1
|
Wolf AK, Adams-Phillips LC, Adams AND, Erives AJ, Phillips BT. Nuclear localization and transactivation of SYS-1/β-catenin is the result of serial gene duplications and subfunctionalizations. Cells Dev 2025:204013. [PMID: 40010690 DOI: 10.1016/j.cdev.2025.204013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
β-catenin is a highly conserved multifunctional protein capable of mediating cell adhesion via E-cadherin and transactivation of target genes of the canonical Wnt signaling pathway. The nematode, C. elegans contains four paralogs of β-catenin which are highly specific in their functions. Though similar in overall structure, the four beta-catenins are functionally distinct, each regulating different aspects of development. Of the four, SYS-1 is a key player in Wnt dependent asymmetric cell division (ACD). In ACD, a polarized mother will give rise to a daughter with high nuclear SYS-1 and another with low nuclear SYS-1. Despite sequence dissimilarity, SYS-1 shares a close structural resemblance with human β-catenin where it retains an unstructured amino-terminus (NTD) and 12 armadillo repeats. Using existing genome sequence data from several nematode species, we find that the four β-catenin paralogs result from 3 sequential gene duplications and neofunctionalizations during nematode evolution. SYS-1, however, lacks an unstructured carboxyl-terminus (CTD) that is essential for human β-catenin transactivation processes. This work supports the hypothesis that SYS-1 compensated for the lack of CTD by acquiring novel transactivation domains with cryptic nuclear localization signals in the NTD and the first four armadillo repeats, as shown by transactivation assays in worms and yeast. Furthermore, SYS-1 regulatory domains are not localized to the NTD as in canonical β-catenin and instead spans the entire length of the protein. Truncating SYS-1 abolishes the classical SYS-1 nuclear asymmetry, resulting in daughter cells with symmetrical SYS-1 truncation localization. A screen for SYS-1 physical interactors followed by in vivo SYS-1 localization analyses and effects on cell fate suggest that proper SYS-1 nuclear export is facilitated by XPO-1, while an interaction with IMB-3, an importin β-like protein, suggests import mechanisms. Interestingly, XPO-1 is especially required for lowering SYS-1 in the Wnt-unsignaled nucleus, suggesting a distinct mechanism for regulating asymmetric nuclear SYS-1. In summary, we provide insights on the mechanism of β-catenin evolution within nematodes and inform SYS-1 transactivation and nuclear transport mechanisms.
Collapse
|
2
|
Alaswad Z, Attallah NE, Aboalazm B, Elmeslhy ES, Mekawy AS, Afify FA, Mahrous HK, Abdalla A, Rahmoon MA, Mohamed AA, Shata AH, Mansour RH, Aboul-Ela F, Elhadidy M, Javierre BM, El-Khamisy SF, Elserafy M. Insights into the human cDNA: A descriptive study using library screening in yeast. J Genet Eng Biotechnol 2024; 22:100427. [PMID: 39674632 PMCID: PMC11533663 DOI: 10.1016/j.jgeb.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 12/16/2024]
Abstract
The utilization of human cDNA libraries in yeast genetic screens is an approach that has been used to identify novel gene functions and/or genetic and physical interaction partners through forward genetics using yeast two-hybrid (Y2H) and classical cDNA library screens. Here, we summarize several challenges that have been observed during the implementation of human cDNA library screens in Saccharomyces cerevisiae (budding yeast). Upon the utilization of DNA repair deficient-yeast strains to identify novel genes that rescue the toxic effect of DNA-damage inducing drugs, we have observed a wide range of transcripts that could rescue the strains. However, after several rounds of screening, most of these hits turned out to be false positives, most likely due to spontaneous mutations in the yeast strains that arise as a rescue mechanism due to exposure to toxic DNA damage inducing-drugs. The observed transcripts included mitochondrial hits, non-coding RNAs, truncated cDNAs, and transcription products that resulted from the internal priming of genomic regions. We have also noticed that most cDNA transcripts are not fused with the GAL4 activation domain (GAL4AD), rendering them unsuitable for Y2H screening. Consequently, we utilized Sanger sequencing to screen 282 transcripts obtained from either four different yeast screens or through direct fishing from a human kidney cDNA library. The aim was to gain insights into the different transcription products and to highlight the challenges of cDNA screening approaches in the presence of a significant number of undesired transcription products. In summary, this study describes the challenges encountering human cDNA library screening in yeast as a valuable technique that led to the identification of important molecular mechanisms. The results open research venues to further optimize the process and increase its efficiency.
Collapse
Affiliation(s)
- Zina Alaswad
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nayera E Attallah
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Aboalazm
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman S Elmeslhy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Fatma A Afify
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Hesham K Mahrous
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ashrakat Abdalla
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mai A Rahmoon
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Ahmed A Mohamed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed H Shata
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Rana H Mansour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Fareed Aboul-Ela
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK; The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
3
|
Ellis NA, Machner MP. Genetic Approaches for Identifying and Characterizing Effectors in Bacterial Pathogens. Annu Rev Genet 2024; 58:233-247. [PMID: 39585907 DOI: 10.1146/annurev-genet-111523-102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Microbial pathogens have coevolved with their hosts, often for millions of years, and in the process have developed a variety of virulence mechanisms to ensure their survival, typically at the host's expense. At the center of this host-pathogen warfare are proteins called effectors that are delivered by bacteria into their host where they alter the intracellular environment to promote bacterial proliferation. Many effectors are believed to have been acquired by the bacteria from their host during evolution, explaining why researchers are keen to understand their function, as this information may provide insight into both microbial virulence strategies and biological processes that happen within our own cells. Help for accomplishing this goal has come from the recent development of increasingly powerful genetic approaches, which are the focus of this review.
Collapse
Affiliation(s)
- Nicole A Ellis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Matthias P Machner
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
4
|
Hayek H, Gross L, Alghoul F, Martin F, Eriani G, Allmang C. Immunoprecipitation Methods to Isolate Messenger Ribonucleoprotein Complexes (mRNP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:1-15. [PMID: 38507196 DOI: 10.1007/978-3-031-52193-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Lauriane Gross
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Fatima Alghoul
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Wu MY, Li ZW, Lu JH. Molecular Modulators and Receptors of Selective Autophagy: Disease Implication and Identification Strategies. Int J Biol Sci 2024; 20:751-764. [PMID: 38169614 PMCID: PMC10758101 DOI: 10.7150/ijbs.83205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/31/2023] [Indexed: 01/05/2024] Open
Abstract
Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process. Identifying these receptors and modulators and their roles is critical for understanding the machinery and physiological function of selective autophagy and providing therapeutic value for diseases. Using modern researching tools and novel screening technologies, an increasing number of selective autophagy receptors and modulators have been identified. A variety of Strategies and approaches, including protein-protein interactions (PPIs)-based identification and genome-wide screening, have been used to identify selective autophagy receptors and modulators. Understanding the strengths and challenges of these approaches not only promotes the discovery of even more such receptors and modulators but also provides a useful reference for the identification of regulatory proteins or genes involved in other cellular mechanisms. In this review, we summarize the functions, disease association, and identification strategies of selective autophagy receptors and modulators.
