1
|
Zhao Y, Lv R, He Y, Dong N, Wang X, Pu J, Yu Q. The miR-21-5p/DUSP8/MAPK signaling pathway mediates inflammation and apoptosis in vascular endothelial cells induced by intermittent hypoxia and contributes to the protective effects of N-acetylcysteine. Eur J Pharmacol 2025; 997:177462. [PMID: 40058751 DOI: 10.1016/j.ejphar.2025.177462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Obstructive sleep apnoea hypopnea syndrome (OSAHS) is a sleep disorder associated with significant cardiovascular complications, characterized by intermittent hypoxia (IH). IH causes endothelial dysfunction, an early event in cardiovascular disease. We investigated the role of dual-specificity phosphatase 8 (DUSP8), a key negative regulator of the mitogen-activated protein kinase (MAPK) signalling pathway, in IH-induced endothelial cell damage, and the therapeutic effects of N-acetylcysteine (NAC) by establishing IH models in human umbilical vein endothelial cells and C57BL/6 mice. DUSP8 and MAPK signalling pathway-related proteins were analysed by western blotting, and DUSP8 mRNA and miR-21-5p expression was assessed by RT-qPCR. Inflammatory cytokines were detected by an enzyme-linked immunosorbent assay, apoptosis-related proteins were analysed by western blotting, and apoptosis was assessed using flow cytometry. IH stimulation induced inflammation and apoptosis in endothelial cells, downregulated DUSP8 expression, and upregulated the phosphorylation of key molecules involved in the MAPK signalling pathway. However, DUSP8 overexpression alleviated IH-induced inflammation and apoptosis in endothelial cells and reduced the phosphorylation of key molecules in the MAPK signalling pathway. Bioinformatic analysis and dual-luciferase reporter assays confirmed that DUSP8 is a direct target of miR-21-5p. DUSP8 overexpression effectively reversed the damage caused by miR-21-5p upregulation under IH conditions. Furthermore, in cell and animal models of IH, NAC demonstrated protective effects against inflammation, apoptosis, and oxidative stress through a mechanism linked to the miR-21-5p/DUSP8/MAPK signalling pathway. Overall, this study elucidated the protective role of DUSP8 against IH-induced endothelial injury and confirmed the potential of NAC as a therapeutic agent for OSAHS-related diseases.
Collapse
Affiliation(s)
- Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jiayuan Pu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
4
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
6
|
CircANKRD12 Is Induced in Endothelial Cell Response to Oxidative Stress. Cells 2022; 11:cells11223546. [PMID: 36428974 PMCID: PMC9688326 DOI: 10.3390/cells11223546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Redox imbalance of the endothelial cells (ECs) plays a causative role in a variety of cardiovascular diseases. In order to better understand the molecular mechanisms of the endothelial response to oxidative stress, the involvement of circular RNAs (circRNAs) was investigated. CircRNAs are RNA species generated by a "back-splicing" event, which is the covalent linking of the 3'- and 5'-ends of exons. Bioinformatics analysis of the transcriptomic landscape of human ECs exposed to H2O2 allowed us to identify a subset of highly expressed circRNAs compared to their linear RNA counterparts, suggesting a potential biological relevance. Specifically, circular Ankyrin Repeat Domain 12 (circANKRD12), derived from the junction of exon 2 and exon 8 of the ANKRD12 gene (hsa_circ_0000826), was significantly induced in H2O2-treated ECs. Conversely, the linear RNA isoform of ANKRD12 was not modulated. An increased circular-to-linear ratio of ANKRD12 was also observed in cultured ECs exposed to hypoxia and in skeletal muscle biopsies of patients affected by critical limb ischemia (CLI), two conditions associated with redox imbalance and oxidative stress. The functional relevance of circANKRD12 was shown by the inhibition of EC formation of capillary-like structures upon silencing of the circular but not of the linear isoform of ANKRD12. Bioinformatics analysis of the circANKRD12-miRNA-mRNA regulatory network in H2O2-treated ECs identified the enrichment of the p53 and Foxo signaling pathways, both crucial in the cellular response to redox imbalance. In keeping with the antiproliferative action of the p53 pathway, circANKRD12 silencing inhibited EC proliferation. In conclusion, this study indicates circANKRD12 as an important player in ECs exposed to oxidative stress.
Collapse
|
7
|
Dabi Y, Bendifallah S, Suisse S, Haury J, Touboul C, Puchar A, Favier A, Daraï E. Overview of non-coding RNAs in breast cancers. Transl Oncol 2022; 25:101512. [PMID: 35961269 PMCID: PMC9382556 DOI: 10.1016/j.tranon.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer in women is the second most common cancer and the fifth leading cause of cancer death worldwide. Although earlier diagnosis and detection of breast cancer has resulted in lower mortality rates, further advances in prevention, detection, and treatment are needed to improve outcomes and survival for women with breast cancer as well as to offer a personalized therapeutic approach. It is now well-established that non-coding RNAs (ncRNAs) represent 98% of the transcriptome but in-depth knowledge about their involvement in the regulation of gene expression is lacking. A growing body of research indicates that ncRNAs are essential for tumorigenesis by regulating the expression of tumour-related genes. In this review, we focus on their implication in breast cancer genesis but also report the latest knowledge of their theragnostic and therapeutic role. We highlight the need for accurate quantification of circulating ncRNAs which is determinant to develop reliable biomarkers. Further studies are mandatory to finally enter the era of personalized medicine for women with breast cancer.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France.
| | - Sofiane Bendifallah
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| | | | - Julie Haury
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Cyril Touboul
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| | - Anne Puchar
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Amélia Favier
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Emile Daraï
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| |
Collapse
|
8
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
9
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
10
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
11
|
A Non-Canonical Link between Non-Coding RNAs and Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10020445. [PMID: 35203652 PMCID: PMC8962294 DOI: 10.3390/biomedicines10020445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the top leading causes of mortality worldwide. Besides canonical environmental and genetic changes reported so far for CVDs, non-coding RNAs (ncRNAs) have emerged as key regulators of genetic and epigenetic mechanisms involved in CVD progression. High-throughput and sequencing data revealed that almost 80% of the total genome not only encodes for canonical ncRNAs, such as micro and long ncRNAs (miRNAs and lncRNAs), but also generates novel non-canonical sub-classes of ncRNAs, such as isomiRs and miRNA- and lncRNA-like RNAs. Moreover, recent studies reveal that canonical ncRNA sequences can influence the onset and evolution of CVD through novel “non-canonical” mechanisms. However, a debate exists over the real existence of these non-canonical ncRNAs and their concrete biochemical functions, with most of the dark genome being considered as “junk RNA”. In this review, we report on the ncRNAs with a scientifically validated canonical and non-canonical biogenesis. Moreover, we report on canonical ncRNAs that play a role in CVD through non-canonical mechanisms of action.
