1
|
Choudhury M, Yamamoto R, Xiao X. Genetic architecture of RNA editing, splicing and gene expression in schizophrenia. Hum Mol Genet 2025; 34:277-290. [PMID: 39656777 PMCID: PMC11792240 DOI: 10.1093/hmg/ddae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been conducted over the past decades to investigate the underlying genetic origin of neuropsychiatric diseases, such as schizophrenia (SCZ). While these studies demonstrated the significance of disease-phenotype associations, there is a pressing need to fully characterize the functional relevance of disease-associated genetic variants. Functional genetic loci can affect transcriptional and post-transcriptional phenotypes that may contribute to disease pathology. Here, we investigate the associations between genetic variation and RNA editing, splicing, and overall gene expression through identification of quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both unique and common gene targets, which are involved in many disease-relevant pathways, including brain function and immune response. We identified two QTL that fall into all three QTL categories (seedQTL), one of which, rs146498205, targets the lincRNA gene, RP11-156P1.3. In addition, we observe that the RNA binding protein AKAP1, with known roles in neuronal regulation and mitochondrial function, had enriched binding sites among edQTL, including the seedQTL, rs146498205. We conduct colocalization with various brain disorders and find that all QTL have top colocalizations with SCZ and related neuropsychiatric diseases. Furthermore, we identify QTL within biologically relevant GWAS loci, such as in ELA2, an important tRNA processing gene associated with SCZ risk. This work presents the investigation of multiple QTL types in parallel and demonstrates how they target both distinct and overlapping SCZ-relevant genes and pathways.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
2
|
Huang E, Frydman C, Xiao X. Navigating the landscape of epitranscriptomics and host immunity. Genome Res 2024; 34:515-529. [PMID: 38702197 PMCID: PMC11146601 DOI: 10.1101/gr.278412.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
RNA modifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, including processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and facilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these dynamic research avenues sets the stage for future investigations in this field.
Collapse
Affiliation(s)
- Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Clara Frydman
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Karagianni K, Bibi A, Madé A, Acharya S, Parkkonen M, Barbalata T, Srivastava PK, de Gonzalo-Calvo D, Emanueli C, Martelli F, Devaux Y, Dafou D, Nossent AY, on behalf of EU-CardioRNA COST Action CA17129. Recommendations for detection, validation, and evaluation of RNA editing events in cardiovascular and neurological/neurodegenerative diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102085. [PMID: 38192612 PMCID: PMC10772297 DOI: 10.1016/j.omtn.2023.102085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alisia Madé
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Shubhra Acharya
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
| | - Mikko Parkkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | | | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - on behalf of EU-CardioRNA COST Action CA17129
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
- National Heart & Lung Institute, Imperial College London, London, UK
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Khan AH, Bagley JR, LaPierre N, Gonzalez-Figueroa C, Spencer TC, Choudhury M, Xiao X, Eskin E, Jentsch JD, Smith DJ. Genetic pathways regulating the longitudinal acquisition of cocaine self-administration in a panel of inbred and recombinant inbred mice. Cell Rep 2023; 42:112856. [PMID: 37481717 PMCID: PMC10530068 DOI: 10.1016/j.celrep.2023.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
To identify addiction genes, we evaluate intravenous self-administration of cocaine or saline in 84 inbred and recombinant inbred mouse strains over 10 days. We integrate the behavior data with brain RNA-seq data from 41 strains. The self-administration of cocaine and that of saline are genetically distinct. We maximize power to map loci for cocaine intake by using a linear mixed model to account for this longitudinal phenotype while correcting for population structure. A total of 15 unique significant loci are identified in the genome-wide association study. A transcriptome-wide association study highlights the Trpv2 ion channel as a key locus for cocaine self-administration as well as identifying 17 additional genes, including Arhgef26, Slc18b1, and Slco5a1. We find numerous instances where alternate splice site selection or RNA editing altered transcript abundance. Our work emphasizes the importance of Trpv2, an ionotropic cannabinoid receptor, for the response to cocaine.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Nathan LaPierre
- Department of Computer Science, UCLA, Los Angeles, CA 90095, USA
| | | | - Tadeo C Spencer
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Eleazar Eskin
- Department of Computational Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Liu Z, Quinones-Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L-GIREMI uncovers RNA editing sites in long-read RNA-seq. Genome Biol 2023; 24:171. [PMID: 37474948 PMCID: PMC10360234 DOI: 10.1186/s13059-023-03012-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Although long-read RNA-seq is increasingly applied to characterize full-length transcripts it can also enable detection of nucleotide variants, such as genetic mutations or RNA editing sites, which is significantly under-explored. Here, we present an in-depth study to detect and analyze RNA editing sites in long-read RNA-seq. Our new method, L-GIREMI, effectively handles sequencing errors and read biases. Applied to PacBio RNA-seq data, L-GIREMI affords a high accuracy in RNA editing identification. Additionally, our analysis uncovered novel insights about RNA editing occurrences in single molecules and double-stranded RNA structures. L-GIREMI provides a valuable means to study nucleotide variants in long-read RNA-seq.
Collapse
Affiliation(s)
- Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Fairlie Reese
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Choudhury M, Fu T, Amoah K, Jun HI, Chan TW, Park S, Walker DW, Bahn JH, Xiao X. Widespread RNA hypoediting in schizophrenia and its relevance to mitochondrial function. SCIENCE ADVANCES 2023; 9:eade9997. [PMID: 37027465 PMCID: PMC10081846 DOI: 10.1126/sciadv.ade9997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
RNA editing, the endogenous modification of nucleic acids, is known to be altered in genes with important neurological function in schizophrenia (SCZ). However, the global profile and molecular functions of disease-associated RNA editing remain unclear. Here, we analyzed RNA editing in postmortem brains of four SCZ cohorts and uncovered a significant and reproducible trend of hypoediting in patients of European descent. We report a set of SCZ-associated editing sites via WGCNA analysis, shared across cohorts. Using massively parallel reporter assays and bioinformatic analyses, we observed that differential 3' untranslated region (3'UTR) editing sites affecting host gene expression were enriched for mitochondrial processes. Furthermore, we characterized the impact of two recoding sites in the mitofusin 1 (MFN1) gene and showed their functional relevance to mitochondrial fusion and cellular apoptosis. Our study reveals a global reduction of editing in SCZ and a compelling link between editing and mitochondrial function in the disease.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Kofi Amoah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Tracey W. Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Sungwoo Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Zheng R, Dunlap M, Lyu J, Gonzalez-Figueroa C, Bobkov G, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Vuong A, Flynn RA, Chang HY, Xiao X, Cheng C. LINE-associated cryptic splicing induces dsRNA-mediated interferon response and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529804. [PMID: 36865202 PMCID: PMC9980139 DOI: 10.1101/2023.02.23.529804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.