Collapse
Affiliation(s)
| | | | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
6
|
Jain T, Mishra P, Kumar S, Panda G, Banerjee D. Molecular dissection studies of TAC1, a transcription activator of Candida drug resistance genes of the human pathogenic fungus Candida albicans. Front Microbiol 2023; 14:994873. [PMID: 37502396 PMCID: PMC10370356 DOI: 10.3389/fmicb.2023.994873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The up-regulation of ABC transporters Cdr1p and Cdr2p that efflux antifungal azole drugs are a leading cause of Multi-Drug Resistance (MDR) in the white fungus Candida albicans. C. albicans was reported to infect patients following the recent Covid-19 pandemic after they were given steroids for recovery. Previously, the TAC1 gene was identified as the transcriptional activator of Candida drug resistance genes (CDR1 and CDR2) and has no known human homologs. This makes it a good target for the development of novel antifungals. We, therefore, carried out the molecular dissection study of TAC1 to understand the functional regulation of the ABC transporter genes (CDR1 and CDR2) under its control. The N-terminal DNA Binding Domain (DBD) of Tac1p interacts with the Drug Responsive Element (DRE) present in the upstream promoter region of CDR1 and CDR2 genes of C. albicans. The interaction between DBD and DRE recruits Tac1p to the promoter of CDR genes. The C-terminal Acidic Activation Domain (AAD) of Tac1p interacts with the TATA box Binding Protein (TBP) and thus recruits TBP to the TATA box of CDR1 and CDR2 genes. Taking a cue from a previous study involving a TAC1 deletion strain that suggested that Tac1p acts as a xenobiotic receptor, in this study, we identified that the Middle Homology Region (MHR) of Tac1p acts as a probable xenobiotic binding domain (XBD) which plays an important role in Candida drug resistance. In addition, we studied the role of Tac1p in the regulation of some lipid profiling genes and stress response genes since they also contain the DRE consensus sequence and found that some of them can respond to xenobiotic stimuli.
Collapse
Affiliation(s)
- Tushar Jain
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Pankaj Mishra
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sushil Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gautam Panda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Laval F, Coppin G, Twizere JC, Vidal M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. Int J Mol Sci 2023; 24:9179. [PMID: 37298131 PMCID: PMC10252790 DOI: 10.3390/ijms24119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Understanding how genetic variation affects phenotypes represents a major challenge, particularly in the context of human disease. Although numerous disease-associated genes have been identified, the clinical significance of most human variants remains unknown. Despite unparalleled advances in genomics, functional assays often lack sufficient throughput, hindering efficient variant functionalization. There is a critical need for the development of more potent, high-throughput methods for characterizing human genetic variants. Here, we review how yeast helps tackle this challenge, both as a valuable model organism and as an experimental tool for investigating the molecular basis of phenotypic perturbation upon genetic variation. In systems biology, yeast has played a pivotal role as a highly scalable platform which has allowed us to gain extensive genetic and molecular knowledge, including the construction of comprehensive interactome maps at the proteome scale for various organisms. By leveraging interactome networks, one can view biology from a systems perspective, unravel the molecular mechanisms underlying genetic diseases, and identify therapeutic targets. The use of yeast to assess the molecular impacts of genetic variants, including those associated with viral interactions, cancer, and rare and complex diseases, has the potential to bridge the gap between genotype and phenotype, opening the door for precision medicine approaches and therapeutic development.
Collapse
Affiliation(s)
- Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Williams NP, Rodrigues CHM, Truong J, Ascher DB, Holien JK. DockNet: high-throughput protein-protein interface contact prediction. Bioinformatics 2022; 39:6885444. [PMID: 36484688 PMCID: PMC9825772 DOI: 10.1093/bioinformatics/btac797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Over 300 000 protein-protein interaction (PPI) pairs have been identified in the human proteome and targeting these is fast becoming the next frontier in drug design. Predicting PPI sites, however, is a challenging task that traditionally requires computationally expensive and time-consuming docking simulations. A major weakness of modern protein docking algorithms is the inability to account for protein flexibility, which ultimately leads to relatively poor results. RESULTS Here, we propose DockNet, an efficient Siamese graph-based neural network method which predicts contact residues between two interacting proteins. Unlike other methods that only utilize a protein's surface or treat the protein structure as a rigid body, DockNet incorporates the entire protein structure and places no limits on protein flexibility during an interaction. Predictions are modeled at the residue level, based on a diverse set of input node features including residue type, surface accessibility, residue depth, secondary structure, pharmacophore and torsional angles. DockNet is comparable to current state-of-the-art methods, achieving an area under the curve (AUC) value of up to 0.84 on an independent test set (DB5), can be applied to a variety of different protein structures and can be utilized in situations where accurate unbound protein structures cannot be obtained. AVAILABILITY AND IMPLEMENTATION DockNet is available at https://github.com/npwilliams09/docknet and an easy-to-use webserver at https://biosig.lab.uq.edu.au/docknet. All other data underlying this article are available in the article and in its online supplementary material. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Jia Truong
- STEM College, RMIT University, Melbourne, VIC, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
9
|
SNRPD2 Is a Novel Substrate for the Ubiquitin Ligase Activity of the Salmonella Type III Secretion Effector SlrP. BIOLOGY 2022; 11:biology11101517. [PMID: 36290420 PMCID: PMC9598574 DOI: 10.3390/biology11101517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary Salmonella is a genus of bacterial pathogens that can cause several diseases in humans and other animals. These bacteria can inject proteins known as effectors into animal cells through a secretion system. One of these effectors, SlrP, promotes the covalent addition of ubiquitin, a small eukaryotic protein, to specific host proteins, leading to an alteration of their stability or function. Here, we have performed a genetic screen to find new human targets of SlrP. In this way, we have identified SNRPD2, a core component of the spliceosome, the ribonucleoprotein complex that removes introns from eukaryotic pre-mRNA. SNRPD2 physically interacts with SlrP and is also a substrate of its ubiquitination activity. Lysines at positions 85 and 92 in SNRPD2 are among the residues that were ubiquitinated in the presence of SlrP. The identification of new host targets of Salmonella effectors contributes to a better understanding of the biological processes that are highjacked by these pathogens during infection, and can help in the design of future therapeutic strategies. Abstract SlrP is a protein with E3 ubiquitin ligase activity that is translocated by Salmonella enterica serovar Typhimurium into eukaryotic host cells through a type III secretion system. A yeast two-hybrid screen was performed to find new human partners for this protein. Among the interacting proteins identified by this screen was SNRPD2, a core component of the spliceosome. In vitro ubiquitination assays demonstrated that SNRPD2 is a substrate for the catalytic activity of SlrP, but not for other members of the NEL family of E3 ubiquitin ligases, SspH1 and SspH2. The lysine residues modified by this activity were identified by mass spectrometry. The identification of a new ubiquitination target for SlrP is a relevant contribution to the understanding of the role of this Salmonella effector.
Collapse
|
10
|
Chen W, Wang S, Song T, Li X, Han P, Gao C. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction. BMC Genomics 2022; 23:555. [PMID: 35922751 PMCID: PMC9351149 DOI: 10.1186/s12864-022-08772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Protein-protein interaction (PPI) is very important for many biochemical processes. Therefore, accurate prediction of PPI can help us better understand the role of proteins in biochemical processes. Although there are many methods to predict PPI in biology, they are time-consuming and lack accuracy, so it is necessary to build an efficiently and accurately computational model in the field of PPI prediction. Results We present a novel sequence-based computational approach called DCSE (Double-Channel-Siamese-Ensemble) to predict potential PPI. In the encoding layer, we treat each amino acid as a word, and map it into an N-dimensional vector. In the feature extraction layer, we extract features from local and global perspectives by Multilayer Convolutional Neural Network (MCN) and Multilayer Bidirectional Gated Recurrent Unit with Convolutional Neural Networks (MBC). Finally, the output of the feature extraction layer is then fed into the prediction layer to output whether the input protein pair will interact each other. The MCN and MBC are siamese and ensemble based network, which can effectively improve the performance of the model. In order to demonstrate our model’s performance, we compare it with four machine learning based and three deep learning based models. The results show that our method outperforms other models in all evaluation criteria. The Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC of our model are 0.9303, 0.9091, 0.9268, 0.9452, 0.8609. For the other seven models, the highest Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC are 0.9288, 0.9243, 0.9246, 0.9250, 0.8572. We also test our model in the imbalanced dataset and transfer our model to another species. The results show our model is excellent. Conclusion Our model achieves the best performance by comparing it with seven other models. NLP-based coding method has a good effect on PPI prediction task. MCN and MBC extract protein sequence features from local and global perspectives and these two feature extraction layers are based on siamese and ensemble network structures. Siamese-based network structure can keep the features consistent and ensemble based network structure can effectively improve the accuracy of the model. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08772-6.
