1
|
Twala C, Malindisa S, Munnik C, Sooklal S, Ntwasa M. Ezetimibe Anticancer Activity via the p53/Mdm2 Pathway. Biomedicines 2025; 13:195. [PMID: 39857778 PMCID: PMC11761875 DOI: 10.3390/biomedicines13010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ezetimibe is used to treat cardiovascular disease as it blocks the sterol transporter Niemann-Pick C1-Like 1 (NPC1CL1) protein. However, recent evidence indicates that Ezetimibe inhibits several cancers indirectly by reducing circulating cholesterol or via specific signalling pathways. METHODS AND RESULTS Our in silico studies indicate that Ezetimibe binds to the Tp53 binding domain in Mdm2, forming a more thermodynamically stable complex than nutlin3a. Furthermore, a docking study of the newly developed inhibitors-RG7388 and RG7112-was conducted. This further showed lower binding energies of -6.337 kcal/mol and -6.222 kcal/mol, respectively, when compared to the -7.919 kcal/mol exhibited by Ezetimibe. We show that Ezetimibe inhibits the growth of several cancer cell lines at concentrations that are not toxic to a normal cell line. CONCLUSIONS Thus, Ezetimibe is probably active against cancers that overexpress Mdm2. Moreover, inhibitors of RBBP6 may be combined with Ezetimibe for effective anticancer activity. Due to poor oral bioavailability, Ezetimibe must be administered parenterally for cancer treatment.
Collapse
Affiliation(s)
- Charmy Twala
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Sibusiso Malindisa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Chamone Munnik
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Selisha Sooklal
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Monde Ntwasa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
- Buboo Bioinnovations (Pty) Ltd., The Innovation Hub, Hatfield, Pretoria 0200, South Africa
| |
Collapse
|
2
|
Zheng C, Wang Y, Bi B, Zhou W, Cao X, Zhang C, Lu W, Sun Y, Qu J, Lv W. Gallic acid ameliorates endometrial hyperplasia through the inhibition of the PI3K/AKT pathway and the down-regulation of cyclin D1 expression. J Pharmacol Sci 2024; 155:1-13. [PMID: 38553133 DOI: 10.1016/j.jphs.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Gallic acid (GA) is an organic compound with phenolic properties that occurs naturally and can be found in Guizhi Fuling capsules, showcasing a wide range of biological functionalities. PURPOSE The objective of this study was to examine the influence of GA on endometrial hyperplasia (EH) and elucidate its underlying mechanism. METHODS Initially, the induction of EH was achieved by administering estradiol to mice via continuous subcutaneous injection for a duration of 21 days. Concurrently, GA treatment was administered, and subsequently, the uterine tissue structure was assessed using hematoxylin and eosin (H&E) staining. Following this, the proliferation of human endometrial cells treated by GA was determined utilizing the CCK-8 method. Furthermore, network pharmacology and single-cell-RNA-seq data were employed to identify the target of GA action. In addition, we will employ immunofluorescence (IF), immunohistochemistry (IHC), flow cytometry, western blot and RT-qPCR methodologies to investigate the impact of GA on the expression level of cyclin D1, PI3K, p-PI3K, AKT, p-AKT. RESULTS GA treatment ameliorated histopathological alterations in the uterus and suppress proliferation. Estradiol stimulation can activate the PI3K/AKT pathway, leading to up-regulation of cyclin D1 expression, whereas GA treatment results in down-regulation of its expression. CONCLUSIONS The expression of cyclin D1 is down-regulated by GA through the inhibition of the PI3K/AKT pathway, effectively mitigating estradiol-induced EH in mice.
Collapse
Affiliation(s)
- Caijie Zheng
- The Second Clinical School of Zhejiang Chinese Medicine University, Hangzhou, 310053, China
| | - Yi Wang
- Colon and Rectal Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Beilei Bi
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wentian Lu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210029, China.
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Fathy N, Farouk S, Sayed RH, Fahim AT. Ezetimibe ameliorates cisplatin-induced nephrotoxicity: A novel therapeutic approach via modulating AMPK/Nrf2/TXNIP signaling. FASEB J 2024; 38:e23382. [PMID: 38145344 DOI: 10.1096/fj.202302019r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Cisplatin (Cis) is among the most powerful antineoplastic medications, nevertheless, its serious side effects; particularly nephrotoxicity designates a major concern. Previous studies reported that ezetimibe (Eze), a well-known antihyperlipidemic drug, exerts additional trivial pharmacological effects. In this work, we displayed Eze as an intriguing protective candidate in a cisplatin-induced nephrotoxicity rat model through AMPK activation. Eze (10 mg/kg, p.o.) was administered for two weeks and Cis (10 mg/kg, i.p.) was administered on the 10th day to induce nephrotoxicity in male Wistar rats. Treatment with Eze greatly augmented the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and the antioxidant regulator; nuclear factor erythroid 2-related factor 2 (Nrf2), thus, mitigating oxidative injury through induction of the antioxidant enzymes, such as heme oxygenase-1 (HO-1) and glutathione reductase (GR). As well, Eze relieved inflammation by reducing protein expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding domain-like receptor protein 3 (NLRP3), which led to a decrease in the release of caspase-1, in addition to, the inflammatory markers IL-18 and IL-1 β. Besides, Eze ameliorated apoptosis in the renal cells through inhibiting the phosphorylated Apoptosis signal-regulating kinase-1(p-ASK1), caspase-3 and reducing Bax/Bcl2ratio. Correspondingly, histopathological examination corroborated the previous biochemical findings. Collectively, Eze exerts significant renal protection against Cis-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways that are probably mediated, at least partly, via activating AMPK/Nrf2/HO-1 pathway and conquering both TXNIP/NLRP3 inflammasome and TXNIP/ASK1 signaling pathways. To confirm the protective effect of Eze via AMPK-activation, an AMPK-inhibitor, dorsomorphin (Dors), when co-administered with Eze abolished its protective effect.