Collapse
|
8
|
Davies M, Jurynec MJ, Gomez-Alvarado F, Hu D, Feeley SE, Allen-Brady K, Tashjian RZ, Feeley BT. Current cellular and molecular biology techniques for the orthopedic surgeon-scientist. J Shoulder Elbow Surg 2023; 32:e11-e22. [PMID: 35988889 DOI: 10.1016/j.jse.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Michael Davies
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Francisco Gomez-Alvarado
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Hu
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali E Feeley
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kristina Allen-Brady
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Fu T, Chan TW, Bahn JH, Kim TH, Rowat AC, Xiao X. Multifaceted role of RNA editing in promoting loss-of-function of PODXL in cancer. iScience 2022; 25:104836. [PMID: 35992085 PMCID: PMC9382340 DOI: 10.1016/j.isci.2022.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
PODXL, a protein that is dysregulated in multiple cancers, plays an important role in promoting cancer metastasis. In this study, we report that RNA editing promotes the inclusion of a PODXL alternative exon. The resulting edited PODXL long isoform is more prone to protease digestion and has the strongest effects on reducing cell migration and cisplatin chemoresistance among the three PODXL isoforms (short, unedited long, and edited long isoforms). Importantly, the editing level of the PODXL recoding site and the inclusion level of the PODXL alternative exon are strongly associated with overall patient survival in Kidney Renal Clear Cell Carcinoma (KIRC). Supported by significant enrichment of exonic RNA editing sites in alternatively spliced exons, we hypothesize that exonic RNA editing sites may enhance proteomic diversity through alternative splicing, in addition to amino acid changes, a previously under-appreciated aspect of RNA editing function.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracey W. Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C. Rowat
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Ma Y, Dammer EB, Felsky D, Duong DM, Klein HU, White CC, Zhou M, Logsdon BA, McCabe C, Xu J, Wang M, Wingo TS, Lah JJ, Zhang B, Schneider J, Allen M, Wang X, Ertekin-Taner N, Seyfried NT, Levey AI, Bennett DA, De Jager PL. Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nat Commun 2021; 12:7035. [PMID: 34857756 PMCID: PMC8640037 DOI: 10.1038/s41467-021-27204-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
RNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer's disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.
Collapse
Affiliation(s)
- Yiyi Ma
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA
| | - Charles C White
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA
| | - Maotian Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Cristin McCabe
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA
| | - Jishu Xu
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Mariet Allen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Mayo Clinic Florida, Department of Health Sciences Research, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL, 32224, USA
- Mayo Clinic Florida, Department of Neurology, Jacksonville, FL, 32224, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA.
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Koyano K, Bahn JH, Xiao X. Extracellular microRNA 3' end modification across diverse body fluids. Epigenetics 2021; 16:1000-1015. [PMID: 33092484 PMCID: PMC8451466 DOI: 10.1080/15592294.2020.1834922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene regulation. The presence of miRNAs in extracellular biofluids is increasingly recognized. However, most previous characterization of extracellular miRNAs focused on their overall expression levels. Alternative sequence isoforms and modifications of miRNAs were rarely considered in the extracellular space. Here, we developed a highly accurate bioinformatic method, called miNTA, to identify 3' non-templated additions (NTAs) of miRNAs using small RNA-sequencing data. Using miNTA, we conducted an in-depth analysis of miRNA 3' NTA profiles in 1047 extracellular RNA-sequencing data sets of 4 types of biofluids. This analysis identified hundreds of miRNAs with 3' uridylation or adenylation, with the former being more prevalent. Among these miRNAs, up to 53% (22%) had an average 3' uridylation (adenylation) level of at least 10% in a specific biofluid. Strikingly, we found that 3' uridylation levels enabled segregation of different types of biofluids, more effectively than overall miRNA expression levels. This observation suggests that 3' NTA levels possess fluid-specific information relatively robust to batch effects. In addition, we observed that extracellular miRNAs with 3' uridylations are enriched in processes related to angiogenesis, apoptosis, and inflammatory response, and this type of modification may stabilize base-pairing between miRNAs and their target genes. Together, our study provides a comprehensive landscape of miRNA NTAs in human biofluids, which paves way for further biomarker discoveries. The insights generated in our work built a foundation for future functional, mechanistic, and translational discoveries.
Collapse
Affiliation(s)
- Kikuye Koyano
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, California, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
- Molecular Biology Institute; UCLA, Los Angeles, California, USA
- Institute for Quantitative and Computational Sciences, UCLA, California, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, California, CA, US
| |
Collapse
|
13
|
Marceca GP, Tomasello L, Distefano R, Acunzo M, Croce CM, Nigita G. Detecting and Characterizing A-To-I microRNA Editing in Cancer. Cancers (Basel) 2021; 13:1699. [PMID: 33916692 PMCID: PMC8038323 DOI: 10.3390/cancers13071699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Adenosine to inosine (A-to-I) editing consists of an RNA modification where single adenosines along the RNA sequence are converted into inosines. Such a biochemical transformation is catalyzed by enzymes belonging to the family of adenosine deaminases acting on RNA (ADARs) and occurs either co- or post-transcriptionally. The employment of powerful, high-throughput detection methods has recently revealed that A-to-I editing widely occurs in non-coding RNAs, including microRNAs (miRNAs). MiRNAs are a class of small regulatory non-coding RNAs (ncRNAs) acting as translation inhibitors, known to exert relevant roles in controlling cell cycle, proliferation, and cancer development. Indeed, a growing number of recent researches have evidenced the importance of miRNA editing in cancer biology by exploiting various detection and validation methods. Herein, we briefly overview early and currently available A-to-I miRNA editing detection and validation methods and discuss the significance of A-to-I miRNA editing in human cancer.
