50% of the riders, general classification riders peak at an older age than the other rider types (p < 0.05). For those top riders, we found ages of peak performance of 26.3, 26.5, 26.2 and 27.5 years for sprinters, all-rounders, one day specialists and general classification riders, respectively. Our findings can be used for scouting purposes, assisting coaches in designing long-term training programmes and benchmarking the athletes' performance development.
Collapse
Affiliation(s)
- Leonid Kholkine
- Department of Computer Science, University of Antwerp - imec, Antwerp, Belgium
| | - Steven Latré
- Department of Computer Science, University of Antwerp - imec, Antwerp, Belgium
| | - Tim Verdonck
- Department of Mathematics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
24
|
Spragg J, Leo P, Swart J. The Relationship between Physiological Characteristics and Durability in Male Professional Cyclists. Med Sci Sports Exerc 2023; 55:133-140. [PMID: 35977108 DOI: 10.1249/mss.0000000000003024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine if durability can be predicted from laboratory measures in a professional cycling population. METHODS Data were collected from 10 professional cyclists (age = 19.2 ± 0.8 yr, body mass = 70.4 ± 5.5 kg, height = 182.9 ± 4.0 cm, body mass index = 21.0 ± 1.3 kg·m -2 , V̇O 2max = 74.4 ± 4.8 mL·kg -1 ·min -1 , critical power [CP] = 5.6 ± 0.6 W·kg -1 , W' = 23.7 ± 5.4 kJ). Participants completed a laboratory test and a CP test on two occasions. The second occasion was preceded by a novel fatiguing protocol, which consisted of five bouts of 8-min of exercise at 105%-110% of CP. CP in a fatigued state was expressed as a percentage of the fresh CP and coined delta CP (∆CP). The Pearson product correlation analysis was conducted to determine the relationship between laboratory-based measures and ∆CP. RESULTS Significant positive relationships were found between ∆CP and relative peak power output ( r = 0.891, P < 0.001), relative maximum oxygen uptake ( r = 0.835, P = 0.003), relative power output at the second ventilatory threshold ( r = 0.738, P = 0.015), power output at the first ventilatory threshold ( r = 0.748, P = 0.013) and relative power output at the first ventilatory threshold ( r = 0.826, P = 0.003), gross efficiency at 300 W ( r = 0.869, P = 0.001), and at 200 W ( r = 0.792, P = 0.006). Significant negative relationships were found between ∆CP and carbohydrate oxidation at 200 W ( r = -0.702, P = 0.024). A multiple linear regression demonstrated that ∆CP can be predicted from laboratory measures ( R2 = 0.96-0.98, P < 0.001). CONCLUSIONS These findings demonstrate the physiological determinants of durability in a professional cycling population.
Collapse
Affiliation(s)
- James Spragg
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Peter Leo
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, AUSTRIA
| | - Jeroen Swart
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, SOUTH AFRICA
| |
Collapse
|
25
|
Matomäki P, Heinonen OJ, Nummela A, Laukkanen J, Auvinen EP, Pirkola L, Kyröläinen H. Durability is improved by both low and high intensity endurance training. Front Physiol 2023; 14:1128111. [PMID: 36875044 PMCID: PMC9977827 DOI: 10.3389/fphys.2023.1128111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction: This is one of the first intervention studies to examine how low- (LIT) and high-intensity endurance training (HIT) affect durability, defined as 'time of onset and magnitude of deterioration in physiological-profiling characteristics over time during prolonged exercise'. Methods: Sedentary and recreationally active men (n = 16) and women (n = 19) completed either LIT (average weekly training time 6.8 ± 0.7 h) or HIT (1.6 ± 0.2 h) cycling for 10 weeks. Durability was analyzed before and after the training period from three factors during 3-h cycling at 48% of pretraining maximal oxygen uptake (VO2max): 1) by the magnitude and 2) onset of drifts (i.e. gradual change in energy expenditure, heart rate, rate of perceived exertion, ventilation, left ventricular ejection time, and stroke volume), 3) by the 'physiological strain', defined to be the absolute responses of heart rate and its variability, lactate, and rate of perceived exertion. Results: When all three factors were averaged the durability was improved similarly (time x group p = 0.42) in both groups (LIT: p = 0.03, g = 0.49; HIT: p = 0.01, g = 0.62). In the LIT group, magnitude of average of drifts and their onset did not reach statistically significance level of p < 0.05 (magnitude: 7.7 ± 6.8% vs. 6.3 ± 6.0%, p = 0.09, g = 0.27; onset: 106 ± 57 min vs. 131 ± 59 min, p = 0.08, g = 0.58), while averaged physiological strain improved (p = 0.01, g = 0.60). In HIT, both magnitude and onset decreased (magnitude: 8.8 ± 7.9% vs. 5.4 ± 6.7%, p = 0.03, g = 0.49; onset: 108 ± 54 min vs. 137 ± 57 min, p = 0.03, g = 0.61), and physiological strain improved (p = 0.005, g = 0.78). VO2max increased only after HIT (time x group p < 0.001, g = 1.51). Conclusion: Durability improved similarly by both LIT and HIT based on reduced physiological drifts, their postponed onsets, and changes in physiological strain. Despite durability enhanced among untrained people, a 10-week intervention did not alter drifts and their onsets in a large amount, even though it attenuated physiological strain.
Collapse
Affiliation(s)
- Pekka Matomäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Olli J Heinonen
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Jari Laukkanen
- Central Finland Healthcare District, Department of Medicine, Jyväskylä, Finland.,Department of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eero-Pekka Auvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Leena Pirkola
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
26
|
Influence of Torque and Cadence on Power Output Production in Cyclists. Int J Sports Physiol Perform 2023; 18:27-36. [PMID: 36470252 DOI: 10.1123/ijspp.2022-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 12/08/2022]
Abstract
PURPOSE No information is available on the torque/cadence relationship in road cyclists. We aimed to establish whether this relationship differs between cyclists of different performance levels or team roles. METHODS Mean maximal power (MMP) output data from 177 riders were obtained from 2012 to 2021 from training and competitions. Cyclists were categorized according to their performance level (world-tour [WT, n = 68], procontinental [PC, n = 63], or under 23 [U23, n = 46]) and team role (time trialists [n = 12], all-rounders [n = 94], climbers [n = 64], or team leaders [n = 7]). RESULTS A significant interaction effect was found for absolute and relative MMP (P < .001), with higher values in PC than WT for short (5-60 s) efforts and the opposite trend for longer durations. MMP was also greater in PC than in U23 for short efforts (30-60 s), with WT and PC attaining higher MMP than U23 for longer bouts (5-60 min). A significant interaction effect was found for cadence (P = .007, but with no post hoc differences) and absolute (P = .010) and relative torque (P = .002), with PC and WT showing significantly higher torque (all P < .05) than U23 for 5- to 60-minute efforts, yet with no differences between the former 2 performance levels. No interaction effect between team roles was found for cadence (P = .185) or relative torque (P = .559), but a significant interaction effect was found for absolute torque (P < .001), with all-rounders attaining significantly higher values than climbers for 5-second to 5-minute efforts. CONCLUSIONS Differences in MMP between cycling performance levels and rider types are dependent on torque rather than cadence, which might support the role of torque development in performance.