Collapse
Affiliation(s)
- Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa Farouk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Atef Tadros Fahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Ahmed TA, Ali EMM, Omar AM, Almehmady AM, El‐Say KM. Enhancing Ezetimibe Anticancer Activity Through Development of Drug Nano-Micelles Formulations: A Promising Strategy Supported by Molecular Docking. Int J Nanomedicine 2023; 18:6689-6703. [PMID: 38026536 PMCID: PMC10657552 DOI: 10.2147/ijn.s438704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ezetimibe, initially recognized as a cholesterol-lowering agent, has recently attracted attention due to its potential anticancer properties. We aimed to explore an innovative approach of enhancing the drug anticancer activity through the development of drug nano-formulations. Materials and Methods Fifteen different nano-micelles formulations were prepared utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and pluronic F127. The prepared formulations were characterized for size, polydispersity index (PDI), zeta potential, and entrapment efficiency (EE). The formulations were morphologically characterized using light and transmission electron microscopies and the drug-binding mode with the active site was investigated using the molecular docking. Cell viability against MCF-7 and T47D was studied. Apoptosis and cell cycle were assessed. Results The prepared formulations were in the nano-size range (34.01 ± 2.00-278.34 ± 9.11 nm), zeta potential values were very close to zero, and the TPGS-based micelles formulations showed the highest ezetimibe EE (94.03 ± 1.71%). Morphological study illustrated a well-defined, spherical nanoparticles with a uniform size distribution. Molecular docking demonstrated good interaction of ezetimibe with Interleukin-1 Beta Convertase through multiple hydrogen bonding, covalent bond, and hydrophobic interaction. TPGS-based nano-micelle formulation (F5) demonstrated the lowest IC50 against MCF-7 (4.51 µg/mL) and T47D (8.22 µg/mL) cancer cells. When T47D cells were treated with IC50 concentrations of F5, it exhibited significant inhibition with late apoptosis (43.9%), a response comparable to T47D cells treated with an IC50 dose of ezetimibe. Cell cycle analysis revealed that both ezetimibe and F5-treated T47D cells exhibited an increase in the subG1 phase, indicating reduced DNA content and cell death. Conclusion These findings suggest that F5 could serve as a proficient drug delivery system in augmenting the cytotoxic activity of ezetimibe against breast cancer.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Khalid M El‐Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Jin W, Tian Y, Ding Y, Zhou D, Li L, Yuan M, Wu Y, Ye M, Luan J, Yang K. Pers reverse angiotensin II -induced vascular smooth muscle cell proliferation by targeting cyclin E expression via inhibition of the MAPK signaling pathway. Chronobiol Int 2023; 40:903-917. [PMID: 37338051 DOI: 10.1080/07420528.2023.2224904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The circadian rhythm of blood pressure (BP) is believed to be regulated by the clock system, which is closely linked to levels of angiotensin II (Ang II). This study aimed to investigate whether Ang II mediates the proliferation of vascular smooth muscle cells (VSMCs) through the interaction between the clock system and the mitogen-activated protein kinase (MAPK) signaling pathway. Primary rat aortic VSMCs were treated with Ang II, with or without MAPK inhibitors. VSMC proliferation, expression of clock genes, CYCLIN E, and MAPK pathways were assessed. Ang II treatment resulted in increased VSMC proliferation and rapid upregulation of clock gene Periods (Pers) expression. Compared to the non-diseased control (NC) group, VSMCs incubated with Ang II displayed a noticeable delay in the G1/S phase transition and downregulation of CYCLIN E upon silencing of Per1 and Per2 genes. Importantly, silencing Per1 or Per2 in VSMCs led to decreased expression of key MAPK pathway proteins, including RAS, phosphorylated mitogen-activated protein kinase (P-MEK), and phosphorylated extracellular signal-regulated protein kinase (P-ERK). Moreover, the MEK and ERK inhibitors, U0126 and SCH772986, significantly attenuated the Ang II-induced proliferation of VSMCs, as evidenced by an increased G1/S phase transition and decreased CYCLIN E expression. The MAPK pathway plays a critical role in regulating VSMC proliferation in response to Ang II stimulation. This regulation is controlled by the expression of circadian clock genes involved in the cell cycle. These findings provide novel insights for further research on diseases associated with abnormal VSMC proliferation.
