1
|
Cai Y, Yang S, Zhao J, Zheng G, Han Y, Zhang Y, Qin Y, Yang C, Xiong Q, Chu X, Ju C, Yin H, Shi Y, Jiang F, Yong H, Zhu Y. Mechanism Exploration of Dietary Supplement Astaxanthin on Improving Atherosclerosis through an Integrated Strategy Encompassing Artificial Intelligence Virtual Screening and Experimental Validation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11265-11287. [PMID: 40265257 DOI: 10.1021/acs.jafc.4c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Atherosclerosis (AS) is a major and common pathological basis of ischemic intestinal infarction, myocardial infarction, stroke, renal failure, and other highly lethal and disabling diseases. Current pharmacological interventions (e.g., statins) often cause adverse effects, limiting their long-term use. Natural compounds, with their multitarget efficacy and superior safety profiles, have emerged as promising alternatives for AS treatment. As a potent antioxidant carotenoid, astaxanthin exhibits unique therapeutic potential by simultaneously targeting inflammation, oxidative stress, and lipid metabolism, which are key drivers of AS pathogenesis. This study will systematically decipher astaxanthin's therapeutic mechanisms through an integrative strategy encompassing artificial intelligence virtual screening and experimental validation. Notably, five proteins, including CTSD, DPP4, FABP5, ITGAL, and MMP9, were identified as core targets for astaxanthin intervention in AS via network pharmacology and machine learning. Meanwhile, the results from molecular dynamic simulations confirmed that these core targets can stable binding with astaxanthin. Furthermore, in vitro experiments further validated astaxanthin can inhibit foam cell formation, restore redox balance, and suppress inflammation. Moreover, a close correlation has been found between them. These findings position astaxanthin as a multitarget natural agent to combat AS, addressing both efficacy advantage and safety concerns of current therapies.
Collapse
Affiliation(s)
- Yisa Cai
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Shiyan Yang
- Department of Internal Medicine, Huaian Hospital Affiliated to Xuzhou Medical University, Huai'an 223002, Jiangsu, P. R. China
| | - Jiajiang Zhao
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Yun Han
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, Shandong, P. R. China
| | - Yuhan Zhang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Yiyuan Qin
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Chao Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Xinyi Chu
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Chunhan Ju
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Huixia Yin
- Yunnan Hongqingfu Biotechnology Co., LTD., Kunming 650000, Yunnan, P. R. China
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences (Xinhua Hospital Chongming Branch), Shanghai 202155, P. R. China
| | - Hui Yong
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an 223000, Jiangsu, P. R. China
| | - Yong Zhu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China
| |
Collapse
|
2
|
Zerin F, Hoque N, Menon SN, Ezewudo E, Simon NP, Sooreni S, Shahid MS, Jones M, Pandey A, Gökçe Y, Rahman T, Hasan R. Nanomolar therapeutic concentrations of statins rapidly induce cerebral artery vasoconstriction by stimulating L-type calcium channels. Biochem Pharmacol 2025:116970. [PMID: 40320051 DOI: 10.1016/j.bcp.2025.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
All commonly prescribed statins have been reported to cause reversible memory loss within weeks of therapy, though the exact molecular mechanism remains unknown. However, whether therapeutic concentrations of statins can directly regulate the contractility of resistance cerebral arteries that control cerebrovascular perfusion remains unexplored. Here, we examined the acute vascular effects of statins on rat cerebral arteries and the underlying molecular mechanisms. Our pressure myography data demonstrate that, at therapeutically-relevant nanomolar concentrations, statins produced a robust and rapid vasoconstriction, appearing within 2-3 min of drug application. Interestingly, such vasoconstriction was largely absent in female rat cerebral arteries. Endothelial denudation or mevalonate supplementation did not alter statin-induced vasoconstriction, suggesting an endothelium- and cholesterol-independent mechanism. In contrast, such vasoconstriction was abolished upon removal of extracellular Ca2+, pharmacological blockade of the smooth muscle cell voltage-gated Ca2+ channel, CaV1.2, or siRNA knockdown of CaV1.2 - all of which reduced [Ca2+]i, indicating that Ca2+ entry through CaV1.2 plays a critical role in cerebral artery vasoconstriction. Arterial biotinylation revealed that acute statin exposure did not alter the surface expression, distribution, or function of CaV1.2 channels. Altogether, our data unveil an unexpected role of statins in rapidly inducing constriction of resistance cerebral arteries by directly stimulating CaV1.2 in smooth muscle cells. These findings offer a plausible explanation for statin-associated reversible memory impairment, its mitigation by calcium channel blockers, and why such effects may not be observed in all subjects, particularly those concurrently taking antihypertensive agents.
Collapse
Affiliation(s)
- Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Nazia Hoque
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA; Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Sreelakshmi N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Emmanuella Ezewudo
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Nimi P Simon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Samira Sooreni
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mashmum S Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Morgan Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Ajay Pandey
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Yasin Gökçe
- Department of Biophysics, School of Medicine, Harran University, Sanlıurfa 63300, Turkey
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, UK
| | - Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
3
|
da Silva Pereira ENG, Franco RLC, Santos RDCD, Daliry A. Statins and non-alcoholic fatty liver disease: A concise review. Biomed Pharmacother 2025; 183:117805. [PMID: 39755024 DOI: 10.1016/j.biopha.2024.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging. As there is no specific treatment, drug repositioning is being researched as an alternative strategy. Statins, which are known for their cholesterol-lowering effects, are considered potential interventions for NAFLD. This review aimed to present the current understanding of the effects of statins on liver physiology in the context of NAFLD. The pathophysiology of NAFLD includes steatosis, inflammation, and fibrosis, which are exacerbated by dyslipidemia and insulin resistance. Statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, have pleiotropic effects beyond cholesterol-lowering and affect pathways related to inflammation, fibrogenesis, oxidative stress, and microcirculation. Although clinical guidelines support the use of statins for dyslipidemia in patients with NAFLD, more studies are needed to demonstrate their efficacy in liver disease. This comprehensive review serves as a foundation for future studies on the therapeutic potential of statins in NAFLD.
Collapse
Affiliation(s)
| | - Rafaela Luiza Costa Franco
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rafaele Dantas Cruz Dos Santos
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Huang J, Liu C, Jiao S, Chen Y, Xu L, Gong T, Zhu C, Song Y. Application of high-resolution MRI in evaluating statin efficacy on symptomatic intracranial atherosclerosis. Eur Radiol 2025; 35:441-452. [PMID: 39030372 DOI: 10.1007/s00330-024-10968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVES To investigate the efficacy of statins on symptomatic intracranial atherosclerotic plaques using high-resolution 3.0 T MR vessel wall imaging (HR-MRI). METHODS Patients with symptomatic intracranial atherosclerotic plaques (cerebral ischemic events within the last three months) confirmed by HR-MRI from July 2017 to August 2022 were retrospectively included in this study. The enrolled patients started statin therapy at baseline. All the patients underwent the follow-up HR-MRI examination after statin therapy for at least 3 months. A paired sample t-test and Wilcoxon rank sum test were used to evaluate the changes in plaque characteristics after statin therapy. Multivariate linear regression was further used to investigate the clinical factors associated with statin efficacy. RESULTS A total of 48 patients (37 males; overall mean age = 60.2 ± 11.7 years) were included in this study. The follow-up time was 7.0 (5.6-12.0) months. In patients treated with statins for > 6 months (n = 31), plaque length, wall thickness, plaque burden, luminal stenosis and plaque enhancement were significantly reduced. Similar results were found in patients with good lipid control (n = 21). Younger age, lower BMI and hypertension were associated with decreased plaque burden. Lower BMI, hypertension and longer duration of statin therapy were associated with decreased plaque enhancement. Younger age and hypertension were associated with decreased luminal stenosis (all p < 0.05). CONCLUSION HR-MRI can effectively evaluate plaques changes after statin therapy. Statins can reduce plaque burden and stabilize plaques. The effect of statin may have a relationship with age, BMI, hypertension, and duration of statin therapy. CLINICAL RELEVANCE STATEMENT High-resolution MRI can be applied to evaluate the efficacy of statins on symptomatic intracranial atherosclerotic plaques. Long-term statin use and well-controlled blood lipid levels can help reduce plaque burden and stabilize plaques. KEY POINTS High-resolution MRI provides great help evaluating the changes of plaque characteristics after statin therapy. Efficacy of statins is associated with duration of use, controlled lipid levels, and clinical factors. High-resolution MRI can serve as an effective method for following-up symptomatic intracranial atherosclerosis.
Collapse
Affiliation(s)
- Juan Huang
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Sheng Jiao
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Xu
- Department of Neurology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Yan Song
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Drygała S, Radzikowski M, Maciejczyk M. β-blockers and metabolic modulation: unraveling the complex interplay with glucose metabolism, inflammation and oxidative stress. Front Pharmacol 2024; 15:1489657. [PMID: 39759452 PMCID: PMC11695285 DOI: 10.3389/fphar.2024.1489657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
The growing burden of metabolic disorders manifested by hypertension, type 2 diabetes mellitus, hyperlipidemia, obesity and non-alcoholic fatty liver disease presents a significant global health challenge by contributing to cardiovascular diseases and high mortality rates. Β-blockers are among the most widely used drugs in the treatment of hypertension and acute cardiovascular events. In addition to blocking the receptor sites for catecholamines, third-generation β-blockers with associated vasodilating properties, such as carvedilol and nebivolol, provide a broad spectrum of metabolic effects, including anti-inflammatory and antioxidant properties and a favorable impact on glucose and lipid metabolism. This review aims to report the impact of β-blockers on metabolic modulation based on available literature data. We present an overview of β-blockers and their pleiotropic properties, discuss mechanisms by which these drugs affect cellular metabolism and outline the future perspectives. The influence of β-blockers on glucose metabolism, insulin sensitivity, inflammation and oxidative stress is complex and varies depending on the specific β-blocker used, patient population and underlying health conditions. Recent evidence particularly highlights the potential role of vasodilatory and nitric oxide-mediated properties of nebivolol and carvedilol in improving glycemic control, insulin sensitivity, and lipid metabolism and mitigating oxidative stress and inflammation. It suggests that these drugs may be potential therapeutic options for patients with metabolic disorders, extending beyond their primary role in cardiovascular management.
