1
|
Perronne L, Binvignat M, Foulquier N, Saraux A, Laredo JD, de Margerie-Mellon C, Fournier L, Sellam J. Algorithmic approaches in hand imaging for rheumatic musculoskeletal diseases: A systematic literature review. Semin Arthritis Rheum 2025; 73:152750. [PMID: 40349420 DOI: 10.1016/j.semarthrit.2025.152750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVE This systematic literature review provides a comprehensive overview of the use of machine learning (ML) in hand imaging of rheumatic musculoskeletal diseases (RMDs). The review evaluates ML algorithms, imaging modalities, patient populations, validation methods, and areas for improvement. METHODS The review was conducted following PRISMA guidelines and registered with PROSPERO. Articles were retrieved from PubMed, EMBASE, and Scopus using relevant MeSH terms and keywords. The search, executed in October 2024, was conducted manually and with BiBot, an AI-based tool for literature reviews. Studies focusing on ML applications in osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PsA) were included. RESULTS From 400 initially identified studies, 32 met the inclusion criteria. RA was the most studied disease (88 %), followed by OA (22 %) and PsA (9 %). Convolutional neural networks (CNNs) were the most frequently used algorithms (50 %). Standard radiographs (59 %) were the predominant imaging modality, followed by MRI (16 %). Despite recommendations for ML studies, external validation was conducted in only 15 % of studies, and just 6 % of datasets were publicly available. Interpretability tools were employed in 28 % of studies to enhance clinical relevance. CONCLUSION ML has significant potential to improve diagnostics and disease management in hand imaging of RMDs. However, key challenges remain, including the need for increased external validation, broader disease coverage (OA and PsA), and improved data-sharing practices to enhance reproducibility and clinical adoption.
Collapse
Affiliation(s)
- Laetitia Perronne
- PARCC UMRS 970, INSERM, Paris, France; Quantitative Imaging Core Lab, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 800, Chicago, IL 60611, USA.
| | - Marie Binvignat
- Immunology, Immunopathology, Immunotherapy I3 Lab, INSERM UMRS-959, Sorbonne Université, Paris, France; Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Sorbonne Université; Centre de Recherche Saint-Antoine, Inserm UMRS_938, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Nathan Foulquier
- LBAI, UMR1227, INSERM, University of Western Brittany, Brest France and Centre Hospitalier Universitaire de Brest, Brest, France
| | - Alain Saraux
- Université de Bretagne Occidentale (Univ Brest), Department of Rheumatology; Pôle PHARES, CHU Brest, INSERM (U1227), LabEx IGO, Brest, France 29200 Brest, France
| | - Jean Denis Laredo
- Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Service de Chirurgie Orthopédique Et Traumatologique, 75010 Paris, France
| | | | - Laure Fournier
- PARCC UMRS 970, INSERM, Paris, France; Université Paris Cité, AP-HP, Hopital européen Georges Pompidou, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Sorbonne Université; Centre de Recherche Saint-Antoine, Inserm UMRS_938, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| |
Collapse
|
2
|
D'Anna A, Aranzulla C, Carnaghi C, Caruso F, Castiglione G, Grasso R, Gueli AM, Marino C, Pane F, Pulvirenti A, Stella G. Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach. Phys Med 2025; 131:104931. [PMID: 39946952 DOI: 10.1016/j.ejmp.2025.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/11/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
PURPOSE The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHOD The study included 55 patients with breast cancer, among whom 18 achieved pCR and 37 did not respond completely to NAC (non-pCR). After some pre-processing steps, 1446 features were extracted and corrected for batch effects using ComBat. Five machine learning algorithms, namely random forest (RF), decision tree (DT), logistic regression (LR), k-nearest neighbors (k-NN), and extreme gradient boosting (XGB), were evaluated using area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 score as classification metrics. A Leave-Group-Out cross validation (LGOCV) was applied in the outer loop. RESULTS RF and DT models exhibited the highest performances compared to the other algorithms. DT achieved an accuracy of 0.96 ± 0.07, and RF achieved 0.95 ± 0.05. The AUC values for RF and DT were 0.98 ± 0.06 and 0.94 ± 0.07, respectively. LR and k-NN demonstrated lower performance across all metrics, while XGB showed competitive results but slightly lower than RF and DT. CONCLUSIONS This study demonstrates the potential of radiomics and machine learning for predicting pCR to NAC in breast cancer. RF and DT models proved to be the most effective in capturing underlying patterns in radiomics data. Further research is required to validate and strengthen the proposed approach and explore its applicability in diverse radiomics datasets and clinical scenarios.
Collapse
Affiliation(s)
- Alessia D'Anna
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy
| | - Carlo Aranzulla
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Radiological Sciences, A.O.U. Policlinico "Paolo Giaccone", School of Specialization in Radiodiagnostics, University of Palermo, Via del Vespro 129, Palermo 90127, Italy
| | - Carlo Carnaghi
- Medical Oncology Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Francesco Caruso
- Oncological Surgery Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Gaetano Castiglione
- Oncological Surgery Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Roberto Grasso
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, Catania 95123, Italy
| | - Anna Maria Gueli
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy
| | - Carmelo Marino
- Medical Physics Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Francesco Pane
- Breast Diagnostics Department - Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, Catania 95123, Italy
| | - Giuseppe Stella
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy.
| |
Collapse
|
3
|
İçöz D, Çetin B, Dinç K. Application of radiomics features in differential diagnosis of odontogenic cysts. Dentomaxillofac Radiol 2025; 54:180-187. [PMID: 39607768 DOI: 10.1093/dmfr/twae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Cysts in jaws may have similar radiographic features. However, it is important to clarify the diagnosis prior to surgery. The aim of this study was to compare the radiomic features of radicular cysts (RCs), dentigerous cysts (DCs), and odontogenic keratocysts (OKCs) as a non-invasive diagnostic alternative to biopsy. METHODS In total, 161 odontogenic cysts diagnosed histopathologically (55 RCs, 53 DCs, and 53 OKCs) were included in the present study. Each cyst was semi-automatically segmented on CBCT images, and radiomic features were extracted by an observer. A second observer repeated 20% of the evaluations and the radiomic features. Those achieving an inter-observer agreement level above 0.850 were included in the study. Consequently, five shape-based and 22 textural features were investigated in the study. Statistical analysis was performed comparing both three cyst features and making pairwise comparisons. RESULTS All features included in the study showed statistical differences between cysts, with the exception of one textural feature (NGTDM coarseness) (P < .05). However, only one shape-based feature (shericity) and one textural feature (GLSZM large area emphasis) were statistically different in pairwise comparisons of all three cysts (P < .05). CONCLUSION Radiomics features of the RCs, DCs, and OKCs showed significant differences, and may have the potential to be used as a non-invasive method in the differential diagnosis of cysts.
Collapse
Affiliation(s)
- Derya İçöz
- Faculty of Dentistry, Oral and Maxillofacial Radiology Department, Selcuk University, Konya 42130, Turkiye
| | - Bilgün Çetin
- Faculty of Dentistry, Oral and Maxillofacial Radiology Department, Selcuk University, Konya 42130, Turkiye
| | - Kevser Dinç
- Faculty of Dentistry, Oral and Maxillofacial Radiology Department, Selcuk University, Konya 42130, Turkiye
| |
Collapse
|
4
|
Sufian MA, Niu M. Hybrid deep learning for computational precision in cardiac MRI segmentation: Integrating Autoencoders, CNNs, and RNNs for enhanced structural analysis. Comput Biol Med 2025; 186:109597. [PMID: 39967188 DOI: 10.1016/j.compbiomed.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025]
Abstract
Recent advancements in cardiac imaging have been significantly enhanced by integrating deep learning models, offering transformative potential in early diagnosis and patient care. The research paper explores the application of hybrid deep learning methodologies, focusing on the roles of Autoencoders, Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) in enhancing cardiac image analysis. The study implements a comprehensive approach, combining traditional algorithms such as Sobel, Watershed, and Otsu's Thresholding with advanced deep learning models to achieve precise and accurate imaging outcomes. The Autoencoder model, developed for image enhancement and feature extraction, achieved a notable accuracy of 99.66% on the test data. Optimized for image recognition tasks, the CNN model demonstrated a high precision rate of 98.9%. The RNN model, utilized for sequential data analysis, showed a prediction accuracy of 98%, further underscoring the robustness of the hybrid framework. The research drew upon a diverse range of academic databases and pertinent publications within cardiac imaging and deep learning, focusing on peer-reviewed articles and studies published in the past five years. Models were implemented using the TensorFlow and Keras frameworks. The proposed methodology was evaluated in the clinical validation phase using advanced imaging protocols, including the QuickScan technique and balanced steady-state free precession (bSSFP) imaging. The validation metrics were promising: the Signal-to-Noise Ratio (SNR) was improved by 15%, the Contrast-to-Noise Ratio (CNR) saw an enhancement of 12%, and the ejection fraction (EF) analysis provided a 95% correlation with manually segmented data. These metrics confirm the efficacy of the models, showing significant improvements in image quality and diagnostic accuracy. The integration of adversarial defense strategies, such as adversarial training and model ensembling, have been analyzed to enhance model robustness against malicious inputs. The reliability and comparison of the model's ability have been investigated to maintain clinical integrity, even in adversarial attacks that could otherwise compromise segmentation outcomes. These findings indicate that integrating Autoencoders, CNNs, and RNNs within a hybrid deep-learning framework is promising for enhancing cardiac MRI segmentation and early diagnosis. The study contributes to the field by demonstrating the applicability of these advanced techniques in clinical settings, paving the way for improved patient outcomes through more accurate and timely diagnoses.
Collapse
Affiliation(s)
- Md Abu Sufian
- Shaanxi International Innovation Center for Transportation-Energy-Information Fusion and Sustainability, Chang'an University, Xi'an 710064, China; IVR Low-Carbon Research Institute, School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064, China
| | - Mingbo Niu
- Shaanxi International Innovation Center for Transportation-Energy-Information Fusion and Sustainability, Chang'an University, Xi'an 710064, China; IVR Low-Carbon Research Institute, School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064, China.
| |
Collapse
|
5
|
Loi E, Feliciani G, Amadori M, Bettinelli A, Marturano F, Azzali I, Mezzenga E, Sanna PA, Severi D, Rivetti S, Paiusco M, Martinelli G, Sarnelli A, Falcini F. Breast density prediction model in digital versus synthetic mammograms from a radiomic point of view: A retrospective study. Phys Med 2025; 131:104942. [PMID: 39999511 DOI: 10.1016/j.ejmp.2025.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE In this retrospective study, we develop radiomics prediction models from synthetic mammograms(SM) and digital mammograms(DM) images to identify which imaging modality has the most predictive power when employed for prediction of breast density. METHODS Patients aged between 45 and 74 years, were included in the study. For each, a SM in standard resolution (ST) and High Resolution (HR) were obtained, and a 150 x 150 pixels square area was defined on the images to be used for texture analysis of the breast parenchyma. A semi-automated placing strategy was used to reduce user reliance on the segmentation location. S-IBEX software was employed to extract radiomics features. Feature robustness analysis was also done to ensure model reproducibility. The Least Absolute Shrinkage and Selection Operator(LASSO) logistic regression model was trained to predict dichotomized breast density according to BIRADS classification model performance was assessed through receiver operating curves (ROC) for DM, HR, and ST. RESULTS We extracted 123 features from the 10 ROIs of 96 patient. After robustness analysis, the most predictive features were employed to build logistic regression-based models. The average performance of the models were 0.74, 0.67, and 0.64 on DM, HR, and ST, respectively, suggesting that DM maintains the highest informative content on breast density. CONCLUSIONS This study investigated how well radiomics models trained on various imaging modalities predicted breast density. Our results may be pertinent to the debate over screening mammography technique optimization using quantitative measures based on radiomics features.