Collapse
Affiliation(s)
- Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| |
Collapse
|
14
|
Abstract
RNA editing is an important posttranscriptional process that alters the genetic information of RNA encoded by genomic DNA. Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animal kingdom, catalyzed by adenosine deaminases acting on RNA (ADARs). Recently, genome-wide A-to-I RNA editing is discovered in fungi, involving adenosine deamination mechanisms distinct from animals. Aiming to draw more attention to RNA editing in fungi, here we discuss the considerations for deep sequencing data preparation and the available various methods for detecting RNA editing, with a special emphasis on their usability for fungal RNA editing detection. We describe computational protocols for the identification of candidate RNA editing sites in fungi by using two software packages REDItools and RES-Scanner with RNA sequencing (RNA-Seq) and genomic DNA sequencing (DNA-Seq) data.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
15
|
Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, Valencia AM, Horvath S, Xiao X, Huguenard JR, Pașca SP, Geschwind DH. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 2021; 24:331-342. [PMID: 33619405 PMCID: PMC8109149 DOI: 10.1038/s41593-021-00802-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development. We demonstrate the presence of several known developmental milestones, including switches in the histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and physiological levels. These results suggest that important components of an intrinsic in vivo developmental program persist in vitro. We further map neurodevelopmental and neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a resource and webtool (Gene Expression in Cortical Organoids, GECO) to guide disease modeling.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Stephen S Tran
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
| | - Christopher D Makinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Alfredo M Valencia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Abstract
Following A-to-I editing of double-stranded RNA (dsRNA) molecules, sequencing reactions interpret the edited inosine (I) as guanosine (G). For this reason, current methods to detect A-to-I editing sites work to align RNA sequences to their reference DNA sequence in order to reveal A-to-G mismatches. However, areas with heavily edited reads produce dense clusters of A-to-G mismatches that hinder alignment, and complicate correct identification of the sites. The presented approach employs prudent alignment and examination of excessive mismatch events, enabling high-accuracy detection of hyper-edited reads and sites.
Collapse
|
17
|
Modern Approaches for Transcriptome Analyses in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:11-50. [DOI: 10.1007/978-3-030-80352-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Chan TW, Fu T, Bahn JH, Jun HI, Lee JH, Quinones-Valdez G, Cheng C, Xiao X. RNA editing in cancer impacts mRNA abundance in immune response pathways. Genome Biol 2020; 21:268. [PMID: 33106178 PMCID: PMC7586670 DOI: 10.1186/s13059-020-02171-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity and shaping various layers of gene regulation. Recent studies have revealed global shifts in editing levels across many cancer types, as well as a few specific mechanisms implicating individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, predominantly in noncoding regions, have unknown functional relevance. RESULTS Here, we carry out integrative analysis of RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key paradigm for metastasis. We identify distinct editing patterns between epithelial and mesenchymal tumors in seven cancer types using TCGA data, an observation further supported by single-cell RNA sequencing data and ADAR perturbation experiments in cell culture. Through computational analyses and experimental validations, we show that differential editing sites between epithelial and mesenchymal phenotypes function by regulating mRNA abundance of their respective genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported by experimental validations. Consistent with the known roles of ILF3 in immune response, epithelial-mesenchymal differential editing sites are enriched in genes involved in immune and viral processes. The strongest target of editing-dependent ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral response. CONCLUSIONS Our study reports widespread differences in RNA editing between epithelial and mesenchymal tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer and its relevance to cancer-related immune pathways.
Collapse
Affiliation(s)
- Tracey W Chan
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Chonghui Cheng
- Lester & Sue Smith Breast Center & Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Sciences, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Yu H, Zhao S, Ness S, Kang H, Sheng Q, Samuels DC, Oyebamiji O, Zhao YY, Guo Y. Non-canonical RNA-DNA differences and other human genomic features are enriched within very short tandem repeats. PLoS Comput Biol 2020; 16:e1007968. [PMID: 32511223 PMCID: PMC7302867 DOI: 10.1371/journal.pcbi.1007968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/18/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
Very short tandem repeats bear substantial genetic, evolutional, and pathological significance in genome analyses. Here, we compiled a census of tandem mono-nucleotide/di-nucleotide/tri-nucleotide repeats (MNRs/DNRs/TNRs) in GRCh38, which we term "polytracts" in general. Of the human genome, 144.4 million nucleotides (4.7%) are occupied by polytracts, and 0.47 million single nucleotides are identified as polytract hinges, i.e., break-points of tandem polytracts. Preliminary exploration of the census suggested polytract hinge sites and boundaries of AAC polytracts may bear a higher mapping error rate than other polytract regions. Further, we revealed landscapes of polytract enrichment with respect to nearly a hundred genomic features. We found MNRs, DNRs, and TNRs displayed noticeable difference in terms of locational enrichment for miscellaneous genomic features, especially RNA editing events. Non-canonical and C-to-U RNA-editing events are enriched inside and/or adjacent to MNRs, while all categories of RNA-editing events are under-represented in DNRs. A-to-I RNA-editing events are generally under-represented in polytracts. The selective enrichment of non-canonical RNA-editing events within MNR adjacency provides a negative evidence against their authenticity. To enable similar locational enrichment analyses in relation to polytracts, we developed a software Polytrap which can handle 11 reference genomes. Additionally, we compiled polytracts of four model organisms into a Track Hub which can be integrated into USCS Genome Browser as an official track for convenient visualization of polytracts.
