1
|
Hamidi F, Taghipour N. miRNA, New Perspective to World of Intestinal Protozoa and Toxoplasma. Acta Parasitol 2024; 69:1690-1703. [PMID: 39158784 DOI: 10.1007/s11686-024-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND miRNAs are known as non-coding RNAs that can regulate gene expression. They are reported in many microorganisms and their host cells. Parasite infection can change or shift host miRNAs expression, which can aim at both parasite eradication and infection. PURPOSE This study dealt with examination of miRNA expressed in intestinal protozoan, coccidia , as well as profile changes in host cell miRNA after parasitic infection and their role in protozoan clearance/ survival. METHODS The authors searched ISI Web of Sciences, Pubmed, Scholar, Scopus, another databases and articles published up to 2024 were included. The keywords of miRNA, intestinal protozoa, toxoplasma and some words associated with topics were used in this search. RESULTS Transfection of miRNA mimics or inhibitors can control parasitic diseases, and be introduced as a new therapeutic option in parasitology. CONCLUSION This review can be used to provide up-to date knowledge for future research on these issues.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lagunas-Rangel FA. Exploration of Giardia small nucleolar RNAs (snoRNAs) and their possible microRNA derivatives. Parasitology 2024; 151:539-545. [PMID: 38767317 PMCID: PMC11427974 DOI: 10.1017/s003118202400060x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are short non-coding RNAs that are abundant in the nucleoli of eukaryotic cells and play a crucial role in various aspects of ribosomal RNA (rRNA) maturation, including modifications such as 2′-O-methylation or pseudouridylation. On the other hand, Giardia duodenalis is a microaerophilic, flagellated, binucleate protozoan responsible for causing giardiasis. Although numerous snoRNAs have been detected in Giardia, their investigation remains limited. Nevertheless, they have been found to play a crucial role in the rRNA precursor processing pathway and influence other cellular functions. In addition, it has been proposed that some microRNAs are generated from these snoRNAs through excision by the Giardia endoribonuclease Dicer. These microRNAs are believed to contribute to the regulation of antigenic variation, which allows the parasite to evade the host immune response. Specifically, they play a role in modulating variant-specific surface proteins (VSPs) and other cysteine-rich surface antigens (CSAs). The main objective of this study was to bring together the available data on snoRNAs in Giardia, uncovering their functions in various processes and their importance on a global scale. In addition, the research delved into potential microRNAs speculated to originate from snoRNAs, exploring their impact on cellular processes.
Collapse
|
3
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
4
|
Meningher T, Boleslavsky D, Barshack I, Tabibian-Keissar H, Kohen R, Gur-Wahnon D, Ben-Dov IZ, Sidi Y, Avni D, Schwartz E. Giardia lamblia miRNAs as a new diagnostic tool for human giardiasis. PLoS Negl Trop Dis 2019; 13:e0007398. [PMID: 31206518 PMCID: PMC6597124 DOI: 10.1371/journal.pntd.0007398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/27/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Giardia lamblia is a very common cause of gastrointestinal symptoms worldwide. There are several methods for the diagnosis of Giardia infection, however none are ideal. We aim to find a new, microRNA-based method that will improve the currently available diagnostic methods for giardiasis. Methods Deep-sequence profiling of Giardia small-RNA revealed that miR5 and miR6 are highly expressed in Giardia. These miRNAs were tested by qRT-PCR in duodenal biopsies of patients with giardiasis who were positive by microscopic pathological evaluation. The gastric biopsies of the same patients served as negative control tissues. Additionally, these miRNAs were evaluated in stool samples of patients with proven giardiasis. Results All histologically proven duodenal biopsies of patients with Giardia infection were positive for Giardia miR5, with a mean threshold cycle (Ct) of 23.7, as well as for Giardia DNA qPCR (16S-like gene, mean Ct 26.3). Gastric biopsies which were tested as a control all were negative. Stool evaluation of miR6 in patients with giardiasis