1
|
Wang C, Xi Z, Sun X, Han J, Guo R. In situ growth of MnO 2 nanoparticles on supramolecular polyaniline as chiral nanozymes for effective enantioselective catalysis. Chem Commun (Camb) 2024; 60:14798-14801. [PMID: 39584395 DOI: 10.1039/d4cc05482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In situ growth of MnO2 nanoparticles (NPs) onto chiral P/M-polyaniline (P/M-PANI) scaffolds efficiently regulates the supramolecular chirality, making them function as chiral nanozymes for controllable enantioselective catalysis. Compared with the ex situ loaded MnO2 NPs onto P/M-PANI scaffolds, the enantioselectivity of the in situ growth system is significantly enhanced due to the stronger bonding between catalytic centers and supramolecular scaffolds.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Arai M, Suzuki E, Kitamura S, Otaki M, Kanai K, Yamasaki M, Watanabe M, Kambe Y, Murata K, Takada Y, Arisawa T, Kobayashi K, Tajika R, Miyazaki T, Yamaguchi M, Lazarus M, Hayashi Y, Itohara S, de Kerchove d'Exaerde A, Nawa H, Kim R, Bito H, Momiyama T, Masukawa D, Goshima Y. Enhancement of Haloperidol-Induced Catalepsy by GPR143, an L-Dopa Receptor, in Striatal Cholinergic Interneurons. J Neurosci 2024; 44:e1504232024. [PMID: 38286627 PMCID: PMC10941237 DOI: 10.1523/jneurosci.1504-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.
Collapse
Affiliation(s)
- Masami Arai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Satoshi Kitamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Momoyo Otaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-0075, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui 910-0017, Japan
| | - Yuuki Takada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Radioisotope Research Center, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Rei Tajika
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Michael Lazarus
- Institute of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | | | - Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University. Wakayama-city, Wakayama 640-8156, Japan
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
Nakano M, Koga M, Hashimoto T, Matsushita N, Masukawa D, Mizuno Y, Uchimura H, Niikura R, Miyazaki T, Nakamura F, Zou S, Shimizu T, Saito M, Tamura K, Goto T, Goshima Y. Right ventricular overloading is attenuated in monocrotaline-induced pulmonary hypertension model rats with a disrupted Gpr143 gene, the gene that encodes the 3,4-l-dihydroxyphenyalanine (l-DOPA) receptor. J Pharmacol Sci 2022; 148:214-220. [PMID: 35063136 DOI: 10.1016/j.jphs.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 μM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Disease Models, Animal
- Heart Failure/etiology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertrophy, Right Ventricular/etiology
- In Vitro Techniques
- Male
- Monocrotaline/adverse effects
- Pulmonary Artery/physiology
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Neurotransmitter/genetics
- Systole
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Function, Right/genetics
- Rats
Collapse
Affiliation(s)
- Masayuki Nakano
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Anesthesiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Anesthesiology, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Internal Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka 238-8680, Japan, Yokosuka, 238-8570, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Nagakute, 480-1195, Aichi, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yusuke Mizuno
- Department of Anesthesiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Hiraku Uchimura
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Ryo Niikura
- Department of Anesthesiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan; Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, 162- 8666, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, 236-0004, Japan.
