1
|
Ngernsoungnern P, Rungsawang P, Janthaweera A, Duangsuwan P, Saowakon N, Sritangos P, Ngernsoungnern A. Ultrastructural study of neuronal cells and localization of ghrelin-like peptide and its receptor in the ganglia of the golden apple snail (Pomacea canaliculata). Tissue Cell 2024; 88:102348. [PMID: 38493758 DOI: 10.1016/j.tice.2024.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Pomacea canaliculata is an invasive snail species causing major problems in agriculture. The snail biology was then investigated. The main objective of the present study was to investigate the nervous system of the snail. The nervous system comprises pairs of cerebral, buccal, pedal, pleural, parietal ganglia and an unpaired visceral ganglion. Most neurons were concentrated at the periphery of the ganglia. The neurons were classified into four types: NR1, NR2, NR3, and NR4. The percentages of the NR3 and NR4 in the pleural and pedal ganglia were significantly higher than those of other ganglia. Ultrastructural study revealed that nuclei of all neuronal types exhibited mostly euchromatins. Many organelles including ribosomes and endoplasmic reticulum were found in their cytoplasm. However, various mitochondria were found in the NR2 and NR3. The immunohistochemistry revealed immunoreactivity of ghrelin-like peptide in the neurons of the cerebral, pleural and pedal ganglia. However, immunoreactivity of GHS-R1a-like peptide existed only in the neurons of the pleural and pedal ganglia. The present study is the first to demonstrate the existence of ghrelin-like peptide and its receptor in P. canaliculata nervous system.
Collapse
Affiliation(s)
- Piyada Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyachat Rungsawang
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | - Pornsawan Duangsuwan
- Anatomy Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Naruwan Saowakon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pishyaporn Sritangos
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apichart Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Elibol E, Akdevelioğlu Y, Yılmaz C, Narlı B, Şen S, Take Kaplanoğlu G, Seymen CM. Acyl ghrelin, desacyl ghrelin and their ratio affect hepatic steatosis via PPARγ signaling pathway. Arab J Gastroenterol 2024; 25:109-117. [PMID: 38383264 DOI: 10.1016/j.ajg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/11/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND STUDY AIMS Ghrelin is an appetite hormone-containing 28-amino acid and has 4 different forms in the body. Ghrelin forms have different physiological functions in the body. This study aims to analyze the effect of acyl and desacyl ghrelin hormone on hepatic steatosis and biochemical findings in 36 male Wistar rats. MATERIALS AND METHODS Rats were split into 6 equal groups, consisting of control, acyl ghrelin, desacyl ghrelin, acyl/desacyl 3:1, acyl/desacyl 1:1, and acyl/desacyl 1:3 groups, and administered placebo or 200 ng/kg hormone subcutaneous twice a day for 14 days. Oral Glucose Tolerance Test (OGTT) was performed on Day 15, Insulin Tolerance Test (ITT) on Day 16, and scarification procedure on Day 17. Certain biochemical data and liver diacylglycerol (DAG), glycogen, protein kinase C and PPAR-γ levels were detected in the blood. Histological analyses were also conducted on the liver tissues. RESULTS The highest plasma total cholesterol and VLDL-K levels were found in the acyl/desacyl 1:3 group, and lower insulin, and HOMA-IR levels were found in groups where acyl and desacyl were administered together (p < 0.05). PPAR-γ gene expression level increased in acyl ghrelin and acyl/desacyl 1:3 groups compared to the control group. Protein kinase C gene expression was highest in the acyl/desacyl 1:3 group. The most severe degenerative findings compliant with steatosis in the liver were observed in the acyl ghrelin group (p < 0.05). CONCLUSION It was determined that administering rats acyl alone and acyl/desacyl by 1:3 caused the highest PPAR-γ gene expression, serum total cholesterol, HDL-K, and VLDL-K levels in the body. Besides, it is shown that desacyl ghrelin effectively regulates the blood glucose level when administered alone.
Collapse
Affiliation(s)
- Emine Elibol
- Departments of Nutrition and Dietetic, Ankara Yıldırım Beyazıt University, Dumlupınar Mahallesi, 06760 Çubuk, Ankara, Turkey.
| | - Yasemin Akdevelioğlu
- Departments of Nutrition and Dietetic, Gazi University, Emek mah. Bişkek Cad. 6. Cad. No:2 06490 Çankaya, Ankara, Turkey.
| | - Canan Yılmaz
- Departments of Medical Biochemistry, Gazi University, Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Belkıs Narlı
- Departments of Medical Biochemistry, Gazi University, Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Serkan Şen
- Departments of Medical Biochemistry, Afyonkarahisar Health Sciences University, Ali Çetinkaya Kampüsü Afyon- İzmir Karayolu 5.km, Afyonkarahisar, Turkey.
| | - Gülnur Take Kaplanoğlu
- Departments of Histology and Embryology, Gazi University Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Cemile Merve Seymen
- Departments of Histology and Embryology, Gazi University Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| |
Collapse
|
3
|
Rathore M, Das N, Ghosh N, Guha R. Insights on discovery, efficacy, safety and clinical applications of ghrelin receptor agonist capromorelin in veterinary medicine. Vet Res Commun 2024; 48:1-10. [PMID: 37493940 DOI: 10.1007/s11259-023-10184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Growth hormone and insulin like growth factor-1 plays an important role in the regulation of body composition and metabolism. Growth Hormone is released from the pituitary through a specific G-protein coupled receptor (GPCR) called growth hormone secretagogue receptor 1a expressed in the hypothalamus. Ghrelin is a peptide hormone released from the cells in the stomach, which stimulates appetite and food intake in mammals, regulates gut motility, gastric acid secretion, taste sensation, circadian rhythm, learning and memory, oxidative stress, autophagy, glucose metabolism etc. When the release of the endogenous ligand GHSR-1a, i.e., ghrelin is malfunctioned or stopped, external substitutes are administrated to induce the stimulation of growth hormone and appetite. A class of compound known as ghrelin receptor agonists are developed as an external substitute of ghrelin for regulation and stimulation of growth hormone in frailty, for body weight gain, muscle mass gain, prevention of cachexia and for the treatment of chronic fatigue syndromes. Capromorelin [Entyce™ (Aratana Therapeutics, Leawood, KS, USA)] is the only FDA (Food and Drug Administration) approved (May 2016) drug used for stimulating appetite in dogs and was marketed in the fall of 2017. In 2020, USFDA approved Capromorelin [Elura™ (Elanco US Inc.)] for the management of weight loss in chronic kidney disease of cats. This article reviews the discovery of the ghrelin receptor agonist capromorelin, its efficacy, safety, clinical applications and aims to delineate its further scope of use in veterinary practice.
Collapse
Affiliation(s)
- Manisha Rathore
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nabanita Das
- National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Nayan Ghosh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Liu J, Wang Y, Liu L, Ma G, Zhang Y, Ren J. Effect of Moringa leaf flavonoids on the production performance, immune system, and rumen fermentation of dairy cows. Vet Med Sci 2023; 9:917-923. [PMID: 36495154 PMCID: PMC10029909 DOI: 10.1002/vms3.993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Unreasonable use of antibiotics in animals is a major concern and will remain so, thus affecting people's health. However, the application of plant extracts can better solve this problem. OBJECTIVES The purpose of this study was to study the effect of Moringa leaf flavonoids on the production performance, immunity, and rumen fermentation of dairy cows. METHODS Nine Holstein multiparous cows (average weight: 550 kg; days of lactation: 150 ± 6 days) were used in the experiment, using a 3 × 3 Latin square design. Cows were divided into three groups, each of which was supplemented with 0, 50, or 100 mg/body weight (BW) Moringa oleifera leaf flavonoids. Each experimental period consisted of three periods of 21 days, and the prefeeding period lasted 15 days. RESULTS Our results indicated that supplementation with Moringa leaf flavonoids increased the protein content and decreased the number of somatic cells in milk; had little effect on the biochemical indices of blood, the rumen fermentation, and serum biochemical indicators; and improved the activity of antioxidant enzymes, the antioxidant capacity, and immunity. CONCLUSIONS Addition of 50 mg/BW Moringa leaf flavonoids to cow enhanced the antioxidant and immunity capacity in dairy cows but did not affect physiological levels of common biochemical parameters in blood or fermentation parameters in rumen.