showed 90% specificity but only 66% sensitivity, and a lower accuracy rate was obtained with miR5. Conclusion Giardia miR5 testing in duodenal biopsies may be a new method for the diagnosis of giardiasis. It seems to be more sensitive when compared with testing for Giardia DNA by qPCR in duodenal biopsies. It will be important to investigate the contribution of routine Giardia miRNA testing in duodenal biopsies from patients with persistent abdominal symptoms Giardiasis is a major cause of diarrheal disease throughout the world. It is more common in areas with poor sanitation such as in many low-income countries, but it occurs in high-income countries as well. It is the most commonly identified intestinal parasite in the United States and it is endemic in other industrialized countries. The causative agent is the flagellate protozoan Giardia lamblia, and transmission is mainly by the fecal-oral route. The basic method of diagnosis is stool examination. It is usually found through stool microscopy examination which should be performed on fresh stool and repeated in 3 days. Despite some newer diagnostic methods, Giardia is still difficult to detect, often leading to misdiagnoses. In this study we show that using Giardia microRNA (miR5) as a marker for Giardia infection in duodenal biopsies may be a new method for diagnosis of giardiasis. It appears to be more sensitive than histological diagnosis and also more sensitive than Giardia DNA testing in duodenal biopsies. Interestingly, in our patients, duodenal biopsies were done for persistent abdominal symptoms and the finding of Giardia in their biopsy was unexpected. Thus, testing duodenal biopsies for Giardia miRNA in patients with persistent abdominal symptoms might contribute to diagnosis and prompt treatment for those with giardiasis.
Collapse
Affiliation(s)
- Tal Meningher
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Ramat Gan, Israel
- Department of Medicine C, Sheba Medical Center, Ramat Gan, Israel
- Molecular Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel
| | | | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Tabibian-Keissar
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Refael Kohen
- Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah—Hebrew University Medical Center, Jerusalem, Israel
| | - Yechezkel Sidi
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Ramat Gan, Israel
- Department of Medicine C, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Ramat Gan, Israel
- Department of Medicine C, Sheba Medical Center, Ramat Gan, Israel
- Molecular Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel
- * E-mail: , (DA); (ES)
| | - Eli Schwartz
- Molecular Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Ramat Gan, Israel
- * E-mail: , (DA); (ES)
| |
Collapse
|
5
|
Abstract
Malaria is a significant threat throughout the developing world. Among the most fascinating aspects of the protozoan parasites responsible for this disease are the methods they employ to avoid the immune system and perpetuate chronic infections. Key among these is antigenic variation: By systematically altering antigens that are displayed to the host's immune system, the parasite renders the adaptive immune response ineffective. For Plasmodium falciparum, the species responsible for the most severe form of human malaria, this process involves a complicated molecular mechanism that results in continuously changing patterns of variant-antigen-encoding gene expression. Although many features of this process remain obscure, significant progress has been made in recent years to decipher various molecular aspects of the regulatory cascade that causes chronic infection.
Collapse
Affiliation(s)
- Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065;
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
6
|
Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia. Genes (Basel) 2016; 7:genes7120131. [PMID: 27999395 PMCID: PMC5192507 DOI: 10.3390/genes7120131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 11/16/2022] Open
Abstract
Stem-loop quantitative reverse transcription PCR (RT-qPCR) is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL)-based design to detect-in a rapid, sensitive, specific, and reproducible way-the small nucleolar RNA (snoRNA) GlsR17 and its derived miRNA (miR2) of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi) pathway in G. lamblia.