Collapse
|
12
|
Abstract
Regulatory RNAs like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) control vascular and immune cells' phenotype and thus play a crucial role in atherosclerosis. Moreover, the mutual interactions between miRNAs and lncRNAs link both types of regulatory RNAs in a functional network that affects lesion formation. In this review, we deduce novel concepts of atherosclerosis from the analysis of the current data on regulatory RNAs' role in endothelial cells (ECs) and macrophages. In contrast to arterial ECs, which adopt a stable phenotype by adaptation to high shear stress, macrophages are highly plastic and quickly change their activation status. At predilection sites of atherosclerosis, such as arterial bifurcations, ECs are exposed to disturbed laminar flow, which generates a dysadaptive stress response mediated by miRNAs. Whereas the highly abundant miR-126-5p promotes regenerative proliferation of dysadapted ECs, miR-103-3p stimulates inflammatory activation and impairs endothelial regeneration by aberrant proliferation and micronuclei formation. In macrophages, miRNAs are essential in regulating energy and lipid metabolism, which affects inflammatory activation and foam cell formation.Moreover, lipopolysaccharide-induced miR-155 and miR-146 shape inflammatory macrophage activation through their oppositional effects on NF-kB. Most lncRNAs are not conserved between species, except a small group of very long lncRNAs, such as MALAT1, which blocks numerous miRNAs by providing non-functional binding sites. In summary, regulatory RNAs' roles are highly context-dependent, and therapeutic approaches that target specific functional interactions of miRNAs appear promising against cardiovascular diseases.
Collapse
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - Saffiyeh Saboor Maleki
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
13
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
14
|
Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021; 9:1756. [PMID: 34944571 PMCID: PMC8698592 DOI: 10.3390/biomedicines9121756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
The endothelium, which constitutes the inner layer of blood vessels and lymphatic structures, plays an important role in various physiological functions. Alterations in structure, integrity and function of the endothelial layer during pregnancy have been associated with numerous gestational complications, including clinically significant disorders, such as preeclampsia, fetal growth restriction, and diabetes. While numerous experimental studies have focused on establishing the role of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together with the mechanisms by which they relate to individual gestational complications. However, more studies are required to determine clinically relevant markers specific to a gestational complication of interest, as currently most of them present a significant overlap. Although the independent diagnostic value of such markers remains to be insufficient for implementation in standard clinical practice at the moment, inclusion of certain markers in predictive multifactorial models can improve their prognostic value. The future of the research in this field lies in the fine tuning of the clinical markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse endothelial damage.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Anastasia Kalantarova
- Medicine Program, Poznan University of Medical Sciences, 41 Jackowskiego Street, 60-512 Poznan, Poland;
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| |
Collapse
|
15
|
Gao S, Gao H, Dai L, Han Y, Lei Z, Wang X, Chang H, Liu S, Wang Z, Tong H, Wu H. miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res 2021; 409:112925. [PMID: 34785240 DOI: 10.1016/j.yexcr.2021.112925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Promoting angiogenesis by targeting various angiogenic regulators has emerged as a new treatment strategy for myocardial ischemia (MI). MicroRNA-126 (miR-126) has been identified as the main regulator of compensatory angiogenesis; however, its role in MI is unclear. A rat MI model and an EA. hy926 endothelial cell hypoxia model were constructed and it was found that miR-126 was highly expressed in both models. The knockdown of HIF-1α expression in EA. hy926 cells in turn downregulated VEGF and CD34 expression and consequently inhibited angiogenesis. MiR-126 inhibitor inhibited EA. hy926 cell migration and tube formation as well as downregulated VEGF and CD34 expression, and these were reversed by transfection of miR-126 mimics. Rescue tests using miR-126 and HIF-1α demonstrated that miR-126-mediated regulation of angiogenesis was dependent on HIF-1α. In summary, miR-126 regulates the occurrence and progression of angiogenesis during MI via HIF-1α and may be a potential new therapeutic target.
Collapse
Affiliation(s)
- Shuibo Gao
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Haixia Gao
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Liping Dai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yongjun Han
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhen Lei
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xinzhou Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Shanshan Liu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhentao Wang
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Hong Wu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Braun H, Hauke M, Ripperger A, Ihling C, Fuszard M, Eckenstaler R, Benndorf RA. Impact of DICER1 and DROSHA on the Angiogenic Capacity of Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22189855. [PMID: 34576018 PMCID: PMC8471234 DOI: 10.3390/ijms22189855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
RNAi-mediated knockdown of DICER1 and DROSHA, enzymes critically involved in miRNA biogenesis, has been postulated to affect the homeostasis and the angiogenic capacity of human endothelial cells. To re-evaluate this issue, we reduced the expression of DICER1 or DROSHA by RNAi-mediated knockdown and subsequently investigated the effect of these interventions on the angiogenic capacity of human umbilical vein endothelial cells (HUVEC) in vitro (proliferation, migration, tube formation, endothelial cell spheroid sprouting) and in a HUVEC xenograft assay in immune incompetent NSGTM mice in vivo. In contrast to previous reports, neither knockdown of DICER1 nor knockdown of DROSHA profoundly affected migration or tube formation of HUVEC or the angiogenic capacity of HUVEC in vivo. Furthermore, knockdown of DICER1 and the combined knockdown of DICER1 and DROSHA tended to increase VEGF-induced BrdU incorporation and induced angiogenic sprouting from HUVEC spheroids. Consistent with these observations, global proteomic analyses showed that knockdown of DICER1 or DROSHA only moderately altered HUVEC protein expression profiles but additively reduced, for example, expression of the angiogenesis inhibitor thrombospondin-1. In conclusion, global reduction of miRNA biogenesis by knockdown of DICER1 or DROSHA does not inhibit the angiogenic capacity of HUVEC. Further studies are therefore needed to elucidate the influence of these enzymes in the context of human endothelial cell-related angiogenesis.