Collapse
Affiliation(s)
- Ji Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yan Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Ling Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Guangming Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jian Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
6
|
Marasco V, Kaiya H, Pola G, Fusani L. Ghrelin, not corticosterone, is associated with transitioning of phenotypic states in a migratory Galliform. Front Endocrinol (Lausanne) 2023; 13:1058298. [PMID: 36699038 PMCID: PMC9869107 DOI: 10.3389/fendo.2022.1058298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
In both captive and free-living birds, the emergence of the migratory phenotype is signalled by rapid and marked increases in food intake and fuelling, as well as changes in amount of nocturnality or migratory restlessness. The metabolic hormone corticosterone and, as more recently suggested, the gut-derived hormone ghrelin have been suggested to play a role in mediating such phenomenal phenotypic flexibility given that they both regulate fuel metabolism and locomotion across vertebrate taxa. Here, using the Common quail (Coturnix coturnix) as our study species, we induced autumn migration followed by a non-migratory wintering phase through controlled changes in daylight. We thus compared plasma corticosterone and ghrelin concentrations between the two sampling phases and assessed whether these hormones might reflect the migratory state. While we found no differences in plasma corticosterone between the two sampling phases and no link of this hormone with changes in body mass, levels of food intake or migratory restlessness, the migratory birds had substantially higher levels of plasma ghrelin relative to the non-migratory birds. Furthermore, while ghrelin did not correlate with the gain in body mass over the entire pre-migratory fuelling phase (over an average of nine weeks preceding blood sampling), plasma ghrelin did positively correlate with the gain in body mass observed during the final fattening stages (over an average of three weeks preceding blood sampling). Again, variation in plasma ghrelin also reflected the amount of body mass depleted over both the long- and short-time frame as birds returned to their non-migratory baseline - lower levels of plasma ghrelin consistently correlated with larger losses in body mass. Thus, while our data do not highlight a role of the hormone corticosterone in sustaining pre-migratory fattening as shown in other bird species, they do add evidence for a potential role of ghrelin in mediating migratory behaviour and further suggest that this hormone might be important in regulating the transitioning of migratory states, possibly by promoting fuel mobilisation and usage.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Research Division of Drug Discovery, Grandsoul Research Institute for Immunology, Inc., Nara, Japan
| | - Gianni Pola
- Istituto Sperimentale Zootecnico per la Sicilia, Palermo, Italy
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Vienna, Austria
- Department of Behavioural and Cognitive Biology, University Biology Building, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lupi S, Morbey YE, MacDougall-Shackleton SA, Kaiya H, Fusani L, Guglielmo CG. Experimental ghrelin administration affects migratory behaviour in a songbird. Horm Behav 2022; 141:105139. [PMID: 35299118 DOI: 10.1016/j.yhbeh.2022.105139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
Twice a year, billions of birds take on drastic physiological and behavioural changes to migrate between breeding and wintering areas. On migration, most passerine birds regularly stop over along the way to rest and refuel. Endogenous energy stores are not only the indispensable fuel to complete long distance flights, but are also important peripheral signals that once integrated in the brain modulate crucial behavioural decisions, such as the decision to resume migration after a stopover. A network of hormones signals metabolic fuel availability to the brain in vertebrates, including the recently discovered gut-hormone ghrelin. Here, we show that ghrelin takes part in the control of migratory behaviour during spring migration in a wild migratory passerine. We manipulated blood concentrations of ghrelin of 53 yellow-rumped warblers (Setophaga coronata coronata) caught during stopover and automatically radio-tracked their migratory behaviour following release. We found that injections of acylated and unacylated ghrelin rapidly induced movements away from the release site, indicating that the ghrelin system acts centrally to mediate stopover departure decisions. The effects of the hormone manipulation declined within 8 h following release, and did not affect the overall rate of migration. These results provide experimental evidence for a pivotal role of ghrelin in the modulation of behavioural decisions during migration. In addition, this study offers insights into the regulatory functions of metabolic hormones in the dialogue between gut and brain in birds.
Collapse
Affiliation(s)
- Sara Lupi
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1A, 1160 Vienna, Austria; Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Yolanda E Morbey
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Scott A MacDougall-Shackleton
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C2, Canada.
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan.
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1A, 1160 Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| |
Collapse
|
8
|
Cardiac Peptides—Current Physiology, Pathophysiology, Biochemistry, Molecular Biology, and Clinical Application. BIOLOGY 2022; 11:biology11020330. [PMID: 35205196 PMCID: PMC8869103 DOI: 10.3390/biology11020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
|
9
|
Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. Crit Rev Food Sci Nutr 2022; 63:5783-5799. [PMID: 34985365 DOI: 10.1080/10408398.2021.2024132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viscosity is a property of most foods. The consumption of the high-viscosity food is associated with a variety of physiological responses, one of which is their ability to regulate gastric emptying and modulate postprandial glycemic response. Gastric emptying has been proven to be a key step affecting the digestion and absorption of food, whereas, the relationship between viscosity and gastric emptying is still far away from being understood. Here, we reviewed the factors that influence food viscosity and food viscosity changes during digestion. Besides, the effect of food viscosity on gastric emptying and food-viscosity-physiological response were highlighted. Finally, "quantitative relationship" of viscosity and gastric emptying was discussed. This review can contribute to the understanding that how food viscosity affects gastric emptying, and help for developing foods that could control satiety and manage body weight for the specific populations.
Collapse
Affiliation(s)
- Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Elbaz M, Gershon E. Ghrelin, via corticotropin-releasing factor receptors, reduces glucose uptake and increases lipid content in mouse myoblasts cells. Physiol Rep 2021; 9:e14654. [PMID: 33463908 PMCID: PMC7814488 DOI: 10.14814/phy2.14654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Ghrelin and the corticotropin-releasing factor (CRF) family are known regulators of cellular metabolism and energy balance. We previously demonstrated that myoblast glucose metabolism is regulated by ghrelin and that this effect is mediated by CRF receptor type 2 (CRF-R2). Here we explored the effect of des-acyl ghrelin, the major circulating isoform of ghrelin, on cellular metabolism in mouse myoblast C2C12 cells, and examined whether CRF family receptors mediate its metabolic effects in muscle cells. C2C12 cells were exposed to des-acyl ghrelin with or without the CRF-R1- and CRF-R2-specific antagonists antalarmin or antisauvagine-30, respectively. Des-acyl ghrelin reduced glucose uptake and expression of the glucose transporter GLUT4, but induced retinol-binding protein 4 (RBP4) expression. Antalarmin and antisauvagine-30 inhibited the induction of glucose uptake by des-acyl ghrelin and its effect on GLUT4 and RBP4 expression. Moreover, treating C2C12 cells with des-acyl ghrelin resulted in cAMP activation in response to the CRF-R1-specific ligand stressin, and the CRF-R2-specific ligand Ucn3. Furthermore, des-acyl ghrelin reduced the expression of uncoupling proteins UCP2 and UCP3. Adding antalarmin or antisauvagine-30 to the medium reversed this effect. Finally, des-acyl ghrelin elevated lipid content and acetyl-CoA carboxylase expression in C2C12 cells. Our results suggest that during food deprivation, des-acyl ghrelin signals the muscle cells that glucose levels are low and that they should switch to fatty acids for their metabolic fuel.