Collapse
Affiliation(s)
- E Loi
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - G Feliciani
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy.
| | - M Amadori
- Department of Radiology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - A Bettinelli
- Veneto Institute of Oncology IOV - IRCCS, via Gattamelata, 64, 35128 Padua, Italy
| | - F Marturano
- Veneto Institute of Oncology IOV - IRCCS, via Gattamelata, 64, 35128 Padua, Italy
| | - I Azzali
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - E Mezzenga
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - P A Sanna
- Department of Radiology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - D Severi
- Department of Radiology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - S Rivetti
- Medical Physics Unit, Sassuolo Hospital, 41049 Sassuolo, Italy
| | - M Paiusco
- Veneto Institute of Oncology IOV - IRCCS, via Gattamelata, 64, 35128 Padua, Italy
| | - G Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - A Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - F Falcini
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy
| |
Collapse
|
6
|
Wagner M, Sommerer J, Rauscher FG. Extracting full information from OCT scans-signs of early age-related macular degeneration within inner retinal layers by local neighbourhood statistics. Part I: Methodology. Ophthalmic Physiol Opt 2025; 45:231-246. [PMID: 39579003 PMCID: PMC11629861 DOI: 10.1111/opo.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Associations between the occurrence of early age-related macular degeneration (AMD) and alterations in retinal layer thicknesses have been reported based on classical processing of optical coherence tomography (OCT) data by noise removal and subsequent image segmentation. However, speckle noise within OCT data itself bears a substantial part of the total information. For this reason, an omics-type approach was designed for full exploitation of OCT data, which was able to identify signs of early AMD throughout the retina as a whole. METHODS A nested case-control study was designed with 200 early AMD cases and 200 healthy controls. For every participant, within a randomly selected OCT scan and a randomly selected column therein, manual grading was performed for 26 retinal feature positions. At each position, a total of 3792 descriptors were computed, based on nonlinear transformations of OCT data, first-order neighbourhood statistics and Haralick features. Equivalence and differences between cases and controls were tested for every descriptor at each graded position. Results of multiple testing were expressed in terms of false and true discovery rates controlled by the Benjamini-Yekutieli procedure. RESULTS In terms of the amount and disparity of true discoveries, overall non-equivalence of early AMD and healthy groups was found. Strong difference signals were observed at the internal limiting membrane and two central retinal positions, particularly for descriptors emphasising speckle noise. CONCLUSIONS Between retinae of healthy controls and early AMD patients, significant differences were observed at the level of local neighbourhood statistics within the OCT data. Thus, independent evidence was obtained for AMD affecting not only the outer retinal layers but also the retina as a whole, even in the early stages of the disease. Within OCT data, both cartoons and speckle bear essential parts of total information. A constructive, completely documented, traceable and repeatable approach was pursued without invoking artificial intelligence methods.
Collapse
Affiliation(s)
- Marcus Wagner
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Julia Sommerer
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Franziska G. Rauscher
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
- Leipzig Research Centre for Civilization Diseases (LIFE)Leipzig UniversityLeipzigGermany
| |
Collapse
|
7
|
Ohata M, Fukui R, Morimitsu Y, Kobayashi D, Yamauchi T, Akagi N, Honda M, Hayashi A, Hasegawa K, Kida K, Goto S, Hiraki T. Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography. J Med Phys 2025; 50:100-107. [PMID: 40256177 PMCID: PMC12005666 DOI: 10.4103/jmp.jmp_114_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC). Materials and Methods The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC. Results For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity. Conclusion It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis.
Collapse
Affiliation(s)
- Miyu Ohata
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ryohei Fukui
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, Japan
| | - Yusuke Morimitsu
- Division of Radiological Technology, Okayama University Hospital, Okayama, Japan
| | - Daichi Kobayashi
- Division of Radiological Technology, Okayama University Hospital, Okayama, Japan
| | - Takatsugu Yamauchi
- Division of Radiological Technology, Okayama University Hospital, Okayama, Japan
| | - Noriaki Akagi
- Division of Radiological Technology, Okayama University Hospital, Okayama, Japan
| | - Mitsugi Honda
- Division of Radiological Technology, Okayama University Hospital, Okayama, Japan
| | - Aiko Hayashi
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koshi Hasegawa
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Katsuhiro Kida
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, Japan
| | - Sachiko Goto
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, Japan
| | - Takao Hiraki
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Wagner M, Sommerer J, Rauscher FG. Extracting full information from OCT scans-signs of early age-related macular degeneration within inner retinal layers by local neighbourhood statistics. Part II: Results. Ophthalmic Physiol Opt 2025; 45:247-268. [PMID: 39579005 PMCID: PMC11629856 DOI: 10.1111/opo.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Associations between the occurrence of early age related macular degeneration (AMD) and alterations in retinal layer thicknesses have been reported, based on classical processing of optical coherence tomography (OCT) data by noise removal and subsequent image segmentation. However, speckle noise within OCT data itself bears a substantial part of the total information. For this reason, we designed an omics-type approach for full exploitation of OCT data, which was able to identify signs of early AMD throughout the retina as a whole. METHODS A nested case-control study was designed with 200 early AMD cases and 200 healthy controls. For each participant, within a randomly selected OCT scan and a randomly selected column therein, manual grading was performed for 26 retinal feature positions. At every position, a total of 3792 descriptors were computed, based on nonlinear transformations of OCT data, first-order neighbourhood statistics and Haralick features. Equivalence and differences between cases and controls were tested for each descriptor at every graded position. Results of multiple testing were expressed in terms of false and true discovery rates controlled by the Benjamini-Yekutieli procedure. RESULTS In terms of the amount and disparity of true discoveries, overall non-equivalence was found for early AMD and healthy groups. Strong difference signals were observed at the internal limiting membrane and two central retinal positions, particularly for descriptors emphasising speckle noise. CONCLUSIONS Between the retinae of healthy controls and early AMD patients, significant differences were observed at the level of local neighbourhood statistics within OCT data. Thus, independent evidence was obtained for AMD affecting not only the outer retinal layers but the retina as a whole, even in the early stages of the disease. Within OCT data, both cartoon and speckle bear essential parts of the total information. We pursued a constructive, completely documented, traceable and repeatable approach without invoking artificial intelligence methods.
Collapse
Affiliation(s)
- Marcus Wagner
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Julia Sommerer
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Franziska G. Rauscher
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
- Leipzig Research Centre for Civilisation Diseases (LIFE)Leipzig UniversityLeipzigGermany
| |
Collapse
|
9
|
D’Anna A, Stella G, Gueli AM, Marino C, Pulvirenti A. Mitigating Interobserver Variability in Radiomics with ComBat: A Feasibility Study. J Imaging 2024; 10:270. [PMID: 39590734 PMCID: PMC11595722 DOI: 10.3390/jimaging10110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates Intraobserver Features Variability (IFV) in radiomics studies and assesses the effectiveness of the ComBat harmonization method in mitigating these effects. Methods: This study utilizes data from the NSCLC-Radiomics-Interobserver1 dataset, comprising CT scans of 22 Non-Small Cell Lung Cancer (NSCLC) patients, with multiple Gross Tumor Volume (GTV) delineations performed by five radiation oncologists. Segmentation was completed manually ("vis") or by autosegmentation with manual editing ("auto"). A total of 1229 radiomic features were extracted from each GTV, segmentation method, and oncologist. Features extracted included first order, shape, GLCM, GLRLM, GLSZM, and GLDM from original, wavelet-filtered, and LoG-filtered images. Results: Before implementing ComBat harmonization, 83% of features exhibited p-values below 0.05 in the "vis" approach; this percentage decreased to 34% post-harmonization. Similarly, for the "auto" approach, 75% of features demonstrated statistical significance prior to ComBat, but this figure declined to 33% after its application. Among a subset of three expert radiation oncologists, percentages changed from 77% to 25% for "vis" contouring and from 64% to 23% for "auto" contouring. This study demonstrates that ComBat harmonization could effectively reduce IFV, enhancing the feasibility of multicenter radiomics studies. It also highlights the significant impact of physician experience on radiomics analysis outcomes.
Collapse
Affiliation(s)
- Alessia D’Anna
- Department of Physics and Astronomy “E. Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.D.); (A.M.G.)
| | - Giuseppe Stella
- Department of Physics and Astronomy “E. Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.D.); (A.M.G.)
| | - Anna Maria Gueli
- Department of Physics and Astronomy “E. Majorana”, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.D.); (A.M.G.)
| | - Carmelo Marino
- Department of Medical Phyisics, Humanitas Istituto Clinico Catanese (H-ICC), Contrada Cubba S.P. 54 n.11, 95045 Misterbianco, Italy;
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy;
| |
Collapse
|
10
|
Behmanesh B, Abdi-Saray A, Deevband MR, Amoui M, Haghighatkhah HR. Radiomics Analysis for Clinical Decision Support in 177Lu-DOTATATE Therapy of Metastatic Neuroendocrine Tumors using CT Images. J Biomed Phys Eng 2024; 14:423-434. [PMID: 39391275 PMCID: PMC11462270 DOI: 10.31661/jbpe.v0i0.2112-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 10/12/2024]
Abstract
Background Radiomics is the computation of quantitative image features extracted from medical imaging modalities to help clinical decision support systems, which could ultimately meliorate personalized management based on individual characteristics. Objective This study aimed to create a predictive model of response to peptide receptor radionuclide therapy (PRRT) using radiomics computed tomography (CT) images to decrease the dose for patients if they are not a candidate for treatment. Material and Methods In the current retrospective study, 34 patients with neuroendocrine tumors whose disease is clinically confirmed participated. Effective factors in the treatment were selected by eXtreme gradient boosting (XGBoost) and minimum redundancy maximum relevance (mRMR). Classifiers of decision trees (DT), random forest (RF), and K-nearest neighbors (KNN) with selected quantitative and clinical features were used for modeling. A confusion matrix was used to evaluate the performance of the model. Results Out of 866 quantitative and clinical features, nine features with the XGBoost method and ten features with the mRMR pattern were selected that had the most relevance in predicting response to treatment. Selected features of the XGBoost method in integration with the RF classifier provided the highest accuracy (accuracy: 89%), and features selected by the mRMR method in combination with the RF classifier showed satisfactory performance (accuracy: 74%). Conclusion This exploratory analysis shows that radiomic features with high accuracy can effectively predict response to personalize treatment.