Collapse
|
7
|
Carranza PG, Gargantini PR, Prucca CG, Torri A, Saura A, Svärd S, Lujan HD. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the early-branching eukaryote Giardia lamblia. Int J Biochem Cell Biol 2016; 81:32-43. [PMID: 27771437 DOI: 10.1016/j.biocel.2016.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
During evolution, parasitic microorganisms have faced the challenges of adapting to different environments to colonize a variety of hosts. Giardia lamblia, a common cause of intestinal disease, has developed fascinating strategies to adapt both outside and inside its host's intestine, such as trophozoite differentiation into cyst and the switching of its major surface antigens. How gene expression is regulated during these adaptive processes remains undefined. Giardia lacks some typical eukaryotic features, like canonical transcription factors, linker histone H1, and complex promoter regions; suggesting that post-transcriptional and translational control of gene expression is essential for parasite survival. However, epigenetic factors may also play critical roles at the transcriptional level. Here, we describe the most common post-translational histone modifications; characterize enzymes involved in these reactions, and analyze their association with the Giardia's differentiation processes. We present evidence that NAD+-dependent and NAD+-independent histone deacetylases regulate encystation; however, a unique NAD+-independent histone deacetylase modulate antigenic switching. The rates of acetylation of H4K8 and H4K16 are critical for encystation, whereas a decrease in acetylation of H4K8 and methylation of H3K9 occur preferentially during antigenic variation. These results show the complexity of the mechanisms regulating gene expression in this minimalistic protozoan parasite.
Collapse
Affiliation(s)
- Pedro G Carranza
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Pablo R Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - César G Prucca
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Alessandro Torri
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Alicia Saura
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Hugo D Lujan
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
8
|
Gargantini PR, Serradell MDC, Ríos DN, Tenaglia AH, Luján HD. Antigenic variation in the intestinal parasite Giardia lamblia. Curr Opin Microbiol 2016; 32:52-58. [DOI: 10.1016/j.mib.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/25/2023]
|
9
|
Einarsson E, Svärd SG. Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0048-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2014; 111:14159-64. [PMID: 25225396 DOI: 10.1073/pnas.1414394111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs.
Collapse
|
11
|
Saraiya AA, Li W, Wu J, Chang CH, Wang CC. The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog 2014; 10:e1003791. [PMID: 24586143 PMCID: PMC3937270 DOI: 10.1371/journal.ppat.1003791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
microRNAs (miRNA) have been detected in the deeply branched protist, Giardia lamblia, and shown to repress expression of the family of variant-specific surface proteins (VSPs), only one of which is expressed in Giardia trophozoite at a given time. Three next-generation sequencing libraries of Giardia Argonaute-associated small RNAs were constructed and analyzed. Analysis of the libraries identified a total of 99 new putative miRNAs with a size primarily in the 26 nt range similar to the size previously predicted by the Giardia Dicer crystal structure and identified by our own studies. Bioinformatic analysis identified multiple putative miRNA target sites in the mRNAs of all 73 VSPs. The effect of miRNA target sites within a defined 3′-region were tested on two vsp mRNAs. All the miRNAs showed partial repression of the corresponding vsp expression and were additive when the targeting sites were separately located. But the combined repression still falls short of 100%. Two other relatively short vsp mRNAs with 15 and 11 putative miRNA target sites identified throughout their ORFs were tested with their corresponding miRNAs. The results indicate that; (1) near 100% repression of vsp mRNA expression can be achieved through the combined action of multiple miRNAs on target sites located throughout the ORF; (2) the miRNA machinery could