Collapse
Affiliation(s)
- Michal Elbaz
- Department of Ruminant ScienceAgricultural Research OrganizationRishon LeZionIsrael
| | - Eran Gershon
- Department of Ruminant ScienceAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
12
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
13
|
Kim JN, Kim BJ. The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine. Mol Cells 2019; 42:470-479. [PMID: 31250620 PMCID: PMC6602145 DOI: 10.14348/molcells.2019.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-β-S and pre-treatment with Ca2+free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate (IP3), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the IP3 receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, IP3-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular Ca2+ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| |
Collapse
|
14
|
Toosy S, Sodi R, Pappachan JM. Lean polycystic ovary syndrome (PCOS): an evidence-based practical approach. J Diabetes Metab Disord 2018; 17:277-285. [PMID: 30918863 PMCID: PMC6405408 DOI: 10.1007/s40200-018-0371-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting women of reproductive age. Common features include menstrual irregularities, hyperandrogenism and polycystic ovarian morphology although the presentation can be heterogeneous. Insulin resistance is thought to be responsible for the hormonal and metabolic derangements observed. PCOS has two phenotypes, overweight/obese and lean, the latter being a much less common presentation of the syndrome. AIMS The aim of the present review is to summarise cardinal features, and to devise diagnostic and treatment algorithms for lean PCOS based on recent literature. METHODS We searched PubMed, EBSCOhost and Google Scholar using search terms such as 'lean polycystic ovary syndrome' OR 'lean polycystic ovarian syndrome' OR 'lean PCOS' OR 'lean polycystic ovary disease' OR 'lean polycystic ovarian disease' OR 'lean PCOD' OR 'hyperandrogenism' AND 'low BMI OR 'low body mass index' to identify potential articles to be included in the review. Citation searches were subsequently performed in order to find relevant literature. RESULTS Hormonal, metabolic and haematological profiles were altered in lean women with PCOS compared to healthy counterparts. However, the derangements were either comparable or less obvious compared to obese women with the syndrome. Insulin resistance seemed inherent in PCOS independent of obesity. Treatment options included weight maintenance, restoration of ovulation with insulin-sensitizers such as metformin, relief of symptoms such as hirsutism, acne and menstrual dysfunction, and assisted reproductive technologies in refractory cases, all of which showed promising results. The literature with evidence on lean PCOS is of low to moderate quality and there are still some uncertainties in the evidence base. CONCLUSION Carefully designed randomised controlled trials are required to confirm findings of previous studies in lean PCOS and to consolidate diagnostic and management algorithms proposed in this review. This paper will aid health professionals to improve their clinical approach in managing lean women with PCOS.
Collapse
Affiliation(s)
| | - Ravinder Sodi
- Department of Biochemistry and Blood Sciences, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, LA1 4RP UK
| | - Joseph M. Pappachan
- Department of Endocrinology, Diabetes & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, PE21 9QS UK
| |
Collapse
|
15
|
Lunder M, Vodnik M, Kubale V, Grgurevič N, Majdič G, Štrukelj B. Peptide mimetic of N-terminal ghrelin enhances ghrelin-induced growth hormone secretion and c-Fos expression in mice. J Neuroendocrinol 2018; 30:e12656. [PMID: 30394584 DOI: 10.1111/jne.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Abstract
Orexigenic peptide ghrelin and its receptor have been extensively investigated as potential therapeutic targets, primarily because of their role in feeding initiation and growth hormone (GH) release. However, no specific ghrelin targeting anti-obesity or cachexia therapeutics are available for clinical use thus far and further efforts in this direction are warranted. The present study aimed to find new peptide drug leads modulating ghrelin signal transduction. By targeting neutralising antibodies against ghrelin with phage display libraries, we aimed to identify peptides binding to the cognate receptor. Four synthetic peptides were selected and tested using calcium screening assays. The most effective competitive antagonist FSFLPPE was further tested in vivo. Administration of the peptide produced no significant effect on either food intake or GH release. Surprisingly, when co-administered with ghrelin, the peptide significantly enhanced GH secretion and c-Fos expression. The evidence obtained in the present study indicates that FSFLPPE might act as an ago-allosteric modulator.
Collapse
Affiliation(s)
- Mojca Lunder
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Vodnik
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Grgurevič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Štrukelj
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Pamuk B, Yilmaz H, Kebapçilar L, Kirbiyik H, Alacacioğlu A, Bozkaya G, Pamuk G, Demirpence M. The effect of orlistat and weight loss diet on plasma ghrelin and obestatin. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2018; 23:95. [PMID: 30595703 PMCID: PMC6282548 DOI: 10.4103/jrms.jrms_928_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the effect of weight loss with hypocaloric diet and orlistat treatment in addition to hypocaloric diet on gut-derived hormones ghrelin and obestatin. MATERIALS AND METHODS A total of 52, euglycemic and euthyroid, obese female patients were involved in the study. The patients were assigned to two groups: Group 1 (n = 26) received hypocaloric diet alone and Group 2 (n = 26) received orlistat in addition to hypocaloric diet for 12 weeks. Anthropometric measurements, serum lipid, insulin levels, and obestatin and ghrelin values were assessed at the beginning of the study and after 12 weeks of therapy. RESULTS Baseline clinical characteristics and laboratory parameters including serum ghrelin and obestatin concentrations and ghrelin/obestatin ratio were similar between the two groups. After 12 weeks, mean change in BMI, fat mass, and fat-free mass (FFM) were -1.97 ± 1.56 kg/m2 (P = 0.003), -2.63% ±2.11% (P = 0.003), and -1.06 ± 0.82 kg (P = 0.003), respectively, in Group 1. In Group 2, mean change in BMI was -2.11 ± 1.24 kg/m2 (P = 0.001), fat mass was -3.09% ±2.28% (P = 0.002), and FFM was -1.26 ± 0.54 kg (P = 0.001). However, fasting glucose, lipid, and insulin levels did not change in Group 1. Furthermore, except serum high-density lipoprotein cholesterol and triglyceride levels, no significant change was observed in Group 2. Although serum ghrelin and obestatin concentrations increased significantly in both groups (Group 1: pGhrelin: 0.047, pobestatin: 0.001 and Group 2: pGhrelin: 0.028, pobestatin: 0.006), ghrelin/obestatin ratio did not change significantly. When the changes in anthropometric assessments and laboratory parameters were compared, no significant difference was observed between the two groups. Furthermore, no correlation was observed between ghrelin or obestatin and any other hormonal and metabolic parameters. CONCLUSION Weight loss with diet and diet plus orlistat is both associated with increased ghrelin and obestatin concentrations.
Collapse
Affiliation(s)
- Baris Pamuk
- Department of Internal Medicine, Katip Celebi University Hospital, Izmir, Turkey
| | - Hamiyet Yilmaz
- Department of Endocrinology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Levent Kebapçilar
- Department of Endocrinology, Bozyaka Research and Training Hospital, Izmir, Turkey
| | - Halil Kirbiyik
- Department of Internal Medicine, Bozyaka Research and Training Hospital, Izmir, Turkey
| | - Ahmet Alacacioğlu
- Department of Medical Oncology, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Giray Bozkaya
- Department of Biochemistry, Bozyaka Research and Training Hospital, Izmir, Turkey
| | - Gülseren Pamuk
- Department of Family Medicine, Bozyaka Research and Training Hospital, Izmir, Turkey
| | - Mustafa Demirpence
- Department of Endocrinology, Tepecik Research and Training Hospital, Izmir, Turkey
| |
Collapse
|
17
|
Angrisani L, Santonicola A, Vitiello A, Ferraro L, Iovino P. Reply to Letter to the Editor "Left Gastric Artery Embolization for Weight Loss-a Dead-End Procedure". Obes Surg 2018; 28:3627-3628. [PMID: 30128644 DOI: 10.1007/s11695-018-3464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luigi Angrisani
- General and Endoscopic Surgery Unit, S. Giovanni Bosco Hospital, Via Filippo Maria Briganti, 255, Naples, Italy.