Collapse
Affiliation(s)
- Baharak Behmanesh
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Akbar Abdi-Saray
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Mohammad Reza Deevband
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Haghighatkhah
- Department of Radiology and Medical Imaging Center, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang X, Xing Y, Zhou X, Wang C, Han S, Zhao S. Radiomics Signatures Based on Computed Tomography for Noninvasive Prediction of CXCL10 Expression and Prognosis in Ovarian Cancer. Cancer Rep (Hoboken) 2024; 7:e70030. [PMID: 39443817 PMCID: PMC11499071 DOI: 10.1002/cnr2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with malignant ascites and even observed widespread metastasis or distant spread. AIMS We aimed to develop and identify radiomics models according to computed tomography (CT) for preoperative prediction of CXCL10 expression and prognosis in patients with OC. METHODS Genomic data with CT images and corresponding clinicopathological parameters were extracted from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). To analyze the prognosis, we carried out the univariate Cox regression analysis (UCRA), multivariate Cox regression analysis (MCRA), and Kaplan-Meier (KM) analysis. For the data reduction, logistic regression, operator regression, least absolute shrinkage selection, radiomic feature construction, and feature selection were utilized. The predictive performance of the radiomic signatures was assessed using the analyses of the receiver operating characteristic (ROC) curve, decision curve (DCA), and precision-recall (PR) curve. To evaluate the correlation between the radiomic score (Rad-score) and CXCL10 expression, the Wilcoxon rank-sum test was applied. RESULTS Three radiomics models effectively predicted CXCL10 expression levels (AUC = 0.791, 0.748, and 0.718 for the set of training; AUC = 0.761, 0.746, and 0.701 for the set of validation). A higher Rad-score significantly correlated with upregulated CXCL10 expression. CONCLUSION CXCL10 expression can be predicted noninvasively and preoperatively via radiomic signatures based on contrast-enhanced CT images.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Gynecology and Obstetrics, Department of GynecologyThe Second Hospital of HeBei Medical University, Affiliated Hospital of Chengde Medical UniversityShijiazhuangChina
| | - Yuanyuan Xing
- Department of Nuclear MedicineAffiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Xuan Zhou
- Department of GynecologyAffiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Chunhui Wang
- Department of GynecologyAffiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Shuyu Han
- Department of GynecologyAffiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Sufen Zhao
- Department of Gynecology and ObstetricsThe Second Hospital of HeBei Medical UniversityShijiazhuangChina
| |
Collapse
|
12
|
Yoshimura H, Kawahara D, Saito A, Ozawa S, Nagata Y. Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN. Phys Eng Sci Med 2024; 47:1227-1243. [PMID: 38884673 PMCID: PMC11408565 DOI: 10.1007/s13246-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
To propose a style transfer model for multi-contrast magnetic resonance imaging (MRI) images with a cycle-consistent generative adversarial network (CycleGAN) and evaluate the image quality and prognosis prediction performance for glioblastoma (GBM) patients from the extracted radiomics features. Style transfer models of T1 weighted MRI image (T1w) to T2 weighted MRI image (T2w) and T2w to T1w with CycleGAN were constructed using the BraTS dataset. The style transfer model was validated with the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. Moreover, imaging features were extracted from real and synthesized images. These features were transformed to rad-scores by the least absolute shrinkage and selection operator (LASSO)-Cox regression. The prognosis performance was estimated by the Kaplan-Meier method. For the accuracy of the image quality of the real and synthesized MRI images, the MI, RMSE, PSNR, and SSIM were 0.991 ± 2.10 × 10 - 4 , 2.79 ± 0.16, 40.16 ± 0.38, and 0.995 ± 2.11 × 10 - 4 , for T2w, and .992 ± 2.63 × 10 - 4 , 2.49 ± 6.89 × 10 - 2 , 40.51 ± 0.22, and 0.993 ± 3.40 × 10 - 4 for T1w, respectively. The survival time had a significant difference between good and poor prognosis groups for both real and synthesized T2w (p < 0.05). However, the survival time had no significant difference between good and poor prognosis groups for both real and synthesized T1w. On the other hand, there was no significant difference between the real and synthesized T2w in both good and poor prognoses. The results of T1w were similar in the point that there was no significant difference between the real and synthesized T1w. It was found that the synthesized image could be used for prognosis prediction. The proposed prognostic model using CycleGAN could reduce the cost and time of image scanning, leading to a promotion to build the patient's outcome prediction with multi-contrast images.
Collapse
Affiliation(s)
- Hisanori Yoshimura
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Department of Radiology, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.
| | - Akito Saito
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, 732-0057, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, 732-0057, Japan
| |
Collapse
|
13
|
Zheng J, Liu W, Chen J, Sun Y, Chen C, Li J, Yi C, Zeng G, Chen Y, Song W. Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 178:111621. [PMID: 39018646 DOI: 10.1016/j.ejrad.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Early diagnosis of benign and malignant vertebral compression fractures by analyzing imaging data is crucial to guide treatment and assess prognosis, and the development of radiomics made it an alternative option to biopsy examination. This systematic review and meta-analysis was conducted with the purpose of quantifying the diagnostic efficacy of radiomics models in distinguishing between benign and malignant vertebral compression fractures. METHODS Searching on PubMed, Embase, Web of Science and Cochrane Library was conducted to identify eligible studies published before September 23, 2023. After evaluating for methodological quality and risk of bias using the Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), we selected studies providing confusion matrix results to be included in random-effects meta-analysis. RESULTS A total of sixteen articles, involving 1,519 vertebrae with pathological-diagnosed tumor infiltration, were included in our meta-analysis. The combined sensitivity and specificity of the top-performing models were 0.92 (95 % CI: 0.87-0.96) and 0.93 (95 % CI: 0.88-0.96), respectively. Their AUC was 0.97 (95 % CI: 0.96-0.99). By contrast, radiologists' combined sensitivity was 0.90 (95 %CI: 0.75-0.97) and specificity was 0.92 (95 %CI: 0.67-0.98). The AUC was 0.96 (95 %CI: 0.94-0.97). Subsequent subgroup analysis and sensitivity test suggested that part of the heterogeneity might be explained by differences in imaging modality, segmentation, deep learning and cross-validation. CONCLUSION We found remarkable diagnosis potential in correctly distinguishing vertebral compression fractures in complex clinical contexts. However, the published radiomics models still have a great heterogeneity, and more large-scale clinical trials are essential to validate their generalizability.
Collapse
Affiliation(s)
- Jiayuan Zheng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Wenzhou Liu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jianan Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yujun Sun
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chen Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jiajie Li
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chunyan Yi
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Gang Zeng
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yanbo Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Weidong Song
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
14
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Jiang C, Sun C, Wang X, Ma S, Jia W, Zhang D. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1359-1374. [PMID: 38381384 PMCID: PMC11300408 DOI: 10.1007/s10278-024-01026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
We aimed to study whether the Bruton's tyrosine kinase (BTK) expression is correlated with the prognosis of patients with high-grade gliomas (HGGs) and predict its expression level prior to surgery, by constructing radiomic models. Clinical and gene expression data of 310 patients from The Cancer Genome Atlas (TCGA) were included for gene-based prognostic analysis. Among them, contrast-enhanced T1-weighted imaging (T1WI + C) from The Cancer Imaging Archive (TCIA) with genomic data was selected from 82 patients for radiomic models, including support vector machine (SVM) and logistic regression (LR) models. Furthermore, the nomogram incorporating radiomic signatures was constructed to evaluate its clinical efficacy. BTK was identified as an independent risk factor for HGGs through univariate and multivariate Cox regression analyses. Three radiomic features were selected to construct the SVM and LR models, and the validation set showed area under curve (AUCs) values of 0.711 (95% CI, 0.598-0.824) and 0.736 (95% CI, 0.627-0.844), respectively. The median survival times of the high Rad_score and low-Rad_score groups based on LR model were 15.53 and 23.03 months, respectively. In addition, the total risk score of each patient was used to construct a predictive nomogram, and the AUCs calculated from the corresponding time-dependent ROC curves were 0.533, 0.659, and 0.767 for 1, 3, and 5 years, respectively. BTK is an independent risk factor associated with poor prognosis in patients, and the radiomic model constructed in this study can effectively and non-invasively predict preoperative BTK expression levels and patient prognosis based on T1WI + C.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
16
|
Li Y, Liu X, Gu M, Xu T, Ge C, Chang P. Significance of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer: A narrative review. Cancer Radiother 2024; 28:390-401. [PMID: 39174361 DOI: 10.1016/j.canrad.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 08/24/2024]
Abstract
Neoadjuvant chemoradiotherapy is the standard treatment for patients with locally advanced rectal cancers owing to its ability to downstage primary tumours. Some patients can achieve pathological complete response after neoadjuvant therapy, and can adopt a "watch and wait" treatment strategy to avoid overtreatment. Therefore, it is essential to develop strategies for predicting responses to neoadjuvant therapy. Radiomics has shown great potential in extracting tumour features from high-throughput medical images for the construction of mathematics models for predicting the effects of anticancerous therapies. Herein, we explored MRI-based radiomics and found that it can predict responses of locally advanced rectal cancers to chemoradiation. Efficient radiomics model allow early-stage prediction of the effect of neoadjuvant chemoradiotherapy on locally advanced rectal cancers. It helps clinicians to make informed therapeutic decisions. In this review, we discuss the workflow of radiomics, and summarize the clinical application of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer.
Collapse
Affiliation(s)
- Y Li
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - X Liu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - M Gu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - T Xu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - C Ge
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - P Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
17
|
Yang KF, Li SJ, Xu J, Zheng YB. Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer. World J Gastrointest Surg 2024; 16:1571-1581. [PMID: 38983351 PMCID: PMC11229995 DOI: 10.4240/wjgs.v16.i6.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Synchronous liver metastasis (SLM) is a significant contributor to morbidity in colorectal cancer (CRC). There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC. AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix (GLCM) features collected from magnetic resonance imaging (MRI). METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People's Hospital from January 2015 to May 2023. Patients were randomly divided into a training and validation group (3:7). The clinical parameters and GLCM features extracted from MRI were included as candidate variables. The prediction model was constructed using a generalized linear regression model, random forest model (RFM), and artificial neural network model. Receiver operating characteristic curves and decision curves were used to evaluate the prediction model. RESULTS Among the 392 patients, 48 had SLM (12.24%). We obtained fourteen GLCM imaging data for variable screening of SLM prediction models. Inverse difference, mean sum, sum entropy, sum variance, sum of squares, energy, and difference variance were listed as candidate variables, and the prediction efficiency (area under the curve) of the subsequent RFM in the training set and internal validation set was 0.917 [95% confidence interval (95%CI): 0.866-0.968] and 0.09 (95%CI: 0.858-0.960), respectively. CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC. This model can assist clinicians in making timely and personalized clinical decisions.