Collapse
Affiliation(s)
- Wenqi Chen
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.
| | - Tao Song
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.,Department of Artificial Intelligence, Polytechnical University of Madrid, Madrid, Spain
| | - Xue Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Peifu Han
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Changnan Gao
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
11
|
Trimborn L, Hoecker U, Ponnu J. A Simple Quantitative Assay for Measuring β-Galactosidase Activity Using X-Gal in Yeast-Based Interaction Analyses. Curr Protoc 2022; 2:e421. [PMID: 35567769 DOI: 10.1002/cpz1.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Yeast-based interaction assays to determine protein-protein and protein-nucleic acid interactions commonly rely on the reconstitution of chimeric transcription factors that activate the expression of target reporter genes. The enzyme β-galactosidase (β-gal), coded by the LacZ gene of Escherichia coli, is a widely used reporter in yeast systems, and its expression is commonly assessed by evaluating its activity. X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) is an inexpensive and sensitive substrate of β-gal, whose hydrolysis results in an intensely blue colored and easily detectable end product, 5,5'-dibromo-4,4'-dichloro-indigo. The insoluble nature of this end product, however, makes X-gal-based assays unsuitable for direct spectrophotometric absorbance quantification. As such, the use of X-gal is mostly restricted to solid-support approaches, such as colony lift or agar plate assays, which often only provide a qualitative readout. In this article, we describe a quantitative solid-phase X-gal assay to measure protein-protein interaction strength in yeast cells using a simple and low-cost experimental setup. We have optimized multiple aspects of the assay, namely sample preparation, reaction time, and quantification method, for speed and consistency. By integrating the use of a freely available ImageJ-based plugin, we have further standardized the assay for reliability and reproducibility. This improved quantitative X-gal assay can be performed in a standard molecular biology lab without the need for any specialized equipment other than an inexpensive and widely accessible smartphone camera. To exemplify the protocol, we provide detailed step-by-step instructions to perform a quantitative X-gal assay to assess the interaction between two Arabidopsis thaliana proteins, SUPPRESSOR OF PHYA-105 1 (SPA1) and PRODUCTION OF ANTHOCYANIN PIGMENT 2 (PAP2). To demonstrate the sensitivity of our assay in detecting weaker interactions, we also compare the results with a liquid-phase assay that uses ONPG (ortho-nitrophenyl-β-galactopyranoside) as a substrate for β-gal. The quantitative X-gal assay described here can easily be adapted for high-throughout interaction studies and protein domain mapping, even in yeast strains with low levels of LacZ expression. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of competent yeast cells and transformation Alternate Protocol 1: In-house preparation of yeast competent cells for use in lithium acetate (LiAc)-mediated yeast transformation Support Protocol: Long-term storage and revival of frozen yeast strain stocks Basic Protocol 2: Measuring β-galactosidase activity via the quantitative X-gal assay Alternate Protocol 2: Quantification of interaction strength using liquid ONPG assay.
Collapse
Affiliation(s)
- Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Willis SD, Hanley SE, Doyle SJ, Beluch K, Strich R, Cooper KF. Cyclin C-Cdk8 Kinase Phosphorylation of Rim15 Prevents the Aberrant Activation of Stress Response Genes. Front Cell Dev Biol 2022; 10:867257. [PMID: 35433688 PMCID: PMC9008841 DOI: 10.3389/fcell.2022.867257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells facing adverse environmental cues respond by inducing signal transduction pathways resulting in transcriptional reprograming. In the budding yeast Saccharomyces cerevisiae, nutrient deprivation stimulates stress response gene (SRG) transcription critical for entry into either quiescence or gametogenesis depending on the cell type. The induction of a subset of SRGs require nuclear translocation of the conserved serine-threonine kinase Rim15. However, Rim15 is also present in unstressed nuclei suggesting that additional activities are required to constrain its activity in the absence of stress. Here we show that Rim15 is directly phosphorylated by cyclin C-Cdk8, the conserved kinase module of the Mediator complex. Several results indicate that Cdk8-dependent phosphorylation prevents Rim15 activation in unstressed cells. First, Cdk8 does not control Rim15 subcellular localization and rim15∆ is epistatic to cdk8∆ with respect to SRG transcription and the execution of starvation programs required for viability. Next, Cdk8 phosphorylates a residue in the conserved PAS domain in vitro. This modification appears important as introducing a phosphomimetic at Cdk8 target residues reduces Rim15 activity. Moreover, the Rim15 phosphomimetic only compromises cell viability in stresses that induce cyclin C destruction as well as entrance into meiosis. Taken together, these findings suggest a model in which Cdk8 phosphorylation contributes to Rim15 repression whilst it cycles through the nucleus. Cyclin C destruction in response to stress inactivates Cdk8 which in turn stimulates Rim15 to maximize SRG transcription and cell survival.
Collapse
|
13
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
14
|
Kasera H, Kumar S, Singh P. Yeast 2-hybrid assay for investigating the interaction between the centrosome proteins PLK4 and STIL. Methods Cell Biol 2022; 169:97-114. [DOI: 10.1016/bs.mcb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Islas-Flores T, Galán-Vásquez E, Villanueva MA. Screening a Spliced Leader-Based Symbiodinium microadriaticum cDNA Library Using the Yeast-Two Hybrid System Reveals a Hemerythrin-Like Protein as a Putative SmicRACK1 Ligand. Microorganisms 2021; 9:microorganisms9040791. [PMID: 33918967 PMCID: PMC8070245 DOI: 10.3390/microorganisms9040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The dinoflagellate Symbiodiniaceae family plays a central role in the health of the coral reef ecosystem via the symbiosis that establishes with its inhabiting cnidarians and supports the host metabolism. In the last few decades, coral reefs have been threatened by pollution and rising temperatures which have led to coral loss. These events have raised interest in studying Symbiodiniaceae and their hosts; however, progress in understanding their metabolism, signal transduction pathways, and physiology in general, has been slow because dinoflagellates present peculiar characteristics. We took advantage of one of these peculiarities; namely, the post-transcriptional addition of a Dino Spliced Leader (Dino-SL) to the 5' end of the nuclear mRNAs, and used it to generate cDNA libraries from Symbiodinium microadriaticum. We compared sequences from two Yeast-Two Hybrid System cDNA Libraries, one based on the Dino-SL sequence, and the other based on the SMART technology (Switching Mechanism at 5' end of RNA Transcript) which exploits the template switching function of the reverse transcriptase. Upon comparison of the performance of both libraries, we obtained a significantly higher yield, number and length of sequences, number of transcripts, and better 5' representation from the Dino-SL based library than from the SMART library. In addition, we confirmed that the cDNAs from the Dino-SL library were adequately expressed in the yeast cells used for the Yeast-Two Hybrid System which resulted in successful screening for putative SmicRACK1 ligands, which yielded a putative hemerythrin-like protein.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, UNAM, Circuito Escolar 3000, Ciudad Universitaria, Ciudad de México CP 04510, México;
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| |
Collapse
|
16
|
Kumar S. Protein–Protein Interaction Network for the Identification of New Targets Against Novel Coronavirus. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2021:213-230. [DOI: 10.1007/7653_2020_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Young SJ, Sebald M, Shah Punatar R, Larin M, Masino L, Rodrigo-Brenni MC, Liang CC, West SC. MutSβ Stimulates Holliday Junction Resolution by the SMX Complex. Cell Rep 2020; 33:108289. [PMID: 33086055 DOI: 10.1016/j.celrep.2020.108289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
MutSα and MutSβ play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSβ, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSβ binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSβ and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSβ in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.
