1
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Hlaing ST, Srimanote P, Tongtawe P, Khantisitthiporn O, Glab-Ampai K, Chulanetra M, Thanongsaksrikul J. Isolation and Characterization of scFv Antibody against Internal Ribosomal Entry Site of Enterovirus A71. Int J Mol Sci 2023; 24:9865. [PMID: 37373012 DOI: 10.3390/ijms24129865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the causative agents of hand-foot-mouth disease, which can be associated with neurocomplications of the central nervous system. A limited understanding of the virus's biology and pathogenesis has led to the unavailability of effective anti-viral treatments. The EV-A71 RNA genome carries type I internal ribosomal entry site (IRES) at 5' UTR that plays an essential role in the viral genomic translation. However, the detailed mechanism of IRES-mediated translation has not been elucidated. In this study, sequence analysis revealed that the domains IV, V, and VI of EV-A71 IRES contained the structurally conserved regions. The selected region was transcribed in vitro and labeled with biotin to use as an antigen for selecting the single-chain variable fragment (scFv) antibody from the naïve phage display library. The so-obtained scFv, namely, scFv #16-3, binds specifically to EV-A71 IRES. The molecular docking showed that the interaction between scFv #16-3 and EV-A71 IRES was mediated by the preferences of amino acid residues, including serine, tyrosine, glycine, lysine, and arginine on the antigen-binding sites contacted the nucleotides on the IRES domains IV and V. The so-produced scFv has the potential to develop as a structural biology tool to study the biology of the EV-A71 RNA genome.
Collapse
Affiliation(s)
- Su Thandar Hlaing
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
| | - Onruedee Khantisitthiporn
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Kittirat Glab-Ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
4
|
Czarnecka M, Weichelt U, Rödiger S, Hanack K. Novel Anti Double-Stranded Nucleic Acids Full-Length Recombinant Camelid Heavy-Chain Antibody for the Detection of miRNA. Int J Mol Sci 2022; 23:ijms23116275. [PMID: 35682952 PMCID: PMC9181593 DOI: 10.3390/ijms23116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. Antibody-based detection systems allow an easy onset handling compared to PCR or sequencing and can be considered as alternative methods to support miRNA diagnostic in the future. In this study, we describe the generation of a camelid heavy-chain-only antibody specifically recognizing miRNAs to establish an antibody-based detection method. The generation of nucleic acid-specific binders is a challenge. We selected camelid binders via phage display, expressed them as VHH as well as full-length antibodies, and characterized the binding to several miRNAs from a signature specific for dilated cardiomyopathy. The described workflow can be used to create miRNA-specific binders and establish antibody-based detection methods to provide an additional way to analyze disease-specific miRNA signatures.
Collapse
Affiliation(s)
- Malgorzata Czarnecka
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
| | - Ulrike Weichelt
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
| | - Stefan Rödiger
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany;
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
- Correspondence: ; Tel.: +49-3319-775-348
| |
Collapse
|
5
|
Tomecki R, Kobylecki K, Drazkowska K, Hyjek-Skladanowska M, Dziembowski A. Reproducible and efficient new method of RNA 3'-end labelling by CutA nucleotidyltransferase-mediated CC-tailing. RNA Biol 2021; 18:623-639. [PMID: 34766865 DOI: 10.1080/15476286.2021.1999104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Despite the development of non-radioactive DNA/RNA labelling methods, radiolabelled nucleic acids are commonly used in studies focused on the determination of RNA fate. Nucleic acid fragments with radioactive nucleotide analoguesincorporated into the body or at the 5' or 3' terminus of the molecule can serve as probes in hybridization-based analyses of in vivo degradation and processing of transcripts. Radiolabelled oligoribonucleotides are utilized as substrates in biochemical assays of various RNA metabolic enzymes, such as exo- and endoribonucleases, nucleotidyltransferases or helicases. In some applications, the placement of the label is not a concern, while in other cases it is required that the radioactive mark is located at the 5'- or 3'-end of the molecule. An unsurpassed method for 5'-end RNA labelling employs T4 polynucleotide kinase (PNK) and [γ-32P]ATP. In the case of 3'-end labelling, several different possibilities exist. However, they require the use of costly radionucleotide analogues. Previously, we characterized an untypical nucleotidyltransferase named CutA, which preferentially incorporates cytidines at the 3'-end of RNA substrates. Here, we demonstrate that this unusual feature can be used for the development of a novel, efficient, reproducible and economical method of RNA 3'-end labelling by CutA-mediated cytidine tailing. The labelling efficiency is comparable to that achieved with the most common method applied to date, i.e. [5'-32P]pCp ligation to the RNA 3'-terminus catalysed by T4 RNA ligase I. We show the utility of RNA substrates labelled using our new method in exemplary biochemical assays assessing directionality of two well-known eukaryotic exoribonucleases, namely Dis3 and Xrn1.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of Rna Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of Rna Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Andrzej Dziembowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland.,Laboratory of Rna Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
6
|
Singh S, Batra TA, Misra P. Detection of COVID-19 RNA: Looking beyond PCR. Med J Armed Forces India 2021; 77:S511-S512. [PMID: 33519048 PMCID: PMC7836377 DOI: 10.1016/j.mjafi.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Suyash Singh
- Medical Cadet, Armed Forces Medical College, Pune 40, India
| | | | - Pratibha Misra