Collapse
Affiliation(s)
- Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Matthew Fuszard
- Core Facility—Proteomics Mass Spectrometry, Charles Tanford Centre, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Ralf A. Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
- Correspondence: ; Tel.: +49-345-55-25150
| |
Collapse
|
17
|
Chatterjee N, Fraile-Bethencourt E, Baris A, Espinosa-Diez C, Anand S. MicroRNA-494 Regulates Endoplasmic Reticulum Stress in Endothelial Cells. Front Cell Dev Biol 2021; 9:671461. [PMID: 34322482 PMCID: PMC8311360 DOI: 10.3389/fcell.2021.671461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Defects in stress responses are important contributors in many chronic conditions including cancer, cardiovascular disease, diabetes, and obesity-driven pathologies like non-alcoholic steatohepatitis (NASH). Specifically, endoplasmic reticulum (ER) stress is linked with these pathologies and control of ER stress can ameliorate tissue damage. MicroRNAs have a critical role in regulating diverse stress responses including ER stress. Here, we show that miR-494 plays a functional role during ER stress. Pharmacological ER stress inducers (tunicamycin (TCN) and thapsigargin) and hyperglycemia robustly increase the expression of miR-494 in vitro. ATF6 impacts the primary miR-494 levels whereas all three ER stress pathways are necessary for the increase in mature miR-494. Surprisingly, miR-494 pretreatment dampens the induction and magnitude of ER stress in response to TCN in endothelial cells and increases cell viability. Conversely, inhibition of miR-494 increases ER stress de novo and amplifies the effects of ER stress inducers. Using Mass Spectrometry (TMT-MS) we identified 23 proteins that are downregulated by both TCN and miR-494 in cultured human umbilical vein endothelial cells. Among these, we found 6 transcripts which harbor a putative miR-494 binding site. We validated the anti-apoptotic gene BIRC5 (survivin) and GINS4 as targets of miR-494 during ER stress. In summary, our data indicates that ER stress driven miR-494 may act in a feedback inhibitory loop to dampen downstream ER stress signaling.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Adrian Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Moreau PR, Tomas Bosch V, Bouvy-Liivrand M, Õunap K, Örd T, Pulkkinen HH, Pölönen P, Heinäniemi M, Ylä-Herttuala S, Laakkonen JP, Linna-Kuosmanen S, Kaikkonen MU. Profiling of Primary and Mature miRNA Expression in Atherosclerosis-Associated Cell Types. Arterioscler Thromb Vasc Biol 2021; 41:2149-2167. [PMID: 33980036 PMCID: PMC8216629 DOI: 10.1161/atvbaha.121.315579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pierre R. Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Now with Genevia Technologies Oy, Tampere, Finland (M.B.-L.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Heidi H. Pulkkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN (P.P.)
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
- Now with MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, and Broad Institute of MIT and Harvard, Cambridge, MA (S.L.-K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| |
Collapse
|
19
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
20
|
Guduric-Fuchs J, Pedrini E, Lechner J, Chambers SE, O’Neill CL, Mendes Lopes de Melo J, Pathak V, Church RH, McKeown S, Bojdo J, Mcloughlin KJ, Stitt AW, Medina RJ. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:968-981. [PMID: 33614244 PMCID: PMC7869000 DOI: 10.1016/j.omtn.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edoardo Pedrini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Sarah E.J. Chambers
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Christina L. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Joana Mendes Lopes de Melo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Varun Pathak
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rachel H. Church
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Stuart McKeown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Kiran J. Mcloughlin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
21
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
23
|
Peñaloza E, Soto-Carrasco G, Krause BJ. MiR-21-5p directly contributes to regulating eNOS expression in human artery endothelial cells under normoxia and hypoxia. Biochem Pharmacol 2020; 182:114288. [PMID: 33075314 DOI: 10.1016/j.bcp.2020.114288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Clinical conditions associated with hypoxia and oxidative stress, such as fetal growth restriction (FGR), results in endothelial dysfunction. Previous reports show that changes in eNOS expression under these conditions are tightly controlled by DNA methylation and histone posttranslational modifications. However, the contribution of an orchestrating epigenetic mechanism, such as miRNAs, on the NO-related genes expression has not been addressed. We aimed to determine the levels of miRNAs highly expressed in normal endothelial cells (EC), miR-21 and miR-126, in FGR human umbilical artery EC (HUAEC), and their effects on hypoxia-dependent regulation of both, NO-related and oxidative stress-related genes. Results were validated by transcriptome analysis of HUAEC cultured under chronic low oxygen conditions. Cultured FGR-HUAEC showed decreased hsa-miR-21, DDAH1, SOD1, and NRF2, but increased miR-126, NOX4, and eNOS levels, compared with controls. MiR-21-5p levels in FGR were associated with increased hg-miR-21 gene promoter methylation, with no changes in hg-miR-126 gene promoter methylation. HUAEC exposed to hypoxia showed a transient increase in eNOS and DDAH11, paralleled by decrease miR-21-5p levels, but no changes in miR-126-3p and the other genes under study. Transcriptome profiling showed an inverse relationship among miR-21 and several transcripts targeted by miR-21 in HUAEC exposed to hypoxia, meanwhile miR-21-5p-mimic decreased eNOS and DDAH1 transcripts stability, blocking their induction by hypoxia. Consequently, FGR programs a hypoxia-related miRNA that contributes to the regulation of the NO pathway, involving a direct effect of miR-21-5p on eNOS transcript stability, not previously reported. Moreover, hypoxia downregulates miR-21-5p, contributing to increasing the expression of NO-related genes in arterial endothelial cells.