Collapse
Affiliation(s)
- Wan Jin
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yu Tian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yanyun Ding
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Deixi Zhou
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Long Li
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Meng Yuan
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yuanzhu Wu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Mingqi Ye
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Jiajie Luan
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| |
Collapse
|
6
|
Kim JH. Hyaluronic acid suppresses the effect of di-(2-ethylhexyl) phthalate in HaCaT keratinocytes. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
YY1 affects the levels and function of fibulin‑5 in ox‑LDL‑treated vascular smooth muscle cells. Exp Ther Med 2022; 23:407. [PMID: 35619637 PMCID: PMC9115630 DOI: 10.3892/etm.2022.11334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
Fibulin-5 is reportedly involved in the pathological process of atherosclerosis (AS) where low expression has been frequently observed in ruptured atherosclerotic plaques. The aim of the present study was to determine the effects of fibulin-5 on the responses of vascular smooth muscle cells (VSMC) to oxidized low-density lipoprotein (ox-LDL). The expression of fibulin-5 was studied in human aortic-VSMCs (HA-VSMCs) treated with ox-LDL. Fibulin-5 was first overexpressed by the transfection of Ov-Fibulin-5 plasmids in HA-VSMCs challenged with ox-LDL to investigate its influence on cell proliferation, migration and invasion using Cell Counting Kit-8, wound healing and Transwell assays. Yin Yang-1 (YY1) was bioinformatically predicted to bind to the promoter sites of fibulin-5, which was subsequently confirmed by dual-luciferase reporter gene assay. Fibulin-5 overexpression was able to suppress cell proliferation, invasion and migration, which was effectively reversed by YY1 silencing by the transfection of siRNA-Fibulin-5 plasmids which could induced fibulin-5 silencing. YY1 binding sites in the promoter region of fibulin-5 were identified and confirmed in vitro by chromatin immunoprecipitation assay and dual-luciferase reporter gene assay. The present results suggested that as a modulator of fibulin-5, YY1 alleviated ox-LDL-induced proliferation, invasion, migration and phenotypic transition from differentiated contractile phenotype to dedifferentiated phenotype in VSMCs. However, the mechanism underlying the YY1-mediated regulation of fibulin-5 expression needs to be confirmed further in vivo. Nevertheless, targeting fibulin-5 and YY1 could be further developed for AS therapy.
Collapse
|
8
|
Fan S, Wang C, Huang K, Liang M. Myricanol Inhibits Platelet Derived Growth Factor-BB-Induced Vascular Smooth Muscle Cells Proliferation and Migration in vitro and Intimal Hyperplasia in vivo by Targeting the Platelet-Derived Growth Factor Receptor-β and NF-κB Signaling. Front Physiol 2022; 12:790345. [PMID: 35185599 PMCID: PMC8850918 DOI: 10.3389/fphys.2021.790345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal proliferation and migration of Vascular smooth muscle cells (VSMCs) are related to many cardiovascular diseases, including atherosclerosis, restenosis after balloon angioplasty, hypertension, etc. Myricanol is a diarylheptanoid that can be separated from the bark of Myrica rubra. It has been reported that myricanol can anti-inflammatory, anti-cancer, anti-neurodegenerative, promote autophagic clearance of tau and prevent muscle atrophy. But its potential role in the cardiovascular field remains unknown. In this study, we investigated the effect of myricanol on the proliferation and migration of VSMCs in vitro and on the intimal hyperplasia in vivo. In vitro experiments, we found myricanol can inhibit the proliferation and migration of VSMCs induced by PDGF-BB. In terms of mechanism, the preincubation of myricanol can suppress the PDGF-BB induced phosphorylation of PDGFRβ and its downstream such as PLCγ1, Src, and MAPKs. In addition, NF-kB p65 translocation was also suppressed by myricanol. In vivo experiments, we found myricanol can suppress the intimal hyperplasia after wire ligation of the carotid artery in mice. These results may provide a new strategy for the prevention and treatment of coronary atherosclerosis and post-stent stenosis in the future.
Collapse
Affiliation(s)
- Siyuan Fan
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kai Huang,
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Minglu Liang,
| |
Collapse
|
9
|
Fras Z, Mikhailidis DP. Have We Learnt all from IMPROVE-IT? Part I. Core Results and Subanalyses on the Effects of Ezetimibe Added to Statin Therapy Related to Age, Gender and Selected Chronic Diseases (Kidney Disease, Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease). Curr Vasc Pharmacol 2021; 19:451-468. [DOI: 10.2174/1570161118999200727224946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial) was
a randomized clinical trial (including 18,144 patients) that evaluated the efficacy of the combination of
ezetimibe with simvastatin vs. simvastatin monotherapy in patients with acute coronary syndrome
(ACS) and moderately increased low-density lipoprotein cholesterol (LDL-C) levels (of up to 2.6-3.2
mmol/L; 100-120 mg/dL). After 7 years of follow-up, combination therapy resulted in an additional
LDL-C decrease [to 1.8 mmol/L, or 70 mg/dL, within the simvastatin (40 mg/day) monotherapy arm
and to 1.4 mmol/L, or 53 mg/dL for simvastatin (40 mg/day) + ezetimibe (10 mg/day)] and showed an
incremental clinical benefit [composite of cardiovascular death, nonfatal myocardial infarction, unstable
angina requiring rehospitalization, coronary revascularization (≥30 days after randomization), or nonfatal
stroke; hazard ratio (HR) of 0.936, and 95% CI 0.887-0.996, p=0.016]. Therefore, for very high cardiovascular
risk patients “even lower is even better” regarding LDL-C, independently of the LDL-C
reducing strategy. These findings confirm ezetimibe as an option to treat very-high-risk patients who
cannot achieve LDL-C targets with statin monotherapy. Additional analyses of the IMPROVE-IT (both
prespecified and post-hoc) include specific very-high-risk subgroups of patients (those with previous
acute events and/or coronary revascularization, older than 75 years, as well as patients with diabetes
mellitus, chronic kidney disease or non-alcoholic fatty liver disease). The data from IMPROVE-IT also
provide reassurance regarding longer-term safety and efficacy of the intensification of lipid-lowering
therapy in very-high-risk patients resulting in very low LDL-C levels. We comment on the results of
several (sub) analyses of IMPROVE-IT.