| | - A Santonicola
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - A Vitiello
- General and Endoscopic Surgery Unit, S. Giovanni Bosco Hospital, Via Filippo Maria Briganti, 255, Naples, Italy
| | - L Ferraro
- General and Endoscopic Surgery Unit, S. Giovanni Bosco Hospital, Via Filippo Maria Briganti, 255, Naples, Italy
| | - P Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| |
Collapse
|
18
|
Posttraumatic Stress Disorder Augments Plasma Triglycerides in TT Homozygotes of rs495225 at Growth Hormone Secretagogue Receptor Gene. Biochem Genet 2018; 57:273-288. [PMID: 30269201 DOI: 10.1007/s10528-018-9890-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Posttraumatic stress disorder (PTSD) and growth hormone secretagogue receptor (GHSR) were reported to be associated with plasma lipid and glucose levels. However, interplays of PTSD with GHSR on plasma lipid and glucose levels have not been explored yet. This study was to investigate the interplays of PTSD and GHSR rs495225 on plasma glucose and lipid profiles. A total of 709 high school students were recruited at 6 months after the 2008 Wenchuan earthquake. Variants of GHSR rs495225 were identified by polymerase chain reaction-restriction fragment length polymorphism analyses and verified by DNA sequencing. The PTSD Checklist Civilian Version (PCL-C) was used to assess PTSD. There was no significant difference of PTSD prevalence between the TT homozygotes and the C allele carriers. However, the students with PTSD had significantly lower levels of glucose, insulin and homeostasis model assessment of insulin resistance (HOMA-IR) than the students without PTSD in the C allele carriers of GHSR rs495225 after the adjustment for age, gender and body mass index (BMI), but higher levels of TG and TG/HDL-C in the TT homozygotes. Meanwhile, the TT homozygotes had lower levels of HDL-C than the C allele carriers in the students without PTSD, but higher levels of insulin and HOMA-IR in the subjects with PTSD. After the adjustment of age and gender, and additional adjustment for BMI, the results were not changed except the difference of insulin was only a tendency (p = 0.054) after the additional adjustment for BMI. PTSD may augment TG levels and the related lipid ratio TG/HDL-C in the TT homozygotes of GHSR rs495225 but decrease the levels of glucose, insulin and HOMA-IR in the C allele carriers.
Collapse
|
19
|
Zhang HB, Wang XD, Xu K, Li XG. The progress of prophylactic treatment in retinopathy of prematurity. Int J Ophthalmol 2018; 11:858-873. [PMID: 29862189 DOI: 10.18240/ijo.2018.05.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a retinal vascular disorder frequently found in premature infants. Different therapeutic strategies have been developed to treat ROP. However, there are still many children with ROP suffering by severe limitations in vision or even blindness. Recently, ROP has been suggested to be caused by abnormal development of the retinal vasculature, but not simply resulted by retinal neovascularization which takes about 4 to 6wk after birth in premature infants. Thus, instead of focusing on how to reduce retinal neovascularization, understanding the pathological changes and mechanisms that occur prior to retinal neovascularization is meaningful, which may lead to identify novel target(s) for the development of novel strategy to promote the healthy growth of retinal blood vessels rather than passively waiting for the appearance of retinal neovascularization and removing it by force. In this review, we discussed recent studies about, 1) the pathogenesis prior to retinal neovascularization in oxygen-induced retinopathy (OIR; a ROP in animal model) and in premature infants with ROP; 2) the preclinical and clinical research on preventive treatment of early OIR and ROP. We will not only highlight the importance of the mechanisms and signalling pathways in regulating early stage of ROP but also will provide guidance for actively exploring novel mechanisms and discovering novel treatments for early phase OIR and ROP prior to retinal neovascularization in the future.
Collapse
Affiliation(s)
- Hong-Bing Zhang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Wang
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Kun Xu
- Eye Institute of Shaanxi Province; Xi'an First Hospital, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Gang Li
- Department of Internal Medicine; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Zhang W, Zhang Z, Chen J, Tong D. Ghrelin is expressed in the pregnant mammary glands of dairy goats and promotes the cell proliferation of mammary epithelial cells. Gen Comp Endocrinol 2018; 260:115-124. [PMID: 29366624 DOI: 10.1016/j.ygcen.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Little is known about ghrelin's effects on cell proliferation in pregnant mammary epithelial cells (MECs) even though it is known to be a mitogen for a variety of other cell types. The objectives of this study were to evaluate the expression and localization of ghrelin and its functional receptor, GHSR-1a, in the mammary glands of dairy goats during pregnancy and to investigate the direct role of ghrelin in cell proliferation of primary cultured MECs. Compared to the early stage (days 30) of pregnancy, the abundance of transcripts and protein of ghrelin and GHSR-1a were significantly greater in mid- and late-phases (between days 90 and days 120) of pregnancy (p < .05). Immunohistochemistry analysis showed that ghrelin and GHSR-1a were predominantly localized in the alveolar and ductal mammary epithelial cells at various stages of pregnancy. In our in vitro experiments, ghrelin induced a dose- and time-dependent promotory effect on cell proliferation of MECs. At the dose of 103 pg/mL treatment 24 h, ghrelin augmented the expression of proliferation-related peptides (PCNA and cyclin B1). Furthermore, ghrelin promoted the expression of prolactin (PRL) and GHSR-1a in cultured MECs. Additionally, the stimulatory effects of ghrelin were blocked by d-Lys3-GHRP6, a selective antagonist of GHSR-1a. As the temporal changes in ghrelin and GHSR-1a expression in pregnant goat mammary glands coincided with the mammary growth and development during the pregnancy, activation of GHSR-1a signal transduction pathways by ghrelin may play a direct role in the regulation of mammary growth in dairy goats.
Collapse
Affiliation(s)
- Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinxuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
21
|
Lyra Junior HF, Rodrigues IK, Schiavon LDL, D Acâmpora AJ. Ghrelin and gastrointestinal wound healing. A new perspective for colorectal surgery. Acta Cir Bras 2018; 33:282-294. [PMID: 29668782 DOI: 10.1590/s0102-865020180030000010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Humberto Fenner Lyra Junior
- Department of Surgery, Universitary Hospital, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | | | | |
Collapse
|
22
|
Okuhara Y, Kaiya H, Teraoka H, Kitazawa T. Structural determination, distribution, and physiological actions of ghrelin in the guinea pig. Peptides 2018; 99:70-81. [PMID: 29183755 DOI: 10.1016/j.peptides.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
We identified guinea pig ghrelin (gp-ghrelin), and examined its distribution and physiological actions in the guinea-pig. Gp-ghrelin is a 28-amino acid peptide (GASFR SPEHH SAQQR KESRK LPAKI QPR); seven amino acids are different from that of rat ghrelin at positions 2, 5, 10, 11, 19, 21, and 25, which include the conserved region known in mammals. The third serine residue is mainly modified by n-decanoyl acid. Both gp-ghrelin and rat ghrelin increased intracellular Ca2+ concentration of HEK293 cells expressing guinea pig growth hormone secretagogue receptor 1a (GHS-R1a), and the affinity of gp-ghrelin was slightly higher than that of rat ghrelin. In addition, gp-ghrelin was also effective in CHO cells expressing rat GHS-R1a with similar affinity to that of rat ghrelin. Gp-ghrelin mRNA was predominantly expressed in the stomach, whereas the expression levels in other organs was low. High levels of GHS-R1a mRNA expression were observed in the pituitary, medulla oblongata, and kidney, while medium levels were noted in the thalamus, pons, olfactory bulb, and heart. Immunohistochemistry identified gp-ghrelin-immunopositive cells in the gastric mucosa and pancreas. Intraperitoneal injection of gp-ghrelin increased food intake in the guinea pig. Gp-ghrelin did not cause any mechanical responses in isolated gastrointestinal smooth muscles in vitro, similar to rat ghrelin. In conclusion, the N-terminal structures that are conserved in mammals were different in gp-ghrelin. Moreover, the functional characteristics of gp-ghrelin, other than its distribution, were dissimilar from those in other Rodentia.
Collapse
Affiliation(s)
- Yuji Okuhara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; Pathology Research, Safety Research Laboratory, Kissei Pharmaceutical Co., Ltd., 2320-1, Maki, Hotaka, Azumino, Nagano 399-8305, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
23
|
Abstract
Ghrelin and motilin are released from gastrointestinal endocrine cells during hunger, to act through G protein-coupled receptors that have closely related amino acid sequences. The actions of ghrelin are more complex than motilin because ghrelin also exists outside the GI tract, it is processed to des-acyl ghrelin which has activity, ghrelin can exist in truncated forms and retain activity, the ghrelin receptor can have constitutive activity and is subject to biased agonism and finally additional ghrelin-like and des-acyl ghrelin receptors are proposed. Both ghrelin and motilin can stimulate gastric emptying, acting via different pathways, perhaps influenced by biased agonism at the receptors, but research is revealing additional pathways of activity. For example, it is becoming apparent that reduction of nausea may be a key therapeutic target for ghrelin receptor agonists and perhaps for compounds that modulate the constitutive activity of the ghrelin receptor. Reduction of nausea may be the mechanism through which gastroparesis symptoms are reduced. Intriguingly, a potential ability of motilin to influence nausea is also becoming apparent. Ghrelin interacts with digestive function through its effects on appetite, and ghrelin antagonists may have a place in treating Prader-Willi syndrome. Unlike motilin, ghrelin receptor agonists also have the potential to treat constipation by acting at the lumbosacral defecation centres. In conclusion, agonists of both ghrelin and motilin receptors hold potential as treatments for specific subsets of digestive system disorders.