Collapse
Affiliation(s)
- Kai-Feng Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan 430030, Hubei Province, China
| | - Sheng-Jie Li
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang 443008, Hubei Province, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang 443008, Hubei Province, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan 430030, Hubei Province, China
| |
Collapse
|
18
|
Chen X, Wang H, Xia Y, Shi F, He L, Liu E. The relationship between contrast-enhanced computed tomography radiomics features and mitosis karyorrhexis index in neuroblastoma. Discov Oncol 2024; 15:201. [PMID: 38822860 PMCID: PMC11144178 DOI: 10.1007/s12672-024-01067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVE Mitosis karyorrhexis index (MKI) can reflect the proliferation status of neuroblastoma cells. This study aimed to investigate the contrast-enhanced computed tomography (CECT) radiomics features associated with the MKI status in neuroblastoma. MATERIALS AND METHODS 246 neuroblastoma patients were retrospectively included and divided into three groups: low-MKI, intermediate-MKI, and high-MKI. They were randomly stratified into a training set and a testing set at a ratio of 8:2. Tumor regions of interest were delineated on arterial-phase CECT images, and radiomics features were extracted. After reducing the dimensionality of the radiomics features, a random forest algorithm was employed to establish a three-class classification model to predict MKI status. RESULTS The classification model consisted of 5 radiomics features. The mean area under the curve (AUC) of the classification model was 0.916 (95% confidence interval (CI) 0.913-0.921) in the training set and 0.858 (95% CI 0.841-0.864) in the testing set. Specifically, the classification model achieved AUCs of 0.928 (95% CI 0.927-0.934), 0.915 (95% CI 0.912-0.919), and 0.901 (95% CI 0.900-0.909) for predicting low-MKI, intermediate-MKI, and high-MKI, respectively, in the training set. In the testing set, the classification model achieved AUCs of 0.873 (95% CI 0.859-0.882), 0.860 (95% CI 0.852-0.872), and 0.820 (95% CI 0.813-0.839) for predicting low-MKI, intermediate-MKI, and high-MKI, respectively. CONCLUSIONS CECT radiomics features were found to be correlated with MKI status and are helpful for reflecting the proliferation status of neuroblastoma cells.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Yuwei Xia
- Shanghai United Imaging Intelligence, Co., Ltd, Shanghai, 200030, China
| | - Feng Shi
- Shanghai United Imaging Intelligence, Co., Ltd, Shanghai, 200030, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
19
|
Singh S, Mohajer B, Wells SA, Garg T, Hanneman K, Takahashi T, AlDandan O, McBee MP, Jawahar A. Imaging Genomics and Multiomics: A Guide for Beginners Starting Radiomics-Based Research. Acad Radiol 2024; 31:2281-2291. [PMID: 38286723 DOI: 10.1016/j.acra.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Radiomics uses advanced mathematical analysis of pixel-level information from radiologic images to extract existing information in traditional imaging algorithms. It is intended to find imaging biomarkers related to the genomics of tumors or disease patterns that improve medical care by advanced detection of tumor response patterns in tumors and to assess prognosis. Radiomics expands the paradigm of medical imaging to help with diagnosis, management of diseases and prognostication, leveraging image features by extracting information that can be used as imaging biomarkers to predict prognosis and response to treatment. Radiogenomics is an emerging area in radiomics that investigates the association between imaging characteristics and gene expression profiles. There are an increasing number of research publications using different radiomics approaches without a clear consensus on which method works best. We aim to describe the workflow of radiomics along with a guide of what to expect when starting a radiomics-based research project.
Collapse
Affiliation(s)
- Shiva Singh
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Maryland
| | - Bahram Mohajer
- Radiology and Radiological Sciences, Johns Hopkins Medicine, Baltimore, Maryland
| | - Shane A Wells
- Radiology, University of Michigan, Ann Arbor, Michigan
| | - Tushar Garg
- Radiology and Radiological Sciences, Johns Hopkins Medicine, Baltimore, Maryland
| | - Kate Hanneman
- Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Omran AlDandan
- Department of Radiology, Imam Abdulrahman Bin Faisal University, College of Medicine: Dammam, Eastern, Saudi Arabia
| | - Morgan P McBee
- Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Anugayathri Jawahar
- Radiology, Northwestern University-Feinberg School of Medicine, 800, Arkes Pavilion, 676 N St. Clair St, Chicago, IL 60611.
| |
Collapse
|
20
|
Yin Y, de Haas RJ, Alves N, Pennings JP, Ruiter SJS, Kwee TC, Yakar D. Machine learning-based radiomic analysis and growth visualization for ablation site recurrence diagnosis in follow-up CT. Abdom Radiol (NY) 2024; 49:1122-1131. [PMID: 38289352 PMCID: PMC10955006 DOI: 10.1007/s00261-023-04178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Detecting ablation site recurrence (ASR) after thermal ablation remains a challenge for radiologists due to the similarity between tumor recurrence and post-ablative changes. Radiomic analysis and machine learning methods may show additional value in addressing this challenge. The present study primarily sought to determine the efficacy of radiomic analysis in detecting ASR on follow-up computed tomography (CT) scans. The second aim was to develop a visualization tool capable of emphasizing regions of ASR between follow-up scans in individual patients. MATERIALS AND METHODS Lasso regression and Extreme Gradient Boosting (XGBoost) classifiers were employed for modeling radiomic features extracted from regions of interest delineated by two radiologists. A leave-one-out test (LOOT) was utilized for performance evaluation. A visualization method, creating difference heatmaps (diff-maps) between two follow-up scans, was developed to emphasize regions of growth and thereby highlighting potential ASR. RESULTS A total of 55 patients, including 20 with and 35 without ASR, were included in the radiomic analysis. The best performing model was achieved by Lasso regression tested with the LOOT approach, reaching an area under the curve (AUC) of 0.97 and an accuracy of 92.73%. The XGBoost classifier demonstrated better performance when trained with all extracted radiomic features than without feature selection, achieving an AUC of 0.93 and an accuracy of 89.09%. The diff-maps correctly highlighted post-ablative liver tumor recurrence in all patients. CONCLUSIONS Machine learning-based radiomic analysis and growth visualization proved effective in detecting ablation site recurrence on follow-up CT scans.
Collapse
Affiliation(s)
- Yunchao Yin
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Robbert J de Haas
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Natalia Alves
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Jan Pieter Pennings
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Simeon J S Ruiter
- Department of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Thomas C Kwee
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Derya Yakar
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Zhao W, Ozawa Y, Hara M, Okuda K, Hiwatashi A. Computed tomography radiomic feature analysis of thymic epithelial tumors: Differentiation of thymic epithelial tumors from thymic cysts and prediction of histological subtypes. Jpn J Radiol 2024; 42:367-373. [PMID: 38010596 DOI: 10.1007/s11604-023-01512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE To investigate the value of computed tomography (CT) radiomic feature analysis for the differential diagnosis between thymic epithelial tumors (TETs) and thymic cysts, and prediction of histological subtypes of TETs. MATERIALS AND METHODS Twenty-four patients with TETs (13 low-risk and 9 high-risk thymomas, and 2 thymic carcinomas) and 12 with thymic cysts were included in this study. For each lesion, the radiomic features of a volume of interest covering the lesion were extracted from non-contrast enhanced CT images. The Least Absolute Shrinkage and Selection Operator (Lasso) method was used for the feature selection. Predictive models for differentiating TETs from thymic cysts (model A), and high risk thymomas + thymic carcinomas from low risk thymomas (model B) were created from the selected features. The receiver operating characteristic curve was used to evaluate the effectiveness of radiomic feature analysis for differentiating among these tumors. RESULTS In model A, the selected 5 radiomic features for the model A were NGLDM_Contrast, GLCM_Correlation, GLZLM_SZLGE, DISCRETIZED_HISTO_Entropy_log2, and DISCRETIZED_HUmin. In model B, sphericity was the only selected feature. The area under the curve, sensitivity, and specificity of radiomic feature analysis were 1 (95% confidence interval [CI]: 1-1), 100%, and 100%, respectively, for differentiating TETs from thymic cysts (model A), and 0.76 (95%CI: 0.53-0.99), 64%, and 100% respectively, for differentiating high-risk thymomas + thymic carcinomas from low-risk thymomas (model B). CONCLUSION CT radiomic analysis could be utilized as a non-invasive imaging technique for differentiating TETs from thymic cysts, and high-risk thymomas + thymic carcinomas from low-risk thymomas.
Collapse
Affiliation(s)
- Wenya Zhao
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
- Department of Radiology, Fujita Health University Okazaki Medical Center, Okazaki, Japan.
| | - Masaki Hara
- Nagoya Johoku Teleradiology Clinic, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
22
|
Liu MW, Zhang X, Wang YM, Jiang X, Jiang JM, Li M, Zhang L. A comparison of machine learning methods for radiomics modeling in prediction of occult lymph node metastasis in clinical stage IA lung adenocarcinoma patients. J Thorac Dis 2024; 16:1765-1776. [PMID: 38617761 PMCID: PMC11009592 DOI: 10.21037/jtd-23-1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/18/2024] [Indexed: 04/16/2024]
Abstract
Background Accurate prediction of occult lymph node metastasis (ONM) is an important basis for determining whether lymph node (LN) dissection is necessary in clinical stage IA lung adenocarcinoma patients. The aim of this study is to determine the best machine learning algorithm for radiomics modeling and to compare the performances of the radiomics model, the clinical-radilogical model and the combined model incorporate both radiomics features and clinical-radilogical features in preoperatively predicting ONM in clinical stage IA lung adenocarcinoma patients. Methods Patients with clinical stage IA lung adenocarcinoma undergoing curative surgery from one institution were retrospectively recruited and assigned to training and test cohorts. Radiomics features were extracted from the preoperative computed tomography (CT) images of the primary tumor. Seven machine learning algorithms were used to construct radiomics models, and the model with the best performance, evaluated using the area under the curve (AUC), was selected. Univariate and multivariate logistic regression analyses were performed on the clinical-radiological features to identify statistically significant features and to develop a clinical model. The optimal radiomics and clinical models were integrated to build a combined model, and its predictive performance was assessed using receiver operating characteristic curves, Brier score, and decision curve analysis (DCA). Results This study included 258 patients who underwent resection (training cohort, n=182; test cohort, n=76). Six radiomics features were identified. Among the seven machine learning algorithms, extreme gradient boosting (XGB) demonstrated the highest performance for radiomics modeling, with an AUC of 0.917. The combined model improved the AUC to 0.933 and achieved a Brier score of 0.092. DCA revealed that the combined model had optimal clinical efficacy. Conclusions The superior performance of the combined model, based on XGB algorithm in predicting ONM in patients with clinical stage IA lung adenocarcinoma, might aid surgeons in deciding whether to conduct mediastinal LN dissection and contribute to improve patients' prognosis.