Collapse
Affiliation(s)
- Szymon Drygała
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Michał Radzikowski
- Biochemistry of Civilisation Diseases’ Students’ Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Bredefeld CL, Choi P, Cullen T, Nicolich-Henkin SJ, Waters L. Statin Use and Hyperglycemia: Do Statins Cause Diabetes? Curr Atheroscler Rep 2024; 27:18. [PMID: 39699704 DOI: 10.1007/s11883-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) and diabetes are leading causes of morbidity and mortality in the United States and globally. Statin medications, a cornerstone of ASCVD prevention and treatment strategies, have been demonstrated to cause hyperglycemia and new onset diabetes mellitus (NODM). The purpose of this review is to summarize existing and emerging knowledge around the intersection of statins and these two important clinical problems. RECENT FINDINGS Since initial reporting of statin-induced hyperglycemia and NODM, the totality of available data corroborates an association between incident diabetes and statin use. A consensus that high-intensity statin and individuals with obesity or glycemic parameters approximating diabetes thresholds constitute the majority of risk exists. Alterations in insulin signaling, glucose transport and gastrointestinal microbiota are leading hypotheses underlying the mechanisms of statin-induced hyperglycemia. The probability of NODM based on an individual's risk factors and statin specific properties can be anticipated. This risk needs to be contextualized with the risk of ASCVD. In order to effectively adjudicate the risk of NODM, improvement in formulating and ultimately conveying a comprehensive ASCVD risk assessment to patients is necessary.
Collapse
Affiliation(s)
- Cindy L Bredefeld
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA.
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, 11501, USA.
| | - Paula Choi
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Tiffany Cullen
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Sophie J Nicolich-Henkin
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Lauren Waters
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| |
Collapse
|
7
|
Bhasin V, Vakilpour A, Scherrer-Crosbie M. Statins for the Primary Prevention of Anthracycline Cardiotoxicity: A Comprehensive Review. Curr Oncol Rep 2024; 26:1197-1204. [PMID: 39002055 PMCID: PMC11480194 DOI: 10.1007/s11912-024-01579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is two-fold: (1) To examine the mechanisms by which statins may protect from anthracycline-induced cardiotoxicity and (2) To provide a comprehensive overview of the existing clinical literature investigating the role of statins for the primary prevention of anthracycline-induced cardiotoxicity. RECENT FINDINGS The underlying cardioprotective mechanisms associated with statins have not been fully elucidated. Key mechanisms related to the inhibition of Ras homologous (Rho) GTPases have been proposed. Data from observational studies has supported the beneficial role of statins for the primary prevention of anthracycline-induced cardiotoxicity. Recently, several randomized controlled trials investigating the role of statins for the primary prevention of anthracycline-induced cardiotoxicity have produced contrasting results. Statins have been associated with a lower risk of cardiac dysfunction in cancer patients receiving anthracyclines. Further investigation with larger randomized control trials and longer follow-up periods are needed to better evaluate the long-term role of statin therapy and identify the subgroups who benefit most from statin therapy.
Collapse
Affiliation(s)
- Varun Bhasin
- Division of Cardiovascular Medicine and Thalheimer Center for Cardio-Oncology, Perelman Center for Advanced Medicine and Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, USA
| | - Azin Vakilpour
- Division of Cardiovascular Medicine and Thalheimer Center for Cardio-Oncology, Perelman Center for Advanced Medicine and Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Medicine and Thalheimer Center for Cardio-Oncology, Perelman Center for Advanced Medicine and Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Jiang R, Lou L, Shi W, Chen Y, Fu Z, Liu S, Sok T, Li Z, Zhang X, Yang J. Statins in Mitigating Anticancer Treatment-Related Cardiovascular Disease. Int J Mol Sci 2024; 25:10177. [PMID: 39337662 PMCID: PMC11432657 DOI: 10.3390/ijms251810177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Certain anticancer therapies inevitably increase the risk of cardiovascular events, now the second leading cause of death among cancer patients. This underscores the critical need for developing effective drugs or regimens for cardiovascular protection. Statins possess properties such as antioxidative stress, anti-inflammatory effects, antifibrotic activity, endothelial protection, and immune modulation. These pathological processes are central to the cardiotoxicity associated with anticancer treatment. There is prospective clinical evidence confirming the protective role of statins in chemotherapy-induced cardiotoxicity. Numerous preclinical studies have demonstrated that statins can ameliorate heart and endothelial damage caused by radiotherapy, although clinical studies are scarce. In the animal models of trastuzumab-induced cardiomyopathy, statins provide protection through anti-inflammatory, antioxidant, and antifibrotic mechanisms. In animal and cell models, statins can mitigate inflammation, endothelial damage, and cardiac injury induced by immune checkpoint inhibitors. Chimeric antigen receptor (CAR)-T cell therapy-induced cardiotoxicity and immune effector cell-associated neurotoxicity syndrome are associated with uncontrolled inflammation and immune activation. Due to their anti-inflammatory and immunomodulatory effects, statins have been used to manage CAR-T cell therapy-induced immune effector cell-associated neurotoxicity syndrome in a clinical trial. However, direct evidence proving that statins can mitigate CAR-T cell therapy-induced cardiotoxicity is still lacking. This review summarizes the possible mechanisms of anticancer therapy-induced cardiotoxicity and the potential mechanisms by which statins may reduce related cardiac damage. We also discuss the current status of research on the protective effect of statins in anticancer treatment-related cardiovascular disease and provide directions for future research. Additionally, we propose further studies on using statins for the prevention of cardiovascular disease in anticancer treatment.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wen Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaoming Fu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuo Liu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Thida Sok
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihang Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
9
|
Taherkhani M, Khanifar Z, Taherkhani A, Hajishah H, Tavasol A. Assessing the effect of high-dose rosuvastatin in elderly patients over 75 with acute coronary syndrome. BMC Cardiovasc Disord 2024; 24:474. [PMID: 39243009 PMCID: PMC11378640 DOI: 10.1186/s12872-024-04142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUNDS AND OBJECTIVE Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, are pivotal in managing hypercholesterolemia and reducing cardiovascular risk. While rosuvastatin demonstrates superior efficacy and tolerability compared to other statins, its safety profile in elderly patients older than 75 years old with acute coronary syndrome (ACS) remains underexplored. So, the objective of this study is to evaluate the frequency of adverse reactions and investigate the efficacy of high-dose rosuvastatin on lipid profiles in elderly patients aged over 75 with ACS. METHODS In this observational study, 110 consecutive elderly ACS patients attending Modarres Hospital in Tehran, Iran, in 2019 were enrolled. The effects of high-dose rosuvastatin were assessed in elderly patients older than 75 years old by comparison of the adverse effects, lipid profile, cardiac function, and other biomarkers at the baseline and after 6 weeks of rosuvastatin therapy with a dose of 40 mg. RESULTS Following 6 weeks of treatment, there was a significant reduction in total cholesterol (136.2 ± 24.3 to 115.5 ± 24.0, p = 0.001) and LDL levels (72.6 ± 17.5 to 50.9 ± 18.9, p = 0.001), accompanied by a notable increase in HDL levels (38.3 ± 7.1 to 47.2 ± 7.4, p = 0.001). Cardiac function, as measured by ejection fraction (EF), significantly improved from 43.4 ± 8.8 to 48.5 ± 8.5 (p = 0.001). Adverse effects such as cramps (N = 12, p = 0.001), weakness (N = 28, p = 0.001), and anorexia (N = 12, p = 0.001) were reported but did not warrant discontinuation of therapy. Notably, no cases of jaundice were observed. Two deaths occurred due to major adverse cardiac events (MACE) during the study period, unrelated to stroke or recurrent myocardial infarction. CONCLUSION Totally, high-dose rosuvastatin therapy effectively improved lipid profiles, cardiac function, and liver enzyme levels in elderly ACS patients, with manageable adverse effects. These findings underscore the importance of rosuvastatin in optimizing cardiovascular health in this vulnerable population.
Collapse
Affiliation(s)
- Maryam Taherkhani
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Khanifar
- Department of Cardiology, Ahvaz Jundishapur University of Medical Sciences, Shoush, Iran
| | - Adineh Taherkhani
- Department of Gastroenterology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hajishah
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gou Y, Cai S, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Atorvastatin improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism. Life Sci 2024; 351:122790. [PMID: 38852795 DOI: 10.1016/j.lfs.2024.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Atorvastatin is a commonly used cholesterol-lowering drug that possesses non-canonical anti-inflammatory properties. However, the precise mechanism underlying its anti-inflammatory effects remains unclear. MATERIALS AND METHODS The acute phase of ulcerative colitis (UC) was induced using a 5 % dextran sulfate sodium (DSS) solution for 7 consecutive days and administrated with atorvastatin (10 mg/kg) from day 3 to day 7. mRNA-seq, histological pathology, and inflammatory response were determined. Intestinal microbiota alteration, tryptophan, and its metabolites were analyzed through 16S rRNA sequencing and untargeted metabolomics. KEY FINDINGS Atorvastatin relieved the DSS-induced UC in mice, as evidenced by colon length, body weight, disease activity index score and pathological staining. Atorvastatin treatment reduced the level of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Atorvastatin also relieved the intestinal microbiota disorder caused by UC and decreased the proliferation of pernicious microbiota such as Akkermansia and Bacteroides. Atorvastatin dramatically altered tryptophan metabolism and increased the fecal contents of tryptophan, indolelactic acid (ILA), and indole-3-acetic acid (IAA). Furthermore, atorvastatin enhanced the expression level of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) and further promoted the expression level of intestinal tight junction proteins, such as ZO-1 and occludin, in colitis mice. SIGNIFICANCE These findings indicated that atorvastatin could alleviate UC by regulating intestinal flora disorders, promoting microbial tryptophan metabolism, and repairing the intestinal barrier.