Collapse
|
27
|
Leo P, Spragg J, Wakefield J, Swart J. Predictors of cycling performance success: Traditional approaches and a novel method to assess performance capacity in U23 road cyclists. J Sci Med Sport 2023; 26:52-57. [PMID: 36513568 DOI: 10.1016/j.jsams.2022.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES This study aimed to investigate predictors of cycling performance in U23 cyclists by comparing traditional approaches to a novel method - the compound score. Thirty male U23 cyclists (N = 30, age 20.1 ± 1.1 yrs, body mass 69.0 ± 6.9 kg, height 182.6 ± 6.2 cm, V̇O2max 73.8 ± 2.5 mL·kg-1·min-1) participated in this study. DESIGN Power output information was derived from laboratory and field-testing during pre-season and mean maximal power outputs (MMP) from racing season. Absolute and relative 5-min MMP, 5-min MMP after 2000 kJ (MMP2000 kJ), allometric scaling and the compound score were compared to the race score and podium (top 3) performance during a competitive season. METHODS Positive and negative predictive values were calculated for all significant performance variables for the likelihood of a podium performance. RESULTS The absolute 5-min MMP of the field test revealed the highest negative predictive capacity (82.4%, p = 0.012) for a podium performance. The compound score of the 5-min MMP2000 kJ demonstrated the highest positive and average predictive capacity (83.3%, 78.0%, p = 0.007 - respectively). The multi-linear regression analysis revealed a significant predictive capacity between performance variables and the race score (R2 = 0.55, p = 0.015). CONCLUSIONS Collectively the results of the present study reveal that the compound score, alongside absolute power, was able to predict the highest positive and average likelihood for a podium performance. These findings can help to better understand performance capacity from field data to predict future cycling success.
Collapse
Affiliation(s)
- Peter Leo
- University Innsbruck, Department Sport Science, Austria.
| | - James Spragg
- University of Cape Town HPALS Research Center, South Africa
| | - John Wakefield
- UAE Team Emirates, United Arab Emirates; Science to Sport, South Africa
| | - Jeroen Swart
- University of Cape Town HPALS Research Center, South Africa; UAE Team Emirates, United Arab Emirates; Science to Sport, South Africa
| |
Collapse
|
28
|
Durability in Professional Cyclists: A Field Study. Int J Sports Physiol Perform 2023; 18:99-103. [PMID: 36521188 DOI: 10.1123/ijspp.2022-0202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess durability in professional cyclists, as well as potential associated indicators. METHODS Twelve male professional cyclists participated in the study (age: 26 [5] y, VO2max: 83.0 [3.6] mL·kg-1·min-1). They performed a 20-minute time trial (TT) on 2 different sessions separated by a 48-hour period: (1) with no previous fatigue (TTFresh) and (2) immediately after a long submaximal ride (approximately 4 h, 40 kJ/kg) (TTFatigue). We then assessed the decay (in percentage) in mean power output (PO) from TTFresh to TTFatigue and its association with different laboratory-based endurance indicators (ventilatory threshold, peak PO, and VO2max) determined through a previous maximal incremental cycling test, as well as with training loads during the 4 weeks preceding the TTs. RESULTS While no differences were noted in the average heart rate (177 [7] vs 176 [6] beats·min-1, P = .118), there was a significant decay in PO between TTFresh and TTFatigue (386 [29] W vs 375 [28] W [-2.9%], respectively; P = .007), albeit with signs of interindividual variability (range = -8.5% to 1.1%; coefficient of variation = 105%). No significant associations were found between the PO decay and any of the analyzed indicators (all P > .05). CONCLUSIONS Performance is significantly impaired after a certain amount of work completed (approximately 40 kJ·kg-1) in professional cyclists, and the magnitude of this impairment seems to be not related to "traditional" laboratory-based endurance indicators or to markers of training load. These findings might support the need for specifically assessing durability in cyclists and confirming potential determinants of this parameter.
Collapse
|
29
|
Leo P, Simon D, Hovorka M, Lawley J, Mujika I. Elite versus non-elite cyclist - Stepping up to the international/elite ranks from U23 cycling. J Sports Sci 2022; 40:1874-1884. [PMID: 36040014 DOI: 10.1080/02640414.2022.2117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study investigated the physiological, performance and training characteristics of U23 cyclists and assessed the requirements of stepping up to the elite/international ranks. Twenty highly trained U23 cyclists (age, 22.1 ± 0.8 years; body mass, 69.1 ± 6.8 kg; VO2max, 76.1 ± 3.9 ml·kg-1·min-1) participated in this study. The cyclists were a posteriori divided into two groups based on whether or not they stepped up to elite/international level cycling (U23ELITE vs. U23NON-ELITE). Physiological, performance and training and racing characteristics were determined and compared between groups. U23ELITE demonstrated higher absolute peak power output (p = .016), 2 min (p = .026) 5 min (p = .042) and 12 min (p ≤ .001) power output as well as higher absolute critical power (p = .002). Further, U23ELITE recorded more accumulated hours (p ≤ .001), covered distance (p ≤ .001), climbing metres (p ≤ .001), total sessions (p ≤ .001), total work (p ≤ .001) and scored more UCI points (p ≤ .001). These findings indicate that U23ELITE substantially differed from U23NON-ELITE regarding physiological, performance and training and racing characteristics derived from laboratory and field. These variables should be considered by practitioners supporting young cyclists throughout their development towards the elite/international ranks.