Collapse
Affiliation(s)
- Meng-Wen Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Xu Jiang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiu-Ming Jiang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Li Y, Lyu B, Wang R, Peng Y, Ran H, Zhou B, Liu Y, Bai G, Huai Q, Chen X, Zeng C, Wu Q, Zhang C, Gao S. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer 2024; 15:466-476. [PMID: 38191149 PMCID: PMC10883857 DOI: 10.1111/1759-7714.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Radiomics is increasingly utilized to distinguish pulmonary nodules between lung adenocarcinoma (LUAD) and tuberculosis (TB). However, it remains unclear whether different segmentation criteria, such as the inclusion or exclusion of the cavity region within nodules, affect the results. METHODS A total of 525 patients from two medical centers were retrospectively enrolled. The radiomics features were extracted according to two regions of interest (ROI) segmentation criteria. Multiple logistic regression models were trained to predict the pathology: (1) The clinical model relied on clinical-radiological semantic features; (2) The radiomics models (radiomics+ and radiomics-) utilized radiomics features from different ROIs (including or excluding cavities); (3) the composite models (composite+ and composite-) incorporated both above. RESULTS In the testing set, the radiomics+/- models and the composite+/- models still possessed efficient prediction performance (AUC ≥ 0.94), while the AUC of the clinical model was 0.881. In the validation set, the AUC of the clinical model was only 0.717, while that of the radiomics+/- models and the composite+/- models ranged from 0.801 to 0.825. The prediction performance of all the radiomics+/- and composite+/- models were significantly superior to that of the clinical model (p < 0.05). Whether the ROI segmentation included or excluded the cavity had no significant effect on these models (radiomics+ vs. radiomics-, composite+ model vs. composite-) (p > 0.05). CONCLUSIONS The present study established a machine learning-based radiomics strategy for differentiating LUAD from TB lesions. The ROI segmentation including or excluding the cavity region may exert no significant effect on the predictive ability.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of Echocardiography, Fuwai Hospital/ National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Haoyu Ran
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chun Zeng
- Department of Radiologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qingchen Wu
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Cheng Zhang
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Liu WX, Wu H, Cai C, Lai QQ, Wang Y, Li YZ. Research on automatic recognition radiomics algorithm for early sacroiliac arthritis based on sacroiliac MRI imaging. J Orthop Surg Res 2024; 19:96. [PMID: 38287422 PMCID: PMC10826273 DOI: 10.1186/s13018-024-04569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE To create an automated machine learning model using sacroiliac joint MRI imaging for early sacroiliac arthritis detection, aiming to enhance diagnostic accuracy. METHODS We conducted a retrospective analysis involving 71 patients with early sacroiliac arthritis and 85 patients with normal sacroiliac joint MRI scans. Transverse T1WI and T2WI sequences were collected and subjected to radiomics analysis by two physicians. Patients were randomly divided into training and test groups at a 7:3 ratio. Initially, we extracted the region of interest on the sacroiliac joint surface using ITK-SNAP 3.6.0 software and extracted radiomic features. We retained features with an Intraclass Correlation Coefficient > 0.80, followed by filtering using max-relevance and min-redundancy (mRMR) and LASSO algorithms to establish an automatic identification model for sacroiliac joint surface injury. Receiver operating characteristic (ROC) curves were plotted, and the area under the ROC curve (AUC) was calculated. Model performance was assessed by accuracy, sensitivity, and specificity. RESULTS We evaluated model performance, achieving an AUC of 0.943 for the SVM-T1WI training group, with accuracy, sensitivity, and specificity values of 0.878, 0.836, and 0.943, respectively. The SVM-T1WI test group exhibited an AUC of 0.875, with corresponding accuracy, sensitivity, and specificity values of 0.909, 0.929, and 0.875, respectively. For the SVM-T2WI training group, the AUC was 0.975, with accuracy, sensitivity, and specificity values of 0.933, 0.889, and 0.750. The SVM-T2WI test group produced an AUC of 0.902, with accuracy, sensitivity, and specificity values of 0.864, 0.889, and 0.800. In the SVM-bimodal training group, we achieved an AUC of 0.974, with accuracy, sensitivity, and specificity values of 0.921, 0.889, and 0.971, respectively. The SVM-bimodal test group exhibited an AUC of 0.964, with accuracy, sensitivity, and specificity values of 0.955, 1.000, and 0.875, respectively. CONCLUSION The radiomics-based detection model demonstrates excellent automatic identification performance for early sacroiliitis.
Collapse
Affiliation(s)
- Wen-Xi Liu
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China
| | - Hong Wu
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China
| | - Chi Cai
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China
| | - Qing-Quan Lai
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China
| | - Yi Wang
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China.
| | - Yuan-Zhe Li
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, China.
| |
Collapse
|
25
|
Zhang X, Peng J, Ji G, Li T, Li B, Xiong H. Research status and progress of radiomics in bone and soft tissue tumors: A review. Medicine (Baltimore) 2023; 102:e36196. [PMID: 38013345 PMCID: PMC10681559 DOI: 10.1097/md.0000000000036198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Bone and soft tissue tumors are diverse, accompanying by complex histological components and significantly divergent biological behaviors. It is a challenge to address the demand for qualitative imaging as traditional imaging is restricted to the detection of anatomical structures and aberrant signals. With the improvement of digitalization in hospitals and medical centers, the introduction of electronic medical records and easier access to large amounts of information coupled with the improved computational power, traditional medicine has evolved into the combination of human brain, minimal data, and artificial intelligence. Scholars are committed to mining deeper levels of imaging data, and radiomics is worthy of promotion. Radiomics extracts subvisual quantitative features, analyzes them based on medical images, and quantifies tumor heterogeneity by outlining the region of interest and modeling. Two observers separately examined PubMed, Web of Science and CNKI to find existing studies, case reports, and clinical guidelines about research status and progress of radiomics in bone and soft tissue tumors from January 2010 to February 2023. When evaluating the literature, factors such as patient age, medical history, and severity of the condition will be considered. This narrative review summarizes the application and progress of radiomics in bone and soft tissue tumors.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jie Peng
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Guanghai Ji
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Tian Li
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Bo Li
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Xiong
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
26
|
Nguyen TM, Bertolus C, Giraud P, Burgun A, Saintigny P, Bibault JE, Foy JP. A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2023; 15:5369. [PMID: 38001629 PMCID: PMC10670096 DOI: 10.3390/cancers15225369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND We recently developed a gene-expression-based HOT score to identify the hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated with the response to immunotherapy. Our goal was to determine whether radiomic profiling from computed tomography (CT) scans can distinguish hot and cold HNSCC. METHOD We included 113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9, accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features. Machine learning classifier models were trained and tested in the TCGA dataset and validated using the area under the receiver operator characteristic curve (AUC) in the GHPS cohort. RESULTS A total of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the GHPS validation dataset. CONCLUSIONS AND RELEVANCE We identified a relevant radiomic model to capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the identification of patients with HNSCC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Tan Mai Nguyen
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Chloé Bertolus
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Paul Giraud
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Sorbonne Université, Department of Radiation Oncology, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anita Burgun
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Emmanuel Bibault
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Department of Radiation Oncology, Hôpital Européen Georges-Pompidou, Université Paris Cité, 75015 Paris, France
| | - Jean-Philippe Foy
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Sorbonne Université, INSERM UMRS 938, Centre de Recherche de Saint Antoine, Team Cancer Biology and Therapeutics, 75011 Paris, France
| |
Collapse
|
27
|
Amintas S, Giraud N, Fernandez B, Dupin C, Denost Q, Garant A, Frulio N, Smith D, Rullier A, Rullier E, Vuong T, Dabernat S, Vendrely V. The Crying Need for a Better Response Assessment in Rectal Cancer. Curr Treat Options Oncol 2023; 24:1507-1523. [PMID: 37702885 PMCID: PMC10643426 DOI: 10.1007/s11864-023-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 09/14/2023]
Abstract
OPINION STATEMENT Since total neoadjuvant treatment achieves almost 30% pathologic complete response, organ preservation has been increasingly debated for good responders after neoadjuvant treatment for patients diagnosed with rectal cancer. Two organ preservation strategies are available: a watch and wait strategy and a local excision strategy including patients with a near clinical complete response. A major issue is the selection of patients according to the initial tumor staging or the response assessment. Despite modern imaging improvement, identifying complete response remains challenging. A better selection could be possible by radiomics analyses, exploiting numerous image features to feed data characterization algorithms. The subsequent step is to include baseline and/or pre-therapeutic MRI, PET-CT, and CT radiomics added to the patients' clinicopathological data, inside machine learning (ML) prediction models, with predictive or prognostic purposes. These models could be further improved by the addition of new biomarkers such as circulating tumor biomarkers, molecular profiling, or pathological immune biomarkers.
Collapse
Affiliation(s)
- Samuel Amintas
- Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, F-33600, Pessac, France.
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France.
| | - Nicolas Giraud
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| | | | - Charles Dupin
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| | - Quentin Denost
- Bordeaux Colorectal Institute, F-33000, Bordeaux, France
| | - Aurelie Garant
- UT Southwestern Department of Radiation Oncology, Dallas, USA
| | - Nora Frulio
- Radiology Department, CHU Bordeaux, F-33600, Pessac, France
| | - Denis Smith
- Department of Digestive Oncology, CHU Bordeaux, F-33600, Pessac, France
| | - Anne Rullier
- Histology Department, CHU Bordeaux, F-33000, Bordeaux, France
| | - Eric Rullier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Surgery Department, CHU Bordeaux, F-33600, Pessac, France
| | - Te Vuong
- Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, Canada
| | - Sandrine Dabernat
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Biochemistry Department, CHU Bordeaux, F-33000, Bordeaux, France
| | - Véronique Vendrely
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
28
|
Zhou Z, Qian X, Hu J, Chen G, Zhang C, Zhu J, Dai Y. An artificial intelligence-assisted diagnosis modeling software (AIMS) platform based on medical images and machine learning: a development and validation study. Quant Imaging Med Surg 2023; 13:7504-7522. [PMID: 37969634 PMCID: PMC10644131 DOI: 10.21037/qims-23-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023]
Abstract
Background Supervised machine learning methods [both radiomics and convolutional neural network (CNN)-based deep learning] are usually employed to develop artificial intelligence models with medical images for computer-assisted diagnosis and prognosis of diseases. A classical machine learning-based modeling workflow involves a series of interconnected components and various algorithms, but this makes it challenging, tedious, and labor intensive for radiologists and researchers to build customized models for specific clinical applications if they lack expertise in machine learning methods. Methods We developed a user-friendly artificial intelligence-assisted diagnosis modeling software (AIMS) platform, which supplies standardized machine learning-based modeling workflows for computer-assisted diagnosis and prognosis systems with medical images. In contrast to other existing software platforms, AIMS contains both radiomics and CNN-based deep learning workflows, making it an all-in-one software platform for machine learning-based medical image analysis. The modular design of AIMS allows users to build machine learning models easily, test models comprehensively, and fairly compare the performance of different models in a specific application. The graphical user interface (GUI) enables users to process large numbers of medical images without programming or script addition. Furthermore, AIMS also provides a flexible image processing toolkit (e.g., semiautomatic segmentation, registration, morphological operations) to rapidly create lesion labels for multiphase analysis, multiregion analysis of an individual tumor (e.g., tumor mass and peritumor), and multimodality analysis. Results The functionality and efficiency of AIMS were demonstrated in 3 independent experiments in radiation oncology, where multiphase, multiregion, and multimodality analyses were performed, respectively. For clear cell renal cell carcinoma (ccRCC) Fuhrman grading with multiphase analysis (sample size =187), the area under the curve (AUC) value of the AIMS was 0.776; for ccRCC Fuhrman grading with multiregion analysis (sample size =177), the AUC value of the AIMS was 0.848; for prostate cancer Gleason grading with multimodality analysis (sample size =206), the AUC value of the AIMS was 0.980. Conclusions AIMS provides a user-friendly infrastructure for radiologists and researchers, lowering the barrier to building customized machine learning-based computer-assisted diagnosis models for medical image analysis.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xusheng Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guangqiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Caiyuan Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianbing Zhu
- Suzhou Science & Technology Town Hospital, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Suzhou Guoke Kangcheng Medical Technology Co., Ltd., Suzhou, China
| |
Collapse
|
29
|
Salmanpour MR, Hosseinzadeh M, Rezaeijo SM, Rahmim A. Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107714. [PMID: 37473589 DOI: 10.1016/j.cmpb.2023.107714] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous features are commonly generated in radiomics applications as applied to medical imaging, and identification of robust radiomics features (RFs) can be an important step to derivation of reliable, reproducible solutions. In this work, we utilize a tensor radiomics (TR) framework, where numerous fusions are explored, to generate different flavours of RFs, and we aimed to identify RFs that are robust to fusion techniques in head and neck cancer. Overall, we aimed to predict progression-free survival (PFS) using Hybrid Machine Learning Systems (HMLS) and reproducible RFs. METHODS The study was performed on 408 patients with head and neck cancer from The Cancer Imaging Archive. After image preprocessing, 15 fusion techniques were employed to combine Positron Emission Tomography (PET) and Computed Tomography (CT) images. Subsequently, 215 RFs were extracted through a standardized radiomics software, with 17 'flavours' generated using PET-only, CT-only, and 15 fused PET&CT images. The variability of RFs across flavours was studied using the Intraclass Correlation Coefficient (ICC). Furthermore, the features were categorized into seven reliability groups, 106 reproducible RFs with ICC>0.75 were selected, highly correlated flavours were removed, Principal Component Analysis was used to convert 17 flavours to 1 attribute, the polynomial function was utilized to increase RFs, and Analysis of variance (ANOVA) was used to select the relevant attributes. Finally, 3 classifiers including Random Forest (RFC), Logistic regression (LR), and Multi-layer perceptron were applied to the preselected relevant attributes to predict binary PFS. In 5-fold cross-validation, 80% of 4 divisions were utilized to train the model, and the remaining 20% was utilized to evaluate the model. Further, the remaining fold was used for external nested testing. RESULTS Reliability analysis indicated that most morphological features belong to the high-reliability category. By contrast, local intensity and statistical features extracted from images belong to the low-reliability category. In the tensor framework, the highest 5-fold cross-validation accuracy of 76.7%±3.3% with an external nested testing of 70.6%±6.7% resulted from the reproducible TR+polynomial function+ANOVA+LR algorithm while the accuracy of 70.0%±4.2% with the external nested testing of 67.7%±4.9% was achieved through the PCA fusion+RFC (non-tensor paradigm). CONCLUSIONS This study demonstrated that using reproducible RFs as utilized within a tensor fusion radiomics framework, linked with ANOVA and LR, added value to prediction of progression-free survival outcome in head and neck cancer patients.