Collapse
|
24
|
Vitolo E, Santini E, Seghieri M, Giannini L, Coppedè F, Rossi C, Dardano A, Solini A. Heterozygosity for the rs696217 SNP in the Preproghrelin Gene Predicts Weight Loss After Bariatric Surgery in Severely Obese Individuals. Obes Surg 2017; 27:961-967. [PMID: 27681093 DOI: 10.1007/s11695-016-2387-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several patients encompass a scarce weight loss after Roux-en-Y gastric bypass (RYGB). As such event is not related to surgical complications, finding markers able to identify "well responders" and to predict weight loss outcome is clinically relevant. Ghrelin regulates appetite and energy balance. Common single nucleotide polymorphisms (SNPs) in its encoding genes have been associated with body weight regulation. Other peptides involved in satiety modulation, like the CD40/CD40L complex, are less explored. METHODS One hundred, otherwise healthy, obese subjects (aged 45 ± 11 years, 65 females, BMI 48.0 ± 0.7 kg/m2) were sequentially enrolled in years 2014-2015. SNPs rs2241766 for adiponectin gene, rs490683 for ghrelin receptor, rs696217 and rs27647 for the preproghrelin/ghrelin gene, and rs1126535 for the CD40L gene were determined on DNA extracted from circulating lymphomonocytes. Patients were reevaluated at 6 (n = 100), 26 (n = 91), and 52 weeks (n = 79) after RYGB. RESULTS Subjects carrying the rs696217 T allele encompassed a significantly greater reduction in BMI 52 weeks after surgery (GG vs GT 30.5 ± 1.1 vs 38.1 ± 2.1 %; p < 0.001). Carrying the rs1126535 C allele in the CD40L gene was associated with a significantly lower BMI reduction at week 52 (TT vs CT 33.2 ± 1.1 vs 28.1 ± 2.3 %, p = 0.049). rs490683 and rs27647 SNPs of ghrelin and rs2241766 for adiponectin gene did not show any difference between carriers and non-carriers of the mutant allele. CONCLUSION Carrying a G to T substitution in rs696217 (preproghrelin gene) seems to mark a successful weight loss outcome; we also report for the first time that the rs1126535 C allele (CD40L gene) may predict a worse response to bariatric surgery.
Collapse
Affiliation(s)
- Edoardo Vitolo
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Eleonora Santini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Marta Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Livia Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy.
| |
Collapse
|
25
|
Höhne A, Schrader L, Weigend S, Petow S. Ghrelin plasma concentration does not covary with energy demand in adult laying hens. Domest Anim Endocrinol 2017; 61:77-83. [PMID: 28734138 DOI: 10.1016/j.domaniend.2017.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The peptide hormone ghrelin is suggested to be involved in food intake regulation in young growing chicken. Whether ghrelin is involved in the regulation of energetic balance associated with laying performance in adult laying hens was studied by use of 4 chicken lines that differ in laying performance and phylogeny (4 lines; 16 hens per line). As housing conditions are also known to affect energy demand, half of the hens per line were housed in single cages and the other half of hens were maintained in a floor housing system. Plasma samples were collected at 17 to 19, 33 to 35, 49 to 51, and 72 wk of age and analyzed with a chicken ghrelin ELISA Kit. From caged hens, individual food consumption and laying performance additionally was recorded. Due to its function in growth and its relationship with ghrelin, also GH plasma concentrations were analyzed. Ghrelin concentrations did not differ between the 4 lines at any of the test periods (all P > 0.05). Ghrelin was negatively related to food consumption only in the growing period of the high-performing lines (both P < 0.0001). During this phase, floor-housed hens showed greater ghrelin concentrations compared with caged hens (P < 0.0001). Our results suggest that in adult layers ghrelin is not involved in regulating energy intake related to laying performance but rather seems to be related to body growth and housing condition before start of lay, the latter possibly due to differences in hens' behavioral activity.
Collapse
Affiliation(s)
- A Höhne
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany.
| | - L Schrader
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - S Weigend
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Mariensee, Germany
| | - S Petow
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| |
Collapse
|
26
|
Р. LEU72MET MUTATION OF GHRELIN GHRL GENE IN CHILDREN WITH GASTROESOPHAGEAL REFLUX DISEASE. EUREKA: HEALTH SCIENCES 2017. [DOI: 10.21303/2504-5679.2017.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gastroesophageal disease (GERD) is the one of most spread diseases that injures an esophagus. Taking into account the large number of factors that can cause GERD development already in child age, including genetic predisposition, it is necessary to analyze each of them in detail.
Aim of this work was to analyze a frequency and possible association type of р. Leu72Met mutation of GHRL gene in children with gastroesophageal reflux disease.
The analysis of clinical parameters and course of disease in the group of 100 schoolchildren with GERD was carried out. The molecular-genetic study of c.214C>A locus of GHRL gene by CPR method (rs696217) was carried out in patients with GERD and 40 healthy children from the control group.
In 82% of children with GERD was revealed a GHRL 214СС (Leu/Leu) homozygous genotype, at 58% among children from the control group. GHRL 214СА (Leu/ Met) genotype was registered three times more seldom in children of the studied group comparing with ones from the control group: 15,0% and 42,5%, respectively. It was established, that GHRL 214CС genotype presence conditions the increase of GERD development risk in 3,4 times. On the contrary, GHRL 214CА genotype manifests a reliable protective effect that is essentially decreased GERD development risk in a child at such genotype – 0,24 comparing with a conventional unit.
There was established alleles and genotypes distribution of c.214C>A (р.Leu72Met) locus of GHRL gene in children with GERD. GHRL 214CС genotype is associated with threefold increase of GERD risk development. Gender differences as to GERD development risk at different genotypes of ghrelin gene were established. At GHRL 214СС (Leu/Leu) genotype the relative GERD risk for boys increased in more than 6 times. There were not established any differences in alleles and genotypes distribution depending on erosive or surface inflammatory changes of a gastrointestinal tract mucosa.
Collapse
|
27
|
Mosińska P, Zatorski H, Storr M, Fichna J. Future Treatment of Constipation-associated Disorders: Role of Relamorelin and Other Ghrelin Receptor Agonists. J Neurogastroenterol Motil 2017; 23:171-179. [PMID: 28238253 PMCID: PMC5383112 DOI: 10.5056/jnm16183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/19/2016] [Accepted: 01/08/2017] [Indexed: 12/22/2022] Open
Abstract
There is an unmet need for effective pharmacological therapies for constipation, a symptom that significantly deteriorates patients’ quality of life and impacts health care. Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor and has been shown to exert prokinetic effects on gastrointestinal (GI) motility via the vagus and pelvic nerves. The pharmacological potential of ghrelin is hampered by its short half-life. Ghrelin receptor (GRLN-R) agonists with enhanced pharmacokinetics were thus developed. Centrally penetrant GRLN-R agonists stimulate defecation and improve impaired lower GI transit in animals and humans. This review summarizes the current knowledge on relamorelin, a potent ghrelin mimetic, and other GRLN-R analogs which are in preclinical or clinical stages of development for the management of disorders with underlying GI hypomotility, like constipation.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Martin Storr
- Center of Endoscopy, Starnberg, Germany and Walter-Brendel-Centre, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Crotta K, Casnici C, Tonna N, Lattuada D, Bianco F, Marelli O. Characterization of a Monoclonal Antibody Specific for the Growth Hormone Secretagogue Receptor. Monoclon Antib Immunodiagn Immunother 2017; 36:37-43. [PMID: 28409695 DOI: 10.1089/mab.2016.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is an orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. It has been shown to also play a role in numerous higher brain functions, such as the regulation of inflammation and cell proliferation. Ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (GHSR), a G-protein-coupled receptor highly expressed in brain and detectable in some peripheral tissues. The wide distribution of ghrelin receptor and the number of tissues and cell types known to respond to ghrelin suggest that a number of systems may be affected by treatment with this hormone or its analogues. In this study, we characterized a new GHSR specific monoclonal antibody recognizing specifically the ghrelin receptor. This could be a useful tool for immunoassays aimed at obtaining insights into the physiological and pathological significance of the GHSR/ghrelin system.