be instrumental in repressing the expression of vsp genes in Giardia; (3) this is the first time that all the miRNA target sites in the entire ORF of a mRNA have been tested and shown to be functional. Giardia lamblia is a protozoan parasite causing the diarrheal disease giardiasis. Variant-specific surface proteins (VSP) in Giardia are likely involved in its evasion of host immune response. Their expression is regulated by microRNAs (miRNA). To determine the full complement of miRNAs in Giardia, three cDNA libraries of Giardia Argonaute associated small RNAs were constructed and analyzed to identify a total of 105 miRNAs. Bioinformatic target identification showed that 102 of the 105 miRNAs find their putative target sites in vsp mRNAs. When only the target sites within the 3′ region,100 nts upstream of the stop codon, were tested against their corresponding miRNAs, however, only partial repression of VSP expression was observed. When all the miRNA target sites in the open reading frames of vsp mRNAs were examined, however, they all turned out to be functional. A saturation of them with the corresponding miRNAs resulted in a full repression of VSP expression, suggesting that this is the mechanism of miRNA repression of VSP expression in Giardia. The ability of miRNAs to regulate target sites throughout the entire open reading frame also provides the first indication that all the miRNA target sites in an mRNA are functional.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Jesse Wu
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chuan H. Chang
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Guo J, Zheng W, Wang Y, Li Y, Lu S, Feng X. Coexistence of sense and anti-sense mRNAs of variant surface protein in Giardia lamblia trophozoites. Biochem Biophys Res Commun 2014; 444:439-44. [PMID: 24472547 DOI: 10.1016/j.bbrc.2014.01.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/20/2014] [Indexed: 12/26/2022]
Abstract
A strategy of the parasitic protozoan Giardia lamblia to evade attack from the host immune system is periodic changes of its surface antigen, a member of the variant surface protein (VSP) family. A post-transcriptional gene silencing mechanism has been proposed to explain the presence of only one among many possible VSPs at any time. To investigate this phenomenon further, we extracted total RNA from cultured trophozoites of the G. lamblia C2 isolate, and cDNA was reverse-transcribed from the RNA. Sense and anti-sense VSPs were amplified from the total cDNA using nested PCR with primers designed from the 3'-conserved region and the known 5' or 3' end of the cDNA library. Sequence analyses of the amplified products revealed more than 34 full-length antisense VSPs and a smear of sense VSPs. Sequence alignments and comparisons revealed that these VSPs contained variable N-termini and conserved C-termini, and could be classified into 5 clades based on the sizes and variations of the N-terminal sequence. All antisense VSPs existed in the sense forms, but no corresponding antisense VSP existed for sense RNA (snsRNA) 16. The coexistence of sense and antisense VSP mRNAs in cultured G. lamblia supports the post-transcriptional regulation of VSP expression. We propose that VSPs transcribed simultaneously in the sense and antisense forms form double-stranded RNAs (dsRNAs) which are degraded by the Dicer endonuclease, while a VSP without an antisense transcription (e.g., snsRNA16) will be expressed on the surface of Giardia. In addition, in the course of this investigation VSPs were identified that were previously not known. PCR-based amplification of specific sense and antisense VSP cDNAs can be used to identify the specific VSP on G. lamblia trophozoites, which is easier than using specific monoclonal antibody approaches.
Collapse
Affiliation(s)
- Junli Guo
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China; Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Wenyu Zheng
- Department of Hand Microsurgery, Central Hospital of Jilin City, Jilin, Jilin 132000, China
| | - Yuehua Wang
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China
| | - Yao Li
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China
| | - Siqi Lu
- Department of Parasitology, Capital Medical University, Beijing 100069, China
| | - Xianmin Feng
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China.