Collapse
Affiliation(s)
- Mohammad R Salmanpour
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada.
| | - Mahdi Hosseinzadeh
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada; Department of Electrical & Computer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Li W, Li Y, Liu X, Wang L, Chen W, Qian X, Zheng X, Chen J, Liu Y, Lin L. Machine learning-based radiomics for predicting BRAF-V600E mutations in ameloblastoma. Front Immunol 2023; 14:1180908. [PMID: 37646022 PMCID: PMC10461083 DOI: 10.3389/fimmu.2023.1180908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Ameloblastoma is a locally invasive and aggressive epithelial odontogenic neoplasm. The BRAF-V600E gene mutation is a prevalent genetic alteration found in this tumor and is considered to have a crucial role in its pathogenesis. The objective of this study is to develop and validate a radiomics-based machine learning method for the identification of BRAF-V600E gene mutations in ameloblastoma patients. Methods In this retrospective study, data from 103 patients diagnosed with ameloblastoma who underwent BRAF-V600E mutation testing were collected. Of these patients, 72 were included in the training cohort, while 31 were included in the validation cohort. To address class imbalance, synthetic minority over-sampling technique (SMOTE) is applied in our study. Radiomics features were extracted from preprocessed CT images, and the most relevant features, including both radiomics and clinical data, were selected for analysis. Machine learning methods were utilized to construct models. The performance of these models in distinguishing between patients with and without BRAF-V600E gene mutations was evaluated using the receiver operating characteristic (ROC) curve. Results When the analysis was based on radiomics signature, Random Forest performed better than the others, with the area under the ROC curve (AUC) of 0.87 (95%CI, 0.68-1.00). The performance of XGBoost model is slightly lower than that of Random Forest, and its AUC is 0.83 (95% CI, 0.60-1.00). The nomogram evident that among younger women, the affected region primarily lies within the mandible, and patients with larger tumor diameters exhibit a heightened risk. Additionally, patients with higher radiomics signature scores are more susceptible to the BRAF-V600E gene mutations. Conclusions Our study presents a comprehensive radiomics-based machine learning model using five different methods to accurately detect BRAF-V600E gene mutations in patients diagnosed with ameloblastoma. The Random Forest model's high predictive performance, with AUC of 0.87, demonstrates its potential for facilitating a convenient and cost-effective way of identifying patients with the mutation without the need for invasive tumor sampling for molecular testing. This non-invasive approach has the potential to guide preoperative or postoperative drug treatment for affected individuals, thereby improving outcomes.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaoling Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenqian Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xueshen Qian
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xianglong Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yiming Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Hosseinpour Z, Oladosu O, Liu WQ, Pike GB, Yong VW, Metz LM, Zhang Y. Distinct characteristics and severity of brain magnetic resonance imaging lesions in women and men with multiple sclerosis assessed using verified texture analysis measures. Front Neurol 2023; 14:1213377. [PMID: 37638198 PMCID: PMC10449451 DOI: 10.3389/fneur.2023.1213377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background and goal In vivo characterization of brain lesion types in multiple sclerosis (MS) has been an ongoing challenge. Based on verified texture analysis measures from clinical magnetic resonance imaging (MRI), this study aimed to develop a method to identify two extremes of brain MS lesions that were approximately severely demyelinated (sDEM) and highly remyelinated (hREM), and compare them in terms of common clinical variables. Method Texture analysis used an optimized gray-level co-occurrence matrix (GLCM) method based on FLAIR MRI from 200 relapsing-remitting MS participants. Two top-performing metrics were calculated: texture contrast and dissimilarity. Lesion identification applied a percentile approach according to texture values calculated: ≤ 25 percentile for hREM and ≥75 percentile for sDEM. Results The sDEM had a greater total normalized volume yet smaller average size, and worse MRI texture than hREM. In lesion distribution mapping, the two lesion types appeared to overlap largely in location and were present the most in the corpus callosum and periventricular regions. Further, in sDEM, the normalized volume was greater and in hREM, the average size was smaller in men than women. There were no other significant results in clinical variable-associated analyses. Conclusion Percentile statistics of competitive MRI texture measures may be a promising method for probing select types of brain MS lesion pathology. Associated findings can provide another useful dimension for improved measurement and monitoring of disease activity in MS. The different characteristics of sDEM and hREM between men and women likely adds new information to the literature, deserving further confirmation.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
| | - Wei-qiao Liu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Zheng H, Wang F, Li Y, Li Z, Zhang X, Yin X. Promoting the application of pediatric radiomics via an integrated medical engineering approach. CANCER INNOVATION 2023; 2:302-311. [PMID: 38089752 PMCID: PMC10686116 DOI: 10.1002/cai2.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 11/15/2023]
Abstract
Radiomics is widely used in adult tumors but has been rarely applied to the field of pediatrics. Promoting the application of radiomics in pediatric diseases, especially in the early diagnosis and stratified treatment of tumors, is of great value to the realization of the WHO 2030 "Global Initiative for Childhood Cancer." This paper discusses the general characteristics of radiomics, the particularity of its application to pediatric diseases, and the current status and prospects of pediatric radiomics. Radiomics is a data-driven science, and the combination of medicine and engineering plays a decisive role in improving data quality, data diversity, and sample size. Compared with adult radiomics, pediatric radiomics is significantly different in data type, disease spectrum, disease staging, and progression. Some progress has been made in the identification, classification, stratification, survival prediction, and prognosis of tumor diseases. In the future, big data applications from multiple centers and cross-talent training should be strengthened to improve the benefits for clinical workers and children.
Collapse
Affiliation(s)
- Haige Zheng
- Department of Radiology, Guangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhouChina
| | - Fang Wang
- Lianying Intelligent Medical Technology (Chengdu) Co., Ltd.ChengduChina
| | - Yang Li
- Lianying Intelligent Medical Technology (Chengdu) Co., Ltd.ChengduChina
| | - Zhicheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhouChina
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhouChina
| |
Collapse
|
33
|
Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-Modality Synthesis and Novel Radiomic Evaluation of Brain MRI Scans. Cancers (Basel) 2023; 15:3565. [PMID: 37509228 PMCID: PMC10377568 DOI: 10.3390/cancers15143565] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most common challenges in brain MRI scans is to perform different MRI sequences depending on the type and properties of tissues. In this paper, we propose a generative method to translate T2-Weighted (T2W) Magnetic Resonance Imaging (MRI) volume from T2-weight-Fluid-attenuated-Inversion-Recovery (FLAIR) and vice versa using Generative Adversarial Networks (GAN). To evaluate the proposed method, we propose a novel evaluation schema for generative and synthetic approaches based on radiomic features. For the evaluation purpose, we consider 510 pair-slices from 102 patients to train two different GAN-based architectures Cycle GAN and Dual Cycle-Consistent Adversarial network (DC2Anet). The results indicate that generative methods can produce similar results to the original sequence without significant change in the radiometric feature. Therefore, such a method can assist clinics to make decisions based on the generated image when different sequences are not available or there is not enough time to re-perform the MRI scans.
Collapse
Affiliation(s)
- Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (S.M.R.)
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (S.M.R.)
| | - Fariborz Baghaei Naeini
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
| | - Dimitrios Makris
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
| | - Spyridon Bakas
- Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK; (F.B.N.); (D.M.)
- Richards Medical Research Laboratories, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Floor 7, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Li L, Wang L, Jia Q. Analysis of HER2 protein expression and clinical prognosis based on CT texture analysis in the arterial phase of gastric cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Contrast-enhanced CT radiomics improves the prediction of abdominal aortic aneurysm progression. Eur Radiol 2023; 33:3444-3454. [PMID: 36920519 DOI: 10.1007/s00330-023-09490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/06/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES To determine if three-dimensional (3D) radiomic features of contrast-enhanced CT (CECT) images improve prediction of rapid abdominal aortic aneurysm (AAA) growth. METHODS This longitudinal cohort study retrospectively analyzed 195 consecutive patients (mean age, 72.4 years ± 9.1) with a baseline CECT and a subsequent CT or MR at least 6 months later. 3D radiomic features were measured for 3 regions of the AAA, viz. the vessel lumen only; the intraluminal thrombus (ILT) and aortic wall only; and the entire AAA sac (lumen, ILT, and wall). Multiple machine learning (ML) models to predict rapid growth, defined as the upper tercile of observed growth (> 0.25 cm/year), were developed using data from 60% of the patients. Diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) in the remaining 40% of patients. RESULTS The median AAA maximum diameter was 3.9 cm (interquartile range [IQR], 3.3-4.4 cm) at baseline and 4.4 cm (IQR, 3.7-5.4 cm) at the mean follow-up time of 3.2 ± 2.4 years (range, 0.5-9 years). A logistic regression model using 7 radiomic features of the ILT and wall had the highest AUC (0.83; 95% confidence interval [CI], 0.73-0.88) in the development cohort. In the independent test cohort, this model had a statistically significantly higher AUC than a model including maximum diameter, AAA volume, and relevant clinical factors (AUC = 0.78, 95% CI, 0.67-0.87 vs AUC = 0.69, 95% CI, 0.57-0.79; p = 0.04). CONCLUSION A radiomics-based method focused on the ILT and wall improved prediction of rapid AAA growth from CECT imaging. KEY POINTS • Radiomic analysis of 195 abdominal CECT revealed that an ML-based model that included textural features of intraluminal thrombus (if present) and aortic wall improved prediction of rapid AAA progression compared to maximum diameter. • Predictive accuracy was higher when radiomic features were obtained from the thrombus and wall as opposed to the entire AAA sac (including lumen), or the lumen alone. • Logistic regression of selected radiomic features yielded similar accuracy to predict rapid AAA progression as random forests or support vector machines.