Collapse
Affiliation(s)
- Katia Crotta
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| | - Claudia Casnici
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy .,2 Ferdinando Santarelli Foundation , Milan, Italy
| | | | - Donatella Lattuada
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| | - Fabio Bianco
- 2 Ferdinando Santarelli Foundation , Milan, Italy .,4 Sanipedia srl , OpenZone, Bresso, Italy
| | - Ornella Marelli
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| |
Collapse
|
29
|
Abstract
Ghrelin is a small peptide released primarily from the stomach. It is a potent stimulator of growth hormone secretion from the pituitary gland and is well known for its regulation of metabolism and appetite. There is also a strong relationship between ghrelin and the cardiovascular system. Ghrelin receptors are present throughout the heart and vasculature and have been linked with molecular pathways, including, but not limited to, the regulation of intracellular calcium concentration, inhibition of proapoptotic cascades, and protection against oxidative damage. Ghrelin shows robust cardioprotective effects including enhancing endothelial and vascular function, preventing atherosclerosis, inhibiting sympathetic drive, and decreasing blood pressure. After myocardial infarction, exogenous administration of ghrelin preserves cardiac function, reduces the incidence of fatal arrhythmias, and attenuates apoptosis and ventricular remodeling, leading to improvements in heart failure. It ameliorates cachexia in end-stage congestive heart failure patients and has shown clinical benefit in pulmonary hypertension. Nonetheless, since ghrelin's discovery is relatively recent, there remains a substantial amount of research needed to fully understand its clinical significance in cardiovascular disease.
Collapse
|
30
|
Özcan B, Leenen PJM, Delhanty PJD, Baldéon-Rojas LY, Neggers SJ, van der Lely AJ. Unacylated ghrelin modulates circulating angiogenic cell number in insulin-resistant states. Diabetol Metab Syndr 2017; 9:43. [PMID: 28572856 PMCID: PMC5452348 DOI: 10.1186/s13098-017-0239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with reduced numbers and impaired function of circulating angiogenic cells (CAC) which contributes to the progression of atherosclerosis and microvascular disease. Previous studies suggest that short-term infusion of unacylated ghrelin (UAG) normalizes CAC number in patients with T2D. To determine dose-dependent effects of short-term infusion of UAG in T2D patients using a cross-over model, and of long-term infusion of UAG in obese mice, on differentiation of monocyte progenitors into CAC. METHODS Eight overweight T2D patients were infused overnight with 3 and 10 µg/kg/h of UAG in a double-blind, placebo-controlled cross-over study. To assess the effects of long-term UAG treatment, obese mice were infused with UAG for 4 weeks. Monocyte progenitors were assessed for their ability to differentiate into CAC in vitro. RESULTS In T2D patients, UAG treatment caused a reduction in differentiation of CAC, dependent on UAG dose and differentiation method. However, mice treated with UAG showed a significant increase in differentiation of bone marrow progenitors into CAC. CONCLUSION UAG causes a minor suppressive effect on CAC development after short-term treatment in humans, but experiments in mice suggest that long-term treatment has beneficial effects on CAC formation. The Netherlands Trial Register: TC=2487.
Collapse
Affiliation(s)
- Behiye Özcan
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Kitazawa T, Shimazaki M, Kikuta A, Yaosaka N, Teraoka H, Kaiya H. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt. Gen Comp Endocrinol 2016; 232:51-9. [PMID: 26704852 DOI: 10.1016/j.ygcen.2015.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians.
Collapse
Affiliation(s)
- Takio Kitazawa
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Misato Shimazaki
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Ayumi Kikuta
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Noriko Yaosaka
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- Dept. of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Dept. of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
32
|
Bariatric Left Gastric Artery Embolization for the Treatment of Obesity: A Review of Gut Hormone Involvement in Energy Homeostasis. AJR Am J Roentgenol 2016; 206:202-10. [PMID: 26700353 DOI: 10.2214/ajr.15.14331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The global population is becoming more overweight and obese, leading to increases in associated morbidity and mortality rates. Advances in catheter-directed embolotherapy offer the potential for the interventional radiologist to make a contribution to weight loss. Left gastric artery embolization reduces the supply of blood to the gastric fundus and decreases serum levels of ghrelin. Early evidence suggests that this alteration in gut hormone balance leads to changes in energy homeostasis and weight reduction. The pathophysiologic findings and current evidence associated with the use of left gastric artery embolization are reviewed. CONCLUSION The prevalence of obesity continues to increase at an alarming rate, and, thus far, advances in medical management have been relatively ineffective in slowing this trend. Lifestyle modifications such as diet and exercise are effective initially, but most patients regain the weight in the long term. Bariatric surgery is the most effective strategy for achieving long-term weight loss; however, as with all surgical procedures, it has potential complications.
Collapse
|
33
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
34
|
Ngernsoungnern A, Ngernsoungnern P. Localization of ghrelin-like peptide in the gastrointestinal tract of the golden apple snail (Pomacea canaliculata) and changing of its concentration during fasting. Acta Histochem 2016; 118:244-51. [PMID: 26850996 DOI: 10.1016/j.acthis.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin is an endogenous hormone detected in the gastrointestinal tracts (GI) of various species. In the present study, ghrelin-like peptide (ghrelin-LP) was identified in the GI tract of the golden apple snail, Pomacea canaliculata. Using immunohistochemistry, the result revealed an immunoreactivity (-ir) of ghrelin-LP in regions of the GI tract. The ghrelin-LP-ir was observed in both opened-type and closed-type cells of the esophagus, stomach, and small and large intestines. The highest density of ghrelin-LP immunoreactive cells was found in the esophagus and the least density was detected in the stomach. The highest percentages of the opened-type and closed-type cells were present in the esophagus and small intestine, respectively. In immunoblotting, the molecular weight of ghrelin-LP was related to the human ghrelin peptide (∼13kDa). Moreover, the concentration of ghrelin-LP was significantly higher in snails that were fasted for 24h compared with fed snails. The concentration decreased after refeeding. The present study could be useful for understanding the physiological role of ghrelin-LP in mollusk species.
Collapse
Affiliation(s)
- Apichart Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
35
|
Sheesley AP. Counselors Within the Chronic Care Model: Supporting Weight Management. JOURNAL OF COUNSELING AND DEVELOPMENT 2016. [DOI: 10.1002/jcad.12079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alison Phillips Sheesley
- Department of Applied Psychology and Counselor Education; University of Northern Colorado; Greeley
| |
Collapse
|
36
|
Brianza-Padilla M, Bonilla-Jaime H, Almanza-Pérez JC, López-López AL, Sánchez-Muñoz F, Vázquez-Palacios G. Effects of different periods of paradoxical sleep deprivation and sleep recovery on lipid and glucose metabolism and appetite hormones in rats. Appl Physiol Nutr Metab 2016; 41:235-43. [DOI: 10.1139/apnm-2015-0337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sleep has a fundamental role in the regulation of energy balance, and it is an essential and natural process whose precise impacts on health and disease have not yet been fully elucidated. The aim of this study was to assess the consequences of different periods of paradoxical sleep deprivation (PSD) and recovery from PSD on lipid profile, oral glucose tolerance test (OGTT) results, and changes in insulin, corticosterone, ghrelin, and leptin concentrations. Three-month-old male Wistar rats weighing 250–350 g were submitted to 24, 96, or 192 h of PSD or 192 h of PSD with 480 h of recovery. The PSD was induced by the multiple platforms method. Subsequently, the animals were submitted to an OGTT. One day later, the animals were killed and the levels of triglycerides, total cholesterol, lipoproteins (low-density lipoprotein, very-low-density lipoprotein, and high-density lipoprotein), insulin, ghrelin, leptin, and corticosterone in plasma were quantified. There was a progressive decrease in body weight with increasing duration of PSD. The PSD induced basal hypoglycemia over all time periods evaluated. Evaluation of areas under the curve revealed progressive hypoglycemia only after 96 and 192 h of PSD. There was an increase in corticosterone levels after 192 h of PSD. We conclude that PSD induces alterations in metabolism that are reversed after a recovery period of 20 days.