| |
Collapse
|
4
|
Masukawa D, Yamada K, Goshima Y. Overexpression of the gene product of ocular albinism 1 (GPR143/OA1) but not its mutant forms inhibits neurite outgrowth in PC12 cells. J Pharmacol Sci 2019; 141:41-48. [PMID: 31606330 DOI: 10.1016/j.jphs.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/01/2022] Open
Abstract
Neurite outgrowth is a complex differentiation process regulated by external and/or internal mechanisms. Among external mechanisms, G-protein coupled receptors (GPCRs) have been implicated in this process, but the pathways involved are not fully understood. L-3,4-dihydroxyphenylalanine (l-DOPA) is considered to be inert by itself, and to relieve Parkinson's disease through its conversion to dopamine. We have proposed that l-DOPA acts as a neurotransmitter. GPR143, the gene product of ocular albinism 1 (OA1), was identified as a receptor for l-DOPA. OA1 is an X-linked disorder characterized by all typical visual anomalies associated with hypopigmentation and optic misrouting, resulting in severe reduction of visual acuity. However, the molecular basis for this phenotype remains unknown. To study the function of GPR143, we investigated the phenotypic effect of overexpression of GPR143 in pheochromocytoma (PC12) cells treated with nerve growth factor. Overexpression of mouse GPR143 inhibited neurite outgrowth, and the effect was mitigated by l-DOPA cyclohexylester, an antagonist for l-DOPA. Furthermore, knockdown of G-protein Gα13 attenuated mouse GPR143 induced inhibition of neurite outgrowth. Human wild-type (wt) GPR143 also inhibited neurite outgrowth, but its mutants did not mimic the effect of wt GPR143. Our results provide a mechanism for axon guidance phenotype in ocular albinism 1.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kaisei Yamada
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
5
|
L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine. Neuroscience 2017; 360:18-27. [PMID: 28757247 DOI: 10.1016/j.neuroscience.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors.
Collapse
|
6
|
Fukuda N, Naito S, Masukawa D, Kaneda M, Miyamoto H, Abe T, Yamashita Y, Endo I, Nakamura F, Goshima Y. Expression of ocular albinism 1 (OA1), 3, 4- dihydroxy- L-phenylalanine (DOPA) receptor, in both neuronal and non-neuronal organs. Brain Res 2015; 1602:62-74. [PMID: 25601010 DOI: 10.1016/j.brainres.2015.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
Abstract
Oa1 is the casual gene for ocular albinism-1 in humans. The gene product OA1, alternatively designated as GPR143, belongs to G-protein coupled receptors. It has been reported that OA1 is a specific receptor for 3, 4-dihydroxy- L-phenylalanine (DOPA) in retinal pigmental epithelium where DOPA facilitates the pigmentation via OA1 stimulation. We have recently shown that OA1 mediates DOPA-induced depressor response in rat nucleus tractus solitarii. However, the distribution and function of OA1 in other regions are largely unknown. We have generated oa1 knockout mice and examined OA1 expression in both neuronal and non-neuronal tissues by immunohistochemical analyses using anti-mouse OA1 monoclonal antibodies. In the telencephalon, OA1 was expressed in cerebral cortex and hippocampus. Predominant expression of OA1 was observed in the pyramidal neurons in these regions. OA1 was also expressed in habenular nucleus, hypothalamus, substantia nigra, and medulla oblongata. The expression of OA1 in the nucleus tractus solitarii of medulla oblongata may support the reduction of blood pressure by the microinjection of DOPA into this region. Outside of the nervous system, OA1 was expressed in heart, lung, liver, kidney and spleen. Abundant expression was observed in the renal tubules and the splenic capsules. These peripheral regions are innervated by numerous sympathetic nerve endings. In addition, substantia nigra contains a large population of dopaminergic neurons. Thus, the immunohistochemical analyses suggest that OA1 may modulate the monoaminergic functions in both peripheral and central nervous systems.