Collapse
|
36
|
Chen M, Kong C, Qiao E, Chen Y, Chen W, Jiang X, Fang S, Zhang D, Chen M, Chen W, Ji J. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI. Insights Imaging 2023; 14:38. [PMID: 36854872 PMCID: PMC9975141 DOI: 10.1186/s13244-023-01380-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVES This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance. METHODS The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN). RESULTS DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735). CONCLUSIONS DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.
Collapse
Affiliation(s)
- Mingzhen Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Chunli Kong
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Enqi Qiao
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Yaning Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Weiyue Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Xiaole Jiang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Shiji Fang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Dengke Zhang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Minjiang Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000, China. .,Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China. .,Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000, China. .,Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China. .,Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
37
|
Duff LM, Scarsbrook AF, Ravikumar N, Frood R, van Praagh GD, Mackie SL, Bailey MA, Tarkin JM, Mason JC, van der Geest KSM, Slart RHJA, Morgan AW, Tsoumpas C. An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images. Biomolecules 2023; 13:343. [PMID: 36830712 PMCID: PMC9953018 DOI: 10.3390/biom13020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
Collapse
Affiliation(s)
- Lisa M. Duff
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew F. Scarsbrook
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Nishant Ravikumar
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Leeds, Leeds LS2 9JT, UK
| | - Russell Frood
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sarah L. Mackie
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Marc A. Bailey
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds LS2 9NS, UK
| | - Jason M. Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Justin C. Mason
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Ann W. Morgan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Charalampos Tsoumpas
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
38
|
Qu H, Zhai H, Zhang S, Chen W, Zhong H, Cui X. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases. Front Oncol 2023; 13:992096. [PMID: 36814812 PMCID: PMC9939899 DOI: 10.3389/fonc.2023.992096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Background and objective For patients with advanced colorectal liver metastases (CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and noninvasive indicator is urgently needed to predict its efficacy. In previous studies, dynamic radiomics predicted more accurately than conventional radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy prediction model for antiangiogenic therapy to provide more accurate guidance for clinical diagnosis and treatment decisions. Methods In this study, we use dynamic radiomics feature extraction method that extracts static features using tomographic images of different sequences of the same patient and then quantifies them into new dynamic features for the prediction of treatmentefficacy. In this retrospective study, we collected 76 patients who were diagnosed with unresectable CRLM between June 2016 and June 2021 in the First Hospital of China Medical University. All patients received standard treatment regimen of bevacizumab combined with chemotherapy in the first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were performed before treatment. Patients with multiple primary lesions as well as missing clinical or imaging information were excluded. Area Under Curve (AUC) and accuracy were used to evaluate model performance. Regions of interest (ROIs) were independently delineated by two radiologists to extract radiomics features. Three machine learning algorithms were used to construct two scores based on the best response and progression-free survival (PFS). Results For the task that predict the best response patients will achieve after treatment, by using ROC curve analysis, it can be seen that the relative change rate (RCR) feature performed best among all features and best in linear discriminantanalysis (AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan-Meier plots suggested that the score constructed using the RCR features could significantly distinguish patients with good response from those with poor response (Two-sided P<0.0001 for survival analysis). Conclusions This study demonstrates that the application of dynamic radiomics features can better predict the efficacy of CRLM patients receiving antiangiogenic therapy compared with conventional radiomics features. It allows patients to have a more accurate assessment of the effect of medical treatment before receiving treatment, and this assessment method is noninvasive, rapid, and less expensive. Dynamic radiomics model provides stronger guidance for the selection of treatment options and precision medicine.
Collapse
Affiliation(s)
- Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China
| | - Huan Zhai
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuairan Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjuan Chen
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongshan Zhong
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| |
Collapse
|
39
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
40
|
Li W, Feng J, Zhu D, Xiao Z, Liu J, Fang Y, Yao L, Qian B, Li S. Nomogram model based on radiomics signatures and age to assist in the diagnosis of knee osteoarthritis. Exp Gerontol 2023; 171:112031. [PMID: 36402414 DOI: 10.1016/j.exger.2022.112031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a common disease in the elderly. An effective method for accurate diagnosis could affect the management and prognosis of patients. OBJECTIVES To develop a nomogram model based on X-ray imaging data and age, and to evaluate its effectiveness in the diagnosis of KOA. METHODS A total of 4403 knee X-rays from 1174 patients (July 2017 to November 2018) were retrospectively analyzed. Radiomics features were extracted and selected from the X-ray image data to quantify the phenotypic characteristics of the lesion region. Feature selection was performed in three steps to enable the derivation of robust and effective radiomics signatures. Then, logistic regression (LR), support vector machine (SVM) AdaBoost, gradient boosting decision tree (GBDT), and multi-layer perceptron (MLP) was adopted to verify the performance of radiomics signatures. In addition, a nomogram model combining age with radiomics signatures was constructed. At last, receiver operating characteristic (ROC) curve, calibration and decision curves were used to evaluate the discriminative performance. RESULTS The LR model has the best classification performance among the four radiomics models in testing cohort (LR AUC vs. SVM AUC: 0.843 vs. 0.818, DeLong test P = 0.0024; LR AUC vs. GBDT AUC: 0.843 vs. 0.821, P = 0.0028; LR AUC vs. MLP AUC: 0.843 vs. 0.822, P = 0.0019). The nomogram model achieved better predictive efficacy than the radiomics model in testing cohort compared to radiomics models although the statistical difference was not significant (Nomogram AUC vs. Radiomics AUC: 0.847 vs. 0.843, P = 0.06). The decision curve analysis revealed that the constructed nomogram had clinical usefulness. CONCLUSION The nomogram model combining radiomics signatures with age has good performance for the accurate diagnosis of KOA and may help to improve clinical decision-making.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Jiaxin Feng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Dantian Zhu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Zhongli Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Jin Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Yijie Fang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China
| | - Baoxin Qian
- Huiying Medical Technology (Beijing), Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, HaiDian District, Beijing City 100192, China
| | - Shaolin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China.
| |
Collapse
|
41
|
Georgiadou E, Bougias H, Leandrou S, Stogiannos N. Radiomics for Alzheimer's Disease: Fundamental Principles and Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1424:297-311. [PMID: 37486507 DOI: 10.1007/978-3-031-31982-2_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease with a huge impact on people's quality of life, life expectancy, and morbidity. The ongoing prevalence of the disease, in conjunction with an increased financial burden to healthcare services, necessitates the development of new technologies to be employed in this field. Hence, advanced computational methods have been developed to facilitate early and accurate diagnosis of the disease and improve all health outcomes. Artificial intelligence is now deeply involved in the fight against this disease, with many clinical applications in the field of medical imaging. Deep learning approaches have been tested for use in this domain, while radiomics, an emerging quantitative method, are already being evaluated to be used in various medical imaging modalities. This chapter aims to provide an insight into the fundamental principles behind radiomics, discuss the most common techniques alongside their strengths and weaknesses, and suggest ways forward for future research standardization and reproducibility.
Collapse
Affiliation(s)
- Eleni Georgiadou
- Department of Radiology, Metaxa Anticancer Hospital, Piraeus, Greece
| | - Haralabos Bougias
- Department of Clinical Radiology, University Hospital of Ioannina, Ioannina, Greece
| | - Stephanos Leandrou
- Department of Health Sciences, School of Sciences, European University Cyprus, Engomi, Cyprus
| | - Nikolaos Stogiannos
- Discipline of Medical Imaging and Radiation Therapy, University College Cork, Cork, Ireland.
- Division of Midwifery & Radiography, City, University of London, London, UK.
- Medical Imaging Department, Corfu General Hospital, Corfu, Greece.
| |
Collapse
|
42
|
Soleymani Y, Jahanshahi AR, Pourfarshid A, Khezerloo D. Reproducibility assessment of radiomics features in various ultrasound scan settings and different scanner vendors. J Med Imaging Radiat Sci 2022; 53:664-671. [PMID: 36266173 DOI: 10.1016/j.jmir.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Radiomics in Ultrasound (US) imaging has been investigated for the prediction and prognosis of cancers. However, inter-scanner and intra-scanner variations may affect the reproducibility of radiomics results. This study aims to evaluate the reproducibility of US textural radiomics features across various scan settings and scanner vendors. MATERIALS AND METHODS US images in quality control (QC) phantom were obtained by three scanners (Philips, Samsung, and Siemens) with different scan settings and parameters. Circular regions of interest (ROIs) inside isoechoic, hypoechoic, and hyperechoic objects were manually delineated. Forty textural radiomics features were extracted from each ROI, and then the robust features that could distinguish different echogenic objects were obtained by the Mann-Whitney U test. Reproducibility of the robust radiomics features was assessed by the intraclass correlation coefficient (ICC) and coefficient of variation (CV); ICC>0.90 and %CV<20 were considered reproducible. RESULTS According to the Mann-Whitney U test results, ten robust features could differentiate the hypoechoic, and 15 robust features could differentiate the hyperechoic objects from the isoechoic objects (P<0.001). The total ICC of the robust features for each echogenic object was >0.95 in different scanners and scan settings. Four and seven features were individually reproducible (%CV < 20, ICC>0.90) in hypoechoic and hyperechoic objects, respectively. Also, four features seem reproducible by changing the ROI location across the horizontal and vertical lines for both convex and linear array transducers. CONCLUSIONS Most of the US textural radiomics features in this study were not reproducible. However, several features showed high reproducibility at different scan settings and scanners. These features may also be reproducible when ROI size and location change slightly.
Collapse
Affiliation(s)
- Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Jahanshahi
- Tabriz University of Medical Sciences, Faculty of Medicine, Imam Reza Hospital, Department of Radiology
| | - Amin Pourfarshid
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Davood Khezerloo
- Department of Radiology, Faculty of Alliance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran & Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Duff L, Scarsbrook AF, Mackie SL, Frood R, Bailey M, Morgan AW, Tsoumpas C. A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis. J Nucl Cardiol 2022; 29:3315-3331. [PMID: 35322380 PMCID: PMC9834376 DOI: 10.1007/s12350-022-02927-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. METHODS The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. RESULTS Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. CONCLUSION A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
Collapse
Affiliation(s)
- Lisa Duff
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK.