Collapse
Affiliation(s)
- Zlatko Fras
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre, Ljubljana, Slovenia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College Medical School, University College London, London, United Kingdom
| |
Collapse
|
10
|
Kim JH. Glucagon-like peptide-1 receptor agonist reduces di(2-ethylhexyl) phthalate-induced atherosclerotic processes in vascular smooth muscle cells. Physiol Res 2020; 69:1095-1102. [PMID: 33129247 DOI: 10.33549/physiolres.934480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP1R) agonist is an incretin hormone and regulates glucose metabolism. However, phthalates, known as endocrine disruptors, can interfere with hormone homeostasis. In the present study, we aimed to estimate the impact of GLP1R agonist on di(2 ethylhexyl) phthalate (DEHP)-induced atherosclerosis. For this purpose, the effects of GLP1R agonist on various atherogenesis-related cellular processes and pathways were assessed in vascular smooth muscle cells (VSMCs). DEHP-induced cell proliferation and migration were significantly decreased by GLP1R agonist in VSMCs. Protein levels of matrix metalloproteinase (MMP)-2 and MMP-9 were significantly decreased in cells exposed to GLP1R agonist, compared with DEHP-treated cells. Expression levels of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were also reduced in GLP1R agonist-treated cells. Similarly, DEHP-associated phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 was decreased in GLP1R agonist-treated cells, compared with DEHP-treated cells. Our findings suggest that treatment with GLP1R agonist counteracts the activation of pathways related to atherosclerosis.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| |
Collapse
|
11
|
Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med 2020; 46:1765-1776. [PMID: 33000206 PMCID: PMC7521558 DOI: 10.3892/ijmm.2020.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) has a high mortality rate among urological malignancies, and its underlying mechanisms remain unclear. Steroid receptor RNA coactivator (SRA) belongs to the long non-coding RNAs (lncRNAs) and has been demonstrated to be closely related to various types of cancer. In the present study, the decreased expression level of SRA was first confirmed in RCC tissues and cell lines by RT-qPCR. Using knockdown or overexpression systems, it was then found that SRA inhibited the proliferation of RCC cell lines and promoted their apoptosis. In addition, SRA suppressed the migration and invasion, and altered EMT-related markers in RCC cells. More importantly, it was demonstrated that SRA reduced percentage of CD44+/CD24− cells and the sphere-forming efficiency. SRA also attenuated the expression levels of CD44, SOX-2, ABCG2 and OCT-4, which are all associated with cancer cell stemness characteristics. Although SRA increased the phosphorylation of extracellular-regulated protein kinase (ERK), the ERK1/2 pathway could not further interfere with the alteration of EMT-related markers mediated by SRA. Notably, the ERK inhibitor, PD98059, abolished ERK1/2 phosphorylation, whereas it did not exert any marked effects on cell proliferation and EMT-related markers mediated by SRA. Taken together, the findings of the present study indicate that SRA is an important molecule that inhibits the migration, invasion and stem cell characteristics of RCC cells; the ERK signaling pathway may not be involved in this process.
Collapse
|
12
|
Shang L, Wang K, Liu D, Qin S, Huang J, Zhao Y, Pang Y. TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model. Exp Ther Med 2020; 19:3275-3281. [PMID: 32266023 PMCID: PMC7132240 DOI: 10.3892/etm.2020.8589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
High-flow-induced pulmonary arterial hypertension (PAH) has attained global notoriety, the mechanism of which remains elusive. The present study investigated the regulation of Anoctamin-1, also known as transmembrane member 16A (TMEM16A), in the cell cycle progression of pulmonary artery smooth muscle cells (PASMCs) from a PAH rat model induced by high pulmonary blood flow. A total of 30 Sprague-Dawley rats were randomly assigned into control, sham and shunt groups. A rat model of high pulmonary blood flow-induced PAH was established by surgery using abdominal aorta-inferior vena cava fistula. Right ventricular pressure, right ventricular hypertrophy index and pulmonary arteriole structural remodeling were assessed 11 weeks following operation. The cell cycle statuses of PASMCs was assessed via flow cytometry, whereas western blot analysis was performed to measure the expression of cyclin D1, CDK2, p27KIP and cyclin E in primary PASMCs isolated from rats. The expression of cyclin E and cyclin D1 was revealed to be increased in the shunt group compared with the control group, which was accompanied with an increased expression of TMEM16A in the shunt group. Changes in the ratio of PASMCs in the G0/G1, S and G2/M phases of cycle induced by PAH were reversed by TMEM16A knockdown. The expression of cyclin E and cyclin D1 in the shunt group was significantly higher compared with the control group in vitro, which was reversed by TMEM16A-siRNA transfection. In conclusion, TMEM16A may be involved in high pulmonary blood flow-induced PAH by regulating PASMC cell cycle progression.