- Associate Professor & Head, Department of Biochemistry, Armed Forces Medical College, Pune 40, India
| |
Collapse
|
7
|
Madrid FF, Grossman LI, Aras S. Mitochondria Autoimmunity and MNRR1 in Breast Carcinogenesis: A Review. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:138-158. [PMID: 33615312 PMCID: PMC7894625 DOI: 10.33696/cancerimmunol.2.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We review here the evidence for participation of mitochondrial autoimmunity in BC inception and progression and propose a new paradigm that may challenge the prevailing thinking in oncogenesis by suggesting that mitochondrial autoimmunity is a major contributor to breast carcinogenesis and probably to the inception and progression of other solid tumors. It has been shown that MNRR1 mediated mitochondrial-nuclear function promotes BC cell growth and migration and the development of metastasis and constitutes a proof of concept supporting the participation of mitochondrial autoimmunity in breast carcinogenesis. The resemblance of the autoantibody profile in BC detected by IFA with that in the rheumatic autoimmune diseases suggested that studies on the autoantibody response to tumor associated antigens and the characterization of the mtDNA- and nDNA-encoded antigens may provide functional data on breast carcinogenesis. We also review the studies supporting the view that a panel of autoreactive nDNA-encoded mitochondrial antigens in addition to MNRR1 may be involved in breast carcinogenesis. These include GAPDH, PKM2, GSTP1, SPATA5, MFF, ncRNA PINK1-AS/DDOST as probably contributing to BC progression and metastases and the evidence suggesting that DDX21 orchestrates a complex signaling network with participation of JUND and ATF3 driving chronic inflammation and breast tumorigenesis. We suggest that the widespread autoreactivity of mtDNA- and nDNA-encoded mitochondrial proteins found in BC sera may be the reflection of autoimmunity triggered by mitochondrial and non-mitochondrial tumor associated antigens involved in multiple tumorigenic pathways. Furthermore, we suggest that mitochondrial proteins may contribute to mitochondrial dysfunction in BC even if mitochondrial respiration is found to be within normal limits. However, although the studies show that mitochondrial autoimmunity is a major factor in breast cancer inception and progression, it is not the only factor since there is a multiplex autoantibody profile targeting centrosome and stem cell antigens as well as anti-idiotypic antibodies, revealing the complex signaling network involved in breast carcinogenesis. In summary, the studies reviewed here open new, unexpected therapeutic avenues for cancer prevention and treatment of patients with cancer derived from an entirely new perspective of breast carcinogenesis.
Collapse
Affiliation(s)
- Félix Fernández Madrid
- Department of Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
8
|
Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, Lim JCT, Yeong J, Lim TKH. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond) 2020; 40:135-153. [PMID: 32301585 PMCID: PMC7170662 DOI: 10.1002/cac2.12023] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conventional immunohistochemistry (IHC) is a widely used diagnostic technique in tissue pathology. However, this technique is associated with a number of limitations, including high inter-observer variability and the capacity to label only one marker per tissue section. This review details various highly multiplexed techniques that have emerged to circumvent these constraints, allowing simultaneous detection of multiple markers on a single tissue section and the comprehensive study of cell composition, cellular functional and cell-cell interactions. Among these techniques, multiplex Immunohistochemistry/Immunofluorescence (mIHC/IF) has emerged to be particularly promising. mIHC/IF provides high-throughput multiplex staining and standardized quantitative analysis for highly reproducible, efficient and cost-effective tissue studies. This technique has immediate potential for translational research and clinical practice, particularly in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Chang Colin Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | | | - Hai Yun Cai
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Harry Ho Man Ng
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Duke‐NUS Medical SchoolSingapore169856Singapore
| | - Duoduo Wu
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Yu Ting Felicia Wee
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
| | - Joe Yeong
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
- Singapore Immunology NetworkAgency of Science (SIgN)Technology and Research (A*STAR)Singapore169856Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| |
Collapse
|
9
|
Jang S, Shin H, Lee Y. Functional Analysis of RNA Motifs Essential for BC200 RNA-mediated Translational Regulation. BMB Rep 2020. [PMID: 31234958 PMCID: PMC7061212 DOI: 10.5483/bmbrep.2020.53.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA) is proposed to act as a local translational modulator by inhibiting translation after being targeted to neuronal dendrites. However, the mechanism by which BC200 RNA inhibits translation is not fully understood. Although a detailed functional analysis of RNA motifs is essential for understanding the BC200 RNA-mediated translation-inhibition mechanism, there is little relevant research on the subject. Here, we performed a systematic domain-dissection analysis of BC200 RNA to identify functional RNA motifs responsible for its translational-inhibition activity. Various RNA variants were assayed for their ability to inhibit translation of luciferase mRNA in vitro. We found that the 111–200-nucleotide region consisting of part of the Alu domain as well as the A/C-rich domain (consisting of both the A-rich and C-rich domains) is most effective for translation inhibition. Surprisingly, we also found that individual A-rich, A/C-rich, and Alu domains can enhance translation but at different levels for each domain, and that these enhancing effects manifest as cap-dependent translation.