Collapse
Affiliation(s)
- Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
11
|
Karwa V, Wanjari A, Kumar S, Dhondge RH, Patil R, Kothari M. Optimizing Cardiovascular Health: A Comprehensive Review of Risk Assessment Strategies for Primary Prevention. Cureus 2024; 16:e66341. [PMID: 39246950 PMCID: PMC11379425 DOI: 10.7759/cureus.66341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Cardiovascular disease (CVD) is a leading global health concern, and effective primary prevention strategies are essential to mitigate its impact. This comprehensive review examines current risk assessment strategies for primary prevention of CVD, emphasizing the importance of early identification and intervention to reduce disease incidence. Traditional risk factors such as hypertension, hyperlipidemia, smoking, and lifestyle choices are discussed alongside emerging factors, including genetic predispositions and biomarkers. The review evaluates various risk assessment tools and models, such as the Framingham risk score, atherosclerotic CVD risk calculator, QRISK, and Reynolds risk score, highlighting their methodologies, strengths, and limitations. Additionally, the review explores lifestyle modifications, including dietary changes, physical activity, weight management, smoking cessation, and pharmacological interventions like statins and antihypertensives. Special considerations for different populations, including the elderly, women, and those with a family history of CVD, are addressed. Future directions in cardiovascular risk assessment are also discussed, focusing on technological advancements and personalized medicine. This review aims to enhance the implementation of effective primary prevention measures and improve cardiovascular health outcomes by providing a thorough analysis of risk assessment strategies.
Collapse
Affiliation(s)
- Vineet Karwa
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rushikesh H Dhondge
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajvardhan Patil
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manjeet Kothari
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Zheng M, Liu Z, He Y. Radiation-induced fibrosis: Mechanisms and therapeutic strategies from an immune microenvironment perspective. Immunology 2024; 172:533-546. [PMID: 38561001 DOI: 10.1111/imm.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Akbar MIA, Azis MA, Riu DS, Wawengkang E, Ernawati E, Bachnas MA, Sulistyowati S, Dachlan EG, Mose JC, Dekker G. INOVASIA Study: A Multicenter Randomized Clinical Trial of Pravastatin to Prevent Preeclampsia in High-Risk Patients. Am J Perinatol 2024; 41:1203-1211. [PMID: 35292944 DOI: 10.1055/a-1798-1925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Our objective was to determine if treatment with pravastatin prevents preeclampsia in pregnant patients at risk of preeclampsia. MATERIALS AND METHODS The study was performed in four major tertiary hospitals in Surabaya, Bandung, and Makassar between 2017 and 2021. Pregnant women at high risk of developing preeclampsia were recruited and randomized into an intervention group and control group. The control group received low-dose aspirin (80 mg) and calcium (1 g) daily, while the intervention group received additional pravastatin (20 mg twice daily) starting from 14 to 20 weeks' gestation until delivery. The pregnancy was followed until delivery, and the clinical data were collected. The primary outcome was the occurrence of preeclampsia. RESULT A total of 173 people participated in this study, including 86 in the control group and 87 in the pravastatin group. The pravastatin group had a significantly lower rate of preterm preeclampsia (13.8 vs. 26.7%; p = 0.034; odds ratio [OR] = 0.034, 95% confidence interval [CI] = 0.202-0.905) and preterm birth (16.1 vs. 36%; p = 0.003; OR = 0.340, 95% CI = 0.165-0.7), mostly indicated preterm birth. Preeclampsia occurred later in the pravastatin group than in the control group (36.39 + 2.32 vs. 34.89 + 3.38 weeks, p = 0.048). Overall, the pravastatin group showed better perinatal outcomes. Neonates with low Apgar scores (<7) at 1 minute (5.7 vs. 25.6%, p = 0.000) and 5 minutes (2.3 vs. 25.6%, p = 0.028) were significantly less common in the pravastatin group. Additionally, the rate of low birthweight babies (<2,500 g) was lower in the pravastatin group (27.6 vs. 40.7%; p = 0.069). CONCLUSION Pravastatin (20 mg bid) significantly reduces the risk of preterm preeclampsia and preterm birth in women at a high risk of developing preeclampsia. KEY POINTS · This is an open-label multicenter RCT to evaluate pravastatin effect to prevent preeclampsia.. · Pravastatin significantly reduces the risk of preterm preeclampsia (PE) and preterm birth in high risk PE women.. · Pravastatin had a beneficial effect on perinatal outcomes, including Apgar scores and birth weight..
Collapse
Affiliation(s)
- Muhammad Ilham Aldika Akbar
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Alamsyah Azis
- Faculty of Medicine Universitas Padjajaran, Department Obstetrics and Gynecology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Deviana Soraya Riu
- Faculty of Medicine Universitas Hasanudin, Department Obstetrics and Gynecology, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Indonesia
| | - Ellen Wawengkang
- Faculty of Medicine Universitas Hasanudin, Department Obstetrics and Gynecology, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Indonesia
| | - Ernawati Ernawati
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Adrianes Bachnas
- Faculty of Medicine Universitas Sebelas Maret, Department Obstetrics and Gynecology, Dr. Moewardi General Hospital, Surakarta, Indonesia
| | - Sri Sulistyowati
- Faculty of Medicine Universitas Sebelas Maret, Department Obstetrics and Gynecology, Dr. Moewardi General Hospital, Surakarta, Indonesia
| | - Erry Gumilar Dachlan
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Johanes Cornelius Mose
- Faculty of Medicine Universitas Padjajaran, Department Obstetrics and Gynecology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Gus Dekker
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department Obstetrics and Gynecology, Lyell McEwin Hospital, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
14
|
Ge S, Zha L, Kimura Y, Shimomura Y, Komatsu M, Gon Y, Komukai S, Murata F, Maeda M, Kiyohara K, Sobue T, Kitamura T, Fukuda H. Statin use and risk of Parkinson's disease among older adults in Japan: a nested case-control study using the Longevity Improvement and Fair Evidence study. Brain Commun 2024; 6:fcae195. [PMID: 38894948 PMCID: PMC11184346 DOI: 10.1093/braincomms/fcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The association between statin use and the risk of Parkinson's disease remains inconclusive, particularly in Japan's super-ageing society. This study aimed to investigate the potential association between statin use and the risk of Parkinson's disease among Japanese participants aged ≥65 years. We used data from the Longevity Improvement and Fair Evidence Study, which included medical and long-term care claim data from April 2014 to December 2020 across 17 municipalities. Using a nested case-control design, we matched one case to five controls based on age, sex, municipality and cohort entry year. A conditional logistic regression model was used to estimate the odds ratios with 95% confidence intervals. Among the 56 186 participants (9397 cases and 46 789 controls), 53.6% were women. The inverse association between statin use and Parkinson's disease risk was significant after adjusting for multiple variables (odds ratio: 0.61; 95% confidence interval: 0.56-0.66). Compared with non-users, the dose analysis revealed varying odds ratios: 1.30 (1.12-1.52) for 1-30 total standard daily doses, 0.77 (0.64-0.92) for 31-90 total standard daily doses, 0.62 (0.52-0.75) for 91-180 total standard daily doses and 0.30 (0.25-0.35) for >180 total standard daily doses. Statin use among older Japanese adults was associated with a decreased risk of Parkinson's disease. Notably, lower cumulative statin doses were associated with an elevated risk of Parkinson's disease, whereas higher cumulative doses exhibited protective effects against Parkinson's disease development.
Collapse
Affiliation(s)
- Sanyu Ge
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Ling Zha
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshimitsu Shimomura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Masayo Komatsu
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sho Komukai
- Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| | - Kosuke Kiyohara
- Department of Food Science, Faculty of Home Economics, Otsuma Women’s University, Tokyo, 102-8357, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-0054, Japan
| |
Collapse
|
15
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
16
|
Ge S, Kitamura T, Zha L, Komatsu M, Komukai S, Murata F, Maeda M, Gon Y, Kimura Y, Kiyohara K, Sobue T, Fukuda H. Association of Statin Use with Dementia Risk Among Older Adults in Japan: A Nested Case-Control Study Using the LIFE Study. J Alzheimers Dis 2024; 100:987-998. [PMID: 38968046 DOI: 10.3233/jad-240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Background Previous studies have shown a possible association between statin use and a decreased risk of dementia, but the association has not been sufficiently established, especially in the super-aging society of Japan. Objective This study aimed to determine the association between statin use and the risk of dementia among Japanese participants aged> =65 years old. Methods Data from the Longevity Improvement and Fair Evidence (LIFE) Study were utilized, including medical and long-term care (LTC) claim data from 17 municipalities between April 2014 and December 2020. A nested case-control study was conducted with one case matched to five controls based on age, sex, municipality, and year of cohort entry. We used a conditional logistic regression model to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs). Results This study included 57,302 cases and 283,525 controls, with 59.7% of the participants being woman. After adjusting for potential confounders, statin use was associated with a lower risk of dementia (OR, 0.70; 95% CI: 0.68-0.73) and Alzheimer's disease (OR: 0.66; 95% CI: 0.63-0.69). Compared with non-users, the ORs of dementia were as follows: 1.42 (1.34-1.50) for 1-30 total standardized daily dose (TSDD), 0.91 (0.85-0.98) for 31-90 TSDD, 0.63 (0.58-0.69) for 91-180 TSDD, and 0.33 (0.31-0.36) for >180 TSDD in dose-analysis. Conclusions Statin use is associated with a reduced risk of dementia and Alzheimer's disease among older Japanese adults. A low cumulative statin dose is associated with an increased risk of dementia, whereas a high cumulative statin dose is a protective factor against dementia.