Collapse
Affiliation(s)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Mexico
| | - Julio César Almanza-Pérez
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana-Iztapalapa, CP 09340, Mexico
| | - Ana Laura López-López
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, CP 09340, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiologia (Ignacio Chávez), Juan Badiano No. 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico
| | - Gonzalo Vázquez-Palacios
- Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México-San Lorenzo Tezonco, Av. Prolongación San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, CP 09790, Mexico
| |
Collapse
|
37
|
Ozkorucu D, Cetin N, Sav NM, Yildiz B. Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome. Int Urol Nephrol 2016; 48:1187-96. [PMID: 26922067 DOI: 10.1007/s11255-016-1249-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is an immune-mediated disorder associated with hyperlipidemia. NS has been proposed to be mediated through CD80-related T cell immune response, which could be blocked using soluble cytotoxic T lymphocyte-associated s(CTLA)-4. Although ghrelin is a hormone-modulating lipid metabolism and suppressing immune system, the precise role of ghrelin in NS is not well established. METHODS We evaluated the levels of ghrelin, soluble CD80 (sCD80) and sCTLA4 in serum and urine in doxorubicin-induced NS in rats. We also investigated the relation between their levels and the levels of serum total cholesterol (TC), triglyceride, albumin and urine protein. RESULTS While urinary ghrelin levels were significantly lower in the nephrotic rats compared to the control group, serum ghrelin levels were comparable in the nephrotic and control rats. In contrast, serum and urinary sCD80 and sCTLA4 levels were higher in the nephrotic rats than the controls. The urinary ghrelin levels were negatively correlated with the levels of serum triglyceride, TC and urine protein, sCD80 and sCTLA4. The urine sCD80 levels were positively correlated with the TC, urine protein and urine sCTLA4 levels, and negatively correlated with the serum albumin. The urine sCTLA4 levels were positively correlated with the TC and urine protein levels and negatively correlated with the serum albumin levels. In regression analysis, the urine ghrelin levels significantly relate to urine sCD80 levels. Besides, hyperlipidemia in NS did not appear to be related to serum ghrelin levels. CONCLUSION Low urine ghrelin levels might be relevant to pathogenesis of doxorubicin-induced NS. The reduction in urine ghrelin levels might also be associated with increased levels of urine sCTLA4 and sCD80 which reflect proteinuria.
Collapse
Affiliation(s)
- Duygu Ozkorucu
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nadide Melike Sav
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Bilal Yildiz
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey.
| |
Collapse
|
38
|
Zhao Y, Zhang X, Chen J, Lin C, Shao R, Yan C, Chen C. Hexarelin Protects Rodent Pancreatic Β-Cells Function from Cytotoxic Effects of Streptozotocin Involving Mitochondrial Signalling Pathways In Vivo and In Vitro. PLoS One 2016; 11:e0149730. [PMID: 26918825 PMCID: PMC4769129 DOI: 10.1371/journal.pone.0149730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/04/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex) is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ)-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line). Hex (1.0 μM) decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, China
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Xinli Zhang
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Lin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Renfu Shao
- Gene Cology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chunxia Yan
- Department of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
39
|
Stoyanova II, Hofmeijer J, van Putten MJAM, le Feber J. Acyl Ghrelin Improves Synapse Recovery in an In Vitro Model of Postanoxic Encephalopathy. Mol Neurobiol 2015; 53:6136-6143. [PMID: 26541885 PMCID: PMC5085991 DOI: 10.1007/s12035-015-9502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 11/04/2022]
Abstract
Comatose patients after cardiac arrest have a poor prognosis. Approximately half never awakes as a result of severe diffuse postanoxic encephalopathy. Several neuroprotective agents have been tested, however without significant effect. In the present study, we used cultured neuronal networks as a model system to study the general synaptic damage caused by temporary severe hypoxia and the possibility to restrict it by ghrelin treatment. Briefly, we applied hypoxia (pO2 lowered from 150 to 20 mmHg) during 6 h in 55 cultures. Three hours after restoration of normoxia, half of the cultures were treated with ghrelin for 24 h, while the other, non-supplemented, were used as a control. All cultures were processed immunocytochemically for detection of the synaptic marker synaptophysin. We observed that hypoxia led to drastic decline of the number of synapses, followed by some recovery after return to normoxia, but still below the prehypoxic level. Additionally, synaptic vulnerability was selective: large- and small-sized neurons were more susceptible to synaptic damage than the medium-sized ones. Ghrelin treatment significantly increased the synapse density, as compared with the non-treated controls or with the prehypoxic period. The effect was detected in all neuronal subtypes. In conclusion, exogenous ghrelin has a robust impact on the recovery of cortical synapses after hypoxia. It raises the possibility that ghrelin or its analogs may have a therapeutic potential for treatment of postanoxic encephalopathy.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Biomedical Signals and Systems, EWI, University of Twente, Enschede, The Netherlands
| |
Collapse
|
40
|
Eissa N, Ghia JE. Immunomodulatory effect of ghrelin in the intestinal mucosa. Neurogastroenterol Motil 2015; 27:1519-27. [PMID: 26503163 DOI: 10.1111/nmo.12703] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022]
Abstract
The gastrointestinal tract is the largest endocrine organ in the body and it produces a wide array of hormones and neuropeptides. Ghrelin, a 28-amino acid hormone produced mainly by the X/A-like endocrine cells in the gastric mucosa, has widespread tissue distribution and diverse physiological functions such as hormonal, orexigenic, metabolic, cardiovascular, neurological and immunological activities. Recent research has implicated ghrelin in gastrointestinal pathological conditions and immune system regulation, but its contribution is controversial. Although ghrelin levels are elevated in clinical active inflammatory bowel diseases, confirmation of its exact role using experimental models remains unclear. This review discusses the conflicting effects of ghrelin on intestinal inflammation, through the different possible immune and intracellular mechanisms and highlights new findings.
Collapse
Affiliation(s)
- N Eissa
- Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - J E Ghia
- Immunology, University of Manitoba, Winnipeg, MB, Canada.,Internal Medicine Section of Gastroenterology, IBD Clinical and Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Kitazawa T, Hiraga T, Teraoka H, Yaosaka N, Kaiya H. Correlation of ghrelin concentration and ghrelin, ghrelin-O-acetyltransferase (GOAT) and growth hormone secretagogue receptor 1a mRNAs expression in the proventriculus and brain of the growing chicken. Peptides 2015; 63:134-42. [PMID: 25435492 DOI: 10.1016/j.peptides.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
To determine mechanisms for age-related decrease of GHS-R1a expression in the chicken proventriculus, changes in mRNA expression of ghrelin and ghrelin-O-acetyltransferase (GOAT) as well as ghrelin concentrations in the proventriculus and plasma were examined in growing chickens. Changes in expression levels of ghrelin, GOAT and GHS-R1a mRNAs were also examined in different brain regions (pituitary, hypothalamus, thalamus, cerebellum, cerebral cortex, olfactory bulb, midbrain and medulla oblongata). Ghrelin concentrations in the proventriculus and plasma increased with aging and reached plateaus at 30-50 days after hatching. High level of ghrelin mRNA decreased at 3 days after hatching, and it became stable at half of the initial level. Expression levels of GHS-R1a and GOAT decreased 3 or 5 days after hatching and became stable at low levels. Significant negative correlations were found between plasma ghrelin and mRNA levels of GOAT and GHS-R1a. Expression levels of ghrelin mRNA were different in the brain regions, but a significant change was not seen with aging. GHS-R1a expression was detected in all brain regions, and age-dependent changes were observed in the pituitary and cerebellum. Different from the proventriculus, the expression of GOAT in the brain increased or did not change with aging. These results suggest that decreased GHS-R1a and GOAT mRNA expression in the proventriculus is due to endogenous ghrelin-induced down-regulation. Expression levels of ghrelin, GOAT and GHS-R1a in the brain were independently regulated from that in the proventriculus, and age-related and region-dependent regulation pattern suggests a local effect of ghrelin system in chicken brain.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Takeo Hiraga
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Noriko Yaosaka
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
42
|
Kaiya H, Konno N, Kangawa K, Uchiyama M, Miyazato M. Identification, tissue distribution and functional characterization of the ghrelin receptor in West African lungfish, Protopterus annectens. Gen Comp Endocrinol 2014; 209:106-17. [PMID: 25093625 DOI: 10.1016/j.ygcen.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Minoru Uchiyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
43
|
Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa. Psychiatry Res 2014; 223:94-103. [PMID: 24862390 PMCID: PMC4090258 DOI: 10.1016/j.pscychresns.2014.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
Abstract
Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies.