Collapse
Affiliation(s)
- Peter Leo
- Division of Performance Physiology & Prevention, Department Sports Science, University of Innsbruck, Austria
| | - Dieter Simon
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Matthias Hovorka
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria.,Centre for Sport Science and University Sports, University of Vienna, Austria.,Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Austria
| | - Justin Lawley
- Division of Performance Physiology & Prevention, Department Sports Science, University of Innsbruck, Austria
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
30
|
van Erp T, Lamberts RP. Demands of professional female cycling races: influence race level and race duration (single or multi-day events). Eur J Sport Sci 2022:1-9. [PMID: 35938288 DOI: 10.1080/17461391.2022.2111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThis study is governed by two aims: firstly, expanding the meagre knowledge store regarding the demands set by professional female road cycling and, secondly, ascertaining whether these demands vary in relation to different race-levels and race duration (single- or multi-day events). A total of 1 349 female professional road races was analyzed and demands (intensity, load and performance) were determined. Races were classified based on race level (i.e. Women's World Tour [WWT], level.1 and level.2 according to the International Cycling Federation) and race duration (single- or multi-day events). Differences were assessed with a multilevel random intercept model whilst the strength of said differences were indicated by Cohens'd (0-0.19 trivial; 0.20-0.59 small; 0.60-1.1.9 moderate; 1.20-1.99 large; ≥2.00 very large). In general, no moderate differences for load and intensity were noted for the different race levels. This result contrasts with data obtained from male road cycling. Moderate higher 3 and 5 min maximal mean power (MMP) values were noted in the WWT compared to Level.2 races. More substantial differences were found to exist between single- and multi-day races with single-day races presenting small to large higher load and intensity values. In addition, single-day races presented higher MMPs overall durations (5sec - 60 min) although these differences can be rated trivial to small. This study contributes to the limited knowledge store describing demands in professional female cycling. The reported data provide valuable insights which may aid practitioners and/or coaches in preparing female professional cyclists for races.
Collapse
Affiliation(s)
- Teun van Erp
- Division of Biokinetics, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Robert P Lamberts
- Division of Biokinetics, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
31
|
Alejo LB, Montalvo-Pérez A, Valenzuela PL, Revuelta C, Ozcoidi LM, de la Calle V, Mateo-March M, Lucia A, Santalla A, Barranco-Gil D. Comparative analysis of endurance, strength and body composition indicators in professional, under-23 and junior cyclists. Front Physiol 2022; 13:945552. [PMID: 35991188 PMCID: PMC9388719 DOI: 10.3389/fphys.2022.945552] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To compare endurance, strength and body composition indicators between cyclists of three different competition age categories. Methods: Fifty-one male road cyclists classified as either junior (n = 13, age 16.4 ± 0.5 years), under-23 [(U23), n = 24, 19.2 ± 1.3 years] or professional (n = 14, 26.1 ± 4.8 years) were studied. Endurance (assessed through a maximal incremental test and an 8-minute time-trial), strength/power (assessed through incremental loading tests for the squat, lunge and hip thrust exercises) and body composition (assessed through dual energy X-ray absorptiometry) were determined on three different testing sessions. Results: U23 and, particularly professional, cyclists attained significantly (p < 0.05) higher values than juniors for most of the analyzed endurance indicators [time-trial performance, maximum oxygen uptake (VO2max), peak power output (PPO), respiratory compensation point (RCP), and ventilatory threshold (VT)]. Significant differences (p < 0.05) between U23 and professionals were also found for time-trial performance, PPO and VT, but not for other markers such as VO2max or RCP. Professional cyclists also showed significantly (p < 0.05) lower relative fat mass and higher muscle mass levels than U23 and, particularly, juniors. No consistent differences between age categories were found for muscle strength/power indicators. Conclusion: Endurance (particularly time-trial performance, PPO and VT) and body composition (fat and muscle mass) appear as factors that best differentiate between cyclists of different age categories, whereas no consistent differences are found for muscle strength/power. These findings might help in performance prediction and/or talent identification and may aid in guiding coaches in the design of training programs focused on improving those variables that appear more determinant.
Collapse
Affiliation(s)
- Lidia B. Alejo
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Almudena Montalvo-Pérez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- *Correspondence: Almudena Montalvo-Pérez,
| | - Pedro L. Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carlos Revuelta
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Sport Science Department, Universidad Miguel Hernández, Elche, Spain
| | - Alejandro Lucia
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
32
|
Taylor KB, Deckert S. Field-testing to determine power - cadence and torque - cadence profiles in professional road cyclists. Eur J Sport Sci 2022:1-9. [PMID: 35786391 DOI: 10.1080/17461391.2022.2095307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe aim of this study was to evaluate a field-based approach to determine torque-cadence and power-cadence profiles in professional cyclists and establish if this field-based protocol can differentiate between varying rider specializations. Twenty-four male professional athletes from a World Tour cycling team participated in this investigation (Height = 1.84 ± 0.05 m, Weight = 72.3 ± 5.6 kg, Age = 25 ± 4 y). All riders were subsequently categorized into the following groups: 1) General Classification (GC) group; 2) sprinter group; and 3) classics group. All participants completed a specific sprint protocol in the field which included 6 times 6s sprints with varying gearing, starting cadences, starting speeds and position (i.e. seated vs standing). Power-cadence and torque-cadence profiles were determined based on the sprint outputs. There was a significant main effect of rider specialization on the measured (sprint) variables (P≤0.03). Body weight, maximum power outputs (1s, 10s and modelled) and maximum torque were highest in the sprinter group, followed by the classics group, followed by the GC group. The protocol was able to differentiate between different rider specializations (i.e. GC, sprinters, classics). The proposed methodology can contribute to individualizing training content in the short-duration domain.