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK.
| | - Andrew F Scarsbrook
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Sarah L Mackie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Russell Frood
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Marc Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - Ann W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, USA
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center of Groningen, University of Groningen, 9700 RB, Groningen, Netherlands
| |
Collapse
|
44
|
Volpe S, Isaksson LJ, Zaffaroni M, Pepa M, Raimondi S, Botta F, Lo Presti G, Vincini MG, Rampinelli C, Cremonesi M, de Marinis F, Spaggiari L, Gandini S, Guckenberger M, Orecchia R, Jereczek-Fossa BA. Impact of image filtering and assessment of volume-confounding effects on CT radiomic features and derived survival models in non-small cell lung cancer. Transl Lung Cancer Res 2022; 11:2452-2463. [PMID: 36636424 PMCID: PMC9830263 DOI: 10.21037/tlcr-22-248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Background No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed. Methods Four-hundred seventeen CT images NSCLC patients were retrieved from the NSCLC-Radiomics public repository. Pre-processing and features extraction were implemented using Pyradiomics v3.0.1. Features showing high correlation with volume across original and filtered images were excluded. Cox proportional hazards (PH) with least absolute shrinkage and selection operator (LASSO) regularization and CatBoost models were built with and without volume, and their concordance (C-) indices were compared using Wilcoxon signed-ranked test. The Mann Whitney U test was used to assess model performances after stratification into two groups based on low- and high-volume lesions. Results Radiomic models significantly outperformed models built on only clinical variables and volume. However, the exclusion/inclusion of volume did not generally alter the performances of radiomic models. Overall, performances were not substantially affected by the choice of either imaging filter (overall C-index 0.539-0.590 for Cox PH and 0.589-0.612 for CatBoost). The separation of patients with high-volume lesions resulted in significantly better performances in 2/10 and 7/10 cases for Cox PH and CatBoost models, respectively. Both low- and high-volume models performed significantly better with the inclusion of radiomic features (P<0.0001), but the improvement was largest in the high-volume group (+10.2% against +8.7% improvement for CatBoost models and +10.0% against +5.4% in Cox PH models). Conclusions Radiomic features complement well-known prognostic factors such as volume, but their volume-dependency is high and should be managed with vigilance. The informative content of radiomic features may be diminished in small lesion volumes, which could limit the applicability of radiomics in early-stage NSCLC, where tumors tend to be small. Our results also suggest an advantage of CatBoost models over the Cox PH models.
Collapse
Affiliation(s)
- Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy;,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cristiano Rampinelli
- Department of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy;,Division of Thoracic Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy;,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Chen R, Fu Y, Yi X, Pei Q, Zai H, Chen BT. Application of Radiomics in Predicting Treatment Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: Strategies and Challenges. JOURNAL OF ONCOLOGY 2022; 2022:1590620. [PMID: 36471884 PMCID: PMC9719428 DOI: 10.1155/2022/1590620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 08/01/2023]
Abstract
Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision is the standard treatment for locally advanced rectal cancer (LARC). A noninvasive preoperative prediction method should greatly assist in the evaluation of response to nCRT and for the development of a personalized strategy for patients with LARC. Assessment of nCRT relies on imaging and radiomics can extract valuable quantitative data from medical images. In this review, we examined the status of radiomic application for assessing response to nCRT in patients with LARC and indicated a potential direction for future research.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qian Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongyan Zai
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
46
|
Haidey J, Low G, Wilson MP. Radiomics-based approaches outperform visual analysis for differentiating lipoma from atypical lipomatous tumors: a review. Skeletal Radiol 2022; 52:1089-1100. [PMID: 36385583 DOI: 10.1007/s00256-022-04232-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Differentiating atypical lipomatous tumors (ALTs) and well-differentiated liposarcomas (WDLs) from benign lipomatous lesions is important for guiding clinical management, though conventional visual analysis of these lesions is challenging due to overlap of imaging features. Radiomics-based approaches may serve as a promising alternative and/or supplementary diagnostic approach to conventional imaging. PURPOSE The purpose of this study is to review the practice of radiomics-based imaging and systematically evaluate the literature available for studies evaluating radiomics applied to differentiating ALTs/WDLs from benign lipomas. REVIEW A background review of the radiomic workflow is provided, outlining the steps of image acquisition, segmentation, feature extraction, and model development. Subsequently, a systematic review of MEDLINE, EMBASE, Scopus, the Cochrane Library, and the grey literature was performed from inception to June 2022 to identify size studies using radiomics for differentiating ALTs/WDLs from benign lipomas. Radiomic models were shown to outperform conventional analysis in all but one model with a sensitivity ranging from 68 to 100% and a specificity ranging from 84 to 100%. However, current approaches rely on user input and no studies used a fully automated method for segmentation, contributing to interobserver variability and decreasing time efficiency. CONCLUSION Radiomic models may show improved performance for differentiating ALTs/WDLs from benign lipomas compared to conventional analysis. However, considerable variability between radiomic approaches exists and future studies evaluating a standardized radiomic model with a multi-institutional study design and preferably fully automated segmentation software are needed before clinical application can be more broadly considered.
Collapse
Affiliation(s)
- Jordan Haidey
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2B2.41 WMC, 8440-112 Street NW, Edmonton, Alberta, T6G 2B7, Canada.
| | - Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2B2.41 WMC, 8440-112 Street NW, Edmonton, Alberta, T6G 2B7, Canada
| | - Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta, 2B2.41 WMC, 8440-112 Street NW, Edmonton, Alberta, T6G 2B7, Canada
| |
Collapse
|
47
|
Pasquini L, Napolitano A, Pignatelli M, Tagliente E, Parrillo C, Nasta F, Romano A, Bozzao A, Di Napoli A. Synthetic Post-Contrast Imaging through Artificial Intelligence: Clinical Applications of Virtual and Augmented Contrast Media. Pharmaceutics 2022; 14:pharmaceutics14112378. [PMID: 36365197 PMCID: PMC9695136 DOI: 10.3390/pharmaceutics14112378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast media are widely diffused in biomedical imaging, due to their relevance in the diagnosis of numerous disorders. However, the risk of adverse reactions, the concern of potential damage to sensitive organs, and the recently described brain deposition of gadolinium salts, limit the use of contrast media in clinical practice. In recent years, the application of artificial intelligence (AI) techniques to biomedical imaging has led to the development of 'virtual' and 'augmented' contrasts. The idea behind these applications is to generate synthetic post-contrast images through AI computational modeling starting from the information available on other images acquired during the same scan. In these AI models, non-contrast images (virtual contrast) or low-dose post-contrast images (augmented contrast) are used as input data to generate synthetic post-contrast images, which are often undistinguishable from the native ones. In this review, we discuss the most recent advances of AI applications to biomedical imaging relative to synthetic contrast media.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Unit, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
- Correspondence:
| | - Matteo Pignatelli
- Radiology Department, Castelli Hospital, Via Nettunense Km 11.5, 00040 Ariccia, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Chiara Parrillo
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Francesco Nasta
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
- Neuroimaging Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
48
|
Huang CB, Hu JS, Tan K, Zhang W, Xu TH, Yang L. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. BMC Geriatr 2022; 22:796. [PMID: 36229793 PMCID: PMC9563158 DOI: 10.1186/s12877-022-03502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With rapid economic development, the world's average life expectancy is increasing, leading to the increasing prevalence of osteoporosis worldwide. However, due to the complexity and high cost of dual-energy x-ray absorptiometry (DXA) examination, DXA has not been widely used to diagnose osteoporosis. In addition, studies have shown that the psoas index measured at the third lumbar spine (L3) level is closely related to bone mineral density (BMD) and has an excellent predictive effect on osteoporosis. Therefore, this study developed a variety of machine learning (ML) models based on psoas muscle tissue at the L3 level of unenhanced abdominal computed tomography (CT) to predict osteoporosis. METHODS Medical professionals collected the CT images and the clinical characteristics data of patients over 40 years old who underwent DXA and abdominal CT examination in the Second Affiliated Hospital of Wenzhou Medical University database from January 2017 to January 2021. Using 3D Slicer software based on horizontal CT images of the L3, the specialist delineated three layers of the region of interest (ROI) along the bilateral psoas muscle edges. The PyRadiomics package in Python was used to extract the features of ROI. Then Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to reduce the dimension of the extracted features. Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were applied to train and validate these features to predict osteoporosis. RESULTS A total of 172 participants met the inclusion and exclusion criteria for the study. 82 participants were enrolled in the osteoporosis group, and 90 were in the non-osteoporosis group. Moreover, the two groups had no significant differences in age, BMI, sex, smoking, drinking, hypertension, and diabetes. Besides, 826 radiomic features were obtained from unenhanced abdominal CT images of osteoporotic and non-osteoporotic patients. Five hundred fifty radiomic features were screened out of 826 by the Mann-Whitney U test. Finally, 16 significant radiomic features were obtained by the LASSO algorithm. These 16 radiomic features were incorporated into six traditional machine learning models (GBM, GNB, LR, RF, SVM, and XGB). All six machine learning models could predict osteoporosis well in the validation set, with the area under the receiver operating characteristic (AUROC) values greater than or equal to 0.8. GBM is more effective in predicting osteoporosis, whose AUROC was 0.86, sensitivity 0.70, specificity 0.92, and accuracy 0.81 in validation sets. CONCLUSION We developed six machine learning models to predict osteoporosis based on psoas muscle images of abdominal CT, and the GBM model had the best predictive performance. GBM model can better help clinicians to diagnose osteoporosis and provide timely anti-osteoporosis treatment for patients. In the future, the research team will strive to include participants from multiple institutions to conduct external validation of the ML model of this study.
Collapse
Affiliation(s)
- Cheng-Bin Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Jia-Sen Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kai Tan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Wei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tian-Hao Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
49
|
Horvat N, Miranda J, El Homsi M, Peoples JJ, Long NM, Simpson AL, Do RKG. A primer on texture analysis in abdominal radiology. Abdom Radiol (NY) 2022; 47:2972-2985. [PMID: 34825946 DOI: 10.1007/s00261-021-03359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
The number of publications on texture analysis (TA), radiomics, and radiogenomics has been growing exponentially, with abdominal radiologists aiming to build new prognostic or predictive biomarkers for a wide range of clinical applications including the use of oncological imaging to advance the field of precision medicine. TA is specifically concerned with the study of the variation of pixel intensity values in radiological images. Radiologists aim to capture pixel variation in radiological images to deliver new insights into tumor biology that cannot be derived from visual inspection alone. TA remains an active area of investigation and requires further standardization prior to its clinical acceptance and applicability. This review is for radiologists interested in this rapidly evolving field, who are thinking of performing research or want to better interpret results in this arena. We will review the main concepts in TA, workflow processes, and existing challenges and steps to overcome them, as well as look at publications in body imaging with external validation.
Collapse
Affiliation(s)
- Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Jacob J Peoples
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Niamh M Long
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Amber L Simpson
- School of Computing, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Marti-Bonmati L, Cerdá-Alberich L, Pérez-Girbés A, Díaz Beveridge R, Montalvá Orón E, Pérez Rojas J, Alberich-Bayarri A. Pancreatic cancer, radiomics and artificial intelligence. Br J Radiol 2022; 95:20220072. [PMID: 35687700 PMCID: PMC10996946 DOI: 10.1259/bjr.20220072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.
Collapse
Affiliation(s)
- Luis Marti-Bonmati
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Department of Radiology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Leonor Cerdá-Alberich
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
| | | | | | - Eva Montalvá Orón
- Department of Surgery, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Judith Pérez Rojas
- Department of Pathology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Angel Alberich-Bayarri
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, Quibim
SL, Valencia,
Spain
| |
Collapse
|