Collapse
Affiliation(s)
- Sarah J Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Meghan Larin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Masino
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Chih-Chao Liang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
18
|
Lachén-Montes M, Corrales FJ, Fernández-Irigoyen J, Santamaría E. Proteomics Insights Into the Molecular Basis of SARS-CoV-2 Infection: What We Can Learn From the Human Olfactory Axis. Front Microbiol 2020; 11:2101. [PMID: 33071996 PMCID: PMC7536310 DOI: 10.3389/fmicb.2020.02101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Like other RNA viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in host cells, continuously modulating the molecular environment. It encodes 28 multifunctional proteins that induce an imbalance in the metabolic and proteostatic homeostasis in infected cells. Recently, proteomic approaches have allowed the evaluation of the impact of SARS-CoV-2 infection in human cells. Here, we discuss the current use of proteomics in three major application areas: (i) virus-protein interactomics, (ii) differential proteotyping to map the virus-induced changes in different cell types, and (iii) diagnostic methods for coronavirus infectious disease 2019 (COVID-19). Since the nasal cavity is one of the entry sites for SARS-CoV-2, we will also discuss the potential application of olfactory proteomics to provide novel insights into the olfactory dysfunction triggered by SARS-CoV-2 in patients with COVID-19.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Proteored-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Fernando J. Corrales
- Proteored-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Unit, National Centre for Biotechnology, Madrid, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Proteored-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Proteored-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
19
|
Gao X, Wang Q, Wang Y, Liu J, Liu S, Liu J, Zhou X, Zhou L, Chen H, Pan L, Chen J, Wang D, Zhang Q, Shen S, Xiao Y, Wu Z, Cheng Y, Chen G, Kubra S, Qin J, Huang L, Zhang P, Wang C, Moses RE, Lonard DM, Malley BWO, Fares F, Zhang B, Li X, Li L, Xiao J. The REGγ inhibitor NIP30 increases sensitivity to chemotherapy in p53-deficient tumor cells. Nat Commun 2020; 11:3904. [PMID: 32764536 PMCID: PMC7413384 DOI: 10.1038/s41467-020-17667-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
A major challenge in chemotherapy is chemotherapy resistance in cells lacking p53. Here we demonstrate that NIP30, an inhibitor of the oncogenic REGγ-proteasome, attenuates cancer cell growth and sensitizes p53-compromised cells to chemotherapeutic agents. NIP30 acts by binding to REGγ via an evolutionarily-conserved serine-rich domain with 4-serine phosphorylation. We find the cyclin-dependent phosphatase CDC25A is a key regulator for NIP30 phosphorylation and modulation of REGγ activity during the cell cycle or after DNA damage. We validate CDC25A-NIP30-REGγ mediated regulation of the REGγ target protein p21 in vivo using p53-/- and p53/REGγ double-deficient mice. Moreover, Phosphor-NIP30 mimetics significantly increase the growth inhibitory effect of chemotherapeutic agents in vitro and in vivo. Given that NIP30 is frequently mutated in the TCGA cancer database, our results provide insight into the regulatory pathway controlling the REGγ-proteasome in carcinogenesis and offer a novel approach to drug-resistant cancer therapy.
Collapse
Affiliation(s)
- Xiao Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Qingwei Wang
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ying Wang
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Jiang Liu
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Prk, NC, 27709, USA
| | - Xingli Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Li Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Da Wang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, P. R. China
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yu Xiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zhipeng Wu
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jun Qin
- The Joint Laboratory of Translational Medicine, National Center for Protein Sciences (Beijing) and Peking University Cancer Hospital, State Key Laboratory of Proteomics, Institute of Lifeomics, 102206, Beijing, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Pei Zhang
- Department of Pathology, The Second Chengdu Municipal Hospital, 610017, Chengdu, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O' Malley
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Fuad Fares
- Department of Human Biology. Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Xiaotao Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China.
| |
Collapse
|
20
|
Zhang X, Ménard R, Li Y, Coruzzi GM, Heitz T, Shen WH, Berr A. Arabidopsis SDG8 Potentiates the Sustainable Transcriptional Induction of the Pathogenesis-Related Genes PR1 and PR2 During Plant Defense Response. FRONTIERS IN PLANT SCIENCE 2020; 11:277. [PMID: 32218796 PMCID: PMC7078350 DOI: 10.3389/fpls.2020.00277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/21/2020] [Indexed: 05/23/2023]
Abstract
Post-translational covalent modifications of histones play important roles in modulating chromatin structure and are involved in the control of multiple developmental processes in plants. Here we provide insight into the contribution of the histone lysine methyltransferase SET DOMAIN GROUP 8 (SDG8), implicated in histone H3 lysine 36 trimethylation (H3K36me3), in connection with RNA polymerase II (RNAPII) to enhance Arabidopsis immunity. We showed that even if the sdg8-1 loss-of-function mutant, defective in H3K36 methylation, displayed a higher sensitivity to different strains of the bacterial pathogen Pseudomonas syringae, effector-triggered immunity (ETI) still operated, but less efficiently than in the wild-type (WT) plants. In sdg8-1, the level of the plant defense hormone salicylic acid (SA) was abnormally high under resting conditions and was accumulated similarly to WT at the early stage of pathogen infection but quickly dropped down at later stages. Concomitantly, the transcription of several defense-related genes along the SA signaling pathway was inefficiently induced in the mutant. Remarkably, albeit the defense genes PATHOGENESIS-RELATED1 (PR1) and PR2 have retained responsiveness to exogenous SA, their inductions fade more rapidly in sdg8-1 than in WT. At chromatin, while global levels of histone methylations were found to be stable, local increases of H3K4 and H3K36 methylations as well as RNAPII loading were observed at some defense genes following SA-treatments in WT. In sdg8-1, the H3K36me3 increase was largely attenuated and also the increases of H3K4me3 and RNAPII were frequently compromised. Lastly, we demonstrated that SDG8 could physically interact with the RNAPII C-terminal Domain, providing a possible link between RNAPII loading and H3K36me3 deposition. Collectively, our results indicate that SDG8, through its histone methyltransferase activity and its physical coupling with RNAPII, participates in the strong transcriptional induction of some defense-related genes, in particular PR1 and PR2, to potentiate sustainable immunity during plant defense response to bacterial pathogen.
Collapse
Affiliation(s)
- Xue Zhang
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Rozenn Ménard
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics & Systems Biology, New York University, New York, NY, United States
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
|
22
|
Sheerin DJ. Investigation of Light-Regulated Protein-Protein Interactions Using Yeast Two-Hybrid Assays. Methods Mol Biol 2019; 2026:1-19. [PMID: 31317399 DOI: 10.1007/978-1-4939-9612-4_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Yeast two-hybrid allows for investigation of interactions between two proteins in vivo. Yeast media can be supplemented with phycocyanobilin, allowing the formation of photoactive phytochromes, and the investigation of their light-regulated interactions. Three reporter assays are described; the histidine growth selection assay for the HIS3 reporter, and the filter lift and quantitative ONPG assays for the LacZ reporter. Design considerations for yeast two- and three-hybrid experiments are also covered.