Collapse
Affiliation(s)
- Estefania Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
24
|
Nersisyan SA, Shkurnikov MY, Knyazev EN. Factors Involved in miRNA Processing Change Its Expression Level during Imitation of Hypoxia in BeWo b30 Cells. DOKL BIOCHEM BIOPHYS 2020; 493:205-207. [PMID: 32894466 DOI: 10.1134/s1607672920040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
One of the main complications of pregnancy and causes of maternal and perinatal mortality is preeclampsia. The pathophysiology of preeclampsia is associated with the development of placenta and fetal hypoxia and secretion of a number of effective molecules. The human choriocarcinoma cell line BeWo b30 is often used as a model of the placental barrier. It was shown that oxyquinoline derivatives can mimic hypoxia by suppressing HIF-prolyl hydroxylases and the accumulation of HIF-1α. This effect also leads to a change in the expression of microRNAs and their target genes. However, with hypoxia in cells, not only the level of individual miRNAs but also the ratio of miRNA isoforms (isomiRs) can change, presumably due to inaccuracies in the work of the Drosha and Dicer enzymes. In this work, we showed a change in the expression of the factors involved in the maturation of miRNAs when simulating hypoxia in BeWo b30 cells with an oxyquinoline derivative, which may be one of the causes for the change in the ratio of miRNA isoforms.
Collapse
Affiliation(s)
- S A Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
| | - M Yu Shkurnikov
- Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E N Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. .,Translational Technology Center, Moscow, Russia.
| |
Collapse
|
25
|
Kazimierczyk E, Eljaszewicz A, Kazimierczyk R, Tynecka M, Zembko P, Tarasiuk E, Kaminski K, Sobkowicz B, Moniuszko M, Tycinska A. Altered microRNA dynamics in acute coronary syndrome. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:287-293. [PMID: 33597993 PMCID: PMC7863810 DOI: 10.5114/aic.2020.99263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/09/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION In the course of acute myocardial infarction (AMI) cardiomyocyte injury, activation and destruction of endothelial cells together with inflammation lead to miRNA expression alterations. AIM To assess levels of circulating cardiac-specific (miR-1) and endothelial-specific (miR-126) miRNAs in the acute phase of AMI and after a follow-up period. MATERIAL AND METHODS Seventeen AMI patients (mean age: 64.24 ±13.83 years, mean left ventricle ejection fraction (LVEF): 42.6 ±9.65%), treated with primary percutaneous coronary intervention within the first 12 h, had plasma miRNAs isolated (quantitative real-time PCR, Exiqon) on admission and after 19.2 ±5.9 weeks. Measurements were also performed in a control group of healthy volunteers matched for age and sex. RESULTS Concentrations of both miRNAs were significantly higher in AMI patients as compared to healthy controls: miR-1: 5.93 (3.15-14.92) vs. 1.46 (0.06-2.96), p = 0.04; miR-126: 4.5 (3.11-7.64) vs. 0.54 (0.36-0.99), p = 0.00003, respectively. Levels of both miRNAs significantly decreased after the follow-up period: miR-1: 5.93 (3.15-14.92) vs. 1.34 (0.04-2.34), p = 0.002; miR-126: 4.5 (3.11-7.64) vs. 1.18 (0.49-1.68), p = 0.0005). Moreover, miR-1 correlated positively with maximal troponin I concentration (r = 0.59, p = 0.02) and negatively with LVEF (r = -0.76, p = 0.0004). CONCLUSIONS In our study, miR-1 emerged as a marker of cardiomyocyte injury and loss of myocardial contractility, whereas dynamics of miR-126 concentration may reflect endothelial activation and damage in the most extreme stage of atherosclerosis, followed by angiogenesis in ischemic myocardium. However, to fully elucidate the role of miR-1 and miR-126 as biomarkers of AMI and future therapeutic targets, further research is required.
Collapse
Affiliation(s)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | | | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Paula Zembko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Bozena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Tycinska
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Tiana M, Acosta-Iborra B, Hernández R, Galiana C, Fernández-Moreno MÁ, Jimenez B, Del Peso L. Metabolic labeling of RNA uncovers the contribution of transcription and decay rates on hypoxia-induced changes in RNA levels. RNA (NEW YORK, N.Y.) 2020; 26:1006-1022. [PMID: 32295863 PMCID: PMC7373995 DOI: 10.1261/rna.072611.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/12/2020] [Indexed: 05/08/2023]
Abstract
Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. However, most transcriptomic studies do not distinguish the relative contribution of transcription, RNA processing, and RNA degradation processes to cellular homeostasis. Here we used metabolic labeling followed by massive parallel sequencing of newly transcribed and preexisting RNA fractions to simultaneously analyze RNA synthesis and decay in primary endothelial cells exposed to low oxygen tension. We found that changes in transcription rates induced by hypoxia are the major determinant of changes in RNA levels. However, degradation rates also had a significant contribution, accounting for 24% of the observed variability in total mRNA. In addition, our results indicated that hypoxia led to a reduction of the overall mRNA stability from a median half-life in normoxia of 8.7 h, to 5.7 h in hypoxia. Analysis of RNA content per cell confirmed a decrease of both mRNA and total RNA in hypoxic samples and that this effect is dependent on the EGLN/HIF/TSC2 axis. This effect could potentially contribute to fundamental global responses such as inhibition of translation in hypoxia. In summary, our study provides a quantitative analysis of the contribution of RNA synthesis and stability to the transcriptional response to hypoxia and uncovers an unexpected effect on the latter.