Collapse
Affiliation(s)
- Kurt Bergin Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | |
Collapse
|
33
|
Valenzuela PL, Mateo-March M, Muriel X, Zabala M, Lucia A, Barranco-Gil D, Millet GP, Brocherie F, Burtscher J, Burtscher M, Ryan BJ, Gioscia-Ryan RA, Perrey S, Rodrigo-Carranza V, González-Mohíno F, González-Ravé JM, Santos-Concejero J, Denadai BS, Greco CC, Casado A, Foster C, Mazzolari R, Baldrighi GN, Pastorio E, Malatesta D, Patoz A, Borrani F, Ives SJ, DeBlauw JA, Dantas de Lucas R, Borszcz FK, Fernandes Nascimento EM, Antonacci Guglielmo LG, Turnes T, Jaspers RT, van der Zwaard S, Lepers R, Louis J, Meireles A, de Souza HLR, de Oliveira GT, dos Santos MP, Arriel RA, Marocolo M, Hunter B, Meyler S, Muniz-Pumares D, Ferreira RM, Sogard AS, Carter SJ, Mickleborough TD, Saborosa GP, de Oliveira Freitas RD, Alves dos Santos PS, de Souza Ferreira JP, de Assis Manoel F, da Silva SF, Triska C, Karsten B, Sanders D, Lipksi ES, Spindler DJ, Hesselink MKC, Zacca R, Goethel MF, Pyne DB, Wood BM, Allen PE, Gabelhausen JL, Keller AM, Lige MT, Oumsang AS, Smart GL, Paris HL, Dewolf AH, Toffoli G, Martinez-Gonzalez B, Marcora SM, Terson de Paleville D, Fernandes RJ, Soares SM, Abraldes JA, Matta G, Bossi AH, McCarthy DG, Bostad W, Gibala J, Vagula M. Commentaries on Viewpoint: Using V̇o 2max as a marker of training status in athletes - can we do better? J Appl Physiol (1985) 2022; 133:148-164. [PMID: 35819399 DOI: 10.1152/japplphysiol.00224.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Pedro L Valenzuela
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Mateo-March
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain,Sport Science Department. Universidad Miguel Hernández, Elche, Spain
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Lucia
- Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin J Ryan
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, Montpellier, France
| | | | - Fernando González-Mohíno
- Sport Training Lab, University of Castilla-La Mancha, Toledo, Spain,Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| | | | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Benedito S Denadai
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Camila C Greco
- Human Performance Laboratory, São Paulo State University, Rio Claro, Brazil
| | - Arturo Casado
- Center for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Carl Foster
- University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Raffaele Mazzolari
- Department of Physical Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioural Sciences − Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Elisa Pastorio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Davide Malatesta
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Aurélien Patoz
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Stephen J Ives
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Justin A DeBlauw
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | | | | | | | | | - Tiago Turnes
- Physical Effort Laboratory, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Romuald Lepers
- INSERM UMR1093 CAPS, Faculty of Sport Sciences, University of Bourgogne Franche-Comté, Dijon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anderson Meireles
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Hiago L. R. de Souza
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Géssyca T de Oliveira
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo P dos Santos
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rhaí A Arriel
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - B Hunter
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - S Meyler
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - D Muniz-Pumares
- Department of Psychology, Sport, and Geography, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Renato M Ferreira
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Guilherme Pereira Saborosa
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Raphael Dinalli de Oliveira Freitas
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Paula Souza Alves dos Santos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - João Pedro de Souza Ferreira
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | | | - Sandro Fernandes da Silva
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program in Nutrition and Health, University of Lavras, Lavras, Brazil
| | - Christoph Triska
- Institute of Sport Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria,Leistungssport Austria, Brunn am Gebirge, Austria
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Dajo Sanders
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Elliot S Lipksi
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Spindler
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rodrigo Zacca
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Márcio Fagundes Goethel
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal,Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sports, University of Porto, Porto, Portugal
| | - David Bruce Pyne
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, Australia
| | - Brayden M Wood
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Peyton E Allen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Jaden L Gabelhausen
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alexandra M Keller
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Mast T Lige
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Alicia S Oumsang
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Greg L Smart
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Hunter L Paris
- Exercise Physiology Laboratory, Department of Sports Medicine, Pepperdine University, Malibu, California
| | - Arthur H Dewolf
- Laboratory of Physiology and Biomechanics of Human Locomotion, Institute of Neuroscience, Université catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Guillaume Toffoli
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | | | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Ricardo J Fernandes
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - Susana M Soares
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal,Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - J. Arturo Abraldes
- Research Group MS&SPORT, Faculty of Sports Sciences, University of Murcia, Murcia, Spain
| | - Guilherme Matta
- Faculty of Science, Engineering and Social Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Arthur Henrique Bossi
- MeFit Prehabilitation Service, Medway NHS Foundation Trust, Gillingham, United Kingdom
| | - D G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - W Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
34
|
Impact of prior accumulated work and intensity on power output in elite/international level road cyclists—a pilot study. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022. [DOI: 10.1007/s12662-022-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Background
This study aimed to investigate the impact of the intensity of prior accumulated work on the decline in power output in elite/international level road cyclists, comparing the effects of prior continuous moderate intensity versus intermittent high intensity cycling.
Methods
Nine elite/international level road cyclists (age 26.2 ± 4.0 years; body mass: 66.6 ± 5.5 kg; height: 176 ± 0.4 cm) conducted a 12-min field test (12 minfresh) during two consecutive training camps. Participants then performed both a 150-min moderate intensity continuous (MIC) work bout or a 150-min high intensity intermittent (HII) race simulation in randomized order, cross-over design. After each condition a 12-min field test (12 minfatigue) was completed.
Results
Absolute and relative 12 minfresh power output were not significantly different between training camps (p > 0.05). The 12 minfatigue power after HII was significantly lower than 12 minfatigue after MIC (∆ = 14 W; p = 0.014). Participants recorded more percentage time (%Time) in heart rate (HR) zone 3 (∆ = 9.2%; p = 0.003) and power output band between 5.0–7.9 W $$\cdot$$
∙
kg−1 (∆ = 8.9%; p = 0.002) as well as higher total work (∆ = 237 kJ; p ≤ 0.001) during HII.
Conclusion
These findings reveal that the decline in power output is higher after HII compared to MIC cycling work bouts. This suggests that the quantification of total work and intensity should be used in conjunction to predict a distinctive decline in power output. Future research is required to better understand the mechanisms of endurance “durability” in elite/international level road cyclists.