Collapse
Affiliation(s)
- Lifeng Shang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Jinglin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Yijue Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| |
Collapse
|
13
|
Pontremoli R, Bellizzi V, Bianchi S, Bigazzi R, Cernaro V, Del Vecchio L, De Nicola L, Leoncini G, Mallamaci F, Zoccali C, Buemi M. Management of dyslipidaemia in patients with chronic kidney disease: a position paper endorsed by the Italian Society of Nephrology. J Nephrol 2020; 33:417-430. [PMID: 32065354 PMCID: PMC7220980 DOI: 10.1007/s40620-020-00707-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) represents a major public health issue worldwide and entails a high burden of cardiovascular events and mortality. Dyslipidaemia is common in patients with CKD and it is characterized by a highly atherogenic profile with relatively low levels of HDL-cholesterol and high levels of triglyceride and oxidized LDL-cholesterol. Overall, current literature indicates that lowering LDL-cholesterol is beneficial for preventing major atherosclerotic events in patients with CKD and in kidney transplant recipients while the evidence is less clear in patients on dialysis. Lipid lowering treatment is recommended in all patients with stage 3 CKD or worse, independently of baseline LDL-cholesterol levels. Statin and ezetimibe are the cornerstones in the management of dyslipidaemia in patients with CKD, however alternative and emerging lipid-lowering therapies may acquire a central role in near future. This position paper endorsed by the Italian Society of Nephrology aims at providing useful information on the topic of dyslipidaemia in CKD and at assisting decision making in the management of these patients.
Collapse
Affiliation(s)
- Roberto Pontremoli
- Università degli Studi and I.R.C.C.S. Ospedale Policlinico San Martino, Viale Benedetto XV 6, 16132, Genoa, Italy.
| | - Vincenzo Bellizzi
- Division of Nephrology, Dialysis and Transplantation, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Via San Leonardo, 84131, Salerno, Italy
| | - Stefano Bianchi
- Nephrology and Dialysis Complex Operative Unit, Department of Internal Medicine, ASL Toscana Nordovest, Livorno, Italy
| | - Roberto Bigazzi
- Nephrology and Dialysis Complex Operative Unit, Department of Internal Medicine, ASL Toscana Nordovest, Livorno, Italy
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, A. Manzoni Hospital, ASST Lecco, Lecco, Italy
| | - Luca De Nicola
- Nephrology Division, Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Piazza Miraglia, 80138, Naples, Italy
| | - Giovanna Leoncini
- Università degli Studi and I.R.C.C.S. Ospedale Policlinico San Martino, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Ospedali Riuniti, Reggio Calabria, Italy.,CNR-IFC, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Nefrologia-Ospedali Riuniti, 89100, Reggio Calabria, Italy
| | - Carmine Zoccali
- Nephrology, Dialysis and Transplantation Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| |
Collapse
|
14
|
Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4717258. [PMID: 31998437 PMCID: PMC6964721 DOI: 10.1155/2020/4717258] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/05/2022]
Abstract
Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO) model. One hundred and ninety-eight male Sprague-Dawley rats were used. Animals assigned to MCAO were given either Eze or its control. To explore the downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), Cleaved Caspase-1, and IL-1β were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.
Collapse
|
15
|
Shaposhnik II, Genkel VV. [Pleiotropic effects of ezetimibe]. KARDIOLOGIIA 2019; 59:12-17. [PMID: 31995721 DOI: 10.18087/cardio.n875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The article discusses in detail the question of the additional positive effects of ezetimibe in addition to direct hypolipidemic action. The data of experimental and clinical studies in which the effect of ezetimibe on carbohydrate metabolism, inflammation, endothelial dysfunction, and liver is studied. The article also discusses the results of clinical studies that examined the effect of ezetimibe on atherosclerotic plaque.
Collapse
Affiliation(s)
- I I Shaposhnik
- Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation
| | - V V Genkel
- Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
16
|
Lai J, Ai J, Luo D, Jin T, Liao B, Zhou L, Feng S, Jin X, Li H, Wang K. β-Adrenoceptor signaling regulates proliferation and contraction of human bladder smooth muscle cells under pathological hydrostatic pressure. J Cell Biochem 2019; 120:17872-17886. [PMID: 31161623 DOI: 10.1002/jcb.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (PBOO) promotes bladder detrusor hyperplasia, increases bladder pressure, and decreases bladder compliance. To extensively explore its underlying mechanism, our study aimed to investigate the effect of pathological hydrostatic pressure on human bladder smooth muscle cell (hBSMC) proliferation and contraction through β-adrenoceptor (ADRB) signaling in vitro. METHODS hBSMCs were subjected to pathological hydrostatic pressure (100 cm H2 O) to investigate the effect of ADRBs on the proliferation and contraction of hBSMCs treated with its agonists and/or antagonists. RESULTS Firstly, exposure to 100 cm H2 O hydrostatic pressure significantly upregulated the expression of α-smooth muscle actin (α-SMA) in hBSMCs at 6 hours, and promoted cell proliferation at 24 hours. When subjected to hydrostatic pressure alone, hBSMCs treated with ADRB2 and ADRB3 agonists for 6 hours inhibited α-SMA expression compared with untreated cells. By contrast, hBSMCs treated with ADRB2 agonists for 24 hours suppressed cell proliferation compared with untreated cells. The two classical pathways of ADRB, protein kinase A (PKA), and exchange factor directly activated by cAMP (EPAC) inhibited the contraction of hBSMCs under hydrostatic pressure via regulating mothers against decapentaplegic homolog 2 (SMAD2) activity. The proliferation of hBSMCs was mainly regulated by the EPAC pathway through extracellular signal-regulated kinase 1/2 (ERK1/2) activity. CONCLUSION The contraction of hBSMCs under hydrostatic pressure was regulated by ADRB2 and ADRB3 via the PKA/EPAC-SMAD2 pathway, and the proliferation of hBSMCs was regulated by ADRB2 via the EPAC-ERK1/2 pathway. Compared with ADRB3, ADRB2 played a predominant role under pathological hydrostatic pressure. These findings markedly uncovered the underlying mechanism of ADRBs in PBOO and provided new insights into the efficient treatment of patients with PBOO.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deyi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Yu J, Li X, Matei N, McBride D, Tang J, Yan M, Zhang JH. Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats. Exp Neurol 2018; 307:12-23. [PMID: 29852178 DOI: 10.1016/j.expneurol.2018.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 12/25/2022]