Collapse
Affiliation(s)
- David J Sheerin
- Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Alexander RA, Lot I, Enslen H. Methods to Characterize Protein Interactions with β-Arrestin In Cellulo. Methods Mol Biol 2019; 1957:139-158. [PMID: 30919352 DOI: 10.1007/978-1-4939-9158-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
β-Arrestins 1 and 2 (β-arr1 and β-arr2) are ubiquitous proteins with common and distinct functions. They were initially identified as proteins recruited to stimulated G protein-coupled receptors (GPCRs), regulating their desensitization and internalization. The discovery that β-arrs could also interact with more than 400 non-GPCR protein partners brought to light their central roles as multifunctional scaffold proteins regulating multiple signalling pathways from the plasma membrane to the nucleus, downstream of GPCRs or independently from these receptors. Through the regulation of the activities and subcellular localization of their binding partners, β-arrs control various cell processes such as proliferation, cytoskeletal rearrangement, cell motility, and apoptosis. Thus, the identification of β-arrs binding partners and the characterization of their mode of interaction in cells are central to the understanding of their function. Here we provide methods to explore the molecular interaction of β-arrs with other proteins in cellulo.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isaure Lot
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hervé Enslen
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
24
|
Schoeters F, Munro CA, d'Enfert C, Van Dijck P. A High-Throughput Candida albicans Two-Hybrid System. mSphere 2018; 3:e00391-18. [PMID: 30135223 PMCID: PMC6106057 DOI: 10.1128/msphere.00391-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a human fungal pathogen that does not follow the universal codon usage, as it translates the CUG codon into serine rather than leucine. This makes it difficult to study protein-protein interactions using the standard yeast two-hybrid (Y2H) system in the model organism Saccharomyces cerevisiae Due to the lack of adapted tools, only a small number of protein-protein interactions (PPIs) have been detected or studied using C. albicans-optimized tools despite the importance of PPIs to understand cell biology. However, with the sequencing of the whole genome of C. albicans, the availability of an ORFeome collection containing 5,099 open reading frames (ORFs) in Gateway-adapted donor vectors, and the creation of a Gateway-compatible C. albicans-specific two-hybrid (C2H) system, it became possible to study protein-protein interactions on a larger scale using C. albicans itself as the model organism. Erroneous translations are hereby eliminated compared to using the S. cerevisiae Y2H system. Here, we describe the technical adaptations and the first application of the C2H system for a high-throughput screen, thus making it possible to screen thousands of PPIs at once in C. albicans itself. This first, small-scale high-throughput screen, using Pho85 as a bait protein against 1,646 random prey proteins, yielded one interacting partner (Pcl5). The interaction found with the high-throughput setup was further confirmed with a low-throughput C2H experiment and with a coimmunoprecipitation (co-IP) experiment.IMPORTANCECandida albicans is a major fungal pathogen, and due to the rise of fungal infections and emerging resistance to the limited antifungals available, it is important to develop novel and more specific antifungals. Protein-protein interactions (PPIs) can be applied as very specific drug targets. However, because of the aberrant codon usage of C. albicans, the traditional yeast two-hybrid system in Saccharomyces cerevisiae is difficult to use, and only a limited number of PPIs have been described in C. albicans To overcome this, a C. albicans two-hybrid (C2H) system was developed in 2010. The current work describes, for the first time, the application of the C2H system in a high-throughput setup. We hereby show the usefulness of the C2H system to investigate and detect PPIs in C. albicans, making it possible to further elucidate protein networks in C. albicans, which has the potential to lead to the development of novel antifungals which specifically disrupt PPIs important for virulence.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Carol A Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
25
|
Interplay between human nucleolar GNL1 and RPS20 is critical to modulate cell proliferation. Sci Rep 2018; 8:11421. [PMID: 30061673 PMCID: PMC6065441 DOI: 10.1038/s41598-018-29802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022] Open
Abstract
Human Guanine nucleotide binding protein like 1 (GNL1) belongs to HSR1_MMR1 subfamily of nucleolar GTPases. Here, we report for the first time that GNL1 promotes cell cycle and proliferation by inducing hyperphosphorylation of retinoblastoma protein. Using yeast two-hybrid screening, Ribosomal protein S20 (RPS20) was identified as a functional interacting partner of GNL1. Results from GST pull-down and co-immunoprecipitation assays confirmed that interaction between GNL1 and RPS20 was specific. Further, GNL1 induced cell proliferation was altered upon knockdown of RPS20 suggesting its critical role in GNL1 function. Interestingly, cell proliferation was significantly impaired upon expression of RPS20 interaction deficient GNL1 mutant suggest that GNL1 interaction with RPS20 is critical for cell growth. Finally, the inverse correlation of GNL1 and RPS20 expression in primary colon and gastric cancers with patient survival strengthen their critical importance during tumorigenesis. Collectively, our data provided evidence that cross-talk between GNL1 and RPS20 is critical to promote cell proliferation.
Collapse
|
26
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
27
|
Rawłuszko-Wieczorek AA, Knodel F, Tamas R, Dhayalan A, Jeltsch A. Identification of protein lysine methylation readers with a yeast three-hybrid approach. Epigenetics Chromatin 2018; 11:4. [PMID: 29370823 PMCID: PMC5784651 DOI: 10.1186/s13072-018-0175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein posttranslational modifications (PTMs) occur broadly in the human proteome, and their biological outcome is often mediated indirectly by reader proteins that specifically bind to modified proteins and trigger downstream effects. Particularly, many lysine methylation sites among histone and nonhistone proteins have been characterized; however, the list of readers associated with them is incomplete. RESULTS This study introduces a modified yeast three-hybrid system (Y3H) to screen for methyllysine readers. A lysine methyltransferase is expressed together with its target protein or protein domain functioning as bait, and a human cDNA library serves as prey. Proof of principle was established using H3K9me3 as a bait and known H3K9me3 readers like the chromodomains of CBX1 or MPP8 as prey. We next conducted an unbiased screen using a library composed of human-specific open reading frames. It led to the identification of already known lysine methylation-dependent readers and of novel methyllysine reader candidates, which were further confirmed by co-localization with H3K9me3 in human cell nuclei. CONCLUSIONS Our approach introduces a cost-effective method for screening reading domains binding to histone and nonhistone proteins which is not limited by expression levels of the candidate reading proteins. Identification of already known and novel H3K9me3 readers proofs the power of the Y3H assay which will allow for proteome-wide screens of PTM readers.
Collapse
Affiliation(s)
- Agnieszka Anna Rawłuszko-Wieczorek
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 St., 60-781, Poznan, Poland
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Raluca Tamas
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
28
|
Wang Y, Letham DS, John PCL, Zhang R. Using Yeast Hybrid System to Identify Proteins Binding to Small Molecules. Methods Mol Biol 2018; 1794:225-234. [PMID: 29855960 DOI: 10.1007/978-1-4939-7871-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-small molecule interaction studies provide useful insights into biological processes taking place within the living cell. A special yeast hybrid system, the yeast three-hybrid method, has been developed and used to explore proteins that bind to small molecules, by which means it may be possible to unravel biological processes and dissect function of biological systems. Here we present a protocol employing this method for identifying such binding proteins.
Collapse
Affiliation(s)
- You Wang
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - David S Letham
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Peter C L John
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ren Zhang
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
29
|
Lathouwers T, Wagemans J, Lavigne R. Identification of Protein-Protein Interactions Using Pool-Array-Based Yeast Two-Hybrid Screening. Methods Mol Biol 2018; 1794:29-48. [PMID: 29855949 DOI: 10.1007/978-1-4939-7871-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Array-based yeast two-hybrid (Y2H) screening in combination with a pooling strategy permits identification of complete interaction networks. After discussing the general advantages and drawbacks of Y2H, this chapter provides a detailed protocol for an array-based Gal4p Y2H screen using a pooling strategy to improve efficacy of the experimental work. This includes bait transformation, bait autoactivation testing, pooling of the baits and preys, yeast mating and evaluation of the results. Moreover, a one-on-one confirmation protocol and a quantitative α-galactosidase assay protocol to compare interaction strengths are provided.
Collapse
Affiliation(s)
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Li QP, Wang S, Gou JY. A split ubiquitin system to reveal topology and released peptides of membrane proteins. BMC Biotechnol 2017; 17:69. [PMID: 28865427 PMCID: PMC5581432 DOI: 10.1186/s12896-017-0391-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Membrane proteins define biological functions of membranes in cells. Extracellular peptides of transmembrane proteins receive signals from pathogens or environments, and are the major targets of drug developments. Despite of their essential roles, membrane proteins remain elusive in topological studies due to technique difficulties in their expressions and purifications. METHODS First, the target gene is cloned into a destination vector to fuse with C terminal ubiquitin at the N or C terminus. Then, Cub vector with target gene and NubWT or NubG vectors are transformed into AP4 or AP5 yeast cells, respectively. After mating, the diploid cells are dipped onto selection medium to check the growth. Topology of the target protein is determined according to Table 1. RESULTS We present a split ubiquitin topology (SUT) analysis system to study the topology and truncation peptide of membrane proteins in a simple yeast experiment. In the SUT system, transcription activator (TA) fused with a nucleo-cytoplasmic protein shows strong auto-activation with both positive and negative control vectors. TA fused with the cytoplasmic end of membrane proteins activates reporter genes only with positive control vector with a wild type N terminal ubiquitin (NubWT). However, TA fused with the extracellular termini of membrane proteins can't activate reporter genes even with NubWT. Interestingly,TA fused with the released peptide of a membrane protein shows autoactivation in the SUT system. CONCLUSION The SUT system is a simple and fast experimental procedure complementary to computational predictions and large scale proteomic techniques. The preliminary data from SUT are valuable for pathogen recognitions and new drug developments.