Collapse
Affiliation(s)
- Hui Yu
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Scott Ness
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David C. Samuels
- Deptartment of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Olufunmilola Oyebamiji
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ying-yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
20
|
Wang Y, Chen SX, Rao X, Liu Y. Modulator-Dependent RBPs Changes Alternative Splicing Outcomes in Kidney Cancer. Front Genet 2020; 11:265. [PMID: 32273884 PMCID: PMC7113372 DOI: 10.3389/fgene.2020.00265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing alterations can contribute to human disease. The ability of an RNA-binding protein to regulate alternative splicing outcomes can be modulated by a variety of genetic and epigenetic mechanisms. In this study, we use a computational framework to investigate the roles of certain genes, termed modulators, on changing RBPs' effect on splicing regulation. A total of 1,040,254 modulator-mediated RBP-splicing interactions were identified, including 137 RBPs, 4,309 splicing events and 2,905 modulator candidates from TCGA-KIRC RNA sequencing data. Modulators function categories were defined according to the correlation changes between RBPs expression and their targets splicing outcomes. QKI, as one of the RBPs influencing the most splicing events, attracted our attention in this study: 2,014 changing triplets were identified, including 1,101 modulators and 187 splicing events. Pathway enrichment analysis showed that QKI splicing targets were enriched in tight junction pathway, endocytosis and MAPK signaling pathways, all of which are highly associated with cancer development and progression. This is the first instance of a comprehensive study on how alternative splicing outcomes changes are associated with different expression level of certain proteins, even though they were regulated by the same RBP. Our work may provide a novel view on understanding alternative splicing mechanisms in kidney cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,State Key Laboratory of Biocatalysts and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Steven X Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Feng X, Wang Z, Li H, Li SC. MIRIA: a webserver for statistical, visual and meta-analysis of RNA editing data in mammals. BMC Bioinformatics 2019; 20:596. [PMID: 31861975 PMCID: PMC6923819 DOI: 10.1186/s12859-019-3242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Adenosine-to-inosine RNA editing can markedly diversify the transcriptome, leading to a variety of critical molecular and biological processes in mammals. Over the past several years, researchers have developed several new pipelines and software packages to identify RNA editing sites with a focus on downstream statistical analysis and functional interpretation. Results Here, we developed a user-friendly public webserver named MIRIA that integrates statistics and visualization techniques to facilitate the comprehensive analysis of RNA editing sites data identified by the pipelines and software packages. MIRIA is unique in that provides several analytical functions, including RNA editing type statistics, genomic feature annotations, editing level statistics, genome-wide distribution of RNA editing sites, tissue-specific analysis and conservation analysis. We collected high-throughput RNA sequencing (RNA-seq) data from eight tissues across seven species as the experimental data for MIRIA and constructed an example result page. Conclusion MIRIA provides both visualization and analysis of mammal RNA editing data for experimental biologists who are interested in revealing the functions of RNA editing sites. MIRIA is freely available at https://mammal.deepomics.org.
Collapse
|
22
|
Diroma MA, Ciaccia L, Pesole G, Picardi E. Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform 2019; 20:436-447. [PMID: 29040360 DOI: 10.1093/bib/bbx129] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
RNA editing is a widespread co/posttranscriptional mechanism affecting primary RNAs by specific nucleotide modifications, which plays relevant roles in molecular processes including regulation of gene expression and/or the processing of noncoding RNAs. In recent years, the detection of editing sites has been improved through the availability of high-throughput RNA sequencing (RNA-Seq) technologies. Accurate bioinformatics pipelines are essential for the analysis of next-generation sequencing (NGS) data to ensure the correct identification of edited sites. Several pipelines, using various read mappers and variant callers with a wide range of adjustable parameters, are available for the detection of RNA editing events. In this review, we discuss some of the most recent and popular tools and provide guidelines for RNA-Seq data generation and analysis for the detection of RNA editing in massive transcriptome data. Using simulated and real data sets, we provide an overview of their behavior, emphasizing the fact that the RNA editing detection in NGS data sets remains a challenging task.
Collapse
|
23
|
Genome-Wide Investigation and Functional Analysis of Sus scrofa RNA Editing Sites across Eleven Tissues. Genes (Basel) 2019; 10:genes10050327. [PMID: 31052161 PMCID: PMC6562383 DOI: 10.3390/genes10050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023] Open
Abstract
Recently, the prevalence and importance of RNA editing have been illuminated in mammals. However, studies on RNA editing of pigs, a widely used biomedical model animal, are rare. Here we collected RNA sequencing data across 11 tissues and identified more than 490,000 RNA editing sites. We annotated their biological features, detected flank sequence characteristics of A-to-I editing sites and the impact of A-to-I editing on miRNA-mRNA interactions, and identified RNA editing quantitative trait loci (edQTL). Sus scrofa RNA editing sites showed high enrichment in repetitive regions with a median editing level as 15.38%. Expectedly, 96.3% of the editing sites located in non-coding regions including intron, 3' UTRs, intergenic, and gene proximal regions. There were 2233 editing sites located in the coding regions and 980 of them caused missense mutation. Our results indicated that to an A-to-I editing site, the adjacent four nucleotides, two before it and two after it, have a high impact on the editing occurrences. A commonly observed editing motif is CCAGG. We found that 4552 A-to-I RNA editing sites could disturb the original binding efficiencies of miRNAs and 4176 A-to-I RNA editing sites created new potential miRNA target sites. In addition, we performed edQTL analysis and found that 1134 edQTLs that significantly affected the editing levels of 137 RNA editing sites. Finally, we constructed PRESDB, the first pig RNA editing sites database. The site provides necessary functions associated with Sus scrofa RNA editing study.
Collapse
|
24
|
Yang EW, Bahn JH, Hsiao EYH, Tan BX, Sun Y, Fu T, Zhou B, Van Nostrand EL, Pratt GA, Freese P, Wei X, Quinones-Valdez G, Urban AE, Graveley BR, Burge CB, Yeo GW, Xiao X. Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nat Commun 2019; 10:1338. [PMID: 30902979 PMCID: PMC6430814 DOI: 10.1038/s41467-019-09292-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into account crosslinking-induced sequence propensity and variations between replicated experiments. Using simulated and actual data, we show that BEAPR largely outperforms often-used count analysis methods. Importantly, BEAPR overcomes the inherent overdispersion problem of these methods. Complemented by experimental validations, we demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps to address the outstanding challenge of functional interpretation of GVs.