Collapse
Affiliation(s)
- Seonghui Jang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- Korea Food Research Institute, Wanju 55365, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
10
|
3dRNA v2.0: An Updated Web Server for RNA 3D Structure Prediction. Int J Mol Sci 2019; 20:ijms20174116. [PMID: 31450739 PMCID: PMC6747482 DOI: 10.3390/ijms20174116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited in comparison with known RNA sequences up to now. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. In recent years, 3dRNA has been greatly improved by adding several important features, including structure sampling, structure ranking and structure optimization under residue-residue restraints. Particularly, the optimization procedure with restraints enables 3dRNA to treat pseudoknots in a new way. These new features of 3dRNA can greatly promote its performance and have been integrated into the 3dRNA v2.0 web server. Here we introduce these new features in the 3dRNA v2.0 web server for the users.
Collapse
|
11
|
Shin H, Lee J, Kim Y, Jang S, Kim M, Lee Y. Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions. Mol Cells 2019; 42:495-500. [PMID: 31250622 PMCID: PMC6602144 DOI: 10.14348/molcells.2019.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 11/27/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNAmediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).
Collapse
Affiliation(s)
- Heegwon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jungmin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Youngmi Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Seonghui Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Meehyein Kim
- Virus Research and Testing Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114,
Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
12
|
Shin H, Lee J, Kim Y, Jang S, Ohn T, Lee Y. Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody. BMB Rep 2018; 50:318-322. [PMID: 28042783 PMCID: PMC5498142 DOI: 10.5483/bmbrep.2017.50.6.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2. [BMB Reports 2017; 50(6): 318-322].
Collapse
Affiliation(s)
- Heegwon Shin
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
13
|
Kim S, Park I, Park SG, Cho S, Kim JH, Ipper NS, Choi SS, Lee ES, Hong HJ. Generation, Diversity Determination, and Application to Antibody Selection of a Human Naïve Fab Library. Mol Cells 2017; 40:655-666. [PMID: 28927259 PMCID: PMC5638773 DOI: 10.14348/molcells.2017.0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022] Open
Abstract
We constructed a large naïve human Fab library (3 × 1010 colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and κ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.