Collapse
|
44
|
Abstract
After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
45
|
Soeki T. Ghrelin and its receptor: The role of the ghrelin signaling system in regulating cardiac function. ACTA ACUST UNITED AC 2014; 192-193:57-8. [DOI: 10.1016/j.regpep.2014.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/21/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
|
46
|
Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol 2014; 5:434. [PMID: 24860541 PMCID: PMC4026680 DOI: 10.3389/fpsyg.2014.00434] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors so the stressful event can be dealt with. In the hours following this, however, there is a glucocorticoid-mediated stimulation of hunger and eating behavior. In the case of an acute stress that requires a physical response, such as a predator-prey interaction, this hypothalamic-pituitary-adrenal (HPA) axis modulation of food intake allows the stressful event to be dealt with and the energy used to be replaced afterward. In the case of ongoing psychological stress, however, chronically elevated glucocorticoids can lead to chronically stimulated eating behavior and excessive weight gain. In particular, stress can enhance the propensity to eat high calorie “palatable” food via its interaction with central reward pathways. Activation of this circuitry can also interact with the HPA axis to suppress its further activation, meaning not only can stress encourage eating behavior, but eating can suppress the HPA axis and the feeling of stress. In this review we will explore the theme of eating behavior and stress and how these can modulate one another. We will address the interactions between the HPA axis and eating, introducing a potential integrative role for the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation of the HPA axis and how this can influence eating behavior. Finally, we will investigate the clinical implications of changes to HPA axis function and how this may be contributing to obesity in our society.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
47
|
Stoyanova II, le Feber J. Ghrelin accelerates synapse formation and activity development in cultured cortical networks. BMC Neurosci 2014; 15:49. [PMID: 24742241 PMCID: PMC3998954 DOI: 10.1186/1471-2202-15-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin's ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin--growth hormone secretagogue receptor-1a (GHSR-1a) during development. RESULTS We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76±4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1-2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. CONCLUSIONS Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P,O, Box 217, Enschede 7500 AE, The Netherlands.
| | | |
Collapse
|
48
|
The growth hormone secretagogue receptor: its intracellular signaling and regulation. Int J Mol Sci 2014; 15:4837-55. [PMID: 24651458 PMCID: PMC3975427 DOI: 10.3390/ijms15034837] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 01/29/2023] Open
Abstract
The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed.
Collapse
|
49
|
Prognostic value of plasma ghrelin in predicting the outcome of patients with chronic heart failure. Arch Med Res 2014; 45:263-9. [PMID: 24508287 DOI: 10.1016/j.arcmed.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/17/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Ghrelin is an endogenous ligand of the growth hormone (GH) secretagogue receptor and is closely associated with chronic heart failure (CHF). We undertook this study to investigate the relevance of ghrelin in CHF prognosis. METHODS A total of 145 in-patients with CHF in NYHA class II, III or IV despite optimized therapy were prospectively included in the study, grouped according to NYHA class and compared with 55 healthy control subjects. Ghrelin and N-terminal pro-B-type natriuretic peptide (Nt pro-BNP) were measured in plasma by ELISA. Echocardiographic information was also measured, including left atrial dimension, left ventricular end-diastolic diameter, LV volume and left ventricular ejection fraction (LVEF). Patients were followed for 2 years or until major adverse cardiac events. RESULTS Plasma ghrelin levels were significantly lower in patients with CHF than in control subjects (p = 0.014). In addition, plasma ghrelin levels differed significantly with the severity of CHF. Notably, survival analysis showed that high ghrelin levels were an indicator of a favorable prognosis for CHF. Our results also showed that ghrelin correlated inversely with plasma Nt pro-BNP levels (r = -0.562, p <0.001) and positively with LVEF (r = 0.620, p <0.001) in patients with CHF. Furthermore, multivariate analysis showed that ghrelin levels were independently associated with adverse cardiac events (hazard ratio: 0.72; 95% CI: 0.64-0.81, p = 0.03). CONCLUSIONS Ghrelin is a new biomarker of CHF severity as well as a new prognostic predictor for patients with CHF. Future experimental and clinical studies are warranted to evaluate ghrelin as a novel prognostic tool and for its therapeutic potential in patients with CHF.
Collapse
|
50
|
Gershon E, Vale WW. CRF type 2 receptors mediate the metabolic effects of ghrelin in C2C12 cells. Obesity (Silver Spring) 2014; 22:380-9. [PMID: 23804489 PMCID: PMC4170921 DOI: 10.1002/oby.20535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/17/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Ghrelin is known to regulate appetite control and cellular metabolism. The corticotropin-releasing factor (CRF) family is also known to regulate energy balance. In this study, the links between ghrelin and the CRF family in C2C12 cells, a mouse myoblast cell line was investigated. DESIGN AND METHODS C2C12 cells were treated with ghrelin in the presence or absence of CRF receptor antagonists and then subjected to different metabolic analyses. RESULTS Ghrelin enhanced glucose uptake by C2C12 cells, induced GLUT4 translocation to the cell surface and decreased RBP4 expression. A CRF-R2 selective antagonist, anti-sauvagine-30, blocked ghrelin-induced glucose uptake, Ghrelin upregulated CRF-R2 but not CRF-R1 levels. Moreover, ghrelin-treated C2C12 cells displayed a cAMP and pERK activation in response to Ucn3, a CRF-R2 specific ligand, but not in response to CRF or stressin, CRF-R1 specific ligands. Ghrelin also induced UCP2 and UCP3 expression, which were blocked by anti- sauvagine-30. Ghrelin did not induce fatty acids uptake by C2C12 cells or ACC expression. Even though C2C12 cells clearly exhibited responses to ghrelin, the known ghrelin receptor, GHSR1a, was not detectable in C2C12 cells. CONCLUSION The results suggest that, ghrelin plays a role in regulating muscle glucose and, raise the possibility that suppression of the CRF-R2 pathway might provide benefits in high ghrelin states.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Biological Transport/drug effects
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Gene Expression Regulation/drug effects
- Ghrelin/metabolism
- Glucose/metabolism
- Glucose Transporter Type 4/metabolism
- Ion Channels/agonists
- Ion Channels/genetics
- Ion Channels/metabolism
- Mice
- Mitochondrial Proteins/agonists
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myoblasts/ultrastructure
- Protein Transport/drug effects
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- Receptors, Corticotropin-Releasing Hormone/agonists
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Retinol-Binding Proteins, Plasma/antagonists & inhibitors
- Retinol-Binding Proteins, Plasma/genetics
- Retinol-Binding Proteins, Plasma/metabolism
- Signal Transduction/drug effects
- Uncoupling Protein 2
- Uncoupling Protein 3
- Urocortins/metabolism
Collapse
Affiliation(s)
- Eran Gershon
- To whom correspondence should be addressed: Eran Gershon, Department of Ruminant Science, The Volcani Center, P.O.Box 6, Bet Dagan 50250, ISRAEL,
| | | |
Collapse
|