Collapse
Affiliation(s)
- Sanyu Ge
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuhisa Kitamura
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ling Zha
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayo Komatsu
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Komukai
- Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kosuke Kiyohara
- Department of Food Science, Faculty of Home Economics, Otsuma Women's University, Tokyo, Japan
| | - Tomotaka Sobue
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
17
|
Petek B, Häbel H, Xu H, Villa-Lopez M, Kalar I, Hoang MT, Maioli S, Pereira JB, Mostafaei S, Winblad B, Gregoric Kramberger M, Eriksdotter M, Garcia-Ptacek S. Statins and cognitive decline in patients with Alzheimer's and mixed dementia: a longitudinal registry-based cohort study. Alzheimers Res Ther 2023; 15:220. [PMID: 38115091 PMCID: PMC10731754 DOI: 10.1186/s13195-023-01360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Disturbances in brain cholesterol homeostasis may be involved in the pathogenesis of Alzheimer's disease (AD). Lipid-lowering medications could interfere with neurodegenerative processes in AD through cholesterol metabolism or other mechanisms. OBJECTIVE To explore the association between the use of lipid-lowering medications and cognitive decline over time in a cohort of patients with AD or mixed dementia with indication for lipid-lowering treatment. METHODS A longitudinal cohort study using the Swedish Registry for Cognitive/Dementia Disorders, linked with other Swedish national registries. Cognitive trajectories evaluated with mini-mental state examination (MMSE) were compared between statin users and non-users, individual statin users, groups of statins and non-statin lipid-lowering medications using mixed-effect regression models with inverse probability of drop out weighting. A dose-response analysis included statin users compared to non-users. RESULTS Our cohort consisted of 15,586 patients with mean age of 79.5 years at diagnosis and a majority of women (59.2 %). A dose-response effect was demonstrated: taking one defined daily dose of statins on average was associated with 0.63 more MMSE points after 3 years compared to no use of statins (95% CI: 0.33;0.94). Simvastatin users showed 1.01 more MMSE points (95% CI: 0.06;1.97) after 3 years compared to atorvastatin users. Younger (< 79.5 years at index date) simvastatin users had 0.80 more MMSE points compared to younger atorvastatin users (95% CI: 0.05;1.55) after 3 years. Simvastatin users had 1.03 more MMSE points (95% CI: 0.26;1.80) compared to rosuvastatin users after 3 years. No differences regarding statin lipophilicity were observed. The results of sensitivity analysis restricted to incident users were not consistent. CONCLUSIONS Some patients with AD or mixed dementia with indication for lipid-lowering medication may benefit cognitively from statin treatment; however, further research is needed to clarify the findings of sensitivity analyses.
Collapse
Affiliation(s)
- Bojana Petek
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Henrike Häbel
- Medical Statistics Unit, Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Hong Xu
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marta Villa-Lopez
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
- Department of Neurology, University of Alberta Hospital, Edmonton, Canada
| | - Irena Kalar
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Minh Tuan Hoang
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Shayan Mostafaei
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Aging and Inflammation Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Milica Gregoric Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Aging and Inflammation Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Aging and Inflammation Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Cerda A, Bortolin RH, Yoshinaga MY, Freitas RCCD, Dagli-Hernandez C, Borges JB, Oliveira VFD, Gonçalves RM, Faludi AA, Bastos GM, Hirata RDC, Hirata MH. Lipidomic analysis identified potential predictive biomarkers of statin response in subjects with Familial hypercholesterolemia. Chem Phys Lipids 2023; 257:105348. [PMID: 37827478 DOI: 10.1016/j.chemphyslip.2023.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40-70 % reduction, n = 9) or poor (3-33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.
Collapse
Affiliation(s)
- Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, United States
| | - Marcos Yukio Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo 05508-000, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, United States
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
19
|
Ali W, Ali N, Ullah A, Rahman SU, Ahmad S. Pitavastatin and Lovastatin Exhibit Calcium Channel Blocking Activity Which Potentiate Vasorelaxant Effects of Amlodipine: A New Futuristic Dimension in Statin's Pleiotropy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1805. [PMID: 37893523 PMCID: PMC10608486 DOI: 10.3390/medicina59101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits' intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, which may have vasorelaxant effect(s). Combined effects of Pitavastatin and Lovastatin in the presence of Amlodipine were also tested for vasorelaxation. Materials and Methods: Possible relaxing effects of Pitavastatin and Lovastatin on 80 mM Potassium chloride (KCL)-induced contractions and on 1 µM norepinephrine (N.E)-induced contractions were studied in isolated rabbit's aortic strips preparations. Relaxing effects on 80 mM KCL-induced vascular contractions were further verified by constructing Calcium Concentration Response Curves (CCRCs), in the absence and presence of three different concentrations of Pitavastatin and Lovastatin using CCRCs as negative control. Verapamil was used as a standard drug that has L-Type calcium channel binding activity. In other series of experiments, we studied drug interaction(s) among Pitavastatin, Lovastatin, and amlodipine. Results: The results of this study imply that Lovastatin is more potent than Pitavastatin for having comparatively lower EC50 (7.44 × 10-5 ± 0.16 M) in intact and (4.55 × 10-5 ± 0.10 M) in denuded aortae for KCL-induced contractions. Lovastatin amplitudes in intact and denuded aortae for KCL-induced contractions were, respectively, 24% and 35.5%; whereas amplitudes for Pitavastatin in intact and denuded aortae for KCL-induced contractions were 34% and 40%, respectively. A left shift in the EC50 values for the statins was seen when we added amlodipine in EC50 (Log Ca++ M). Right shift for CCRCs state that Pitavastatin and Lovastatin have calcium channel antagonistic effects. Lovastatin in test concentration (6.74 × 10-7 M) produced a right shift in relatively lower EC50 (-2.5 ± 0.10) Log Ca++ M as compared to Pitavastatin, which further confirms that lovastatin is relatively more potent. The right shift in EC50 resembles the right shift of Verapamil. Additive effect of Pitavastatin and Lovastatin was noted in presence of amlodipine (p < 0.05). Conclusions: KCL (80 mM)-induced vascular contractions were relaxed by Pitavastatin and Lovastatin via inhibitory effects on L-Type voltage-gated calcium channels. Lovastatin and Pitavastatin also relaxed Norepinephrine (1 µM)-induced contractions giving an insight for involvement of dual mode of action of Pitavastatin and Lovastatin.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Khyber Medical University, Hayatabad, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan;
| | - Niaz Ali
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Khyber Medical University, Hayatabad, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan;
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abid Ullah
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| | - Shafiq Ur Rahman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| |
Collapse
|
20
|
Loucera C, Carmona R, Esteban-Medina M, Bostelmann G, Muñoyerro-Muñiz D, Villegas R, Peña-Chilet M, Dopazo J. Real-world evidence with a retrospective cohort of 15,968 COVID-19 hospitalized patients suggests 21 new effective treatments. Virol J 2023; 20:226. [PMID: 37803348 PMCID: PMC10559601 DOI: 10.1186/s12985-023-02195-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
PURPOSE Despite the extensive vaccination campaigns in many countries, COVID-19 is still a major worldwide health problem because of its associated morbidity and mortality. Therefore, finding efficient treatments as fast as possible is a pressing need. Drug repurposing constitutes a convenient alternative when the need for new drugs in an unexpected medical scenario is urgent, as is the case with COVID-19. METHODS Using data from a central registry of electronic health records (the Andalusian Population Health Database), the effect of prior consumption of drugs for other indications previous to the hospitalization with respect to patient outcomes, including survival and lymphocyte progression, was studied on a retrospective cohort of 15,968 individuals, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020. RESULTS Covariate-adjusted hazard ratios and analysis of lymphocyte progression curves support a significant association between consumption of 21 different drugs and better patient survival. Contrarily, one drug, furosemide, displayed a significant increase in patient mortality. CONCLUSIONS In this study we have taken advantage of the availability of a regional clinical database to study the effect of drugs, which patients were taking for other indications, on their survival. The large size of the database allowed us to control covariates effectively.
Collapse
Affiliation(s)
- Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Rosario Carmona
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS. Hospital Virgen del Rocio, Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Gerrit Bostelmann
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
| | - Dolores Muñoyerro-Muñiz
- Subdirección Técnica Asesora de Gestión de la Información. Servicio Andaluz de Salud, Sevilla, Spain
| | - Román Villegas
- Subdirección Técnica Asesora de Gestión de la Información. Servicio Andaluz de Salud, Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS. Hospital Virgen del Rocio, Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain.
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS. Hospital Virgen del Rocio, Sevilla, Spain.
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain.
| |
Collapse
|
21
|
Dautović E, Rustemović-Čorbić M, Srabović N, Softić A, Smajlović A, Husejnović MŠ, Hatkić A, Halilčević D. Some pleiotropic effects of statins on hepatocellular carcinoma cells: Comparative study on atorvastatin, rosuvastatin and simvastatin. Adv Med Sci 2023; 68:258-264. [PMID: 37478516 DOI: 10.1016/j.advms.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE For many years, statins have been the most commonly used drugs in cholesterol-lowering therapy. In addition to these therapeutic effects, statins exhibit other, pleiotropic effects that can be beneficial, but also harmful to cells and tissues. The aim of this research was to determine and compare the pleiotropic effects of structurally different statins: atorvastatin, simvastatin and rosuvastatin at different concentrations on hepatocellular carcinoma (HepG2) cells. MATERIALS AND METHODS The MTT assay was used to determine the cytotoxic effects of statins. The influence of statins on the production of reactive oxygen species (ROS) was determined by measuring fluorescent response of 2,7-dichlorofluorescein diacetate (DCFH-DA). The effect of statins on glucose production and excretion was determined with glucose production assay. RESULTS The obtained results confirmed that all tested statins exhibit cytotoxic effects, increase the production of ROS as well as the production and excretion of glucose from HepG2 cells. It was observed that all the mentioned effects are more pronounced with lipophilic statins, atorvastatin and simvastatin compared to hydrophilic rosuvastatin. CONCLUSION The less pronounced pleiotropic effects of rosuvastatin on HepG2 cells are probably due to differences in structure and solubility compared to atorvastatin and simvastatin. Transporter-dependent and a slower influx of rosuvastatin into cells compared to the tested lipophilic statins probably lead to a weaker accumulation of rosuvastatin in HepG2 cells, which results in less pronounced pleiotropic effects compared to lipophilic atorvastatin and simvastatin.