Collapse
Affiliation(s)
- Ei-Wen Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Esther Yun-Hua Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Boon Xin Tan
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Yiwei Sun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Ting Fu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Peter Freese
- Department of Biology, MIT, Cambridge, MA, 02139, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Molecular Engineering Laboratory, A*STAR, Singapore, 138673, Singapore
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Zhang Y, Han D, Dong X, Wang J, Chen J, Yao Y, Darwish HYA, Liu W, Deng X. Genome-wide profiling of RNA editing sites in sheep. J Anim Sci Biotechnol 2019; 10:31. [PMID: 30918658 PMCID: PMC6419479 DOI: 10.1186/s40104-019-0331-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background The widely observed RNA-DNA differences (RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing (i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases acting on RNA (ADAR) family and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family during the transcriptional process is considered common and essential for the development of an individual. To date, an increasing number of RNA editing sites have been reported in human, rodents, and some farm animals; however, genome-wide detection of RNA editing events in sheep has not been reported. The aim of this study was to identify RNA editing events in sheep by comparing the RNA-seq and DNA-seq data from three biological replicates of the kidney and spleen tissues. Results A total of 607 and 994 common edited sites within the three biological replicates were identified in the ovine kidney and spleen, respectively. Many of the RDDs were specific to an individual. The RNA editing-related genes identified in the present study might be evolved for specific biological functions in sheep, such as structural constituent of the cytoskeleton and microtubule-based processes. Furthermore, the edited sites found in the ovine BLCAP and NEIL1 genes are in line with those in previous reports on the porcine and human homologs, suggesting the existence of evolutionarily conserved RNA editing sites and they may play an important role in the structure and function of genes. Conclusions Our study is the first to investigate RNA editing events in sheep. We screened out 607 and 994 RNA editing sites in three biological replicates of the ovine kidney and spleen and annotated 164 and 247 genes in the kidney and spleen, respectively. The gene function and conservation analysis of these RNA editing-related genes suggest that RNA editing is associated with important gene function in sheep. The putative functionally important RNA editing sites reported in the present study will help future studies on the relationship between these edited sites and the genetic traits in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-019-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China.,2Department of Animal Science, Pennsylvania State University, University Park, PA 16802 USA
| | - Deping Han
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xianggui Dong
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiankui Wang
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jianfei Chen
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yanzhu Yao
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Hesham Y A Darwish
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China.,Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, 12618 Egypt
| | - Wansheng Liu
- 2Department of Animal Science, Pennsylvania State University, University Park, PA 16802 USA
| | - Xuemei Deng
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
27
|
Guo Y, Yu H, Samuels DC, Yue W, Ness S, Zhao YY. Single-nucleotide variants in human RNA: RNA editing and beyond. Brief Funct Genomics 2019; 18:30-39. [PMID: 30312373 PMCID: PMC7962770 DOI: 10.1093/bfgp/ely032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Through analysis of paired high-throughput DNA-Seq and RNA-Seq data, researchers quickly recognized that RNA-Seq can be used for more than just gene expression quantification. The alternative applications of RNA-Seq data are abundant, and we are particularly interested in its usefulness for detecting single-nucleotide variants, which arise from RNA editing, genomic variants and other RNA modifications. A stunning discovery made from RNA-Seq analyses is the unexpectedly high prevalence of RNA-editing events, many of which cannot be explained by known RNA-editing mechanisms. Over the past 6-7 years, substantial efforts have been made to maximize the potential of RNA-Seq data. In this review we describe the controversial history of mining RNA-editing events from RNA-Seq data and the corresponding development of methodologies to identify, predict, assess the quality of and catalog RNA-editing events as well as genomic variants.
Collapse
Affiliation(s)
- Yan Guo
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Hui Yu
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - David C Samuels
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN, USA
| | - Wei Yue
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Scott Ness
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Ying-yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University,Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Baal N, Cunningham S, Obermann HL, Thomas J, Lippitsch A, Dietert K, Gruber AD, Kaufmann A, Michel G, Nist A, Stiewe T, Rupp O, Goesmann A, Zukunft S, Fleming I, Bein G, Lohmeyer J, Bauer S, Hackstein H. ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. THE JOURNAL OF IMMUNOLOGY 2019; 202:1099-1111. [DOI: 10.4049/jimmunol.1800269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022]
|
29
|
Quinones-Valdez G, Tran SS, Jun HI, Bahn JH, Yang EW, Zhan L, Brümmer A, Wei X, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Xiao X. Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2019; 2:19. [PMID: 30652130 PMCID: PMC6331435 DOI: 10.1038/s42003-018-0271-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing, mediated by the ADAR enzymes, diversifies the transcriptome by altering RNA sequences. Recent studies reported global changes in RNA editing in disease and development. Such widespread editing variations necessitate an improved understanding of the regulatory mechanisms of RNA editing. Here, we study the roles of >200 RNA-binding proteins (RBPs) in mediating RNA editing in two human cell lines. Using RNA-sequencing and global protein-RNA binding data, we identify a number of RBPs as key regulators of A-to-I editing. These RBPs, such as TDP-43, DROSHA, NF45/90 and Ro60, mediate editing through various mechanisms including regulation of ADAR1 expression, interaction with ADAR1, and binding to Alu elements. We highlight that editing regulation by Ro60 is consistent with the global up-regulation of RNA editing in systemic lupus erythematosus. Additionally, most key editing regulators act in a cell type-specific manner. Together, our work provides insights for the regulatory mechanisms of RNA editing.
Collapse
Affiliation(s)
| | - Stephen S. Tran
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Ei-Wen Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Anneke Brümmer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Gabriel A. Pratt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Brenton R. Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Xinshu Xiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
30
|
Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, Nguyen TB, Hsiao YHE, Lee C, Pratt GA, Martínez-Cerdeño V, Hagerman RJ, Yeo GW, Geschwind DH, Xiao X. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 2019; 22:25-36. [PMID: 30559470 PMCID: PMC6375307 DOI: 10.1038/s41593-018-0287-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Stephen S Tran
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Adel Azghadi
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Changhoon Lee
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | | | - Randi J Hagerman
- The MIND Institute, Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Leong WM, Ripen AM, Mirsafian H, Mohamad SB, Merican AF. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data. Genomics 2018; 111:899-905. [PMID: 29885984 DOI: 10.1016/j.ygeno.2018.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type.
Collapse
Affiliation(s)
- Wai-Mun Leong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Allergy and Immunology Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Hoda Mirsafian
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amir Feisal Merican
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia..
| |
Collapse
|
32
|
Hsiao YHE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW, Quinones-Valdez G, Xiao X. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018; 28:812-823. [PMID: 29724793 PMCID: PMC5991522 DOI: 10.1101/gr.231209.117] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites.