Collapse
Affiliation(s)
- Qiu-Ping Li
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuai Wang
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jin-Ying Gou
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
31
|
Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771. [PMID: 28725224 PMCID: PMC5495861 DOI: 10.3389/fimmu.2017.00771] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.
Collapse
Affiliation(s)
- Els Beghein
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Chen B, Lee K, Plucinak T, Duanmu D, Wang Y, Horken KM, Weeks DP, Spalding MH. A novel activation domain is essential for CIA5-mediated gene regulation in response to CO2 changes in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Gribling-Burrer AS, Leichter M, Wurth L, Huttin A, Schlotter F, Troffer-Charlier N, Cura V, Barkats M, Cavarelli J, Massenet S, Allmang C. SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Nucleic Acids Res 2017; 45:5399-5413. [PMID: 28115638 PMCID: PMC5605228 DOI: 10.1093/nar/gkx031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Selenoprotein synthesis requires the co-translational recoding of a UGASec codon. This process involves an RNA structural element, called Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2). Several selenoprotein mRNAs undergo unusual cap hypermethylation by the trimethylguanosine synthase 1 (Tgs1), which is recruited by the ubiquitous Survival of MotoNeurons (SMN) protein. SMN, the protein involved in spinal muscular atrophy, is part of a chaperone complex that collaborates with the methylosome for RNP assembly. Here, we analyze the role of individual SMN and methylosome components in selenoprotein mRNP assembly and translation. We show that SBP2 interacts directly with four proteins of the SMN complex and the methylosome core proteins. Nevertheless, SBP2 is not a methylation substrate of the methylosome. We found that both SMN and methylosome complexes are required for efficient translation of the selenoprotein GPx1 in vivo. We establish that the steady-state level of several selenoprotein mRNAs, major regulators of oxidative stress damage in neurons, is specifically reduced in the spinal cord of SMN-deficient mice and that cap hypermethylation of GPx1 mRNA is affected. Altogether we identified a new function of the SMN complex and the methylosome in selenoprotein mRNP assembly and expression.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Michael Leichter
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Laurence Wurth
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Martine Barkats
- Université Pierre et Marie Curie, UMRS 974, INSERM, FRE3617, Institut de Myologie, 75013 Paris, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Christine Allmang
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France,To whom correspondence should be addressed. Tel : +33 3 88 41 70 80; Fax : +33 3 88 60 22 18;
| |
Collapse
|
34
|
Janik K, Schlink K. Unravelling the Function of a Bacterial Effector from a Non-cultivable Plant Pathogen Using a Yeast Two-hybrid Screen. J Vis Exp 2017. [PMID: 28190069 PMCID: PMC5352286 DOI: 10.3791/55150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Unravelling the molecular mechanisms of disease manifestations is important to understand pathologies and symptom development in plant science. Bacteria have evolved different strategies to manipulate their host metabolism for their own benefit. This bacterial manipulation is often coupled with severe symptom development or the death of the affected plants. Determining the specific bacterial molecules responsible for the host manipulation has become an important field in microbiological research. After the identification of these bacterial molecules, called "effectors," it is important to elucidate their function. A straightforward approach to determine the function of an effector is to identify its proteinaceous binding partner in its natural host via a yeast two-hybrid (Y2H) screen. Normally the host harbors numerous potential binding partners that cannot be predicted sufficiently by any in silico algorithm. It is thus the best choice to perform a screen with the hypothetical effector against a whole library of expressed host proteins. It is especially challenging if the causative agent is uncultivable like phytoplasma. This protocol provides step-by-step instructions for DNA purification from a phytoplasma-infected woody host plant, the amplification of the potential effector, and the subsequent identification of the plant's molecular interaction partner with a Y2H screen. Even though Y2H screens are commonly used, there is a trend to outsource this technique to biotech companies that offer the Y2H service at a cost. This protocol provides instructions on how to perform a Y2H in any decently equipped molecular biology laboratory using standard lab techniques.
Collapse
Affiliation(s)
- Katrin Janik
- Department of Molecular Biology - Functional Genomics, Laimburg Research Centre;
| | - Katja Schlink
- Department of Molecular Biology - Functional Genomics, Laimburg Research Centre
| |
Collapse
|
35
|
Liang Y, Gao Y, Jones AM. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization. FRONTIERS IN PLANT SCIENCE 2017; 8:1015. [PMID: 28659958 PMCID: PMC5469152 DOI: 10.3389/fpls.2017.01015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/26/2017] [Indexed: 05/09/2023]
Abstract
The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Gα subunit in the heterotrimeric G protein complex. Recent evidence indicate that XLG subunits operate along with its Gβγ dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. To assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy two interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. The subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.
Collapse
Affiliation(s)
- Ying Liang
- College of Natural Resources and Environment, Northwest A&F UniversityXianyang, China
- Department of Biology University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F UniversityXianyang, China
- *Correspondence: Yajun Gao
| | - Alan M. Jones
- Department of Biology University of North Carolina at Chapel HillChapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel HillChapel Hill, NC, United States
- Alan M. Jones
| |
Collapse
|
36
|
Abstract
A tremendous asset to the analysis of protein-protein interactions is the yeast-2-hybrid (Y2H) method. The Y2H assay is a heterologous system that is expanding network biology knowledge via in vivo investigations of binary protein-protein interactions. Traditionally, the Y2H protocol entails the mating or co-transformation of yeast in solid agar media followed by visual analysis for diploid selection. Having played a key role in identifying protein-protein interactions for nearly three decades in a wide range of biological systems, the Y2H system assays the interaction between two proteins of interest which results in a reconstituted and/or activation of transcription factor allowing a reporter gene to be transcribed. Overall, the Y2H method takes advantage of two factors: (1) the auxotrophic yeast requires expression of the reporter gene to grow in media purposefully designed to lack one or more essential amino acids, and (2) the DNA-binding (DB) domain of transcription factor GAL4 is unable to initiate transcription unless it is physically associated with an activating domain (AD), which, together, DBs and ADs are fused to proteins of interest that must interact with each other to reconstitute the transcription factor and activate the reporter gene. The applications of Y2H are broad, entailing fields such as drug discovery, clinical trials for human disease including cancer and neurodegenerative disease, and extend even into synthetic biology applications and cellular engineering. This chapter begins with an introduction to the fundamental mechanics of Y2H utilizing a genetically engineered strain of yeast and proceeds with an in-depth look at the different types of Y2H and turn our focus particularly to the GAL4-based Y2H system to map protein-protein interactions. We will then provide a step-by-step protocol for the Y2H experimentation preceded by a materials listing while simultaneously including key notes throughout the entire experimental process of biological-mechanistic and historical understandings of the steps.