Collapse
Affiliation(s)
- Maria Tiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bárbara Acosta-Iborra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
| | - Rosana Hernández
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
| | - Clara Galiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Benilde Jimenez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006, Albacete, Spain
| |
Collapse
|
27
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
28
|
Liang L, Su W, Zhou L, Cao Y, Zhou X, Liu S, Zhao Y, Ding X, Wang Q, Zhang H. Statin downregulation of miR-652-3p protects endothelium from dyslipidemia by promoting ISL1 expression. Metabolism 2020; 107:154226. [PMID: 32277945 DOI: 10.1016/j.metabol.2020.154226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant endothelial function is a major contributing factor in cardiovascular disease. Dyslipidemia leads to decreased nitric oxide (NO) bioavailability, an early sign of endothelial failure. Low insulin gene enhancer protein (ISL1) levels decrease healthy NO bioavailability. We hypothesized that the microRNA miR-652-3p negatively regulates endothelial ISL1 expression and that dyslipidemia-induced miR-652-3p upregulation induces aberrant endothelial functioning via ISL1 downregulation. METHODS Various in vitro experiments were conducted in human umbilical vein endothelial cells (HUVECs). Luciferase assays were performed in HEK293 cells. We constructed a high-fat diet (HFD) Apoe-/- murine model of dyslipidemia and a rat model of low-density lipoprotein (LDL)-induced dyslipidemia to conduct in vivo and ex vivo experiments. RESULTS Luciferase assays confirmed miR-652-3p's targeting of the ISL1 3'-untranslated region (3'-UTR). Simvastatin blocked oxidized LDL (ox-LDL)-induced increases in miR-652-3p and ox-LDL-induced decreases in ISL1 protein expression, endothelial NO synthase (eNOS) activation, and NO production. Simvastatin's effects were abrogated by miR-652-3p overexpression and phenocopied by miR-652-3p inhibition. The dyslipidemic mouse model exhibited increased miR-652-3p and decreased ISL1 protein levels in the endothelium, effects opposed by simvastatin or miR-652-3p inhibition. The impact of simvastatin in vivo was abolished by overexpressing miR-652-3p or knocking-down ISL1. The rat model of dyslipidemia exhibited a similar pattern of miR-652-3p upregulation, attenuated ISL1 protein levels, decreased eNOS activation, and decreased NO production, effects mitigated by simvastatin. CONCLUSIONS Dyslipidemia upregulates endothelial miR-652-3p, which decreases ISL1 protein levels, eNOS activation, and NO production. Simvastatin therapy lowers endothelial miR-652-3p expression to protect endothelial function under dyslipidemic conditions.
Collapse
Affiliation(s)
- Liwen Liang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wenhua Su
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
29
|
Siddiqui MR, Akhtar S, Shahid M, Tauseef M, McDonough K, Shanley TP. miR-144-mediated Inhibition of ROCK1 Protects against LPS-induced Lung Endothelial Hyperpermeability. Am J Respir Cell Mol Biol 2020; 61:257-265. [PMID: 30811958 DOI: 10.1165/rcmb.2018-0235oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunctional endothelial cell (EC) barrier and increased lung vascular permeability is a cardinal feature of acute lung injury and sepsis that may result in a pathophysiological condition characterized by alveolar flooding, pulmonary edema, and subsequent hypoxemia. In lung ECs, activation of Rho-associated kinase-1 (ROCK1) phosphorylates myosin light chain (MLC)-associated phosphatase at its inhibitory site, which favors phosphorylation of MLC, stress fiber formation, and hyperpermeability during acute lung injury. The role of microRNA-144 (miR-144) has been well investigated in many human diseases, including cardiac ischemia/reperfusion-induced injury, lung cancer, and lung viral infection; however, its role in pulmonary EC barrier regulation remains obscure. Here, we investigated the miR-144-mediated mechanism in the protection of endothelial barrier function in an LPS-induced lung injury model. By using transendothelial electrical resistance and transwell permeability assay to examine in vitro permeability and immunofluorescence microscopy to determine barrier integrity, we showed that ectopic expression of miR-144 effectively blocked lung EC barrier disruption and hyperpermeability in response to proinflammatory agents. Furthermore, using a gain-and-loss-of-function strategy, overexpression of miR-144 significantly decreased ROCK1 expression. Concomitantly, miR-144 inhibits ROCK1-mediated phosphorylation of MLC phosphataseThr853 and thus phosphorylation of MLCThr18/Ser19 to counteract stress fiber formation in LPS-activated EC. Finally, in LPS-challenged mice, intranasal delivery of miR-144 mimic via liposomes attenuated endotoxemia-induced increases in lung wet/dry ratio, vascular permeability, and inflammation. In conclusion, these data suggest that miR-144-attenuated activation of inflammatory ROCK1/MLC pathway in vascular ECs is a promising therapeutic strategy to counter inflammatory lung injury.
Collapse
Affiliation(s)
- M Rizwan Siddiqui
- 1Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2Stanley Manne Children's Research Institute, Chicago, Illinois; and
| | - Suhail Akhtar
- 1Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Mohd Shahid
- 3College of Pharmacy, Chicago State University, Chicago, Illinois
| | - Mohammad Tauseef
- 3College of Pharmacy, Chicago State University, Chicago, Illinois
| | - Kelli McDonough
- 1Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2Stanley Manne Children's Research Institute, Chicago, Illinois; and
| | - Thomas P Shanley
- 1Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2Stanley Manne Children's Research Institute, Chicago, Illinois; and
| |
Collapse
|
30
|
Klomp J, Hyun J, Klomp JE, Pajcini K, Rehman J, Malik AB. Comprehensive transcriptomic profiling reveals SOX7 as an early regulator of angiogenesis in hypoxic human endothelial cells. J Biol Chem 2020; 295:4796-4808. [PMID: 32071080 DOI: 10.1074/jbc.ra119.011822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Indexed: 01/24/2023] Open
Abstract
Endothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia. We observed that hypoxia modulates the expression levels of approximately one-third of the EC transcriptome. Intriguingly, expression of the gene encoding the developmental transcription factor SOX7 (SRY-box transcription factor 7) rapidly and transiently increased during hypoxia. Transcriptomic and functional analyses of ECs following SOX7 depletion established its critical role in regulating hypoxia-induced angiogenesis. We also observed that depletion of the hypoxia-inducible factor (HIF) genes, HIF1A (encoding HIF-1α) and endothelial PAS domain protein 1 (EPAS1 encoding HIF-2α), inhibited both distinct and overlapping transcriptional programs. Our results indicated a role for HIF-1α in down-regulating mitochondrial metabolism while concomitantly up-regulating glycolytic genes, whereas HIF-2α primarily up-regulated the angiogenesis transcriptional program. These results identify the concentration and time dependence of the endothelial transcriptomic response to hypoxia and an early key role for SOX7 in mediating angiogenesis.