Collapse
Affiliation(s)
- Esmeralda Dautović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina.
| | | | - Nahida Srabović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Adaleta Softić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Aida Smajlović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Maida Šljivić Husejnović
- Department of Pharmaceutical Analytics, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Alen Hatkić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dalila Halilčević
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| |
Collapse
|
22
|
Gorji AE, Ostaszewski P, Urbańska K, Sadkowski T. Does β-Hydroxy-β-Methylbutyrate Have Any Potential to Support the Treatment of Duchenne Muscular Dystrophy in Humans and Animals? Biomedicines 2023; 11:2329. [PMID: 37626825 PMCID: PMC10452677 DOI: 10.3390/biomedicines11082329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. The dystrophin gene is the largest gene and has a key role in skeletal muscle construction and function. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans, mice, dogs, and cats. Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition causing progressive muscle weakness and premature death. β-hydroxy β-methylbutyrate (HMB) prevents deleterious muscle responses under pathological conditions, including tumor and chronic steroid therapy-related muscle losses. The use of HMB as a dietary supplement allows for increasing lean weight gain; has a positive immunostimulatory effect; is associated with decreased mortality; and attenuates sarcopenia in elderly animals and individuals. This study aimed to identify some genes, metabolic pathways, and biological processes which are common for DMD and HMB based on existing literature and then discuss the consequences of that interaction.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| |
Collapse
|
23
|
Lucà F, Oliva F, Rao CM, Abrignani MG, Amico AF, Di Fusco SA, Caretta G, Di Matteo I, Di Nora C, Pilleri A, Ceravolo R, Rossini R, Riccio C, Grimaldi M, Colivicchi F, Gulizia MM. Appropriateness of Dyslipidemia Management Strategies in Post-Acute Coronary Syndrome: A 2023 Update. Metabolites 2023; 13:916. [PMID: 37623860 PMCID: PMC10456563 DOI: 10.3390/metabo13080916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
It has been consistently demonstrated that circulating lipids and particularly low-density lipoprotein cholesterol (LDL-C) play a significant role in the development of coronary artery disease (CAD). Several trials have been focused on the reduction of LDL-C values in order to interfere with atherothrombotic progression. Importantly, for patients who experience acute coronary syndrome (ACS), there is a 20% likelihood of cardiovascular (CV) event recurrence within the two years following the index event. Moreover, the mortality within five years remains considerable, ranging between 19 and 22%. According to the latest guidelines, one of the main goals to achieve in ACS is an early improvement of the lipid profile. The evidence-based lipid pharmacological strategy after ACS has recently been enhanced. Although novel lipid-lowering drugs have different targets, the result is always the overexpression of LDL receptors (LDL-R), increased uptake of LDL-C, and lower LDL-C plasmatic levels. Statins, ezetimibe, and PCSK9 inhibitors have been shown to be safe and effective in the post-ACS setting, providing a consistent decrease in ischemic event recurrence. However, these drugs remain largely underprescribed, and the consistent discrepancy between real-world data and guideline recommendations in terms of achieved LDL-C levels represents a leading issue in secondary prevention. Although the cost-effectiveness of these new therapeutic advancements has been clearly demonstrated, many concerns about the cost of some newer agents continue to limit their use, affecting the outcome of patients who experienced ACS. In spite of the fact that according to the current recommendations, a stepwise lipid-lowering approach should be adopted, several more recent data suggest a "strike early and strike strong" strategy, based on the immediate use of statins and, eventually, a dual lipid-lowering therapy, reducing as much as possible the changes in lipid-lowering drugs after ACS. This review aims to discuss the possible lipid-lowering strategies in post-ACS and to identify those patients who might benefit most from more powerful treatments and up-to-date management.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | | | | | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy
| | - Giorgio Caretta
- Sant’Andrea Hospital, ASL 5 Regione Liguria, 19124 La Spezia, Italy
| | - Irene Di Matteo
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy
| | - Concetta Di Nora
- Department of Cardiothoracic Science, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy
| | - Anna Pilleri
- Cardiology Unit, Brotzu Hospital, 09121 Cagliari, Italy
| | - Roberto Ceravolo
- Cardiology Department, Giovanni Paolo II Hospital, 88046 Lamezia Terme, Italy
| | - Roberta Rossini
- Cardiology Unit, Ospedale Santa Croce e Carle, 12100 Cuneo, Italy
| | - Carmine Riccio
- Cardiovascular Department, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy
| | | |
Collapse
|
24
|
El-Okaily MS, Mostafa AA, Dulnik J, Denis P, Sajkiewicz P, Mahmoud AA, Dawood R, Maged A. Nanofibrous Polycaprolactone Membrane with Bioactive Glass and Atorvastatin for Wound Healing: Preparation and Characterization. Pharmaceutics 2023; 15:1990. [PMID: 37514176 PMCID: PMC10384954 DOI: 10.3390/pharmaceutics15071990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Skin wound healing is one of the most challenging processes for skin reconstruction, especially after severe injuries. In our study, nanofiber membranes were prepared for wound healing using an electrospinning process, where the prepared nanofibers were made of different weight ratios of polycaprolactone and bioactive glass that can induce the growth of new tissue. The membranes showed smooth and uniform nanofibers with an average diameter of 118 nm. FTIR and XRD results indicated no chemical interactions of polycaprolactone and bioactive glass and an increase in polycaprolactone crystallinity by the incorporation of bioactive glass nanoparticles. Nanofibers containing 5% w/w of bioactive glass were selected to be loaded with atorvastatin, considering their best mechanical properties compared to the other prepared nanofibers (3, 10, and 20% w/w bioactive glass). Atorvastatin can speed up the tissue healing process, and it was loaded into the selected nanofibers using a dip-coating technique with ethyl cellulose as a coating polymer. The study of the in vitro drug release found that atorvastatin-loaded nanofibers with a 10% coating polymer revealed gradual drug release compared to the non-coated nanofibers and nanofibers coated with 5% ethyl cellulose. Integration of atorvastatin and bioactive glass with polycaprolactone nanofibers showed superior wound closure results in the human skin fibroblast cell line. The results from this study highlight the ability of polycaprolactone-bioactive glass-based fibers loaded with atorvastatin to stimulate skin wound healing.
Collapse
Affiliation(s)
- Mohamed S El-Okaily
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC), El Bohouth St., Dokki, Giza 12622, Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), National Research Centre (NRC), Giza 12622, Egypt
| | - Amany A Mostafa
- Refractories, Ceramics and Building Materials Department (Biomaterials Group), National Research Centre (NRC), El Bohouth St., Dokki, Giza 12622, Egypt
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), National Research Centre (NRC), Giza 12622, Egypt
| | - Judyta Dulnik
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Paweł Sajkiewicz
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Azza A Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
| | - Reham Dawood
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, EL Bohouth St., Dokki, Giza 12622, Egypt
| | - Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
- Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
| |
Collapse
|
25
|
Dabhi KN, Gohil NV, Tanveer N, Hussein S, Pingili S, Makkena VK, Jaramillo AP, Awosusi BL, Ayyub J, Nath TS. Assessing the Link Between Statins and Insulin Intolerance: A Systematic Review. Cureus 2023; 15:e42029. [PMID: 37465091 PMCID: PMC10351747 DOI: 10.7759/cureus.42029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
There has been mixed and inconclusive evidence regarding the relationship between statin usage and insulin intolerance. This systematic review aims to comprehensively explore the link between the use of statins and insulin intolerance. We systematically searched MEDLINE, PubMed, PubMed Central (PMC), and Google Scholar databases for online English articles with full text. We excluded conference proceedings, editorials, commentaries, preclinical studies, abstracts, and preprints. The search across databases initially identified 667 articles. After eliminating duplicates and analyzing the remaining articles based on the inclusion and exclusion criteria, 11 articles were selected. The included studies had a total of 46,728,889 participants. The findings suggest that the use of statins is associated with a decrease in insulin sensitivity and insulin resistance. This systematic review provides evidence that the use of statins may have an adverse effect on insulin sensitivity and increase insulin resistance. These findings may have important clinical implications for individuals on statin therapy, especially those at risk of developing diabetes.