Collapse
|
37
|
Sharma V, Monti P, Fronza G, Inga A. Human transcription factors in yeast: the fruitful examples of P53 and NF-кB. FEMS Yeast Res 2016; 16:fow083. [PMID: 27683095 DOI: 10.1093/femsyr/fow083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2016] [Indexed: 12/31/2022] Open
Abstract
The observation that human transcription factors (TFs) can function when expressed in yeast cells has stimulated the development of various functional assays to investigate (i) the role of binding site sequences (herein referred to as response elements, REs) in transactivation specificity, (ii) the impact of polymorphic nucleotide variants on transactivation potential, (iii) the functional consequences of mutations in TFs and (iv) the impact of cofactors or small molecules. These approaches have found applications in basic as well as applied research, including the identification and the characterisation of mutant TF alleles from clinical samples. The ease of genome editing of yeast cells and the availability of regulated systems for ectopic protein expression enabled the development of quantitative reporter systems, integrated at a chosen chromosomal locus in isogenic yeast strains that differ only at the level of a specific RE targeted by a TF or for the expression of distinct TF alleles. In many cases, these assays were proven predictive of results in higher eukaryotes. The potential to work in small volume formats and the availability of yeast strains with modified chemical uptake have enhanced the scalability of these approaches. Next to well-established one-, two-, three-hybrid assays, the functional assays with non-chimeric human TFs enrich the palette of opportunities for functional characterisation. We review ∼25 years of research on human sequence-specific TFs expressed in yeast, with an emphasis on the P53 and NF-кB family of proteins, highlighting outcomes, advantages, challenges and limitations of these heterologous assays.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123, Trento, Italy
| | - Paola Monti
- U.O.C. Mutagenesi, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132, Genova, Italy
| | - Gilberto Fronza
- U.O.C. Mutagenesi, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132, Genova, Italy
| | - Alberto Inga
- Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123, Trento, Italy
| |
Collapse
|
38
|
Kumari R, Kumar S, Singh L, Hallan V. Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase. PLoS One 2016; 11:e0163320. [PMID: 27668429 PMCID: PMC5036820 DOI: 10.1371/journal.pone.0163320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/07/2016] [Indexed: 01/13/2023] Open
Abstract
Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection.
Collapse
Affiliation(s)
- Reenu Kumari
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Surender Kumar
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
| | - Lakhmir Singh
- Department of Biotechnology, DAV University, Sarmastpur, Jalandhar, 144012, Punjab, India
| | - Vipin Hallan
- Plant Virology lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- * E-mail:
| |
Collapse
|
39
|
Indriolo E, Goring DR. Yeast two-hybrid interactions between Arabidopsis lyrata S Receptor Kinase and the ARC1 E3 ligase. PLANT SIGNALING & BEHAVIOR 2016; 11:e1188233. [PMID: 27175603 PMCID: PMC4973788 DOI: 10.1080/15592324.2016.1188233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Here we describe protein-protein interactions between signaling components in the conserved self-incompatibility pathway from Brassica spp. and Arabidopsis lyrata. Previously, we had demonstrated that ARC1 is necessary in A. lyrata for the rejection of self-pollen by the self-incompatibility pathway. The results described here demonstrate that A. lyrata ARC1 interacts with A. lyrata S Receptor Kinase (SRK1) in the yeast 2-hybrid system. A. lyrata ARC1 also interacted with B. napus SRK910 illustrating that interactions in this pathway are conserved across species. Finally, we discuss how the more widely occurring interactions between SRK and ARC1-related family members may be modulated in vivo by expression and subcellular localization patterns resulting in a particular response.
Collapse
Affiliation(s)
- Emily Indriolo
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- CONTACT Emily Indriolo ; Daphne Goring
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
- CONTACT Emily Indriolo ; Daphne Goring
| |
Collapse
|
40
|
Matthijs M, Fabris M, Broos S, Vyverman W, Goossens A. Profiling of the Early Nitrogen Stress Response in the Diatom Phaeodactylum tricornutum Reveals a Novel Family of RING-Domain Transcription Factors. PLANT PHYSIOLOGY 2016; 170:489-98. [PMID: 26582725 PMCID: PMC4704581 DOI: 10.1104/pp.15.01300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 05/24/2023]
Abstract
Diatoms often inhabit highly variable habitats where they are confronted with a wide variety of stresses, frequently including starvation of nutrients such as nitrogen. In this study, the transcriptome of the model diatom Phaeodactylum tricornutum was profiled during the onset of nitrogen starvation by RNA sequencing, and overrepresented motifs were determined in promoters of genes that were early and strongly up-regulated during the nitrogen stress response. One of these motifs could be bound by a nitrogen starvation-inducible RING-domain protein termed RING-GAF-Gln-containing protein (RGQ1), which was shown to act as a transcription factor and belongs to a previously uncharacterized family that is conserved in heterokont algae.
Collapse
Affiliation(s)
- Michiel Matthijs
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Michele Fabris
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Stefan Broos
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Wim Vyverman
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Alain Goossens
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| |
Collapse
|
41
|
Liu R, Chan DC. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol Biol Cell 2015; 26:4466-77. [PMID: 26446846 PMCID: PMC4666140 DOI: 10.1091/mbc.e15-08-0591] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/30/2015] [Indexed: 11/11/2022] Open
Abstract
The GTPase Drp1 is recruited to mitochondria by outer membrane receptors to drive mitochondrial fission. The receptor Mff selectively binds to oligomerized Drp1, in contrast to the alternative receptors MiD51 and MiD49. These results show that Drp1 receptors recruit different subpopulations of Drp1 and may explain their distinct biological effects. Dynamin-related protein 1 (Drp1) is the GTP-hydrolyzing mechanoenzyme that catalyzes mitochondrial fission in the cell. Residing in the cytosol as dimers and tetramers, Drp1 is recruited by receptors on the mitochondrial outer membrane, where it further assembles into a helical ring that drives division via GTP-dependent constriction. The Drp1 receptor Mff is a major regulator of mitochondrial fission, and its overexpression results in increased fission. In contrast, the alternative Drp1 receptors MiD51 and MiD49 appear to recruit inactive forms of Drp1, because their overexpression inhibits fission. Using genetic and biochemical assays, we studied the interaction of Drp1 with Mff. We show that the insert B region of Drp1 inhibits Mff–Drp1 interactions, such that recombinant Drp1 mutants lacking insert B form a stable complex with Mff. Mff cannot bind to assembly-deficient mutants of Drp1, suggesting that Mff selectively interacts with higher-order complexes of Drp1. In contrast, the alternative Drp1 receptors MiD51 and MiD49 can recruit Drp1 dimers. Therefore Drp1 recruitment by Mff versus MiD51 and MiD49 may result in different outcomes because they recruit different subpopulations of Drp1 from the cytosol.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
42
|
Iwasaki O, Tanizawa H, Kim KD, Yokoyama Y, Corcoran CJ, Tanaka A, Skordalakes E, Showe LC, Noma KI. Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes. Mol Cell 2015; 59:755-67. [PMID: 26257282 DOI: 10.1016/j.molcel.2015.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/16/2015] [Accepted: 07/01/2015] [Indexed: 10/25/2022]
Abstract
Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.
Collapse
|
43
|
Improved split-ubiquitin screening technique to identify surface membrane protein-protein interactions. Biotechniques 2015; 59:63-73. [PMID: 26260084 DOI: 10.2144/000114315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 11/23/2022] Open
Abstract
Yeast-based methods are still the workhorse for the detection of protein-protein interactions (PPIs) in vivo. Yeast two-hybrid (Y2H) systems, however, are limited to screening for a specific group of molecules that interact in a particular cell compartment. For this reason, the split-ubiquitin system (SUS) was developed to allow screening of cDNA libraries of full-length membrane proteins for protein-protein interactions in Saccharomyces cerevisiae. Here we demonstrate that a modification of the widely used membrane SUS involving the transmembrane (TM) domain of the yeast receptor Wsc1 increases the stringency of screening and improves the selectivity for proteins localized in the plasma membrane (PM).
Collapse
|
44
|
Lun AS, Chen J, Lange S. Probing muscle ankyrin-repeat protein (MARP) structure and function. Anat Rec (Hoboken) 2015; 297:1615-29. [PMID: 25125175 DOI: 10.1002/ar.22968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Muscle ankyrin-repeat proteins (MARPs) have been shown to serve diverse functions within cardiac and skeletal muscle cells. Apart from their interactions with sarcomeric proteins like titin or myopalladin that locate them along myofilaments, MARPs are able to shuttle to the nucleus where they act as modulators for a variety of transcription factors. The deregulation of MARPs in many cardiac and skeletal myopathies contributes to their use as biomarkers for these diseases. Many of their functions are attributed to their domain composition. MARPs consist of an N-terminal coiled-coil domain responsible for their dimerization. The C-terminus contains a series of ankyrin repeats, whose best-characterized function is to bind to the N2A region of the giant sarcomeric protein titin. Here we investigate the nature of their dimerization and their interaction with titin more closely. We demonstrate that the coiled-coil domain in all MARPs enables their homo- and hetero-dimerization in antiparallel fashion. Protein complementation experiments indicate further antiparallel binding of the ankyrin repeats to titin's N2A region. Binding of MARP to titin also affects its PKA mediated phosphorylation. We demonstrate further that MARPs themselves are phosphorylated by PKA and PKC, potentially altering their structure or function. These studies elucidate structural relationships within the stretch-responsive MARP/titin complex in cross-striated muscle cells, and may relate to disease relevant posttranslational modifications of MARPs and titin that alter muscle compliance.