Collapse
Affiliation(s)
- Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - James Hyun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jennifer E Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Kostandin Pajcini
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612 .,Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| |
Collapse
|
31
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|
32
|
Rosano S, Corà D, Parab S, Zaffuto S, Isella C, Porporato R, Hoza RM, Calogero RA, Riganti C, Bussolino F, Noghero A. A regulatory microRNA network controls endothelial cell phenotypic switch during sprouting angiogenesis. eLife 2020; 9:48095. [PMID: 31976858 PMCID: PMC7299339 DOI: 10.7554/elife.48095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis requires the temporal coordination of the proliferation and the migration of endothelial cells. Here, we investigated the regulatory role of microRNAs (miRNAs) in harmonizing angiogenesis processes in a three-dimensional in vitro model. We described a microRNA network which contributes to the observed down- and upregulation of proliferative and migratory genes, respectively. Global analysis of miRNA-target gene interactions identified two sub-network modules, the first organized in upregulated miRNAs connected with downregulated target genes and the second with opposite features. miR-424-5p and miR-29a-3p were selected for the network validation. Gain- and loss-of-function approaches targeting these microRNAs impaired angiogenesis, suggesting that these modules are instrumental to the temporal coordination of endothelial migration and proliferation. Interestingly, miR-29a-3p and its targets belong to a selective biomarker that is able to identify colorectal cancer patients who are responding to anti-angiogenic treatments. Our results provide a view of higher-order interactions in angiogenesis that has potential to provide diagnostic and therapeutic insights.
Collapse
Affiliation(s)
- Stefania Rosano
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases - CAAD, Novara, Italy
| | - Sushant Parab
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Serena Zaffuto
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Claudio Isella
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | | | - Roxana Maria Hoza
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Alessio Noghero
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
33
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
34
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
35
|
Tao J, Wang J, Li C, Wang W, Yu H, Liu J, Kong X, Chen Y. MiR-216a accelerates proliferation and fibrogenesis via targeting PTEN and SMAD7 in human cardiac fibroblasts. Cardiovasc Diagn Ther 2019; 9:535-544. [PMID: 32038943 DOI: 10.21037/cdt.2019.11.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Heart failure (HF) is a progressive disease with relatively poor prognosis and lacks effective therapy, and the discovery of dysregulated microRNAs (miRNAs) and their role in cardiac fibroblasts have provided a new avenue for elucidating the mechanism involved in HF. Methods Two datasets of GSE53080 and GSE57338 were used to screen the miRNAs profiling and analysis the differentially expressed genes (DEGs) in HF. QRT-PCR was used to detect miR-216a between HF and healthy controls (HC). Cell counting kit-8 (CCK-8) assay and clonogenic assay were used to analyze the effect of proliferation and fibrogenesis. Then dual-luciferase activity assay and western blotting were used to confirm the key mechanism. Results In this study, the results showed that miR-216a was significantly up-regulated in HF and over-expression of miR-216a promoted proliferation and enhanced the fibrogenesis in the human cardiac fibroblasts (HCF) cells. Phosphatase and tensin homolog (PTEN) and mothers against decapentaplegic homolog 7 (SMAD7) were both validated as the direct target genes of miR-216a, which were confirmed by the dual-luciferase reporter assay. MiR-216a decreased the expression of PTEN and SMAD7 leading to the activation of Akt/mTOR and TGF-βRI/Smad2 in the HCF cells, which might act as a promoter of cardiac fibrosis. Conclusions Our study might provide a promising approach for the treatment of HF in the future.
Collapse
Affiliation(s)
- Jinsong Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Cardiology, The Affiliated Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunyu Li
- Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weiwei Wang
- Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Yu
- Emergency Center, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Artux 845350, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Chen
- Emergency Center, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Artux 845350, China.,Emergency Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Li SN, Li P, Liu WH, Shang JJ, Qiu SL, Zhou MX, Liu HX. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 2019; 120:109538. [PMID: 31629250 DOI: 10.1016/j.biopha.2019.109538] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Danhong injection (DHI) is a Chinese drug used for relieving cardiovascular diseases. This study aimed to identify the effect and mechanism of action of DHI on post-infarct angiogenesis, especially the epigenetic regulation of angiogenesis. METHODS A myocardial infarction (MI) mouse model was induced by ligating the left anterior descending coronary artery. A 4-week daily treatment with or without DHI via intraperitoneal injection was started immediately following MI. The changes in cardiac function, pathology, and angiogenesis following MI were measured by echocardiography and immunostaining. Matrigel tube formation and scratch wound assays were used to evaluate the effect of DHI on the proliferation and migration of hypoxic human umbilical vein endothelial cells (HUVECs). The expression of miR-126, Spred-1, and angiogenesis-related mRNAs was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of related proteins and the phosphorylated levels of extracellular signal-regulated kinase (ERK) and protein kinase B were detected by Western blot analysis. The loss-of-function study was performed using antagomir-126. RESULTS The DHI-treated mice had significantly reduced infarct area, improved ejection fraction, and increased capillary density 4 weeks after MI. Also, DHI promoted the proliferation and migration of hypoxic HUVECs. The qRT-PCR and Western blot analysis revealed that DHI intervention upregulated miR-126, suppressed Spred-1 expression, and activated the ERK pathway, but not the Akt pathway. The loss-of-function study showed the blockade of the pro-angiogenic effect of DHI by antagomir-126 involving the ERK/vascular endothelial growth factor (VEGF) pathway. CONCLUSION DHI enhanced post-infarct angiogenesis after MI by activating the miR-126/ERK/VEGF pathway.