Collapse
Affiliation(s)
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xianzhi Lin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Tran
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ei-Wen Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - Xinshu Xiao
- Department of Bioengineering
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Wang J, Pan Y, Shen S, Lin L, Xing Y. rMATS-DVR: rMATS discovery of differential variants in RNA. Bioinformatics 2018; 33:2216-2217. [PMID: 28334241 DOI: 10.1093/bioinformatics/btx128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/09/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation RNA sequences of a gene can have single nucleotide variants (SNVs) due to single nucleotide polymorphisms (SNPs) in the genome, or RNA editing events within the RNA. By comparing RNA-seq data of a given cell type before and after a specific perturbation, we can detect and quantify SNVs in the RNA and discover SNVs with altered frequencies between distinct cellular states. Such differential variants in RNA (DVRs) may reflect allele-specific changes in gene expression or RNA processing, as well as changes in RNA editing in response to cellular perturbations or stimuli. Results We have developed rMATS-DVR, a convenient and user-friendly software program to streamline the discovery of DVRs between two RNA-seq sample groups with replicates. rMATS-DVR combines a stringent GATK-based pipeline for calling SNVs including SNPs and RNA editing events in RNA-seq reads, with our rigorous rMATS statistical model for identifying differential isoform ratios using RNA-seq sequence count data with replicates. We applied rMATS-DVR to RNA-seq data of the human chronic myeloid leukemia cell line K562 in response to shRNA knockdown of the RNA editing enzyme ADAR1. rMATS-DVR discovered 1372 significant DVRs between knockdown and control. These DVRs encompassed known SNPs and RNA editing sites as well as novel SNVs, with the majority of DVRs corresponding to known RNA editing sites repressed after ADAR1 knockdown. Availability and Implementation rMATS-DVR is at https://github.com/Xinglab/rMATS-DVR . Contact yxing@ucla.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinkai Wang
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Yang Pan
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Shihao Shen
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lan Lin
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Yi Xing
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Integrated sequencing of exome and mRNA of large-sized single cells. Sci Rep 2018; 8:384. [PMID: 29321653 PMCID: PMC5762704 DOI: 10.1038/s41598-017-18730-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/16/2017] [Indexed: 11/08/2022] Open
Abstract
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
Collapse
|
35
|
Abstract
RNA editing is a posttranscriptional modification process that alters the sequence of RNA molecules. RNA editing is related to many human diseases. However, the identification of RNA editing sites typically requires matched genomic sequence or multiple related expression data sets. Here we describe the GIREMI tool (genome-independent identification of RNA editing by mutual information; https://github.com/zhqingit/giremi ) that is designed to accurately and sensitively predict adenosine-to-inosine editing from a single RNA-Seq data set.
Collapse
Affiliation(s)
- Qing Zhang
- Integrative Biology and Physiology, The University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
36
|
Brümmer A, Yang Y, Chan TW, Xiao X. Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 2017; 8:1255. [PMID: 29093448 PMCID: PMC5665907 DOI: 10.1038/s41467-017-01459-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
RNA editing introduces single nucleotide changes to RNA, thus potentially diversifying gene expression. Recent studies have reported significant changes in RNA editing profiles in disease and development. The functional consequences of these widespread alterations remain elusive because of the unknown function of most RNA editing sites. Here, we carry out a comprehensive analysis of A-to-I editomes in human populations. Surprisingly, we observe highly similar editing profiles across populations despite striking differences in the expression levels of ADAR genes. Striving to explain this discrepancy, we uncover a functional mechanism of A-to-I editing in regulating mRNA abundance. We show that A-to-I editing stabilizes RNA secondary structures and reduces the accessibility of AGO2-miRNA to target sites in mRNAs. The editing-dependent stabilization of mRNAs in turn alters the observed editing levels in the stable RNA repertoire. Our study provides valuable insights into the functional impact of RNA editing in human cells.
Collapse
Affiliation(s)
- Anneke Brümmer
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
37
|
Xiong H, Liu D, Li Q, Lei M, Xu L, Wu L, Wang Z, Ren S, Li W, Xia M, Lu L, Lu H, Hou Y, Zhu S, Liu X, Sun Y, Wang J, Yang H, Wu K, Xu X, Lee LJ. RED-ML: a novel, effective RNA editing detection method based on machine learning. Gigascience 2017; 6:1-8. [PMID: 28328004 PMCID: PMC5467039 DOI: 10.1093/gigascience/gix012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 11/12/2022] Open
Abstract
With the advancement of second generation sequencing techniques, our ability to detect and quantify RNA editing on a global scale has been vastly improved. As a result, RNA editing is now being studied under a growing number of biological conditions so that its biochemical mechanisms and functional roles can be further understood. However, a major barrier that prevents RNA editing from being a routine RNA-seq analysis, similar to gene expression and splicing analysis, for example, is the lack of user-friendly and effective computational tools. Based on years of experience of analyzing RNA editing using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available. The output not only contains detected RNA editing sites, but also a confidence score to facilitate downstream filtering. We have carefully designed validation experiments and performed extensive comparison and analysis to show the efficiency and effectiveness of RED-ML under different conditions, and it can accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data. With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process.
Collapse
Affiliation(s)
- Heng Xiong
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengyue Lei
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Liqin Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Zongji Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wangsheng Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Min Xia
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Lihua Lu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Haorong Lu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Leo J. Lee
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Electrical and Computer Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
38
|
Abstract
Methylation of the 5-cytosine (m5C) is a common but not well-understood RNA modification, which can be detected by sequencing of bisulfite-treated transcripts (RNA-BSseq). In this Chapter, we discuss computational RNA-BSseq data analysis methods for transcriptome-wide identification and quantification of m5C.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80/IV, Innsbruck, 6020, Austria.