Collapse
|
45
|
Roque S, Cerciat M, Gaugué I, Mora L, Floch AG, de Zamaroczy M, Heurgué-Hamard V, Kervestin S. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2015; 21:124-134. [PMID: 25411355 PMCID: PMC4274632 DOI: 10.1261/rna.047282.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination.
Collapse
Affiliation(s)
- Sylvain Roque
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Marie Cerciat
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Isabelle Gaugué
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Liliana Mora
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Aurélie G Floch
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Miklos de Zamaroczy
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Stephanie Kervestin
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France Metabolism and function of RNA in the nucleus, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
46
|
Bundalovic-Torma C, Parkinson J. Comparative Genomics and Evolutionary Modularity of Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:77-96. [PMID: 26621462 DOI: 10.1007/978-3-319-23603-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The soaring number of high-quality genomic sequences has ushered in the era of post-genomic research where our understanding of organisms has dramatically shifted towards defining the function of genes within their larger biological contexts. As a result, novel high-throughput experimental technologies are being increasingly employed to uncover physical and functional associations of genes and proteins in complex biological processes. Through the construction and analysis of physical, genetic and metabolic networks generated for the model organisms, such as Escherichia coli, organizational principles of the genome have been deduced, such as modularity, which has important implications toward understanding prokaryotic evolution and adaptation to novel lifestyles.
Collapse
Affiliation(s)
- Cedoljub Bundalovic-Torma
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 21-9830, Toronto, ON, Canada, M5G 0A4.
| | - John Parkinson
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 20-9709, Toronto, ON, Canada, M5G 0A4.
| |
Collapse
|
47
|
Jefferies R, Yang R, Woh CK, Weldt T, Milech N, Estcourt A, Armstrong T, Hopkins R, Watt P, Reid S, Armson A, Ryan UM. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides. Exp Parasitol 2014; 148:40-8. [PMID: 25447124 DOI: 10.1016/j.exppara.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/07/2014] [Indexed: 01/03/2023]
Abstract
Cryptosporidiosis, a gastroenteric disease characterised mainly by diarrheal illnesses in humans and mammals is caused by infection with the protozoan parasite Cryptosporidium. Treatment options for cryptosporidiosis are limited, with the current therapeutic nitazoxanide, only partly efficacious in immunocompetent individuals. The parasite lacks de novo purine synthesis, and is exclusively dependant on purine salvage from its host. Inhibition of the inosine 5' monophosphate dehydrogenase (IMPDH), a purine salvage enzyme that is essential for DNA synthesis, thereby offers a potential drug target against this parasite. In the present study, a yeast-two-hybrid system was used to identify Phylomer peptides within a library constructed from the genomes of 25 phylogenetically diverse bacteria that targeted the IMPDH of Cryptosporidium parvum (IMPcp) and Cryptosporidium hominis (IMPch). We identified 38 unique interacting Phylomers, of which, 12 were synthesised and screened against C. parvum in vitro. Two Phylomers exhibited significant growth inhibition (81.2-83.8% inhibition; P < 0.05), one of which consistently exhibited positive interactions with IMPcp and IMPch during primary and recapitulation yeast two-hybrid screening and did not interact with either of the human IMPDH proteins. The present study highlightsthe potential of Phylomer peptides as target validation tools for Cryptosporidium and other organisms and diseases because of their ability to bind with high affinity to target proteins and disrupt function.
Collapse
Affiliation(s)
- R Jefferies
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - R Yang
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - C K Woh
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - T Weldt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - N Milech
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - A Estcourt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - T Armstrong
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - R Hopkins
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - P Watt
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - S Reid
- School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - A Armson
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - U M Ryan
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia.
| |
Collapse
|
48
|
Lei D, Lin R, Yin C, Li P, Zheng A. Global protein-protein interaction network of rice sheath blight pathogen. J Proteome Res 2014; 13:3277-93. [PMID: 24894516 DOI: 10.1021/pr500069r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhizoctonia solani is the major pathogenic fungi of rice sheath blight. It is responsible for the most serious disease of rice (Oryza sativa L.) and causes significant yield losses in rice-growing countries. Identifying the protein-protein interaction (PPI) maps of R. solani can provide insights into the potential pathogenic mechanisms and assign putative functions to unknown genes. Here, we exploited a PPI map of R. solani anastomosis group 1 IA (AG-1 IA) based on the interolog and domain-domain interaction methods. We constructed a core subset of high-confidence protein networks consisting of 6705 interactions among 1773 proteins. The high quality of the network was revealed by comprehensive methods, including yeast two-hybrid experiments. Pathogenic interaction subnetwork, secreted proteins subnetwork, and mitogen-activated protein kinase (MAPK) cascade subnetwork and their interacting partners were constructed and analyzed. Moreover, to exactly predict the pathogenic factors, the expression levels of the interaction proteins were investigated by analyzing RNA sequences that consisted of samples from the entire infection progress. The PPIs offer an exceptionally rich source of data that can be used to understand the gene functions and biological processes of this serious disease at the system level.
Collapse
Affiliation(s)
- Ding Lei
- Rice Research Institute of Sichuan Agricultural University , Chengdu 611130, China
| | | | | | | | | |
Collapse
|
49
|
Donnard E, Queiroz EM, Ortega JM, Gietz RD. Yeast two-hybrid liquid screening. Methods Mol Biol 2014; 1163:97-107. [PMID: 24841301 DOI: 10.1007/978-1-4939-0799-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Yeast two-hybrid (YTH) method consists of a genetic trap that selects for "prey" cDNA products within a library that interact with a "bait" protein of interest. Here, we provide a protocol for YTH screening using a liquid medium screening method, which improves the sensitivity of this technique and streamlines the laborious classic screening in solid medium plates. The method uses a simple series of dilutions with established yeast strains transformed with diverse baits and complex cDNA libraries. This allows for prompt detection of positive clones revealed by liquid growth, due to activation of HIS3 reporter gene. Activation of a second reporter gene and reconstruction of the YTH interaction is highly reproducible using this system. This approach can either be performed using culture flasks or deep-well 96-well plates and the number of interactions obtained is similar, when compared to the classic method. In addition, the liquid screening method is faster and more economical for YTH screening and has the added benefit of automation if 96-well plates are used.
Collapse
Affiliation(s)
- Elisa Donnard
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | |
Collapse
|
50
|
Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. PLANT MOLECULAR BIOLOGY 2013; 83:287-301. [PMID: 23794143 DOI: 10.1007/s11103-013-0094-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 06/15/2013] [Indexed: 05/25/2023]
Abstract
One basic property of proteins is their ability to specifically target and form non-covalent complexes with other proteins. Such protein-protein interactions play key roles in all biological processes, extending from the formation of cellular macromolecular structures and enzymatic complexes to the regulation of signal transduction pathways. Identifying and characterizing protein interactions and entire interaction networks (interactomes) is therefore prerequisite to understand these processes on a molecular and biophysical level. Since its original description in 1989, the yeast two-hybrid system has been extensively used to identify protein-protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. In these years the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches. Several groups studying molecular mechanisms that underlie plant cell signal transduction pathways have successfully used the yeast two-hybrid system or related methods. In this review we provide a brief description of the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas, within the plant cell signalling field, where hybrid-based interaction assays have been particularly informative.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Fiorentina, 1, 53100, Siena, Italy,
| | | |
Collapse
|