Collapse
Affiliation(s)
- Si-Nai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Wei-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ju-Ju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Sheng-Lei Qiu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ming-Xue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Hong-Xu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
37
|
Luan Z, Liu B, Shi L. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res 2019; 80:1031-1039. [PMID: 31823412 DOI: 10.1002/ddr.21597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Lung cancer is among the most complicated cancers, with an estimated 1.6 million deaths each year for both men and women. However, the proportion of lung cancer patients in developing nations has increased from 31% to 49.9% in the last two decades. There are two main subtypes of lung cancer, small-cell lung carcinoma and non-small-cell lung carcinoma (NSCLC), accounting for 15% and 85% of all lung cancer, respectively. Adenocarcinoma is the most common type of lung cancer in smokers and nonsmokers in men and women regardless of their age. Chemicals in cigarette smoke and nicotine enter our bloodstream and can then affect the entire body and finally lead to the activation of several important, pro-survival signaling pathways. The biologically active peptide of RAAS on overstimulation enhance Ang II mediates cell proliferation, fibrosis and inflammatory effects via AT1 receptor. Very few studies highlight the diagnostic and therapeutic potential of miRNAs with the EGFR-regulated miRNA-21.
Collapse
Affiliation(s)
- Zhaoji Luan
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Baoliang Liu
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Lina Shi
- Department of Hematology, ZiBo First Hospital, Boshan District, Zibo, Shandong Province, China
| |
Collapse
|
38
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
39
|
Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer 2019; 18:57. [PMID: 30925935 PMCID: PMC6441221 DOI: 10.1186/s12943-019-0982-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxic tumor microenvironment is a common feature of solid tumors and is associated with aggressiveness and poor patient outcomes. A continuous interference between cancer cells and stromal cells within the hypoxic microenvironment has been uncovered for its importance in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted material from cells, are now elucidated to perform a variety of functions that involve interactions within the cellular microenvironment due to their ability to carry numerous cargoes, including lipids, proteins, nucleic acids, and metabolites. Exosome-mediated continuous interference between cancer cells and stroma are believed to regulate hypoxia-adaptation and to rebuild the microenvironment in return. In this review, we will discuss the knowledge in literature with respect to the exosome-mediated multi-directional and mutual signal transmission among the variety of cell types within hypoxic cancer microenvironment.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yaying Hao
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Chuanshi He
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ling Li
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
40
|
Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY) 2019; 9:2559-2586. [PMID: 29242407 PMCID: PMC5764393 DOI: 10.18632/aging.101341] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays a fundamental role in many conditions. Specifically, redox imbalance inhibits endothelial cell (EC) growth, inducing cell death and senescence. We used global transcriptome profiling to investigate the involvement of noncoding-RNAs in these phenotypes. By RNA-sequencing, transcriptome changes were analyzed in human ECs exposed to H2O2, highlighting a pivotal role of p53-signaling. Bioinformatic analysis and validation in p53-silenced ECs, identified several p53-targets among both mRNAs and long noncoding-RNAs (lncRNAs), including MALAT1 and NEAT1. Among microRNAs (miRNAs), miR-192-5p was the most induced by H2O2 treatment, in a p53-dependent manner. Down-modulated mRNA-targets of miR-192-5p were involved in cell cycle, DNA repair and stress response. Accordingly, miR-192-5p overexpression significantly decreased EC proliferation, inducing cell death. A central role of the p53-pathway was also confirmed by the analysis of differential exon usage: Upon H2O2 treatment, the expression of p53-dependent 5'-isoforms of MDM2 and PVT1 increased selectively. The transcriptomic alterations identified in H2O2-treated ECs were also observed in other physiological and pathological conditions where redox control plays a fundamental role, such as ECs undergoing replicative senescence, skeletal muscles of critical limb-ischemia patients and the peripheral-blood mononuclear cells of long-living individuals. Collectively, these findings indicate a prominent role of noncoding-RNAs in oxidative stress response.
Collapse
|
41
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci 2019; 76:453-471. [PMID: 30317527 PMCID: PMC11105242 DOI: 10.1007/s00018-018-2941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients' outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Bo Cao
- Air Force Military Medical University, Xi'an, China
| | - Xin Zhou
- Air Force Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cells. Exp Eye Res 2019; 181:98-104. [PMID: 30615884 DOI: 10.1016/j.exer.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human retinal microvascular endothelial cells (HRMVECs) are involved in the pathogenesis of retinopathy of prematurity. In this study, the microRNA (miRNA) expression profiles of HRMVECs were investigated under resting conditions, angiogenic stimulation (VEGF treatment) and anti-VEGF treatment. MATERIALS AND METHODS The miRNA profiles of HRMVECs under resting and angiogenic conditions (VEGF treatment), as well as after addition of aflibercept, bevacizumab or ranibizumab were evaluated by analyzing the transcriptome of small non-coding RNAs. Differentially expressed miRNAs were validated using qPCR and classified using Gene Ontology enrichment analysis. RESULTS Ten miRNAs were found to be significantly changed more than 2-fold. Seven of these miRNAs were changed between resting conditions and angiogenic stimulation. Four of these miRNAs (miR-139-5p/-3p and miR-335-5p/-3p) were validated by qPCR in independent experiments and were found to be associated with angiogenesis and cell migration in Gene Ontology analysis. In addition, analysis of the most abundant miRNAs in the HRMVEC miRNome (representing at least 1% of the miRNome) was conducted and identified miR-21-5p, miR-29a-3p, miR-100-5p and miR-126-5p/-3p to be differently expressed by at least 15% between resting conditions and angiogenic conditions. These miRNAs were found to be associated with apoptotic signaling, regulation of kinase activity, intracellular signal transduction, cell surface receptor signaling and positive regulation of cell differentiation in Gene Ontology analysis. No differentially regulated miRNAs between angiogenic stimulation and angiogenic stimulation plus anti-VEGF treatment were identified. CONCLUSION In this study we characterized the miRNA profile of HRMVECs under resting, angiogenic and anti-angiogenic conditions and identified several miRNAs of potential pathophysiologic importance for angioproliferative retinal diseases. Our results have implications for possible miRNA-targeted angiomodulatory approaches in diseases like diabetic retinopathy or retinopathy of prematurity.