| | - Francesca Finotello
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80/IV, Innsbruck, 6020, Austria
| |
Collapse
|
39
|
Hasin-Brumshtein Y, Khan AH, Hormozdiari F, Pan C, Parks BW, Petyuk VA, Piehowski PD, Brümmer A, Pellegrini M, Xiao X, Eskin E, Smith RD, Lusis AJ, Smith DJ. Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes. eLife 2016; 5. [PMID: 27623010 PMCID: PMC5053804 DOI: 10.7554/elife.15614] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. DOI:http://dx.doi.org/10.7554/eLife.15614.001 Metabolism is a term that describes all the chemical reactions that are involved in keeping a living organism alive. Diseases related to metabolism – such as obesity, heart disease and diabetes – are a major health problem in the Western world. The causes of these diseases are complex and include both environmental factors, such as diet and exercise, and genetics. Indeed, many genetic variants that contribute to obesity have been uncovered in both humans and mice. However, it is only dimly understood how these genetic variants affect the underlying networks of interacting genes that cause metabolic disorders. Measuring gene activity or expression, and tracing how genetic instructions are carried from DNA into RNA and proteins, can reliably identify groups of genes that correlate with metabolic traits in specific organs. This strategy was successfully used in previous studies to reveal new information about abnormalities linked to obesity in specific tissues such as the liver and fat tissues. It was also shown that this approach might suggest new molecules that could be targeted to treat metabolic disorders. A brain region called the hypothalamus is key to the control of metabolism, including feeding behavior and obesity. Hasin-Brumshtein et al. set out to explore gene expression in the hypothalamus of 99 different strains of mice, in the hope that the data will help identify new connections between gene expression and metabolism. This approach showed that thousands of new and known genes are expressed in the mouse hypothalamus, some of which coded for proteins, and some of which did not. Hasin-Brumshtein et al. uncovered two genetic variants that controlled the expression of hundreds of other genes. Further analysis then revealed thousands of genetic variants that regulated the expression of, and type of RNA (so-called "spliceforms") produced from neighboring genes. Also, the expression of many individual genes showed significant similarities with about 150 metabolic measurements that had been evaluated previously in the mice. This new dataset is a unique resource that can be coupled with different approaches to test existing ideas and develop new ones about the role of particular genes or genetic mechanisms in obesity. Future studies will likely focus on new genes that show strong associations with attributes that are relevant to metabolic disorders, such as insulin levels, weight and fat mass. DOI:http://dx.doi.org/10.7554/eLife.15614.002
Collapse
Affiliation(s)
- Yehudit Hasin-Brumshtein
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Arshad H Khan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Farhad Hormozdiari
- Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
| | - Calvin Pan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Brian W Parks
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Anneke Brümmer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
40
|
Huntley MA, Lou M, Goldstein LD, Lawrence M, Dijkgraaf GJP, Kaminker JS, Gentleman R. Complex regulation of ADAR-mediated RNA-editing across tissues. BMC Genomics 2016; 17:61. [PMID: 26768488 PMCID: PMC4714477 DOI: 10.1186/s12864-015-2291-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/11/2015] [Indexed: 01/28/2023] Open
Abstract
Background RNA-editing is a tightly regulated, and essential cellular process for a properly functioning brain. Dysfunction of A-to-I RNA editing can have catastrophic effects, particularly in the central nervous system. Thus, understanding how the process of RNA-editing is regulated has important implications for human health. However, at present, very little is known about the regulation of editing across tissues, and individuals. Results Here we present an analysis of RNA-editing patterns from 9 different tissues harvested from a single mouse. For comparison, we also analyzed data for 5 of these tissues harvested from 15 additional animals. We find that tissue specificity of editing largely reflects differential expression of substrate transcripts across tissues. We identified a surprising enrichment of editing in intronic regions of brain transcripts, that could account for previously reported higher levels of editing in brain. There exists a small but remarkable amount of editing which is tissue-specific, despite comparable expression levels of the edit site across multiple tissues. Expression levels of editing enzymes and their isoforms can explain some, but not all of this variation. Conclusions Together, these data suggest a complex regulation of the RNA-editing process beyond transcript expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2291-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie A Huntley
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Melanie Lou
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Leonard D Goldstein
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Michael Lawrence
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Gerrit J P Dijkgraaf
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Joshua S Kaminker
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| | - Robert Gentleman
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, USA.
| |
Collapse
|
41
|
Controlling the Editor: The Many Roles of RNA-Binding Proteins in Regulating A-to-I RNA Editing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:189-213. [PMID: 27256387 DOI: 10.1007/978-3-319-29073-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA editing is a cellular process used to expand and diversify the RNA transcripts produced from a generally immutable genome. In animals, the most prevalent type of RNA editing is adenosine (A) to inosine (I) deamination catalyzed by the ADAR family. Throughout development, A-to-I editing levels increase while ADAR expression is constant, suggesting cellular mechanisms to regulate A-to-I editing exist. Furthermore, in several disease states, ADAR expression levels are similar to the normal state, but A-to-I editing levels are altered. Therefore, understanding how these enzymes are regulated in normal tissues and misregulated in disease states is of profound importance. This chapter will both discuss how to identify A-to-I editing sites across the transcriptome and explore the mechanisms that regulate ADAR editing activity, with particular focus on the diverse types of RNA-binding proteins implicated in regulating A-to-I editing in vivo.
Collapse
|
42
|
Lin R, Du X, Peng S, Yang L, Ma Y, Gong Y, Li S. Discovering All Transcriptome Single-Nucleotide Polymorphisms and Scanning for Selection Signatures in Ducks (Anas platyrhynchos). Evol Bioinform Online 2015; 11:67-76. [PMID: 26819540 PMCID: PMC4721680 DOI: 10.4137/ebo.s21545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 12/21/2022] Open
Abstract
The duck is one of the most economically important waterfowl as a source of meat, eggs, and feathers. Characterizing the genetic variation in duck species is an important step toward linking genes or genomic regions with phenotypes. Human-driven selection during duck domestication and subsequent breed formation has likely left detectable signatures in duck genome. In this study, we employed a panel of >1.4 million single-nucleotide polymorphisms (SNPs) identified from the RNA sequencing (RNA-seq) data of 15 duck individuals. The density of the resulting SNPs is significantly positively correlated with the density of genes across the duck genome, which demonstrates that the usage of the RNA-seq data allowed us to enrich variant functional categories, such as coding exons, untranslated regions (UTRs), introns, and downstream/upstream. We performed a complete scan of selection signatures in the ducks using the composite likelihood ratio (CLR) and found 76 candidate regions of selection, many of which harbor genes related to phenotypes relevant to the function of the digestive system and fat metabolism, including TCF7L2, EIF2AK3, ELOVL2, and fatty acid-binding protein family. This study illustrates the potential of population genetic approaches for identifying genomic regions affecting domestication-related phenotypes and further helps to increase the known genetic information about this economically important animal.