Collapse
Affiliation(s)
- Nobuhiko Fukuda
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Saki Naito
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Moemi Kaneda
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroshi Miyamoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yui Yamashita
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
7
|
Hiroshima Y, Miyamoto H, Nakamura F, Masukawa D, Yamamoto T, Muraoka H, Kamiya M, Yamashita N, Suzuki T, Matsuzaki S, Endo I, Goshima Y. The protein Ocular albinism 1 is the orphan GPCR GPR143 and mediates depressor and bradycardic responses to DOPA in the nucleus tractus solitarii. Br J Pharmacol 2014; 171:403-14. [PMID: 24117106 DOI: 10.1111/bph.12459] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/12/2013] [Accepted: 09/30/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE L-DOPA is generally considered to alleviate the symptoms of Parkinson's disease by its conversion to dopamine. We have proposed that DOPA is itself a neurotransmitter in the CNS. However, specific receptors for DOPA have not been identified. Recently, the gene product of ocular albinism 1 (OA1) was found to exhibit DOPA-binding activity. Here, we have investigated whether OA1 is a functional receptor of DOPA in the nucleus tractus solitarii (NTS). EXPERIMENTAL APPROACH We examined immunohistochemical expression of OA1 in the NTS, and the effects of DOPA microinjected into the depressor sites of NTS on blood pressure and heart rate in anaesthetized rats, with or without prior knock-down of OA1 in the NTS, using shRNA against OA1. KEY RESULTS Using a specific OA1 antibody, OA1-positive cells and nerve fibres were found in the depressor sites of the NTS. OA1 expression in the NTS was markedly suppressed by microinjection into the NTS of adenovirus vectors carrying the relevant shRNA sequences against OA1. In animals treated with OA1 shRNA, depressor and bradycardic responses to DOPA, but not those to glutamate, microinjected into the NTS were blocked. Bilateral injections into the NTS of DOPA cyclohexyl ester, a competitive antagonist against OA1, suppressed phenylephrine-induced bradycardic responses without affecting blood pressure responses. CONCLUSION AND IMPLICATIONS OA1 acted as a functional receptor for DOPA in the NTS, mediating depressor and bradycardic responses. Our results add to the evidence for a central neurotransmitter role for DOPA, without conversion to dopamine.
Collapse
Affiliation(s)
- Y Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Goshima Y, Nakamura F, Masukawa D, Chen S, Koga M. The Cardiovascular Actions of DOPA Mediated by the Gene Product of ocular albinism 1. J Pharmacol Sci 2014; 126:14-20. [DOI: 10.1254/jphs.14r03cr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
In vivo antagonism of the behavioral responses to L-3-,4-dihydroxyphenylalanine by L-3-,4-dihydroxyphenylalanine cyclohexyl ester in conscious rats. Eur J Pharmacol 2009; 605:109-13. [DOI: 10.1016/j.ejphar.2008.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 12/14/2008] [Accepted: 12/23/2008] [Indexed: 11/18/2022]
|
10
|
Murota Y, Fujii M, Sugiyama Y, Funabashi T, Yagami T, Takahashi T, Goshima Y. DOPA cyclohexyl ester, a DOPA antagonist, blocks the depressor responses elicited by microinjections of nicotine into the nucleus tractus solitarii of rats. Neurosci Lett 2008; 442:114-7. [PMID: 18620021 DOI: 10.1016/j.neulet.2008.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/07/2008] [Accepted: 06/29/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic cholinergic receptors play a role in cardiovascular regulation in the lower brain stem. Herein, we present evidence that l-3,4-dihydroxyphenylalanine (DOPA), a putative neurotransmitter in the central nervous system, is involved in the depressor response to microinjection of nicotine into the nucleus tractus solitarii (NTS). Microinjection of nicotine into the medial area of the NTS led to decreases in arterial blood pressure and heart rate in anesthetized rats. Mecamylamine, a nicotinic receptor antagonist, microinjected into NTS, blocked the depressor and bradycardic responses to nicotine. Nicotine-induced depressor and bradycardic responses were blocked by DOPA cyclohexyl ester (DOPA CHE), an antagonist for DOPA. DOPA CHE did not modify the action of carbachol on excitatory postsynaptic potential in rat cortical slices. These results suggest that endogenous DOPA is involved in nicotine-induced depressor responses in the NTS of anesthetized rats.
Collapse
Affiliation(s)
- Y Murota
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Izawa JI, Yamanashi K, Asakura T, Misu Y, Goshima Y. Differential effects of methamphetamine and cocaine on behavior and extracellular levels of dopamine and 3,4-dihydroxyphenylalanine in the nucleus accumbens of conscious rats. Eur J Pharmacol 2006; 549:84-90. [PMID: 16979160 DOI: 10.1016/j.ejphar.2006.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
The central dopamine system plays a prominent role in the effect of psychostimulants such as methamphetamine, cocaine and nicotine. l-3,4-Dihydroxyphenylalanine (DOPA), a precursor of dopamine, has been proposed as a neurotransmitter in the central nervous system. We have studied the effects of these psychostimulants on the release of DOPA and dopamine from the nucleus accumbens shell in conscious rats using in vivo microdialysis. Methamphetamine and cocaine increase the extracellular levels of dopamine. The effect of methamphetamine (1 mg/kg s.c.) on the release of dopamine was almost comparable to that of cocaine (10 mg/kg i.p.). However, methamphetamine increases, but cocaine decreases the extracellular levels of DOPA. In a behavioral study, methamphetamine (1 mg/kg s.c.) induced chewing, walking and sniffing behavior. Cocaine (10 mg/kg i.p.) produces weak effects on these behavioral parameters, when compared to the effects of methamphetamine (1 mg/kg s.c.). The behavioral changes produced by methamphetamine are suppressed by DOPA cyclohexyl ester (30 mg/kg i.p.), a competitive DOPA antagonist. Endogenous DOPA in the nucleus accumbens thus appears to be in involved in the behavioral responses to these psychomotor stimulants.