Collapse
|
35
|
Gallo G, Leo P, Mateo March M, Giorgi A, Faelli E, Ruggeri P, Mujika I, Filipas L. Differences in training characteristics between junior, under 23 and professional cyclists. Int J Sports Med 2022; 43:1183-1189. [PMID: 35533684 DOI: 10.1055/a-1847-5414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim was to compare the training characteristics of junior, under 23 and professional road cyclists. Training data collected during the 2019 competitive season of thirty male cyclists, divided into three age-related categories (JUN; U23; PRO), were retrospectively analyzed for training characteristics, external and internal training load. Higher duration per training session were observed in PRO (2.6 ± 0.3 h) compared to both U23 (2.2 ± 0.3 h; P < 0.001) and JUN (2.0 ± 0.2 h; P < 0.001). Elevation gain per distance was higher in PRO (13.8 ± 1.9 m⋅km-1) compared to U23 (10.6 ± 0.9 m⋅km-1; P = 0.001) and JUN (6.7 ± 0.3 m⋅km-1; P < 0.001), and in U23 compared to JUN (P < 0.001). Annual total work was lower in JUN (3694 ± 467 kJ⋅kg-1) compared to U23 (5268 ± 746 kJ⋅kg-1; P = 0.001) and PRO (5759 ± 1103 kJ⋅kg-1; P < 0.001). eTRIMP per hour was higher in JUN (151 ± 40) compared to both U23 (115 ± 23; P = 0.003) and PRO (112 ± 22; P = 0.013). JUN spent more training time at medium and high heart rate intensity zones compared to U23 and PRO (P < 0.05).
Collapse
Affiliation(s)
- Gabriele Gallo
- 1 Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Peter Leo
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Andrea Giorgi
- Medicine, Surgery and Neuroscience, Universita degli Studi di Siena - Presidio San Miniato, Siena, Italy
| | | | - Piero Ruggeri
- experimental medicine, Universita degli Studi di Genova, Genova, Italy
| | - Iñigo Mujika
- Physiology and Training, USP Araba Sport Clinic, Vitoria-Gasteiz, Spain
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
36
|
Smyth B, Maunder E, Meyler S, Hunter B, Muniz-Pumares D. Decoupling of Internal and External Workload During a Marathon: An Analysis of Durability in 82,303 Recreational Runners. Sports Med 2022; 52:2283-2295. [PMID: 35511416 PMCID: PMC9388405 DOI: 10.1007/s40279-022-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/20/2022]
Abstract
Aim This study characterised the decoupling of internal-to-external workload in marathon running and investigated whether decoupling magnitude and onset could improve predictions of marathon performance. Methods The decoupling of internal-to-external workload was calculated in 82,303 marathon runners (13,125 female). Internal workload was determined as a percentage of maximum heart rate, and external workload as speed relative to estimated critical speed (CS). Decoupling magnitude (i.e., decoupling in the 35–40 km segment relative to the 5–10 km segment) was classified as low (< 1.1), moderate (≥ 1.1 but < 1.2) or high (≥ 1.2). Decoupling onset was calculated when decoupling exceeded 1.025. Results The overall internal-to-external workload decoupling experienced was 1.16 ± 0.22, first detected 25.2 ± 9.9 km into marathon running. The low decoupling group (34.5% of runners) completed the marathon at a faster relative speed (88 ± 6% CS), had better marathon performance (217.3 ± 33.1 min), and first experienced decoupling later in the marathon (33.4 ± 9.0 km) compared to those in the moderate (32.7% of runners, 86 ± 6% CS, 224.9 ± 31.7 min, and 22.6 ± 7.7 km), and high decoupling groups (32.8% runners, 82 ± 7% CS, 238.5 ± 30.7 min, and 19.1 ± 6.8 km; all p < 0.01). Compared to females, males’ decoupling magnitude was greater (1.17 ± 0.22 vs. 1.12 ± 0.16; p < 0.01) and occurred earlier (25.0 ± 9.8 vs. 26.3 ± 10.6 km; p < 0.01). Marathon performance was associated with the magnitude and onset of decoupling, and when included in marathon performance models utilising CS and the curvature constant, prediction error was reduced from 6.45 to 5.16%. Conclusion Durability characteristics, assessed as internal-to-external workload ratio, show considerable inter-individual variability, and both its magnitude and onset are associated with marathon performance.
Collapse
Affiliation(s)
- Barry Smyth
- Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Dublin, Ireland.
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University Technology, Auckland, New Zealand
| | - Samuel Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
37
|
The Record Power Profile of Male Professional Cyclists: Normative Values Obtained From a Large Database. Int J Sports Physiol Perform 2022; 17:701-710. [PMID: 35193109 DOI: 10.1123/ijspp.2021-0263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To present normative data for the record power profile of male professional cyclists attending to team categories and riding typologies. METHODS Power output data registered from 4 professional teams during 8 years (N = 144 cyclists, 129,262 files, and 1062 total seasons [7 (5) per cyclist] corresponding to both training and competition sessions) were analyzed. Cyclists were categorized as ProTeam (n = 46) or WorldTour (n = 98) and as all-rounders (n = 65), time trialists (n = 11), climbers (n = 50), sprinters (n = 11), or general classification contenders (n = 7). The record power profile was computed as the highest maximum mean power (MMP) value attained for different durations (1 s to 240 min) in both relative (W·kg-1) and absolute units (W). RESULTS Significant differences between ProTeam and WorldTour were found for both relative (P = .002) and absolute MMP values (P = .006), with WT showing lower relative, but not absolute, MMP values at shorter durations (30-60 s). However, higher relative and absolute MMP values were recorded for very short- (1 s) and long-duration efforts (60 and 240 min for relative MMP values and ≥5 min for absolute ones). Differences were also found regarding cyclists' typologies for both relative and absolute MMP values (P < .001 for both), with sprinters presenting the highest relative and absolute MMP values for short-duration efforts (5-30 s) and general classification contenders presenting the highest relative MMP values for longer efforts (1-240 min). CONCLUSIONS The present results--obtained from the largest cohort of professional cyclists assessed to date-could be used to assess cyclists' capabilities and indicate that the record power profile can differ between cyclists' categories and typologies.
Collapse
|
38
|
The Record Power Profile in Professional Female Cyclists: Normative Values Obtained From a Large Database. Int J Sports Physiol Perform 2022; 17:682-686. [PMID: 35168197 DOI: 10.1123/ijspp.2021-0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To describe the record power profile of professional female cyclists and to assess potential differences based on the type of rider. METHODS Power output data (32,028 files containing both training and competition sessions recorded) in 44 female professional cyclists during 1-6 years were analyzed. Cyclists were categorized as all-rounders, time trialists, climbers, or sprinters. The record power profile was calculated using the mean maximal power output (MMP) values attained by each cyclist for different-effort durations (5 s to 60 min) expressed in relative (W·kg-1), as well as absolute, power output (W). RESULTS Participants' MMP averaged 15.3 (1.8) W·kg-1 for 5 seconds, 8.4 (0.8) W·kg-1 for 1 minute, 5.2 (0.5) W·kg-1 for 10 minutes, and 4.2 (0.4) W·kg-1 for 60 minutes. For short-duration efforts (5-30 s), sprinters attained the highest MMP results, with significantly higher relative (Hedges g = 1.40-2.31) or absolute (g = 4.48-8.06) values than the remainder of categories or climbers only, respectively. Time trialists attained the highest MMP for longer efforts, with higher relative values than both all-rounders and climbers when comparing efforts lasting 10 to 60 minutes (P < .05, g = 1.21-1.54). CONCLUSIONS In professional female cyclists, the record power profile substantially differs based on the specific category of the rider. These findings provide unique insights into the physical capacities of female professional cyclists, as well as a benchmark for coaches and scientists aiming to identify talent in female cycling.