Abstract
Autophagy activation exerts neuroprotective effects in the ischemic stroke model. Ezetimibe (Eze), a Niemann-Pick disease type C1-Like 1 (NPC1L1) pharmacological inhibitor, has been reported to protect hepatocytes from apoptosis via autophagy activation. In this study, we explored whether Eze could attenuate neuronal apoptosis in the rat model of middle cerebral artery occlusion (MCAO), specifically via activation of the AMPK/ULK1/autophagy pathway. Two hundred and one male Sprague-Dawley rats were subjected to transient MCAO followed by reperfusion. Eze was administered 1 h after MCAO. To elucidate the underlying molecular mechanism, Dorsomorphin, a selective AMPK inhibitor, and 3-methyladenine (3-MA), an autophagy inhibitor, were injected intracerebroventricularly before MCAO. Infarct volume, neurological score, brain cholesterol levels, immunofluorescence staining, Western blot, and Fluoro-Jade C (FJC) staining were used to evaluate the effects of Eze. The endogenous NPC1L1 expression increased and mainly expressed in neurons after MCAO. Intranasal administration of Eze reduced brain infarct volume at 24 and 72 h after MCAO, with improved short and long-term neurological functions after MCAO. Eze reduced brain cholesterol levels (total cholesterol, free cholesterol and cholesteryl esters) and the number of FJC-positive neurons. The expression of phosphorylated AMPK (p-AMPK) and downstream ULK1, Beclin1, LC3BII, Bcl-2, and Bcl-xl increased, while P62 and proapoptotic Bax decreased after treatment with Eze. Pretreatment with Dorsomorphin and 3-MA reversed the beneficial effects of Eze. These findings suggest that intranasal administration of Eze plays neuroprotective role through autophagy activation after MCAO in rats. Lowered cholesterol levels and AMPK activation may act in conjunction to induce autophagy after treatment with Eze. Eze merits further investigation as a potential therapeutic agent in ischemic stroke patients.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Devin McBride
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiping Tang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - John H Zhang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
18
|
Hong N, Lee YH, Tsujita K, Gonzalez JA, Kramer CM, Kovarnik T, Kouvelos GN, Suzuki H, Han K, Lee CJ, Park SH, Lee BW, Cha BS, Kang ES. Comparison of the Effects of Ezetimibe-Statin Combination Therapy on Major Adverse Cardiovascular Events in Patients with and without Diabetes: A Meta-Analysis. Endocrinol Metab (Seoul) 2018; 33:219-227. [PMID: 29766679 PMCID: PMC6021322 DOI: 10.3803/enm.2018.33.2.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ezetimibe-statin combination therapy has been found to reduce low density lipoprotein cholesterol levels and the risk of major adverse cardiovascular events (MACEs) in large trials. We sought to examine the differential effect of ezetimibe on MACEs when added to statins according to the presence of diabetes. METHODS Randomized clinical trials with a sample size of at least 50 participants and at least 24 weeks of follow-up that compared ezetimibe-statin combination therapy with a statin- or placebo-controlled arm and reported at least one MACE, stratified by diabetes status, were included in the meta-analysis and meta-regression. RESULTS A total of seven trials with 28,191 enrolled patients (mean age, 63.6 years; 75.1% men; 7,298 with diabetes [25.9%]; mean follow-up, 5 years) were analysed. MACEs stratified by diabetes were obtained from the published data (two trials) or through direct contact (five trials). No significant heterogeneity was observed among studies (I²=14.7%, P=0.293). Ezetimibe was associated with a greater reduction of MACE risk in subjects with diabetes than in those without diabetes (pooled relative risk, 0.84 vs. 0.93; P(heterogeneity)=0.012). In the meta-regression analysis, the presence of diabetes was associated with a greater reduction of MACE risk when ezetimibe was added to statins (β=0.87, P=0.038). CONCLUSION Ezetimibe-statin combination therapy was associated with greater cardiovascular benefits in patients with diabetes than in those without diabetes. Our findings suggest that ezetimibe-statin combination therapy might be a useful strategy in patients with diabetes at a residual risk of MACEs.
Collapse
Affiliation(s)
- Namki Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jorge A Gonzalez
- Department of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Department of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Tomas Kovarnik
- Second Department of Medicine, Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - George N Kouvelos
- Vascular Surgery Unit, Department of Surgery, University of Ioannina, Ioannina, Greece
| | | | - Kyungdo Han
- Department of Biostatistics, The Catholic University of Korea, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute and Cardiovascular Genome Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Ha Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute and Cardiovascular Genome Center, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
20
|
Role of dual lipid-lowering therapy in coronary atherosclerosis regression: Evidence from recent studies. Atherosclerosis 2018; 269:219-228. [PMID: 29407597 DOI: 10.1016/j.atherosclerosis.2018.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/21/2022]
Abstract
Despite recent therapeutic advances, there is an unmet need in cardiovascular disease prevention. Clinical trials and meta-analyses have established that LDL-C lowering, particularly by statin therapy, reduces the progression of coronary atherosclerosis and the risk of coronary events. Insufficient LDL-C reduction and high residual risk in a significant proportion of statin-treated patients signify that additional therapies are required to deliver more effective coronary care. Pharmacological inhibition of cholesterol absorption (with ezetimibe) and PCSK9 activity (with evolocumab or alirocumab) provides potentially useful approaches for the therapeutic modulation of LDL-C metabolism in statin-treated patients. In recent trials, combination strategies involving a statin and non-statin agent (ezetimibe or evolocumab) have been shown to promote coronary atherosclerosis regression and improve cardiovascular outcomes in patients with moderate-to-high cardiovascular risk. This review summarizes recent evidence on the effects of dual lipid-lowering therapy on coronary atherosclerosis.