Collapse
Affiliation(s)
- Jun-ichi Izawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | |
Collapse
|
12
|
Eguchi S, Tezuka S, Hobara N, Akiyama S, Kurosaki Y, Kawasaki H. Vanilloid receptors mediate adrenergic nerve- and CGRP-containing nerve-dependent vasodilation induced by nicotine in rat mesenteric resistance arteries. Br J Pharmacol 2004; 142:1137-46. [PMID: 15249421 PMCID: PMC1575167 DOI: 10.1038/sj.bjp.0705773] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies showed that nicotine induces adrenergic nerve-dependent vasodilation that is mediated by endogenous calcitonin gene-related peptide (CGRP) released from CGRP-containing (CGRPergic) nerves. The mechanisms underlying the nicotine-induced vasodilation were further studied. Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine, and the perfusion pressure was measured with a pressure transducer. Perfusion of nicotine (1-100 microm) for 1 min caused concentration-dependent vasodilation. Capsazepine (vanilloid receptor-1 antagonist; 1-10 microm) and ruthenium red (inhibitor of vanilloid response; 1-30 microm) concentration-dependently inhibited the nicotine-induced vasodilation without affecting the vasodilator response to exogenous CGRP. Nicotine-induced vasodilation was not inhibited by treatment with 3,4-dihydroxyphenylalanine (DOPA) receptor antagonist (l-DOPA cyclohexyl ester; 0.001-10 microm), dopamine D1 receptor-selective antagonist (SCH23390; 1-10 microm), dopamine D2 receptor antagonist (haloperidol; 0.1-0.5 microm), ATP P2x receptor-desensitizing agonist (alpha,beta-methylene ATP; 1-10 microm), adenosine A2 receptor antagonist (8(p-sulfophenyl)theophylline; 10-50 microm) or neuropeptide Y (NPY)-Y1 receptor antagonist (BIBP3226; 0.1-0.5 microm). Immunohistochemical staining of the mesenteric artery showed dense innervation of CGRP- and vanilloid receptor-1-positive nerves, with both immunostainings appearing in the same neuron. The mesenteric artery was also densely innervated by NPY-positive nerves. Double immunostainings showed that both NPY and CGRP immunoreactivities appeared in the same neuron of the artery. These results suggest that nicotine acts on presynaptic nicotinic receptors to release adrenergic neurotransmitter(s) or related substance(s), which then stimulate vanilloid receptor-1 on CGRPergic nerves, resulting in CGRP release and vasodilation.