Collapse
|
39
|
Power Road-Derived Physical Performance Parameters in Junior, Under-23, and Professional Road Cycling Climbers. Int J Sports Physiol Perform 2022; 17:1094-1102. [PMID: 35483700 DOI: 10.1123/ijspp.2021-0554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the relationship of field-derived power and physical performance parameters with competition success in road cycling climbing specialists of age-related categories and to explore cross-sectional differences between high-ranked (HIGHR) climbing specialists of each category. METHODS Fifty-three male climbers participated in this study (junior [JUN], n = 15; under 23 [U23], n = 21; professional [PRO], n = 17). Training and racing data collected during the 2016-19 competitive seasons were retrospectively analyzed for record power outputs (RPOs) and RPOs after prior accumulated work. RESULTS In JUN, body mass, absolute RPOs, and relative RPOs were higher in HIGHR compared with low ranked (d = 0.97-2.20, large; P = .097-.001); in U23 and PRO, the percentage decrease in RPOs after 20, 30, 40, and 50 kJ·kg-1 was less in HIGHR compared with low ranked (d = 0.77-1.74, moderate-large; P = .096-.004). JUN HIGHR presented lower absolute and relative RPO-20 min (ηp2=.34-.38, large; P = .099-.001) and higher percentage decrease in RPOs after prior accumulated work compared with U23 and PRO HIGHR (ηp2=.28-.68, large; P = .060-.001); percentage decrease in RPOs after prior accumulated work was the only parameter differentiating U23 and PRO HIGHR, with PRO declining less in relative RPO-1 min, RPO-5 min, and RPO-20 min after 20 to 50 kJ·kg-1 (ηp2=.28-.68, large; P = .090-.001). CONCLUSIONS Superior absolute and relative RPOs characterize HIGHR JUN climbing specialists. Superior fatigue resistance differentiates HIGHR U23 and PRO climbers compared with low ranked, as well as PRO versus U23 climbers.
Collapse
|
40
|
Performance Characteristics of TOP5 Versus NOT-TOP5 Races in Female Professional Cycling. Int J Sports Physiol Perform 2022; 17:1070-1076. [PMID: 35405635 DOI: 10.1123/ijspp.2021-0488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Maximal mean power output (MMP) is commonly used to describe the demands and performances of races in professional male cycling. In the female professional cyclist domain, however, there is limited knowledge regarding MMPs in races. Therefore, this study aimed to describe MMPs in female professional cycling races while investigating differences between TOP5 and NOT-TOP5 races. METHODS Race data (N = 1324) were collected from 14 professional female cyclists between 2013 and 2019. Races were categorized as TOP5 or NOT-TOP5. The MMPs were consequently determined over a range of different time frames (5 s to 60 min). To provide these MMPs with additional context, 2 factors were determined: when these MMPs were attained in a race (based on duration and kilojoules spent [kJspent·kg-1]) and these MMPs relative to the cyclist's season's best MMP (MMP%best). RESULTS Short-duration power outputs (≤1 min) were higher in TOP5 races compared with NOT-TOP5 races. In addition, the timing (both duration and kJspent·kg-1) of all MMPs was later and after more workload in the race in TOP5 compared with NOT-TOP5 races. In contrast, no difference in MMP%best was noted between TOP5 and NOT-TOP5 races. CONCLUSIONS TOP5 races in female cycling are presented with higher short-duration MMPs (≤1 min) when compared with NOT-TOP5 races, and cyclists were able to reach a higher percentage of their seasonal best MMP when they were able to finish TOP5. In addition, these MMPs are performed later and after more kJspent·kg-1 in TOP5 versus NOT-TOP5 races, which confirms the importance of "fatigue resistance" in professional (female) cycling.
Collapse
|
41
|
Spragg J, Leo P, Swart J. The relationship between training characteristics and durability in professional cyclists across a competitive season. Eur J Sport Sci 2022; 23:489-498. [PMID: 35239466 DOI: 10.1080/17461391.2022.2049886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RESULTS Absolute 5MMPfatigue, 12MMPfatigue and relative 12MMPfatigue were significantly lower in late-season compared with early- and mid-season (p < 0.05). The difference in absolute 12MMPfresh and 12MMPfatigue was significantly greater in late than in early- and mid-season.A significant relationship was found between training time below the first ventilatory threshold (Time < VT1) and improvements in absolute and relative 2MMPfatigue (r = 0.43 p = 0.018 and r = 0.376 p = 0.04 respectively); and between a shift towards a polarised training intensity distribution and improvements in absolute and relative 12MMPfatigue (r = 0.414p = 0.023 for both) between subsequent periods. CONCLUSION There is greater variability in the fatigue power profile across a competitive season than the fresh power profile.