| |
Collapse
|
13
|
Faso C, Bischof S, Hehl AB. The proteome landscape of Giardia lamblia encystation. PLoS One 2013; 8:e83207. [PMID: 24391747 PMCID: PMC3877021 DOI: 10.1371/journal.pone.0083207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/09/2013] [Indexed: 11/18/2022] Open
Abstract
Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material. Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the G. lamblia genome, where almost 70% of all predicted gene models remains “hypothetical”.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
14
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
15
|
Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G, Voolstra CR. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 2013; 14:704. [PMID: 24119094 PMCID: PMC3853145 DOI: 10.1186/1471-2164-14-704] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022] Open
Abstract
Background Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals. Results We identified a set of 21 novel smRNAs that share stringent key features with functional microRNAs from other model organisms. smRNAs were predicted independently over all 9 treatments and their putative gene targets were identified. We found 1,720 animal-like target sites in the 3'UTRs of 12,858 mRNAs and 19 plant-like target sites in 51,917 genes. We assembled a transcriptome of 58,649 genes and determined differentially expressed genes (DEGs) between treatments. Heat stress was found to produce a much larger number of DEGs than other treatments that yielded only few DEGs. Analysis of DEGs also revealed that minicircle-encoded photosynthesis proteins seem to be common targets of transcriptional regulation. Furthermore, we identified the core RNAi protein machinery in Symbiodinium. Conclusions Integration of smRNA and mRNA expression profiling identified a variety of processes that could be under microRNA control, e.g. protein modification, signaling, gene expression, and response to DNA damage. Given that Symbiodinium seems to have a paucity of transcription factors and differentially expressed genes, identification and characterization of its smRNA repertoire establishes the possibility of a range of gene regulatory mechanisms in dinoflagellates acting post-transcriptionally.
Collapse
Affiliation(s)
- Sebastian Baumgarten
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Experimental verification of the identity of variant-specific surface proteins in Giardia lamblia trophozoites. mBio 2013; 4:e00321-13. [PMID: 23695837 PMCID: PMC3656445 DOI: 10.1128/mbio.00321-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The cell membrane of a Giardia lamblia trophozoite is covered with a single species of variant-specific surface protein (VSP) that is replaced by another VSP every 6 to 13 generations of cell growth, possibly for an evasion of host immunity. Experimentally, only six VSP species have been verified to localize to the cell membrane thus far. By assuming that VSP contains multiple CXXC motifs, 219 vsp genes were annotated in GiardiaDB of the WB isolate. By further assuming that VSP possesses both CXXC motifs and a CRGKA tail at the C terminus, Adam et al. (BMC Genomics 11:424, 2010) identified a total of 303 potential vsp genes in Giardia WB. The discrepancies between these two assumed VSP identities have caused some confusion. Here, we used experimental approaches to further verify what is required of the structures of a VSP to localize to the surface of cell membrane. The data led to the following conclusions. (i) The C-terminal CRGKA sequence is not essential for localizing VSPs to the cell membrane. (ii) A “motif 1” of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic “motif 2” of 38 residues at the C terminus are both essential and sufficient for localizing the protein to the cell membrane. (ii) An N-terminal sequence upstream from motif 1 is not required for targeting VSPs to the cell membrane. By these criteria, we are able to identify 73 open reading frames as the putative vsp genes in Giardia. The intestinal pathogen Giardia lamblia expresses only one variant-specific surface protein (VSP) on the cell membrane surface at a given time, but it changes spontaneously every 6 to 13 generations of growth, presumably for evading the host immunity. Only 6 VSPs have been empirically shown to localize to the cell membrane surface thus far. Here, we used mutations of VSPs and methods of identifying their locations in Giardia cells and found that a “motif 1” of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic “motif 2” of 38 residues at the C terminus are the only essential and sufficient structural requirements for localizing a protein to the cell membrane. By these criteria, 73 genes are identified in the Giardia WB strain genome database as the putative repertoire of VSPs.
Collapse
|
17
|
Franzén O, Jerlström-Hultqvist J, Einarsson E, Ankarklev J, Ferella M, Andersson B, Svärd SG. Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput Biol 2013; 9:e1003000. [PMID: 23555231 PMCID: PMC3610916 DOI: 10.1371/journal.pcbi.1003000] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/02/2013] [Indexed: 01/08/2023] Open
Abstract
Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3′ UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology. Giardia is a single cell intestinal parasite and a common cause of diarrhea in humans and animals. Giardia is an unusual eukaryote by possessing two nuclei, a highly reduced genome and simple transcriptional apparatus. We have characterized the transcriptome of Giardia at single nucleotide resolution, which allowed the calculation of digital gene expression values for the complete set of genes. We performed a comparison of gene expression divergence across three genotypes. Most of the genes were transcribed, and the data were used to refine and correct gene models. Several gene expression differences were identified between the genotypes. A non-transcribed cluster of genes was detected on chromosome 5, likely representing a silenced region. The data also allowed mapping of transcript termini, which provided the first global view of 3′ untranslated regions in this parasite. This study also gives the first genome-wide evidence of transcription of allelic variants in Giardia. In this study, we provide novel insights into the transcriptome of an important human pathogen and model eukaryote. The findings reported here likely relate to the lifestyle of this parasite and its adaptation to parasitism. The data provide starting points for functional investigation of Giardia's biology and diplomonads generally.