Collapse
Affiliation(s)
- Karan Nareshbhai Dabhi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Namra V Gohil
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Nida Tanveer
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sally Hussein
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shravya Pingili
- Internal Medicine, Kakatiya Medical College, Hyderabad, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vijaya Krishna Makkena
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Osmania Medical College, Hyderabad, IND
| | - Arturo P Jaramillo
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Babatope L Awosusi
- Pathology and Laboratory Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Javaria Ayyub
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tuheen Sankar Nath
- Surgical Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
26
|
Li W, Liu H, Liang J, Wang T, Liu J, Pi X, Zou W, Qu L. Effects of Atorvastatin on Bile Acid Metabolism in High-fat Diet-fed ApoE -/- Mice. J Cardiovasc Pharmacol 2023; 81:454-462. [PMID: 36995080 DOI: 10.1097/fjc.0000000000001425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
ABSTRACT Statins are considered as the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease, where pleiotropic effects are thought to contribute greatly in addition to the lipid-lowering effect. Bile acid metabolism has been gradually reported to be involved in the antihyperlipidemic and antiatherosclerotic effects of statins, but with inconsistent results and few studies carried out on animal models of atherosclerosis. The study aimed to examine the possible role of bile acid metabolism in the lipid-lowering and antiatherosclerotic effects of atorvastatin (ATO) in high-fat diet-fed ApoE -/- mice. The results showed that the levels of liver and faecal TC as well as ileal and faecal TBA were significantly increased in mice of the model group after 20 weeks of high-fat diet feeding compared with the control group, with significantly downregulated mRNA expression of liver LXR-α, CYP7A1, BSEP, and NTCP. ATO treatment further increased the levels of ileal and faecal TBA and faecal TC, but no obvious effect was observed on serum and liver TBA. In addition, ATO significantly reversed the mRNA levels of liver CYP7A1 and NTCP, and no obvious changes were observed in the expression of LXR-α and BSEP. Our study suggested that statins may enhance the synthesis of bile acids and facilitate the reabsorption of bile acids from the ileum via portal into the liver, possibly through the upregulation of the expression of CYP7A1 and NTCP. The results are helpful in enriching the theoretical basis for the clinical use of statins and have good translational value.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; and
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Pi
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; and
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Kitsugi K, Noritake H, Matsumoto M, Hanaoka T, Umemura M, Yamashita M, Takatori S, Ito J, Ohta K, Chida T, Suda T, Kawata K. Simvastatin inhibits hepatic stellate cells activation by regulating the ferroptosis signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023:166750. [PMID: 37268254 DOI: 10.1016/j.bbadis.2023.166750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIMS Ferroptosis is a form of regulated cell death and its promotion in hepatic stellate cells (HSCs) attenuates liver fibrosis. Statins, which are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, may induce ferroptosis via the downregulation of glutathione peroxidase 4 (GPX4) by inhibiting the mevalonate pathway. However, little evidence is available regarding the association between statins and ferroptosis. Therefore, we investigated the association between statins and ferroptosis in HSCs. METHODS Two human HSC cell lines, LX-2 and TWNT-1, were treated with simvastatin, an HMG-CoA reductase inhibitor. Mevalonic acid (MVA), farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP) were used to determine the involvement of the mevalonate pathway. We performed a detailed analysis of the ferroptosis signaling pathway. We also investigated human liver tissue samples from patients with nonalcoholic steatohepatitis to clarify the effect of statins on GPX4 expression. RESULTS Simvastatin reduced cell mortality and inhibited HSCs activation, accompanied by iron accumulation, oxidative stress, lipid peroxidation, and reduced GPX4 protein expression. These results indicate that simvastatin inhibits HSCs activation by promoting ferroptosis. Furthermore, treatment with MVA, FPP, or GGPP attenuated simvastatin-induced ferroptosis. These results suggest that simvastatin promotes ferroptosis in HSCs by inhibiting the mevalonate pathway. In human liver tissue samples, statins downregulated the expression of GPX4 in HSCs without affecting hepatocytes. CONCLUSIONS Simvastatin inhibits the activation of HSCs by regulating the ferroptosis signaling pathway.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Hidenao Noritake
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moe Matsumoto
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiko Hanaoka
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiro Umemura
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maho Yamashita
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Takatori
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jun Ito
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Division of Respiratory Medicine, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Kawata
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
28
|
Sim JE, Song HN, Choi JU, Lee JE, Baek IY, Cho HH, Kim JH, Chung JW, Kim GM, Park HJ, Bang OY, Seo WK. The effect of intensive statin therapy in non-symptomatic intracranial arteries: The STAMINA-MRI sub-study. Front Neurol 2023; 14:1069502. [PMID: 37056360 PMCID: PMC10088516 DOI: 10.3389/fneur.2023.1069502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Background and aims Pleiotropic effects of statins result in the stabilization of symptomatic intracranial arterial plaque. However, little is known about the effect of statins in non-symptomatic cerebral arteries. We hypothesized that intensive statin therapy could produce a change in the non-symptomatic cerebral arteries. Methods This is a sub-study of a prospective observational study under the title of "Intensive Statin Treatment in Acute Ischemic Stroke Patients with Intracranial Atherosclerosis: a High-Resolution Magnetic Resonance Imaging (HR-MRI) study." Patients with statin-naive acute ischemic stroke who had symptomatic intracranial artery stenosis (above 50%) were recruited for this study. HR-MRI was performed to assess the patients' cerebral arterial status before and 6 months after the statin therapy. To demonstrate the effect of statins in the non-symptomatic segment of intracranial cerebral arteries, we excluded symptomatic segments from the data to be analyzed. We compared the morphological changes using cerebrovascular morphometry. Results A total of 54 patients (mean age: 62.9 ± 14.4 years, 59.3% women) were included in this study. Intensive statin therapy produced significant morphological changes of overall cerebral arteries. Among the morphological features, the arterial luminal area showed the highest number of significant changes with a range from 5.7 and 6.7%. Systolic blood pressure (SBP) was an independent factor associated with relative changes in posterior circulation bed maximal diameter percentage change (beta -0.21, 95% confidence interval -0.36 to -0.07, p = 0.005). Conclusion Intensive statin therapy produced a favorable morphological change in cerebral arteries of not only the target arterial segment but also non-symptomatic arterial segments. The change in cerebral arterial luminal diameter was influenced by the baseline SBP and was dependent on the topographic distribution of the cerebral arteries.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02458755.
Collapse
Affiliation(s)
- Jae Eun Sim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ha-Na Song
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Un Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Young Baek
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hwan-Ho Cho
- Department of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Jin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Ahmadi Y, Fard JK, Ghafoor D, Eid AH, Sahebkar A. Paradoxical effects of statins on endothelial and cancer cells: the impact of concentrations. Cancer Cell Int 2023; 23:43. [PMID: 36899388 PMCID: PMC9999585 DOI: 10.1186/s12935-023-02890-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncancerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not surprisingly, statins' effects appear to vary largely depending on the cell context, especially as pertains to modulation of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senescence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause senescence. However, statins' effects on ECs depend on the concentrations; at micromolar concentrations statins cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.
Collapse
Affiliation(s)
- Yasin Ahmadi
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq.
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Yildirim Y, İnce İ, Gümüştaş B, Vardar Ö, Yakar N, Munjakovic H, Özdemir G, Emingil G. Development of doxycycline and atorvastatin-loaded chitosan nanoparticles for local delivery in periodontal disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
31
|
Siudut J, Pudło J, Konieczyńska M, Polak M, Jawień J, Undas A. Therapy with high-dose statins reduces soluble P-selectin: The impact on plasma fibrin clot properties. Int J Cardiol 2023; 373:110-117. [PMID: 36410546 DOI: 10.1016/j.ijcard.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Studies on the effect of statins on platelets in patients with coronary artery disease (CAD) yielded inconsistent results. We sought to investigate whether high-dose statin therapy reduces plasma concentrations of soluble P-selectin (sP-selectin), a well-established platelet activation marker and if such changes can affect fibrin clot properties, which are unfavorably altered in CAD patients. METHODS We studied 130 consecutive patients with advanced CAD who did not achieve the target LDL cholesterol on statins. At baseline and after 6-12 months of treatment with atorvastatin 80 mg/day or rosuvastatin 40 mg/day, soluble plasma sP-selectin, along with plasma fibrin clot permeability (Ks), clot lysis time (CLT), thrombin generation and fibrinolysis proteins were determined. RESULTS Before high-intensity statin treatment, lower Ks and longer CLT values were associated with increased sP-selectin (β -0.27 [95% CI -0.44 to -0.10] and β 0.21 [95% CI 0.01 to 0.41]; both p < 0.05, respectively) also after adjustment for potential confounders. sP-selectin, alongside fibrin features and other variables at baseline showed no association with lipid profile. On high-dose statin therapy, there was 32% reduction in sP-selectin levels (p < 0.001). On-treatment change (Δ) in sP-selectin correlated with ΔKs and ΔCLT (r = -0.32, p < 0.001 and r = 0.22, p = 0.011, respectively), but not with cholesterol and C-reactive protein lowering. We did not observe any associations between post-treatment sP-selectin levels and lipids, fibrin clot properties or thrombin generation. CONCLUSIONS High-dose statin therapy reduces markedly sP-selectin levels in association with improved fibrin clot phenotype, which highlights the contribution of platelet-derived proteins to a prothrombotic state in hypercholesterolemia and statin-induced antithrombotic effects.