Collapse
MESH Headings
- Adrenergic Fibers/drug effects
- Adrenergic Fibers/physiology
- Animals
- Calcitonin Gene-Related Peptide/physiology
- Calcitonin Gene-Related Peptide Receptor Antagonists
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Microscopy, Confocal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/physiology
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Purinergic P1 Receptor Antagonists
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Wistar
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/physiology
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/metabolism
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P2/metabolism
- Ruthenium Red/administration & dosage
- Ruthenium Red/pharmacology
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shinji Eguchi
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Satoko Tezuka
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Narumi Hobara
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Shinji Akiyama
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Yuji Kurosaki
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Hiromu Kawasaki
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
- Author for correspondence:
| |
Collapse
|
13
|
Hashimoto M, Miyamae T, Yamamoto I, Goshima Y. DOPA cyclohexyl ester potently inhibits aglycemia-induced release of glutamate in rat striatal slices. Neurosci Res 2003; 45:335-44. [PMID: 12631469 DOI: 10.1016/s0168-0102(02)00237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain ischemic insult causes glutamate release and resultant neuronal cell death. We here show that L-3,4-dihydroxyphenylalanine (DOPA) is a positive regulatory factor for glutamate release elicited by a mild brain insult using in vitro superfused rat striatal slices as a model system. Glucose deprivation for 18 min elicited release of glutamate, DOPA and dopamine (DA). Either tetrodotoxin (TTX) (1 microM) or alpha-methyl-p-tyrosine (alpha-MPT) (1 mM), a tyrosine hydroxylase inhibitor reduced markedly each of these releases. NSD-1015 (20 microM), an aromatic L-amino acid decarboxylase inhibitor restored the inhibition by alpha-MPT of glutamate and DOPA but not DA release. DOPA cyclohexyl ester (DOPA CHE) (0.3-1 microM), a competitive DOPA antagonist, concentration-dependently suppressed aglycemia-induced glutamate release, the effect which was mimicked neither by S-sulpiride nor SCH23390, a DA D(1) or D(2) receptor antagonist, respectively. Zonisamide (1-1000 microM), an anticonvulsant or YM872 (1 microM), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) a receptor antagonist produced no effect on aglycemia-induced glutamate release. DOPA CHE thus showed a relatively potent inhibitory action on aglycemia-induced glutamate release among several neuroprotective agents tested.
Collapse
Affiliation(s)
- Mizuki Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | |
Collapse
|
14
|
Misu Y, Kitahama K, Goshima Y. L-3,4-Dihydroxyphenylalanine as a neurotransmitter candidate in the central nervous system. Pharmacol Ther 2003; 97:117-37. [PMID: 12559386 DOI: 10.1016/s0163-7258(02)00325-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been believed to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator, in addition to being a precursor of dopamine. Several criteria, such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism, and physiological or pharmacological responses, must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement mainly in baroreflex neurotransmission in the lower brainstem and in delayed neuronal death by transient ischemia in the striatum and the hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
15
|
Misu Y, Furukawa N, Arai N, Miyamae T, Goshima Y, Fujita K. DOPA causes glutamate release and delayed neuron death by brain ischemia in rats. Neurotoxicol Teratol 2002; 24:629-38. [PMID: 12200194 DOI: 10.1016/s0892-0362(02)00214-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DOPA seems to be a neuromodulator in striata and hippocampal CA1 and a neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS) and baroreflex pathways in the caudal ventrolateral medulla and rostral ventrolateral medulla in the brainstem of rats. DOPA recognition sites differ from dopamine (DA) D(1) and D(2) and ionotropic glutamate receptors. Via DOPA sites, DOPA stereoselectively releases by itself neuronal glutamate from in vitro and in vivo striata. In the cultured neurons, DOPA and DA cause neuron death via autoxidation. In addition, DOPA causes autoxidation-irrelevant neuron death via glutamate release. Furthermore, DOPA released by four-vessel occlusion seems to be an upstream causal factor for glutamate release and resultant delayed neuron death by brain ischemia in striata and hippocampal CA1. Glutamate has been regarded as a neurotransmitter of baroreflex pathways. Herein, we propose a new pathway that DOPA is a neurotransmitter of the primary aortic depressor nerve and glutamate is that of secondary neurons in neuronal microcircuits of depressor sites in the NTS. DOPA seems to release unmeasurable, but functioning, endogenous glutamate from the secondary neurons via DOPA sites. A common following pathway may be ionotropic glutamate receptors-nNOS activation-NO production-baroreflex neurotransmission and delayed neuron death. However, we are concerned that DOPA therapy may accelerate neuronal degeneration process especially at progressive stages of Parkinson's disease.