Collapse
Affiliation(s)
- James Spragg
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town
| | - Peter Leo
- Department of Sport Science, Division of Performance Physiology & Prevention, University of Innsbruck, Austria
| | - Jeroen Swart
- HPALS, Department of Human Biology, Faculty of Health Sciences, University of Cape Town
| |
Collapse
|
42
|
The Record Power Profile of Male Professional Cyclists: Fatigue Matters. Int J Sports Physiol Perform 2022; 17:926-931. [PMID: 35240578 DOI: 10.1123/ijspp.2021-0403] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The present study aimed to determine the influence of fatigue on the record power profile of professional male cyclists. We also assessed whether fatigue could differently affect cyclists of 2 competition categories. METHODS We analyzed the record power profile in 112 professional cyclists (n = 46 and n = 66 in the ProTeam [PT] and WorldTour [WT] category, respectively; age 29 [6] y, 8 [5] y experience in the professional category) during 2013-2021 (8 [5] seasons/cyclist). We analyzed their mean maximal power (MMP) values for efforts lasting 10 seconds to 120 minutes with no fatigue (after 0 kJ·kg-1) and with increasing levels of fatigue (after 15, 25, 35, and 45 kJ·kg-1). RESULTS A significant (P < .001) and progressive deterioration of all MMP values was observed from the lowest levels of fatigue assessed (ie, -1.6% to -3.0% decline after 15 kJ·kg-1, and -6.0% to -9.7% after 45 kJ·kg-1). Compared with WT, PT cyclists showed a greater decay of MMP values under fatigue conditions (P < .001), and these differences increased with accumulating levels of fatigue (decay of -1.8 to -2.9% [WT] with reference to 0 kJ·kg-1 vs -1.1% to -4.4% [PT] after 15 kJ·kg-1 and of -4.7% to -8.8% [WT] vs -7.6% to -11.6% [PT] after 45 kJ·kg-1). No consistent differences were found between WT and PT cyclists in MMP values assessed in nonfatigue conditions (after 0 kJ·kg-1), but WT cyclists attained significantly higher MMP values with accumulating levels of fatigue, particularly for long-duration efforts (≥5 min). CONCLUSIONS Our findings highlight the importance of considering fatigue when assessing the record power profile of endurance athletes and support the ability to attenuate fatigue-induced decline in MMP values as a determinant of endurance performance.
Collapse
|
43
|
Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol 2022; 122:301-316. [PMID: 34708276 PMCID: PMC8783871 DOI: 10.1007/s00421-021-04833-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022]
Abstract
Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individualize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, race demands). It is recommended that field testing should always be conducted in accordance with pre-established guidelines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W'/t + CP (W'-work capacity above CP; t-time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist's power profile.
Collapse
Affiliation(s)
- Peter Leo
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria.
| | - James Spragg
- Health Physical Activity Lifestyle Sport Research Centre (HPALS), University of Cape Town, Cape Town, South Africa
| | - Tim Podlogar
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
44
|
Janssens B, Bogaert M, Maton M. Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents. ANNALS OF OPERATIONS RESEARCH 2022; 325:557-588. [PMID: 35068645 PMCID: PMC8765833 DOI: 10.1007/s10479-021-04476-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 06/03/2023]
Abstract
The importance of young athletes in the field of professional cycling has sky-rocketed during the past years. Nevertheless, the early talent identification of these riders largely remains a subjective assessment. Therefore, an analytical system which automatically detects talented riders based on their freely available youth results should be installed. However, such a system cannot be copied directly from related fields, as large distinctions are observed between cycling and other sports. The aim of this paper is to develop such a data analytical system, which leverages the unique features of each race and thereby focusses on feature engineering, data quality, and visualization. To facilitate the deployment of prediction algorithms in situations without complete cases, we propose an adaptation to the k-nearest neighbours imputation algorithm which uses expert knowledge. Overall, our proposed method correlates strongly with eventual rider performance and can aid scouts in targeting young talents. On top of that, we introduce several model interpretation tools to give insight into which current starting professional riders are expected to perform well and why.
Collapse
Affiliation(s)
- Bram Janssens
- Department of Marketing, Innovation and Organisation, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium
| | - Matthias Bogaert
- Department of Marketing, Innovation and Organisation, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium
| | - Mathijs Maton
- Department of Marketing, Innovation and Organisation, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Cross-Sectional Differences in Race Demands Between Junior, Under 23, and Professional Road Cyclists. Int J Sports Physiol Perform 2022; 17:450-457. [PMID: 34996033 DOI: 10.1123/ijspp.2021-0256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the race demands of junior (JUN), under 23 (U23), and professional (PRO) road cyclists. METHODS Thirty male cyclists, divided into 3 age-related categories (JUN, n = 10; U23, n = 10; and PRO, n = 10), participated in this study. Race data collected during the 2019 competitive season were retrospectively analyzed for race characteristics, external, and internal competition load. RESULTS Higher annual and per race duration, distance, elevation gain, Edward's training impulse, total work, and work per hour were observed in PRO versus U23 and JUN, and U23 versus JUN (P < .01). PRO and U23 recorded higher mean maximal power (RPOs) between 5 and 180 minutes compared with JUN (P < .01). Edward's training impulse per hour was higher in JUN than PRO and U23 (P < .01). Accordingly, JUN spent a higher percentage of racing time in high internal intensity zones compared with U23 and PRO, while these 2 categories spent more time at low internal intensity zones (P < .01). CONCLUSIONS JUN races were shorter and included less elevation gain per distance unit compared to U23 and PRO races, but more internally demanding. JUN produced less power output in the moderate-, heavy-, and severe-intensity exercise domains compared with U23 and PRO (RPOs: 5-180 min). U23 and PRO races presented similar work demands per hour and RPOs, but PRO races were longer than U23.
Collapse
|
46
|
Does Altitude of Birth Influence the Performance of National- to Elite-Level Colombian Cyclists? Int J Sports Physiol Perform 2022; 17:1756-1759. [DOI: 10.1123/ijspp.2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
Objective: To determine whether the altitude of birth/childhood influences the values in peak power output (PPO) and estimated maximum oxygen uptake (estVO2max) in male Colombian road cyclists of different performance levels. This study also aimed to determine whether cyclists born at high altitudes tend to be more successful. Methods: Eighty riders aged between 17 and 22 years of 3 performance levels (U23 world-class level, WC, n = 8; U23 national level, N23, n = 41; junior national level, J, n = 31) and 3 altitude levels (<800 m, low; 800–2000 m, moderate; >2000 m, high) performed an ergocycle maximal incremental test to exhaustion at an altitude of 2570 m. Results: Altogether, while cyclists born at an altitude >2000 m represented ∼50% of the analyzed sample, there was a significantly higher proportion (84%) of these cyclists who had participated as professionals in a Grand Tour (χ2[1, N = 80] = 4.58, P < .05). Riders of the low group had lower values of PPO and estVO2max than cyclists of moderate and high altitudes, while no differences were noted between moderate- and high-altitude groups. In N23, PPO and estVO2max were lower in the low- than in the moderate-altitude group, while in the J cyclists, PPO and estVO2max were lower in the low-altitude compared with both moderate- and high-altitude groups. Discussion: Among the cyclists tested at altitude in junior and U23, there is an overrepresentation of individuals who reached an elite level and were born at a high altitude (>2000 m). As no clear differences were observed between moderate- and high-altitude cyclists, the higher prevalence of elite cyclists in the latter group may originate from various—still unclear—mechanisms.