Collapse
Affiliation(s)
- Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Johan Ankarklev
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
18
|
Ma X, Kim EJ, Kook I, Ma F, Voshall A, Moriyama E, Cerutti H. Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii. THE PLANT CELL 2013; 25:985-98. [PMID: 23512853 PMCID: PMC3634701 DOI: 10.1105/tpc.113.109256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characterized. In the unicellular green alga Chlamydomonas reinhardtii, sRNAs derived from genome-integrated inverted repeat transgenes, perfectly complementary to the 3' untranslated region of a target transcript, can inhibit protein synthesis without or with only minimal mRNA destabilization. Here, we report that the sRNA-repressed transcripts are not altered in their polyadenylation status and they remain associated with polyribosomes, indicating inhibition at a postinitiation step of translation. Interestingly, ribosomes associated with sRNA-repressed transcripts show reduced sensitivity to translation inhibition by some antibiotics, such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in C. reinhardtii may involve alterations to the function/structural conformation of translating ribosomes. Additionally, sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, suggesting that this mechanism may have been a feature of an ancestral RNA interference machinery.
Collapse
|
19
|
Zhang H, Ehrenkaufer GM, Hall N, Singh U. Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics 2013; 14:53. [PMID: 23347563 PMCID: PMC3610107 DOI: 10.1186/1471-2164-14-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Small RNA mediated gene silencing is a well-conserved regulatory pathway. In the parasite Entamoeba histolytica an endogenous RNAi pathway exists, however, the depth and diversity of the small RNA population remains unknown. RESULTS To characterize the small RNA population that associates with E. histolytica Argonaute-2 (EhAGO2-2), we immunoprecipitated small RNAs that associate with it and performed one full pyrosequencing run. Data analysis revealed new features of the 27nt small RNAs including the 5'-G predominance, distinct small RNA distribution patterns on protein coding genes, small RNAs mapping to both introns and exon-exon junctions, and small RNA targeted genes that are clustered particularly in sections of genome duplication. Characterization of genomic loci to which both sense and antisense small RNAs mapped showed that both sets of small RNAs have 5'-polyphosphate termini; strand-specific RT-PCR detected transcripts in both directions at these loci suggesting that both transcripts may serve as template for small RNA generation. In order to determine whether small RNA abundance patterns account for strain-specific gene expression profiles of E. histolytica virulent and non-virulent strains, we sequenced small RNAs from a non-virulent strain and found that small RNAs mapped to genes in a manner consistent with their regulation of strain-specific virulence genes. CONCLUSIONS We provided a full spectrum analysis for E. histolytica AGO2-2 associated 27nt small RNAs. Additionally, comparative analysis of small RNA populations from virulent and non-virulent amebic strains indicates that small RNA populations may regulate virulence genes.