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Yamanashi K, Miyamae T, Sasaki Y, Maeda M, Hirano H, Misu Y, Goshima Y. Involvement of nitric oxide production via kynurenic acid-sensitive glutamate receptors in DOPA-induced depressor responses in the nucleus tractus solitarii of anesthetized rats. Neurosci Res 2002; 43:231-8. [PMID: 12103441 DOI: 10.1016/s0168-0102(02)00037-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have proposed the hypothesis that L-3,4-dihydroxyphenylalanine (DOPA) plays a role of neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS). In the present study, we tried to clarify whether glutamate receptors and/or nitric oxide (NO), important modulators for central cardiovascular regulation, are involved in the DOPA-induced cardiovascular responses in the nucleus. Male Wistar rats were anesthetized with urethane and artificially ventilated. Compounds or antisense oligos (17-mer) for neuronal NO synthase were microinjected into depressor sites of the unilateral nucleus. DOPA 30-300 pmol microinjected into the nucleus dose-dependently induced depressor and bradycardic responses. Prior injection of kynurenic acid (600 pmol) suppressed DOPA (300 pmol)-induced responses by approximately 80%. Prior injection of N(G)-monomethyl-L-arginine 100 nmol, a potent NO synthase inhibitor, reversibly attenuated by approximately 90% DOPA-induced responses, while the D-isomer 100 nmol produced no effect. Furthermore, prior injection of neuronal NO synthase antisense oligos (20 pmol) reversibly reduced by approximately 70% responses to DOPA. Sense or scrambled oligos produced no effect. A NO precursor L-arginine (30 nmol) induced depressor and bradycardic responses, but these responses were not affected by kynurenic acid. These results suggest important roles for glutamate receptors and NO in DOPA induced-depressor and bradycardic responses in the NTS.
Collapse
Affiliation(s)
- Kaori Yamanashi
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been considered to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator in addition to being a precursor of dopamine. Several criteria such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism and physiological or pharmacological responses must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement in baroreflex neurotransmission.
Collapse
Affiliation(s)
- Yoshimi Misu
- Yokohama City University, Shinobu Hospital, 31-1 Takahata, Ohmori, Fukushima 960-1101, Japan.
| | | | | |
Collapse
|
18
|
Sugaya Y, Sasaki Y, Goshima Y, Kitahama K, Kusakabe T, Miyamae T, Kato T, Misu Y. Autoradiographic studies using L-[(14)C]DOPA and L-DOPA reveal regional Na(+)-dependent uptake of the neurotransmitter candidate L-DOPA in the CNS. Neuroscience 2001; 104:1-14. [PMID: 11311526 DOI: 10.1016/s0306-4522(01)00008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the CNS. Receptor and transporter molecules for L-DOPA, however, have not been determined. In the present study, in order to localize the uptake sites of L-DOPA in the CNS, we performed autoradiographic uptake studies using L-[14C]DOPA and L-[3H]DOPA in the uptake study on rat brain slice preparations, and further analyzed the properties of L-DOPA uptake. Image analysis of the L-[14C]DOPA autoradiogram showed a unique heterogeneous distribution of uptake sites in the brain. The intensity was relatively high in the cerebral cortex, the hypothalamus, the cerebellum and the hippocampus, while the density was moderate or even low in the striatum and the substantia nigra. L-DOPA and phenylalanine, but not dopamine (10mM) were able to almost completely inhibit the uptake of L-[14C]DOPA to basal levels. Microautoradiographic studies using L-[3H]DOPA revealed accumulation of dense grains in the median eminence, the supraoptic nucleus of the hypothalamus, the cerebral cortex (layer I) and the hippocampus. In the cerebellum, grains formed in clusters surrounding the Purkinje cells. This grain accumulation was concluded to be in Bergmann glial cells, since the morphological pattern of grain accumulation was similar to that