Collapse
|
21
|
Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalán R, Špinar J, Park JG, White JA, Bohula EA, Braunwald E. Benefit of Adding Ezetimibe to Statin Therapy on Cardiovascular Outcomes and Safety in Patients With Versus Without Diabetes Mellitus: Results From IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2017; 137:1571-1582. [PMID: 29263150 DOI: 10.1161/circulationaha.117.030950] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ezetimibe, when added to simvastatin, reduces cardiovascular events after acute coronary syndrome. We explored outcomes stratified by diabetes mellitus (DM). METHODS In IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial), 18 144 patients after acute coronary syndrome with low-density lipoprotein cholesterol 50 to 125 mg/dL were randomized to 40 mg ezetimibe/simvastatin (E/S) or 40 mg placebo/simvastatin. The primary composite end point was cardiovascular death, major coronary events, and stroke. DM was a prespecified subgroup. RESULTS The 4933 (27%) patients with DM were more often older and female, had had a prior myocardial infarction and revascularization, and presented more frequently with non-ST segment elevation acute coronary syndrome compared with patients without DM (each P<0.001). The median admission low-density lipoprotein cholesterol was lower among patients with DM (89 versus 97 mg/dL, P<0.001). E/S achieved a significantly lower median time-weighted average low-density lipoprotein cholesterol compared with placebo/simvastatin, irrespective of DM (DM: 49 versus 67 mg/dL; no DM: 55 versus 71 mg/dL; both P<0.001). In patients with DM, E/S reduced the 7-year Kaplan-Meier primary end point event rate by 5.5% absolute (hazard ratio, 0.85; 95% confidence interval, 0.78-0.94); in patients without DM, the absolute difference was 0.7% (hazard ratio, 0.98; 95% confidence interval, 0.91-1.04; Pint=0.02). The largest relative reductions in patients with DM were in myocardial infarction (24%) and ischemic stroke (39%). No differences in safety outcomes by treatment were present regardless of DM. When stratified further by age, patients ≥75 years of age had a 20% relative reduction in the primary end point regardless of DM (Pint=0.91), whereas patients <75 years of age with DM had greater benefit than those without (Pint=0.011). When stratified by the TIMI (Thrombolysis in Myocardial Infarction) Risk Score for Secondary Prevention, all patients with DM demonstrated benefit with E/S regardless of risk. In contrast, among patients without DM, those with a high risk score experienced a significant (18%) relative reduction in the composite of cardiovascular death, myocardial infarction, and ischemic stroke with E/S compared with placebo/simvastatin, whereas patients without DM at low or moderate risk demonstrated no benefit with the addition of ezetimibe to simvastatin (Pint =0.034). CONCLUSIONS In IMPROVE-IT, the benefit of adding ezetimibe to statin was enhanced in patients with DM and in high-risk patients without DM. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT00202878.
Collapse
Affiliation(s)
- Robert P Giugliano
- TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (R.P.G., C.P.C., J.-G.P., E.A.B., E.B.).
| | - Christopher P Cannon
- TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (R.P.G., C.P.C., J.-G.P., E.A.B., E.B.)
| | - Michael A Blazing
- Duke Clinical Research Institute, Department of Medicine, Durham, NC (M.A.B., J.A.W.)
| | - José C Nicolau
- Instituto do Coracao (InCor) Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, HCFMUSP, Brazil (J.C.N.)
| | - Ramón Corbalán
- División Enfermedades Cardiovasculares, Centro Médico Clínica, Santiago, Chile (R.C.)
| | - Jindřich Špinar
- Internal Cardiology Department, University Hospital Brno, Czech Republic (J.S.)
| | - Jeong-Gun Park
- TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (R.P.G., C.P.C., J.-G.P., E.A.B., E.B.)
| | - Jennifer A White
- Duke Clinical Research Institute, Department of Medicine, Durham, NC (M.A.B., J.A.W.)
| | - Erin A Bohula
- TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (R.P.G., C.P.C., J.-G.P., E.A.B., E.B.)
| | - Eugene Braunwald
- TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (R.P.G., C.P.C., J.-G.P., E.A.B., E.B.)
| | | |
Collapse
|
22
|
Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci 2016; 148:183-93. [PMID: 26851532 DOI: 10.1016/j.lfs.2016.02.002] [Citation(s) in RCA: 748] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.
Collapse
Affiliation(s)
- Vibha Rani
- Department of Biotechnology, JayPee Institute of Information Technology, A-10, Sector-62, Noida 201 307, UP, India.
| | - Gagan Deep
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 12850 E. Montview Blvd, Aurora, CO 80045, USA.