Collapse
Affiliation(s)
- Hanbang Zhang
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
20
|
Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD. MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 2012; 13:714. [PMID: 23256903 PMCID: PMC3563456 DOI: 10.1186/1471-2164-13-714] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/30/2012] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs play a vital role in the regulation of gene expression and have been identified in every animal with a sequenced genome examined thus far, except for the placozoan Trichoplax. The genomic repertoires of metazoan microRNAs have become increasingly endorsed as phylogenetic characters and drivers of biological complexity. Results In this study, we report the first investigation of microRNAs in a species from the phylum Ctenophora. We use short RNA sequencing and the assembled genome of the lobate ctenophore Mnemiopsis leidyi to show that this species appears to lack any recognizable microRNAs, as well as the nuclear proteins Drosha and Pasha, which are critical to canonical microRNA biogenesis. This finding represents the first reported case of a metazoan lacking a Drosha protein. Conclusions Recent phylogenomic analyses suggest that Mnemiopsis may be the earliest branching metazoan lineage. If this is true, then the origins of canonical microRNA biogenesis and microRNA-mediated gene regulation may postdate the last common metazoan ancestor. Alternatively, canonical microRNA functionality may have been lost independently in the lineages leading to both Mnemiopsis and the placozoan Trichoplax, suggesting that microRNA functionality was not critical until much later in metazoan evolution.
Collapse
Affiliation(s)
- Evan K Maxwell
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2012. [PMID: 23180440 DOI: 10.1002/bies.201200117] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental evidence suggests that most of the genome is transcribed into non-coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High-throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA-derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and influence translation. Other sdRNAs are longer, form complexes with hnRNPs and influence gene expression. C/D box snoRNA fragmentation patterns are conserved across multiple cell types, suggesting a processing event, rather than degradation. The loss of expression from genetic loci that generate canonical snoRNAs and processed snoRNAs results in diseases, such as Prader-Willi Syndrome, indicating possible physiological roles for processed snoRNAs. We propose that processed snoRNAs acquire new roles in gene expression and represent a new class of regulatory RNAs distinct from canonical snoRNAs.
Collapse
Affiliation(s)
- Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
22
|
Li W, Saraiya AA, Wang CC. The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cell Microbiol 2012; 14:1455-73. [PMID: 22568619 PMCID: PMC3422372 DOI: 10.1111/j.1462-5822.2012.01811.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
Abstract
In the current investigation, we analysed all the known small nucleolar RNAs (snoRNAs) in the deeply branching protozoan parasite Giardia lamblia for potential microRNAs (miRNAs) that might be derived from them. Two putative miRNAs have since been identified by Northern blot, primer extension, 3' RACE and co-immunoprecipitation with Giardia Argonaute (GlAgo), and designated miR6 and miR10. Giardia Dicer (GlDcr) is capable of processing the snoRNAs into the corresponding miRNAs in vitro. Potential miR6 and miR10 binding sites in Giardia genome were predicted bio-informatically. A miR6 binding site was found at the 3' untranslated regions (UTR) of 44 variant surface protein (vsp) genes, whereas a miR10 binding site was identified at the 3' end of 159 vsp open-reading frames. Thirty-three of these vsp genes turned out to contain binding sites for both miR6 and miR10. A reporter mRNA tagged with the 3' end of vsp1267, which contains the target sites for both miRNAs, was translationally repressed by both miRNAs in Giardia. Episomal expression of an N-terminal c-myc tagged VSP1267 was found significantly repressed by introducing either miR6 or miR10 into the cells and the repressive effects were additive. When the 2'-O-methyl antisense oligos (ASOs) of either miR6 or miR10 was introduced, however, there was an enhancement of tagged VSP1267 expression suggesting an inhibition of the repressive effects of endogenous miR6 or miR10 by the ASOs. Of the total 220 vsp genes in Giardia, we have now found 178 of them carrying putative binding sites for all the miRNAs that have been currently identified, suggesting that miRNAs are likely the regulators of VSP expression in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| |
Collapse
|
23
|
Abstract