of the immunoreactivity of the glutamate aspartate transporter, a marker protein for Bergmann glial cells. In the hippocampus, the grain density significantly decreased under Na(+)-free conditions. In addition, grain density also decreased in the absence of Cl(-). In contrast, grains in the choroid plexus and the ependymal cell layer, were not affected by the absence of Na(+). These findings indicated that the uptake of L-DOPA occurs via various types of large neutral amino acid transport mechanisms. It appears that neuronal and/or glial cells, which take up L-DOPA in a Na(+)-dependent manner, exist in the CNS. Our finding further supports the concept that L-DOPA itself may act as a neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- Y Sugaya
- Department of Pharmacology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Akbar M, Ishihara K, Sasa M, Misu Y. Inhibition by L-3,4-dihydroxyphenylalanine of hippocampal CA1 neurons with facilitation of noradrenaline and gamma-aminobutyric acid release. Eur J Pharmacol 2001; 414:197-203. [PMID: 11239919 DOI: 10.1016/s0014-2999(01)00793-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrophysiological studies were performed to elucidate whether L-3,4-dihydroxyphenylalanine (L-DOPA) acted on hippocampal CA1 neurons, since this drug has been reported to act as a neurotransmitter in the hypothalamus and striatum. Hippocampal slices (450 microM thick) obtained from male Wistar rats (4-7 weeks of age) were placed in a bath (maintained at 30+/-1 degrees C) continuously perfused with artificial cerebrospinal fluid. The population spikes elicited by electrical stimuli applied to the Schaffer collateral/commissural fibers were recorded in the hippocampal CA1 region, using a glass micropipette filled with 3 M NaCl. Drugs were applied in the bath through a perfusion system. The population spikes were inhibited by L-DOPA (1 nM-10 microM) with a bell-shaped concentration-response curve (n=7-15). Maximum inhibitory effects were obtained at 100 nM. L-DOPA cyclohexyl ester, a putative L-DOPA recognition site antagonist, antagonized the L-DOPA-induced inhibition of population spike. However, the inhibition remained unaffected in the presence of 3-hydroxybenzylhydrazine, an aromatic amino acid decarboxylase inhibitor. Furthermore, bath application of either phentolamine, an alpha-adrenoceptor antagonist, or bicuculline, a GABA(A) receptor antagonist, antagonized the inhibitory effects of L-DOPA on population spikes. In addition, bicuculline (1 microM) antagonized the inhibition of population spike induced by 6-fluoronorepinephrine (10 microM), an alpha-adrenoceptor agonist, while phentolamine (10 microM) did not affect the muscimol (1 microM)-induced inhibition. These results suggested that L-DOPA itself acted on L-DOPA recognition sites to release noradrenaline, and that the latter facilitates gamma-aminobutyric acid (GABA) release via alpha-adrenoceptors located on the GABA-containing cells and/or their nerve terminals, thereby inhibiting the population spikes in the hippocampal CA1 field.
Collapse
Affiliation(s)
- M Akbar
- Department of Pharmacology, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
20
|
Arai N, Furukawa N, Miyamae T, Goshima Y, Sasaki Y, Ohshima E, Suzuki F, Fujita K, Misu Y. DOPA cyclohexyl ester, a competitive DOPA antagonist, protects glutamate release and resultant delayed neuron death by transient ischemia in hippocampus CA1 of conscious rats. Neurosci Lett 2001; 299:213-6. [PMID: 11165773 DOI: 10.1016/s0304-3940(01)01520-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In rat striata, DOPA released is a causal factor for glutamate release and resultant delayed neuron death by four-vessel occlusion. Nanomolar DOPA cyclohexyl ester (CHE), a potent and relatively stable competitive DOPA antagonist, protects these events. We tried to clarify whether DOPA CHE protects these events in hippocampal CA1 pyramidal cell layers most vulnerable against ischemia. Five to 10 min ischemia caused slight to mild glutamate release in 10 min samples during microdialysis and mild to severe neuron death 96 h after reperfusion. DOPA and dopamine were under assay limit in this design, but were basally detected by 20 min sampling and released by 20 min ischemia. In 10 min samples, intrahippocampal perfusion of 100 nM DOPA CHE 10 min before ischemia for 70 min did not inhibit glutamate release by 10 min ischemia, while it abolished glutamate release and protected delayed neuron death by 5 min ischemia. DOPA CHE is neuroprotective under a mild ischemic condition in rat hippocampus CA1.
Collapse
Affiliation(s)
- N Arai
- Department of Clinical Neuropathology, Tokyo Metropolitan Institute of Neuroscience, 183-8526, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|