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL 32306-4300, USA.
| | - Komaraiah Palle
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Spring Hill Avenue, Mobile, AL 36604, USA.
| | - Umesh C S Yadav
- Metabolic Disorder & Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
23
|
|
24
|
Chang E, Kim L, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park DI, Park CY. Ezetimibe stimulates intestinal glucagon-like peptide 1 secretion via the MEK/ERK pathway rather than dipeptidyl peptidase 4 inhibition. Metabolism 2015; 64:633-41. [PMID: 25704082 DOI: 10.1016/j.metabol.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Ezetimibe is known as a Niemann-Pick C1-Like 1 (NPC1L1) inhibitor and has been used as an agent for hypercholesterolemia. In our previous study, ezetimibe administration improved glycemic control and increased glucagon like peptide-1 (GLP-1), an incretin hormone with anti-diabetic properties. However, the mechanisms by which ezetimibe stimulates GLP-1 secretion are not fully understood. Thus, the specific aim of this study was to investigate the mechanism(s) by which ezetimibe stimulates GLP-1 secretion. MATERIALS/METHODS Male KK/H1J mice were divided into following groups: AIN-93G (NC), NC with ezetimibe (10 mg/kg/day), 45% high fat (HF) diet, and HF diet with ezetimibe. To investigate the role of ezetimibe in glucose homeostasis and GLP-1 secretion, an insulin tolerance test was performed and serum and intestinal GLP-1 levels and intestinal mRNA expression involved in GLP-1 synthesis were measured after 6 weeks of ezetimibe treatment. In vivo and in vitro dipeptidyl peptidase-4 (DPP-4) inhibition assays were employed to demonstrate the association between ezetimibe-induced GLP-1 change and DPP-4. The molecular mechanism by which ezetimibe affects GLP-1 secretion was evaluated by using human enteroendocrine NCI-H716 cells. RESULTS Ezetimibe supplementation significantly ameliorated HF-increased glucose and insulin resistance in the type 2 diabetic KK/H1J mouse model. Serum and intestinal active GLP-1 levels were significantly increased by ezetimibe in HF-fed animals. However, mRNA expression of genes involved in intestinal GLP-1 synthesis was not altered. Furthermore, ezetimibe did not inhibit the activity of either in vivo or in vitro dipeptidyl peptidase-4 (DPP-4). The direct effects of ezetimibe on GLP-1 secretion and L cell secretory mechanisms were examined in human NCI-H716 intestinal cells. Ezetimibe significantly stimulated active GLP-1 secretion, which was accompanied by the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Ezetimibe-increased GLP-1 secretion was abrogated by inhibiting the MEK/ERK pathway with PD98059. CONCLUSION These findings suggest a possible novel biological role of ezetimibe in glycemic control to stimulate intestinal GLP-1 secretion via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Lisa Kim
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Mook Choi
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki-Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Il Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Expression variations of connective tissue growth factor in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease. Sci Rep 2015; 5:8564. [PMID: 25708588 PMCID: PMC4338434 DOI: 10.1038/srep08564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking contributes to the development of pulmonary hypertension (PH) complicated with chronic obstructive pulmonary disease (COPD), and the pulmonary vascular remodeling, the structural basis of PH, could be attributed to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs).In this study, morphometrical analysis showed that the pulmonary vessel wall thickness in smoker group and COPD group was significantly greater than in nonsmokers. In addition, we determined the expression patterns of connective tissue growth factor (CTGF) and cyclin D1 in PASMCs harvested from smokers with normal lung function or mild to moderate COPD, finding that the expression levels of CTGF and cyclin D1 were significantly increased in smoker group and COPD group. In vitro experiment showed that the expression of CTGF, cyclin D1 and E2F were significantly increased in human PASMCs (HPASMCs) treated with 2% cigarette smoke extract (CSE), and two CTGF siRNAs with different mRNA hits successfully attenuated the upregulated cyclin D1 and E2F, and significantly restored the CSE-induced proliferation of HPASMCs by causing cell cycle arrest in G0. These findings suggest that CTGF may contribute to the pathogenesis of abnormal proliferation of HPASMCs by promoting the expression of its downstream effectors in smokers with or without COPD.
Collapse
|
26
|
Shi L, Ji Y, Jiang X, Zhou L, Xu Y, Li Y, Jiang W, Meng P, Liu X. Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. Cardiovasc Diabetol 2015; 14:18. [PMID: 25855361 PMCID: PMC4327797 DOI: 10.1186/s12933-015-0177-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background As a new anti-diabetic medicine, Liraglutide (LIRA), one of GLP-1 analogues, has been found to have an anti-atherosclerotic effect. Since vascular smooth muscle cells (VSMCs) play pivotal roles in the occurrence of diabetic atherosclerosis, it is important to investigate the role of LIRA in reducing the harmful effects of high-glucose (HG) treatment in cultured VSMCs, and identifying associated molecular mechanisms. Methods Primary rat VSMCs were exposed to low or high glucose-containing medium with or without LIRA. They were challenged with HG in the presence of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, or glucagon-like peptide receptor (GLP-1R) inhibitors. Cell proliferation and viability was evaluated using a Cell Counting Kit-8. Cell migration was determined by Transwell migration and scratch wound assays. Flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Results Under the HG treatment, VSMCs exhibited increased migration, proliferation, and phosphorylation of protein kinase B (Akt) and ERK1/2, along with reduced apoptosis (all p < 0.01 vs. control). These effects were significantly attenuated with LIRA co-treatment (all p < 0.05 vs. HG alone). Inhibition of PI3K kinase and ERK1/2 similarly attenuated the HG-induced effects (all p < 0.01 vs. HG alone). GLP-1R inhibitors effectively reversed the beneficial effects of LIRA on HG treatment (all p < 0.05). Conclusions HG treatment may induce abnormal phenotypes in VSMCs via PI3K and ERK1/2 signaling pathways activated by GLP-1R, and LIRA may protect cells from HG damage by acting on these same pathways.
Collapse
|