Collapse
Affiliation(s)
- Jakub Siudut
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Joanna Pudło
- Department of Diagnostics, John Paul II Hospital, Krakow, Poland
| | - Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Department of Diagnostics, John Paul II Hospital, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
32
|
Wu R, Zhang L, Xu H, Chen H, Zhao W, Zhou Y, Zhou L, Wu J, An S. Salvia miltiorrhiza Extract Prevents the Occurrence of Early Atherosclerosis in Apoe -/- Mice via TLR4/ NF-kB Pathway. Cardiovasc Hematol Agents Med Chem 2023; 21:232-239. [PMID: 36748219 PMCID: PMC10258915 DOI: 10.2174/1871525721666230206112134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Salvia miltiorrhiza (SM) contains four major aqueous active ingredients, which have been isolated, purified and identified as danshensu (DSS), salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and protocatechuic aldehyde (PAL), A mixture of these four ingredients is called SABP. Although aqueous extract from Salvia miltiorrhiza has been traditionally used to treat cardiovascular diseases, the efficacy and function of the optimal ratio of SABP in preventing and treating cardiovascular diseases remain unknown. This study aims to explore the antiinflammatory mechanisms underlying the attenuation of atherosclerosis development by aqueous extract from Salvia miltiorrhiza. METHODS Male ApoE-/- mice (6 weeks) were randomly allocated into three groups: the model group (Model), the SABP group (SABP), and the rosuvastatin calcium group (RC). Male C57BL/6 mice (6 weeks) were used as a control group. All mice were fed with an ordinary diet. After 8 weeks of treatment, the lipid profiles in serum and the lactate dehydrogenase (LDH) and creatine kinase (CK) in heart tissue were measured using an automatic biochemical analyzer. Alterations of the thoracic aorta and the heart were assessed using Hematoxylin and eosin staining. The protein expression of Toll-like receptor 4 (TLR4), TGF beta-activated kinase 1 (TAK1), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the heart tissue were determined though immunohistochemistry and western blotting analysis. RESULTS The serum low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and total cholesterol (TC) levels were increased, and the high-density lipoprotein cholesterol (HDL-C) level was decreased in ApoE-/- mice. SABP significantly decreased serum lipid levels and improved histopathology in the thoracic aorta. In addition. SABP treatment inhibited the expression of TLR4, TAK1, NF-κB, IL-6 and TNF-α in the heart in ApoE-/- mice. The LDH and CK in the heart did not differ significantly among different groups, and the heart did not have obvious pathological changes. CONCLUSION These findings indicated that SABP may exert an anti-atherosclerotic effect by lowering blood lipids and inhibiting inflammatory response via TLR4/ NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruoyu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Linqi Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Hongxu Chen
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jiangli Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| |
Collapse
|
33
|
Chamani S, Kooshkaki O, Moossavi M, Rastegar M, Soflaei SS, McCloskey AP, Banach M, Sahebkar A. The effects of statins on the function and differentiation of blood cells. Arch Med Sci 2022; 19:1314-1326. [PMID: 37732056 PMCID: PMC10507790 DOI: 10.5114/aoms/158546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 09/22/2023] Open
Abstract
Statins are inhibitors of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). They are used in patients with cardiovascular risk and/or suffering with cardiovascular disease. In addition to their efficient lipid-lowering effects, statins exhibit independent so called pleiotropic effects potentially affecting several immune response properties including immune cell activation, migration, cytokine generation, immune metabolism, and survival. Statins also regulate innate and acquired immunity. The focus of this review is to highlight the role of statins in modulating the function and differentiation of various blood cells. Given the proposed wider application of these medicines and their potentially important advantages in treatment of inflammatory and autoimmune disorders, more studies are needed with special focus on the molecular targets of statins included in regulating the immune response.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Kooshkaki
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Alice P. McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital, Medical University of Lodz, Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mothers Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Haney SL, Holstein SA. Targeting the Isoprenoid Biosynthetic Pathway in Multiple Myeloma. Int J Mol Sci 2022; 24:ijms24010111. [PMID: 36613550 PMCID: PMC9820492 DOI: 10.3390/ijms24010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy for which there is currently no cure. While treatment options for MM have expanded over the last two decades, all patients will eventually become resistant to current therapies. Thus, there is an urgent need for novel therapeutic strategies to treat MM. The isoprenoid biosynthetic pathway (IBP) is responsible for the post-translational modification of proteins belonging to the Ras small GTPase superfamily, such as Ras, Rho and Rab family members. Given the important roles these GTPase proteins play in various cellular processes, there is significant interest in the development of inhibitors that disturb their prenylation and consequently their activity in MM cells. Numerous preclinical studies have demonstrated that IBP inhibitors have anti-MM effects, including the induction of apoptosis in MM cells and inhibition of osteoclast activity. Some IBP inhibitors have made their way into the clinic. For instance, nitrogenous bisphosphonates are routinely prescribed for the management MM bone disease. Other IBP inhibitors, including statins and farnesyltransferase inhibitors, have been evaluated in clinical trials for MM, while there is substantial preclinical investigation into geranylgeranyl diphosphate synthase inhibitors. Here we discuss recent advances in the development of IBP inhibitors, assess their mechanism of action and evaluate their potential as anti-MM agents.
Collapse
|
35
|
Shaghaghi Z, Alvandi M, Farzipour S, Dehbanpour MR, Nosrati S. A review of effects of atorvastatin in cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:27. [PMID: 36459301 DOI: 10.1007/s12032-022-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Dehbanpour
- Department of Radiology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Nosrati
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str, 03-195, Warsaw, Poland
| |
Collapse
|
36
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
37
|
Platelet Redox Imbalance in Hypercholesterolemia: A Big Problem for a Small Cell. Int J Mol Sci 2022; 23:ijms231911446. [PMID: 36232746 PMCID: PMC9570056 DOI: 10.3390/ijms231911446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance between reactive oxygen species (ROS) synthesis and their scavenging by anti-oxidant defences is the common soil of many disorders, including hypercholesterolemia. Platelets, the smallest blood cells, are deeply involved in the pathophysiology of occlusive arterial thrombi associated with myocardial infarction and stroke. A great deal of evidence shows that both increased intraplatelet ROS synthesis and impaired ROS neutralization are implicated in the thrombotic process. Hypercholesterolemia is recognized as cause of atherosclerosis, cerebro- and cardiovascular disease, and, closely related to this, is the widespread acceptance that it strongly contributes to platelet hyperreactivity via direct oxidized LDL (oxLDL)-platelet membrane interaction via scavenger receptors such as CD36 and signaling pathways including Src family kinases (SFK), mitogen-activated protein kinases (MAPK), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In turn, activated platelets contribute to oxLDL generation, which ends up propagating platelet activation and thrombus formation through a mechanism mediated by oxidative stress. When evaluating the effect of lipid-lowering therapies on thrombogenesis, a large body of evidence shows that the effects of statins and proprotein convertase subtilisin/kexin type 9 inhibitors are not limited to the reduction of LDL-C but also to the down-regulation of platelet reactivity mainly by mechanisms sensitive to intracellular redox balance. In this review, we will focus on the role of oxidative stress-related mechanisms as a cause of platelet hyperreactivity and the pathophysiological link of the pleiotropism of lipid-lowering agents to the beneficial effects on platelet function.
Collapse
|
38
|
Statin Therapy and the Risk of Viral Infection: A Retrospective Population-Based Cohort Study. J Clin Med 2022; 11:jcm11195626. [PMID: 36233493 PMCID: PMC9571401 DOI: 10.3390/jcm11195626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Statins exert cholesterol-independent beneficial effects, including immunomodulatory effects. In this study, we attempted to investigate the association between statin therapy and the risk of viral infection. We conducted a retrospective cohort study using data from Taiwan’s National Health Insurance Research Database. We identified patients with hyperlipidemia and divided them into two cohorts: statin users and statin nonusers. A 1:1 propensity score matching was conducted between the two cohorts, and a Cox proportional hazards model was used to evaluate the risk of viral infection. Overall, a total of 20,202 patients were included in each cohort. The median follow-up durations were 4.41 and 6.90 years for statin nonusers and users, respectively. The risk of viral infection was 0.40-fold (95% confidence interval = 0.38–0.41) in statin users than in statin nonusers after adjustment for potential confounders. Statin treatment was associated with a significantly lower risk of viral infection in all age groups older than 18 years in both men and women. Moreover, the risk of viral infection substantially reduced as the duration of statin treatment increased. Our findings suggest that statin therapy is associated with a significantly lower risk of viral infection in patients with hyperlipidemia.
Collapse
|
39
|
Statins in High Cardiovascular Risk Patients: Do Comorbidities and Characteristics Matter? Int J Mol Sci 2022; 23:ijms23169326. [PMID: 36012589 PMCID: PMC9409457 DOI: 10.3390/ijms23169326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) morbidity and mortality are decreasing in high-income countries, but ASCVD remains the leading cause of morbidity and mortality in high-income countries. Over the past few decades, major risk factors for ASCVD, including LDL cholesterol (LDL-C), have been identified. Statins are the drug of choice for patients at increased risk of ASCVD and remain one of the most commonly used and effective drugs for reducing LDL cholesterol and the risk of mortality and coronary artery disease in high-risk groups. Unfortunately, doctors tend to under-prescribe or under-dose these drugs, mostly out of fear of side effects. The latest guidelines emphasize that treatment intensity should increase with increasing cardiovascular risk and that the decision to initiate intervention remains a matter of individual consideration and shared decision-making. The purpose of this review was to analyze the indications for initiation or continuation of statin therapy in different categories of patient with high cardiovascular risk, considering their complexity and comorbidities in order to personalize treatment.
Collapse
|
40
|
Frösen J. Association of blood lipid levels with the risk of intracranial aneurysm formation and rupture calls for further studies. A commentary on the article by Zhang et al. Eur J Neurol 2022; 29:2879-2880. [PMID: 35861121 PMCID: PMC9544045 DOI: 10.1111/ene.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, Dept of Neurosurgery, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
41
|
Arellano-Orden E, Calero Acuña C, Sánchez-López V, López Ramírez C, Otero-Candelera R, Marín-Hinojosa C, López Campos J. Cellular mechanisms involved in the pathogenesis of airway remodeling in chronic lung disease. Eur Clin Respir J 2022; 9:2097377. [PMID: 35832729 PMCID: PMC9272929 DOI: 10.1080/20018525.2022.2097377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- E. Arellano-Orden
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Calero Acuña
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - V. Sánchez-López
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. López Ramírez
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - R. Otero-Candelera
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Marín-Hinojosa
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jl López Campos
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Dewidar SA, Hamdy O, Eltantawy A, El-Mesery M, El Gayar AM, Soliman MM. Effect of concomitant use of pitavastatin with neoadjuvant chemotherapy protocols in breast cancer patients: A randomized controlled clinical trial. Saudi Pharm J 2022; 30:1486-1496. [PMID: 36387337 PMCID: PMC9649354 DOI: 10.1016/j.jsps.2022.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Preclinical studies have demonstrated the possible anticancer effects of statins, but the synergistic effect of concomitant statin use with standard chemotherapy protocols in patients with breast cancer has not yet been investigated. Aim The current study aimed to evaluate the efficacy of concomitant pitavastatin use with neoadjuvant chemotherapy protocols in patients with breast cancer. Methods This study was a randomized controlled clinical trial. A total of 70 adult female patients with pathologically-proven invasive breast cancer were randomized to receive or not receive pitavastatin (2 mg) oral tablets once daily concomitantly with standard neoadjuvant chemotherapy protocols for 6 months. The primary outcomes of this study were changes in tumor size and changes to the Ki67 index. In addition, secondary outcomes were changes in cyclin D1 and cleaved caspase-3 serum levels. This study was registered at ClinicalTrials.gov (Identifier: NCT04705909). Results Patients in the pitavastatin group showed significantly higher median (IQR) reductions in tumor size [−19.8 (−41.5, 9.5)] compared to those in the control group [−5.0 (−15.5, 0.0), p = 0.0009]. The change in Ki67 from baseline to the end of therapy was similar between the two groups (p = 0.12). By the end of therapy, the cyclin D1 levels in the pitavastatin group were significantly decreased [median (IQR) change of − 10.0 (−20.2, −2.9) from baseline], whereas the control group showed an increase in cyclin D1 levels [14.8 (4.1, 56.4)]. The median (IQR) caspase−3 was elevated in the pitavastatin group 1.6 (0.2, 2.2), and decreased in the control group (−0.2 (−1.1, 0.0), p = 0.0002). Subgroup analysis of the pitavastatin group revealed that patients with positive human epidermal growth receptor 2 (HER2) had higher median (IQR) reductions in Ki67 [−35.0 (−70.0, −12.5)] than those with negative HER2 [2.5 (−15.0, 10.0), p = 0.04]. All patients who achieved a complete pathological response (n = 9) exhibited an HER2-neu positive receptor at baseline. Conclusion Concomitant use of pitavastatin with standard neoadjuvant chemotherapy protocols may improve neoadjuvant chemotherapy responses in patients with breast cancer.