The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
24
|
Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2011; 287:3733-50. [PMID: 22167200 DOI: 10.1074/jbc.m111.298893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Giardia lamblia parasitizes the human small intestine to cause diseases. It undergoes differentiation into infectious cysts by responding to intestinal stimulation. How the activated signal transduction pathways relate to encystation stimulation remain largely unknown. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately up-regulated by a Myb2 transcription factor. Because cell differentiation is linked to cell cycle regulation, we tried to understand the role of cell cycle regulators, cyclin-dependent kinases (Cdks), in encystation. We found that the recombinant Myb2 was phosphorylated by Cdk-associated complexes and the levels of phosphorylation increased significantly during encystation. We have identified a putative cdk gene (cdk2) by searching the Giardia genome database. Cdk2 was found to localize in the cytoplasm with higher expression during encystation. Interestingly, overexpression of Cdk2 resulted in a significant increase of the levels of cwp gene expression and cyst formation. In addition, the Cdk2-associated complexes can phosphorylate Myb2 and the levels of phosphorylation increased significantly during encystation. Mutations of important catalytic residues of Cdk2 resulted in a significant decrease of kinase activity and ability of inducing cyst formation. Addition of a Cdk inhibitor, purvalanol A, significantly decreased the Cdk2 kinase activity and the levels of cwp gene expression and cyst formation. Our results suggest that the Cdk2 pathway may be involved in phosphorylation of Myb2, leading to activation of the Myb2 function and up-regulation of cwp genes during encystation. The results provide insights into the use of Cdk inhibitory drugs in disruption of Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
25
|
Huang PJ, Lin WC, Chen SC, Lin YH, Sun CH, Lyu PC, Tang P. Identification of putative miRNAs from the deep-branching unicellular flagellates. Genomics 2011; 99:101-7. [PMID: 22120185 DOI: 10.1016/j.ygeno.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are a class of extensively studied RNAi-associated small RNAs that play a critical role in eukaryotic gene regulation. However, knowledge on the miRNA and its regulation in unicellular eukaryotes is very limited. In order to obtain a better understanding on the origin of miRNA regulation system, we used deep-sequencing technology to investigate the miRNA expression pattern in four deep-branching unicellular flagellates: Giardia lamblia, Trichomonas vaginalis, Tritrichomonas foetus, and Pentatrichomonas hominis. In addition to the known miRNAs that have been described in G. lamblia and T. vaginalis, we identified 14 ancient animal miRNA families and 13 plant-specific families. Bioinformatics analysis also identified four novel miRNA candidates with reliable precursor structures derived from mature tRNAs. Our results indicated that miRNAs are likely to be a general feature for gene regulation throughout unicellular and multicellular eukaryotes and some of them may derive from unconventional ncRNAs such as snoRNA and tRNA.
Collapse
Affiliation(s)
- Po-Jung Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 2011; 5:e1338. [PMID: 22028939 PMCID: PMC3196473 DOI: 10.1371/journal.pntd.0001338] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
27
|
Saraiya AA, Li W, Wang CC. Multistage neoplastic transformation of Syrian hamster embryo cells cultured at pH 6.70. Cancer Res 1990; 8:e55672. [PMID: 23405193 PMCID: PMC3565978 DOI: 10.1371/journal.pone.0055672] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
MicroRNAs are major post-transcriptional regulators of gene expression. Here we show in the ancient protozoan Giardia lamblia a snoRNA-derived 26-nucleotide microRNA, miR3, which represses the translation of histone H2A mRNA containing an imperfect target but enhances translation when the target is made fully complementary. A stepwise mutational analysis of the fully complementary target showed that the activating effect of miR3 was significantly reduced when a single nucleotide at the 5′-end of the target was altered. The effect of miR3 became repressive when 12 of the nucleotides lost their complementation to miR3 with maximum repression reached when only 8 base-pairs remained between the miR3 seed sequence and the target. A synthetic 8-nucleotide RNA oligomer of the miR3 seed sequence was found capable of exerting a similar Argonaute-dependent translational repression. This is the first report showing a correlation between the extent of base-pairing with the target and a change in miRNA function.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|