Collapse
|
47
|
Muriel X, Mateo-March M, Valenzuela PL, Zabala M, Lucia A, Pallares JG, Barranco-Gil D. Durability and repeatability of professional cyclists during a Grand Tour. Eur J Sport Sci 2021; 22:1797-1804. [PMID: 34586952 DOI: 10.1080/17461391.2021.1987528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Durability and repeatability (i.e. the ability to sustain high power output values under fatigue and to endure repeated high-intensity efforts, respectively) are emerging as cycling performance determinants. We aimed to analyze whether these markers differ between professional cyclists of two competition levels (WorldTour [WT] and Proteam [PT]) during a Grand Tour. We studied 8 WT and 7 PT cyclists who competed in "La Vuelta 2020". Durability was assessed with the mean maximal power (MMP) values attained between 5 sec-30 min after different levels of mechanical work done (0-35 kJ·kg-1). Repeatability was assessed as the ability to repeat efforts >95% MMP. Although no differences were found for durability during the whole race (p = 0.209), a significant interaction effect was found in separate analyses by week (p = 0.011). Thus, during the first week and in the "fresh" state (0 kJ·kg-1), WT cyclists solely attained significantly higher MMP values for 30-min efforts. However, these differences enlarged with accumulating levels of fatigue (e.g. significantly higher MMP values in WT cyclists for 30-sec, 1-min, 5-min, 20-min and 30-min efforts after 35 kJ·kg-1). On the other hand, no between-group differences were found in repeatability for the whole race (p = 0.777) or in separate analyses by week (p = 0.808). In summary, the present results support the role of durability (but not of repeatability) as a performance indicator during professional cycling races.
Collapse
Affiliation(s)
- Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain.,Caja Rural-Seguros RGA Professional Cycling Team, Pamplona, Spain
| | | | | | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (imas12), Grupo de Investigación en Actividad Física y Salud (PaHerg), Madrid, Spain
| | - Jesús G Pallares
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| | | |
Collapse
|
48
|
Power Profile of Top 5 Results in World Tour Cycling Races. Int J Sports Physiol Perform 2021; 17:203-209. [PMID: 34560671 DOI: 10.1123/ijspp.2021-0081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study evaluated the power profile of a top 5 result achieved in World Tour cycling races of varying types, namely: flat sprint finish, semi-mountain race with a sprint finish, semi-mountain race with uphill finish, and mountain races (MT). METHODS Power output data from 33 professional cyclists were collected between 2012 and 2019. This large data set was filtered so that it only included top 5 finishes in World Tour races (18 participants and 177 races). Each of these top 5 finishes were subsequently classified as flat sprint finish, semi-mountain race with uphill finish, semi-mountain race with a sprint finish, and MT based on set criteria. Maximal mean power output (MMP) for a wide range of durations (5 s to 60 min), expressed in both absolute (in Watts) and relative terms (in Watts per kilogram), were assessed for each race type. RESULT Short-duration power outputs (<60 s), both in relative and in absolute terms, are of higher importance to be successful in flat sprint finish and semi-mountain race with a sprint finish. Longer-duration power outputs (≥3 min) are of higher importance to be successful in semi-mountain race with uphill finish and MT. In addition, relative power outputs of >10 minutes seem to be a key determining factor for success in MT. These race-type specific MMPs of importance (ie, short-duration MMPs for sprint finishes, longer-duration MMPs for races with more elevation gain) are performed at a wide range (80%-97%) of the cyclist's personal best MMP. CONCLUSIONS This study shows that the relative importance of certain points on the power-duration spectrum varies with different race types and provides insight into benchmarks for achieving a result in a World Tour cycling race.
Collapse
|
49
|
Almquist NW, Sandbakk Ø, Rønnestad BR, Noordhof D. The Aerobic and Anaerobic Contribution During Repeated 30-s Sprints in Elite Cyclists. Front Physiol 2021; 12:692622. [PMID: 34122152 PMCID: PMC8187900 DOI: 10.3389/fphys.2021.692622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Although the ability to sprint repeatedly is crucial in road cycling races, the changes in aerobic and anaerobic power when sprinting during prolonged cycling has not been investigated in competitive elite cyclists. Here, we used the gross efficiency (GE)-method to investigate: (1) the absolute and relative aerobic and anaerobic contributions during 3 × 30-s sprints included each hour during a 3-h low-intensity training (LIT)-session by 12 cyclists, and (2) how the energetic contribution during 4 × 30-s sprints is affected by a 14-d high-volume training camp with (SPR, n = 9) or without (CON, n = 9) inclusion of sprints in LIT-sessions. The aerobic power was calculated based on GE determined before, after sprints, or the average of the two, while the anaerobic power was calculated by subtracting the aerobic power from the total power output. When repeating 30-s sprints, the mean power output decreased with each sprint (p < 0.001, ES:0.6-1.1), with the majority being attributed to a decrease in mean anaerobic power (first vs. second sprint: -36 ± 15 W, p < 0.001, ES:0.7, first vs. third sprint: -58 ± 16 W, p < 0.001, ES:1.0). Aerobic power only decreased during the third sprint (first vs. third sprint: -17 ± 5 W, p < 0.001, ES:0.7, second vs. third sprint: 16 ± 5 W, p < 0.001, ES:0.8). Mean power output was largely maintained between sets (first set: 786 ± 30 W vs. second set: 783 ± 30 W, p = 0.917, ES:0.1, vs. third set: 771 ± 30 W, p = 0.070, ES:0.3). After a 14-d high-volume training camp, mean power output during the 4 × 30-s sprints increased on average 25 ± 14 W in SPR (p < 0.001, ES:0.2), which was 29 ± 20 W more than CON (p = 0.008, ES: 0.3). In SPR, mean anaerobic power and mean aerobic power increased by 15 ± 13 W (p = 0.026, ES:0.2) and by 9 ± 6 W (p = 0.004, ES:0.2), respectively, while both were unaltered in CON. In conclusion, moderate decreases in power within sets of repeated 30-s sprints are primarily due to a decrease in anaerobic power and to a lesser extent in aerobic power. However, the repeated sprint-ability (multiple sets) and corresponding energetic contribution are maintained during prolonged cycling in elite cyclists. Including a small number of sprints in LIT-sessions during a 14-d training camp improves sprint-ability mainly through improved anaerobic power.
Collapse
Affiliation(s)
- Nicki Winfield Almquist
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R. Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Dionne Noordhof
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|