Collapse
Affiliation(s)
- Ruiyi Lin
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiaoyong Du
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.; College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Sixue Peng
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Liubin Yang
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yunlong Ma
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanzhang Gong
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shijun Li
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
43
|
Stein S, Lu ZX, Bahrami-Samani E, Park JW, Xing Y. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Nucleic Acids Res 2015; 43:10612-22. [PMID: 26578562 PMCID: PMC4678817 DOI: 10.1093/nar/gkv1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/09/2015] [Indexed: 01/27/2023] Open
Abstract
RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify ‘hidden’ splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.
Collapse
Affiliation(s)
- Shayna Stein
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhi-Xiang Lu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Ahn J, Xiao X. RASER: reads aligner for SNPs and editing sites of RNA. Bioinformatics 2015; 31:3906-13. [PMID: 26323713 DOI: 10.1093/bioinformatics/btv505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Accurate identification of genetic variants such as single-nucleotide polymorphisms (SNPs) or RNA editing sites from RNA-Seq reads is important, yet challenging, because it necessitates a very low false-positive rate in read mapping. Although many read aligners are available, no single aligner was specifically developed or tested as an effective tool for SNP and RNA editing prediction. RESULTS We present RASER, an accurate read aligner with novel mapping schemes and index tree structure that aims to reduce false-positive mappings due to existence of highly similar regions. We demonstrate that RASER shows the best mapping accuracy compared with other popular algorithms and highest sensitivity in identifying multiply mapped reads. As a result, RASER displays superb efficacy in unbiased mapping of the alternative alleles of SNPs and in identification of RNA editing sites. AVAILABILITY AND IMPLEMENTATION RASER is written in C++ and freely available for download at https://github.com/jaegyoonahn/RASER.
Collapse
Affiliation(s)
- Jaegyoon Ahn
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Frésard L, Leroux S, Roux PF, Klopp C, Fabre S, Esquerré D, Dehais P, Djari A, Gourichon D, Lagarrigue S, Pitel F. Genome-Wide Characterization of RNA Editing in Chicken Embryos Reveals Common Features among Vertebrates. PLoS One 2015; 10:e0126776. [PMID: 26024316 PMCID: PMC4449034 DOI: 10.1371/journal.pone.0126776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Sophie Leroux
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Pierre-François Roux
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Christophe Klopp
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Stéphane Fabre
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Diane Esquerré
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France
| | - Patrice Dehais
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Anis Djari
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - David Gourichon
- INRA, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Sandrine Lagarrigue
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Frédérique Pitel
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
46
|
Lin X, Lo HC, Wong DTW, Xiao X. Noncoding RNAs in human saliva as potential disease biomarkers. Front Genet 2015; 6:175. [PMID: 25999984 PMCID: PMC4423433 DOI: 10.3389/fgene.2015.00175] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xianzhi Lin
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Hsien-Chun Lo
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - David T W Wong
- Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, USA ; School of Dentistry, University of California, Los Angeles Los Angeles, CA, USA ; Jonnson Comprehensive Cancer Center, University of California, Los Angeles Los Angeles, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA ; Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, USA ; Jonnson Comprehensive Cancer Center, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
47
|
Zhang Q, Xiao X. Genome sequence-independent identification of RNA editing sites. Nat Methods 2015; 12:347-50. [PMID: 25730491 PMCID: PMC4382388 DOI: 10.1038/nmeth.3314] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022]
Abstract
RNA editing generates post-transcriptional sequence changes that can be deduced from RNA-seq data, but detection typically requires matched genomic sequence or multiple related expression data sets. We developed the GIREMI tool (genome-independent identification of RNA editing by mutual information; https://www.ibp.ucla.edu/research/xiao/GIREMI.html) to predict adenosine-to-inosine editing accurately and sensitively from a single RNA-seq data set of modest sequencing depth. Using GIREMI on existing data, we observed tissue-specific and evolutionary patterns in editing sites in the human population.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA
- Molecular Biology Institute, University of California, Los Angeles, USA
| |
Collapse
|
48
|
Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun 2015; 6:6355. [PMID: 25751603 PMCID: PMC4355961 DOI: 10.1038/ncomms7355] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/22/2015] [Indexed: 12/15/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are the primary factors underlying adenosine to inosine (A-to-I) editing in metazoans. Here we report the first global study of ADAR1-RNA interaction in human cells using CLIP-Seq. A large number of CLIP sites are observed in Alu repeats, consistent with ADAR1's function in RNA editing. Surprisingly, thousands of other CLIP sites are located in non-Alu regions, revealing functional and biophysical targets of ADAR1 in the regulation of alternative 3' UTR usage and miRNA biogenesis. We observe that binding of ADAR1 to 3' UTRs precludes binding by other factors, causing 3' UTR lengthening. Similarly, ADAR1 interacts with DROSHA and DGCR8 in the nucleus and possibly out-competes DGCR8 in primary miRNA binding, which enhances mature miRNA expression. These functions are dependent on ADAR1's editing activity, at least for a subset of targets. Our study unfolds a broad landscape of the functional roles of ADAR1.
Collapse
|
49
|
Han L, Vickers KC, Samuels DC, Guo Y. Alternative applications for distinct RNA sequencing strategies. Brief Bioinform 2014; 16:629-39. [PMID: 25246237 DOI: 10.1093/bib/bbu032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
Recent advances in RNA library preparation methods, platform accessibility and cost efficiency have allowed high-throughput RNA sequencing (RNAseq) to replace conventional hybridization microarray platforms as the method of choice for mRNA profiling and transcriptome analyses. RNAseq is a powerful technique to profile both long and short RNA expression, and the depth of information gained from distinct RNAseq methods is striking and facilitates discovery. In addition to expression analysis, distinct RNAseq approaches also allow investigators the ability to assess transcriptional elongation, DNA variance and exogenous RNA content. Here we review the current state of the art in transcriptome sequencing and address epigenetic regulation, quantification of transcription activation, RNAseq output and a diverse set of applications for RNAseq data. We detail how RNAseq can be used to identify allele-specific expression, single-nucleotide polymorphisms and somatic mutations and discuss the benefits and limitations of using RNAseq to monitor DNA characteristics. Moreover, we highlight the power of combining RNA- and DNAseq methods for genomic analysis. In summary, RNAseq provides the opportunity to gain greater insight into transcriptional regulation and output than simply miRNA and mRNA profiling.
Collapse
|
50
|
Stone JD, Storchova H. The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes. Mol Genet Genomics 2014; 290:1-9. [DOI: 10.1007/s00438-014-0905-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022]
|