Collapse
Affiliation(s)
- Samar A. Dewidar
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Omar Hamdy
- Surgical Oncology Department, Oncology Center, Mansoura University, Mansoura University, Mansoura, Egypt
| | - Ahmed Eltantawy
- Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M. El Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Moetaza M. Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author at: Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
43
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
44
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
45
|
Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Rodriguez R. Statins effect on insulin resistance after a meal and exercise in hypercholesterolemic pre-diabetic individuals. Scand J Med Sci Sports 2022; 32:1346-1355. [PMID: 35612762 PMCID: PMC9541393 DOI: 10.1111/sms.14193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
Aim To study if statins, a widely prescribed, inexpensive medication to prevent coronary artery diseases may cause insulin resistance (IR). Methods Fasted (HOMA‐IR) and post‐meal insulin resistance were assessed in 21 pre‐diabetic hypercholesterolemic individuals treated with statins (STA trial). Measurements were compared to another trial conducted 96 h after statin withdrawal using placebo pills (PLAC trial). Trials were duplicated 16–18 h after a bout of moderate‐intensity exercise (500 kcal of energy expenditure) to reduce IR and better appreciate statin effects (EXER+STA and EXER+PLAC trials). Results Statin withdrawal did not affect fasting (HOMA‐IR; 2.35 ± 1.05 vs. 2.18 ± 0.87 for STA vs. PLAC trials; p = 0.150) or post‐meal insulin resistance (i.e., Matsuda‐index, STA 6.23 ± 2.83 vs. PLAC 6.49 ± 3.74; p = 0.536). A bout of aerobic exercise lowered post‐meal IR (p = 0.043), but statin withdrawal did not add to the exercise actions (p = 0.564). Statin withdrawal increased post‐meal plasma free glycerol concentrations (0.136 ± 0.073 vs. 0.185 ± 0.090 mmol·L−1 for STA vs. PLAC trials; p < 0.001) but not plasma free fatty acids or fat oxidation (p = 0.981, and p = 0.621, respectively). Post‐meal fat oxidation was higher in the exercise trials (p = 0.002). Conclusions Withdrawal of statin medication does not affect fasting or post‐meal insulin resistance in pre‐diabetic hypercholesterolemic individuals. Furthermore, statin use does not interfere with the beneficial effects of exercise on lowering IR.
Collapse
Affiliation(s)
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | | - Juan Fernando Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | |
Collapse
|
46
|
Chen Y, Xu Y, Wang J, Prisinzano P, Yuan Y, Lu F, Zheng M, Mao W, Wan Y. Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Front Oncol 2022; 12:853063. [PMID: 35646709 PMCID: PMC9133486 DOI: 10.3389/fonc.2022.853063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in cancer cells have various biological functions, such as energy production, membrane synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the administration of antilipemic agents could improve anti-cancer treatment efficacy given hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then expelled to extracellular space. In this study, we investigated whether statins could promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential influences on generation and composition of cell-derived extracellular vesicles and particles (EVP). Our studies indicate that statins can significantly lower lipid biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can further lower lipid contents in parental cells. It is the first time that the influence of statins on EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and improve chemosensitivity.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yuhao Yuan
- Biophotonics and Translational Optical Imaging Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
47
|
Statins Inhibit the Gliosis of MIO-M1, a Müller Glial Cell Line Induced by TRPV4 Activation. Int J Mol Sci 2022; 23:ijms23095190. [PMID: 35563594 PMCID: PMC9100994 DOI: 10.3390/ijms23095190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized Müller cell gliosis induced by the activation of transient receptor potential vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin, and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65 and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology, statins may have the potential to prevent RGC death.
Collapse
|
48
|
Mo W, Chen Z, Zhang X, Dai G, Ma D, Pan J, Zhang X, Wu G, Fan W. N6-Methyladenosine Demethylase FTO (Fat Mass and Obesity-Associated Protein) as a Novel Mediator of Statin Effects in Human Endothelial Cells. Arterioscler Thromb Vasc Biol 2022; 42:644-658. [PMID: 35296150 DOI: 10.1161/atvbaha.121.317295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) plays a critical role in various biological processes. However, no study has addressed the role of m6A modification in the statin-induced protection of endothelial cells (ECs). METHODS Quantitative real-time polymerase chain reaction and Western blotting analyses were used to study the expression of m6A regulatory genes in atorvastatin-treated ECs. Gain- and loss-of-function assays, methylated RNA immunoprecipitation analysis, and dual-luciferase reporter assays were performed to clarify the function of FTO (fat mass and obesity-associated protein) in ECs. RESULTS Atorvastatin decreased FTO protein expression in ECs. The knockdown of FTO enhanced the mRNA and protein expression of KLF2 (Kruppel-like factor 2) and eNOS (endothelial NO synthase) but attenuated TNFα (tumor necrosis factor alpha)-induced VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) expression, as well as the adhesion of monocytes to ECs. Conversely, FTO overexpression significantly upregulated the mRNA and protein levels of VCAM-1 and ICAM-1, downregulated those of KLF2 and eNOS, and strongly attenuated the atorvastatin-mediated induction of KLF2 and eNOS expression. Subsequent investigations demonstrated that KLF2 and eNOS are functionally critical targets of FTO. Mechanistically, FTO interacted with KLF2 and eNOS transcripts and regulated their expression in an m6A-dependent manner. After FTO silencing, KLF2 and eNOS transcripts with higher levels of m6A modification in their 3' untranslated regions were captured by YTHDF3 (YT521-B homology m6A RNA-binding protein 3), resulting in mRNA stabilization and the induction of KLF2 and eNOS protein expression. CONCLUSIONS FTO might serve as a novel molecular target to modulate endothelial function in vascular diseases.
Collapse
Affiliation(s)
- Wentao Mo
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Ziqi Chen
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Xiaozhe Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Gang Dai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (G.D., W.F.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Dongwei Ma
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Jiajie Pan
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Xinxia Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (W.M., Z.C., X.Z., D.M., J.P., X.Z., G.W.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.).,Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, Guangdong, China (G.W.)
| | - Wendong Fan
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (G.D., W.F.).,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China (W.M., Z.C., X.Z., G.D., D.M., J.P., X.Z., G.W., W.F.)
| |
Collapse
|
49
|
Maciejewska M, Sikora M, Maciejewski C, Alda-Malicka R, Czuwara J, Rudnicka L. Raynaud's Phenomenon with Focus on Systemic Sclerosis. J Clin Med 2022; 11:jcm11092490. [PMID: 35566614 PMCID: PMC9105786 DOI: 10.3390/jcm11092490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Raynaud’s phenomenon is a painful vascular condition in which abnormal vasoconstriction of the digital arteries causes blanching of the skin. The treatment approach can vary depending on the underlying cause of disease. Raynaud’s phenomenon can present as a primary symptom, in which there is no evidence of underlying disease, or secondary to a range of medical conditions or therapies. Systemic sclerosis is one of the most frequent causes of secondary Raynaud’s phenomenon; its appearance may occur long before other signs and symptoms. Timely, accurate identification of secondary Raynaud’s phenomenon may accelerate a final diagnosis and positively alter prognosis. Capillaroscopy is fundamental in the diagnosis and differentiation of primary and secondary Raynaud’s phenomenon. It is helpful in the very early stages of systemic sclerosis, along with its role in disease monitoring. An extensive range of pharmacotherapies with various routes of administration are available for Raynaud’s phenomenon but a standardized therapeutic plan is still lacking. This review provides insight into recent advances in the understanding of Raynaud’s phenomenon pathophysiology, diagnostic methods, and treatment approaches.
Collapse
Affiliation(s)
- Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (M.M.); (R.A.-M.); (J.C.); (L.R.)
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Cezary Maciejewski
- 1st Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Rosanna Alda-Malicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (M.M.); (R.A.-M.); (J.C.); (L.R.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (M.M.); (R.A.-M.); (J.C.); (L.R.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (M.M.); (R.A.-M.); (J.C.); (L.R.)
| |
Collapse
|
50
|
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors used worldwide to manage dyslipidaemia and thus limit the development of atherosclerotic disease and its complications. These atheroprotective drugs are now known to exert pleiotropic actions outside of their cholesterol-lowering activity, including altering immune cell function. Macrophages are phagocytic leukocytes that play critical functional roles in the pathogenesis of atherosclerosis and are directly targeted by statins. Early studies documented the anti-inflammatory effects of statins on macrophages, but emerging evidence suggests that these drugs can also enhance pro-inflammatory macrophage responses, creating an unresolved paradox. This review comprehensively examines the in vitro, in vivo, and clinical literature to document the statin-induced changes in macrophage polarization and immunomodulatory functions, explore the underlying mechanisms involved, and offer potential explanations for this paradox. A better understanding of the immunomodulatory actions of statins on macrophages should pave the way for the development of novel therapeutic approaches to manage atherosclerosis and other chronic diseases and conditions characterised by unresolved inflammation.
Collapse
|