Collapse
|
43
|
Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ, He LF, Tang CE, Zhang GG, Bai YP. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 2018; 23:1164-1173. [PMID: 30450725 PMCID: PMC6349160 DOI: 10.1111/jcmm.14016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.
Collapse
Affiliation(s)
- Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Jun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Fang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
45
|
Induction of microRNA-199 by Nitric Oxide in Endothelial Cells Is Required for Nitrovasodilator Resistance via Targeting of Prostaglandin I2 Synthase. Circulation 2018; 138:397-411. [DOI: 10.1161/circulationaha.117.029206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
Nitrates are widely used to treat coronary artery disease, but their therapeutic value is compromised by nitrate tolerance, because of the dysfunction of prostaglandin I2 synthase (PTGIS). MicroRNAs repress target gene expression and are recognized as important epigenetic regulators of endothelial function. The aim of this study was to determine whether nitrates induce nitrovasodilator resistance via microRNA-dependent repression of
PTGIS
gene expression.
Methods:
Nitrovasodilator resistance was induced by nitroglycerin (100 mg·kg
–1
·d
–1
, 3 days) infusion in
Apoe
–/–
mice. The responses of aortic arteries to nitric oxide donors were assessed in an organ chamber. The expression levels of microRNA-199 (miR-199)a/b were assayed by quantitative reverse transcription polymerase chain reaction or fluorescent in situ hybridization.
Results:
In cultured human umbilical vein endothelial cells, nitric oxide donors induced miR-199a/b endogenous expression and downregulated
PTGIS
gene expression, both of which were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt or silence of serum response factor. Evidence from computational and luciferase reporter gene analyses indicates that the seed sequence of 976 to 982 in the 3′-untranslated region of
PTGIS
mRNA is a target of miR-199a/b. Gain functions of miR-199a/b resulting from chemical mimics or adenovirus-mediated overexpression increased
PTGIS
mRNA degradation in HEK293 cells and human umbilical vein endothelial cells. Furthermore, nitroglycerin-decreased
PTGIS
gene expression was prevented by miR-199a/b antagomirs or was mirrored by the enforced expression of miR-199a/b in human umbilical vein endothelial cells. In
Apoe
–/–
mice, nitroglycerin induced the ectopic expression of miR-199a/b in the carotid arterial endothelium, decreased
PTGIS
gene expression, and instigated nitrovasodilator resistance, all of which were abrogated by miR-199a/b antagomirs or LNA—anti–miR-199. It is important that the effects of miR-199a/b inhibitions were abolished by adenovirus-mediated
PTGIS
deficiency. Moreover, the enforced expression of miR-199a/b in vivo repressed
PTGIS
gene expression and impaired the responses of aortic arteries to nitroglycerin/sodium nitroprusside/acetylcholine/cinaciguat/riociguat, whereas the exogenous expression of the
PTGIS
gene prevented nitrovasodilator resistance in
Apoe
–/–
mice subjected to nitroglycerin infusion or miR-199a/b overexpression. Finally, indomethacin, iloprost, and SQ29548 improved vasorelaxation in nitroglycerin-infused
Apoe
–/–
mice, whereas U51605 induced nitrovasodilator resistance. In humans, the increased expressions of miR-199a/b were closely associated with nitrate tolerance.
Conclusions:
Nitric oxide–induced ectopic expression of miR-199a/b in endothelial cells is required for nitrovasodilator resistance via the repression of
PTGIS
gene expression. Clinically, miR-199a/b is a novel target for the treatment of nitrate tolerance.
Collapse
|
46
|
Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 2018; 36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.
Collapse
Affiliation(s)
- Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
47
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
48
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 587] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
50
|
Bonadio RS, Arcanjo AC, Lima EC, Vasconcelos AT, Silva RC, Horst FH, Azevedo RB, Poças-Fonseca MJ, F Longo JP. DNA methylation alterations induced by transient exposure of MCF-7 cells to maghemite nanoparticles. Nanomedicine (Lond) 2017; 12:2637-2649. [PMID: 29111877 DOI: 10.2217/nnm-2017-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate the DNA methylation profile of MCF-7 cells during and after the treatment with maghemite nanoparticles (MNP-CIT). MATERIALS & METHODS Noncytotoxic MNP-CIT concentrations and cell morphology were evaluated by standard methods. DNA methylation was assessed by whole genome bisulfite sequencing. DNA methyltransferase (DNMT) genes expression was analyzed by qRT-PCR. RESULTS A total of 30 and 60 µgFeml-1 MNP-CIT accumulated in cytoplasm but did not present cytotoxic effects. The overall percentage of DNA methylation was not affected, but 58 gene-associated regions underwent DNA methylation reprogramming, including genes related to cancer onset. DNMT transcript levels were also modulated. CONCLUSION Transient exposure to MNP-CIT promoted epigenomic changes and altered the DNMT genes regulation in MCF-7 cells. These events should be considered for biomedical applications.
Collapse
Affiliation(s)
- Raphael S Bonadio
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | | | | | - Renata C Silva
- National Institute of Metrology, Quality & Technology, Xerém, Duque de Caxias, Rio de Janeiro, Brazil
| | - Frederico H Horst
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | - Ricardo B Azevedo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | - João Paulo F Longo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| |
Collapse
|