Collapse
Affiliation(s)
- Sangkyu Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Insoo Park
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Seung Gu Park
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Seulki Cho
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Jin Hong Kim
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Nagesh S. Ipper
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| | - Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Eung Suk Lee
- Scripps Korea Antibody Institute, Chuncheon 24341,
Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
14
|
Kim Y, Lee J, Shin H, Jang S, Kim SC, Lee Y. Biosynthesis of brain cytoplasmic 200 RNA. Sci Rep 2017; 7:6884. [PMID: 28761139 PMCID: PMC5537265 DOI: 10.1038/s41598-017-05097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), a neuron-specific non-coding RNA, is also highly expressed in a number of tumors of non-neuronal origin. However, the biosynthesis of BC200 RNA remains poorly understood. In this study, we show that the efficient transcription of BC200 RNA requires both internal and upstream promoter elements in cancer cells. The transcription complex seems to interact with a broad range of sequences within the upstream 100-bp region. The cellular levels and half-lives of BC200 RNA were found to differ across various cancer cell types, but there was no significant correlation between these parameters. Exogenously expressed BC200 RNA had a shorter half-life than that observed for the endogenous version in cancer cells, suggesting that BC200 RNA might be protected by some limiting factor(s) in cancer cells. Transient transfection experiments showed that the transcriptional activity of the exogenous BC200 RNA promoter element varied depending on the cancer cell type. However, the promoter activities together with the half-life data could not explain the differences in the levels of BC200 RNA among different cell types, suggesting that there is another level of transcriptional regulation beyond that detected by our transient transfection experiments.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
15
|
Booy EP, McRae EK, Koul A, Lin F, McKenna SA. The long non-coding RNA BC200 (BCYRN1) is critical for cancer cell survival and proliferation. Mol Cancer 2017. [PMID: 28651607 PMCID: PMC5483959 DOI: 10.1186/s12943-017-0679-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BC200 is a long non-coding RNA expressed at high levels in the brain and elevated in a variety of tumour types. BC200 has a hypothesized role in translational regulation; however, to date the functional role of BC200 in both normal and diseased states remains poorly characterized. METHODS Detailed BC200 expression analyses were performed in tumor cell lines, primary and non-tumorigenic cultured breast and lung cells, and a panel of normal human tissues by quantitative real-time PCR and confirmed by northern blot. Subcellular fractionation was performed to assess BC200 distribution and efficient knock-down of BC200 was established using both locked nucleic acid (LNA) GapmeRs and conventional siRNAs. Cell viability following BC200 knockdown and overexpression was assessed by MTT assay and induction of apoptosis was monitored by Annexin V/PI staining and flow cytometry. Cell cycle arrest and synchronization were performed using serum withdrawal as well as the specific inhibitors Lovastatin, Thymidine, RO3306 and Nocodazole. Synchronization was monitored by fluorescent analysis of cellular DNA content by flow cytometry RESULTS: BC200 expression was substantially upregulated in brain and elevated expression was also observed in testes, small intestine and ovary. Expression in cultured tumour cells was dramatically higher than corresponding normal tissue; however, expression in cultured primary cells was similar to that in immortalized and cancer cell lines. BC200 knockdown resulted in a dramatic loss of viability through growth arrest and induction of apoptosis that could be partially rescued by overexpression of wild-type BC200 but not an siRNA-resistant sequence mutant. A substantial decrease in BC200 expression was observed upon cell confluence or serum deprivation, as well as drug induced cell cycle arrest in G1 or G2 but not S- or M-phases. Upon release from cell cycle arrest, BC200 expression was recovered as cells entered S-phase, but did not follow a periodic expression pattern during synchronized progression through the cell cycle. This elevated expression was critical for the survival of proliferating cancerous and non-cancerous cells, but is dispensable upon senescence or cell cycle arrest. CONCLUSIONS BC200 expression is elevated in proliferating cultured cells regardless of origin. In primary cells, expression is dramatically reduced upon cell cycle arrest by confluence, serum deprivation or chemical inhibition. The lethality of BC200 knockdown is restricted to actively proliferating cells, making it a promising therapeutic target for a broad spectrum of cancers.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Amit Koul
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Francis Lin
- Department of Immunology, University of Manitoba, 750 McDermot Ave, Winnipeg, R3E 0T5, MB, Canada.,Department of Physics & Astronomy, University of Manitoba, Allen Building, Winnipeg, R3T 2N2, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada. .,Department of Biochemistry & Medical Genetics, University of Manitoba, 745 Bannatyne Ave, Winnipeg, R3E 0J9, MB, Canada.
| |
Collapse
|
16
|
Jang S, Shin H, Lee J, Kim Y, Bak G, Lee Y. Regulation of BC200 RNA-mediated translation inhibition by hnRNP E1 and E2. FEBS Lett 2017; 591:393-405. [PMID: 28027391 DOI: 10.1002/1873-3468.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
The long noncoding RNA BC200 (brain cytoplasmic RNA, 200 nucleotides) acts as a translational modulator of local protein synthesis at dendrites. BC200 RNA has been shown to inhibit translation in vitro, but it remains unknown how this translation inhibition might be controlled in a cell. Here, we performed yeast three-hybrid screening and identified hnRNP E1 and hnRNP E2 as BC200 RNA-interacting proteins. We found that: these hnRNA proteins could restore BC200 RNA-inhibited translation; BC200 RNA interacts with hnRNP E1 and E2 mainly through its unique 3' C-rich domain; and the RNA binding specificities and modes of the two proteins differed somewhat. Our results offer new insights into the regulation of BC200 RNA-mediated translation inhibition.
Collapse
Affiliation(s)
| | | | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | |
Collapse
|
17
|
Cho S, Park I, Kim H, Jeong MS, Lim M, Lee ES, Kim JH, Kim S, Hong HJ. Generation, characterization and preclinical studies of a human anti-L1CAM monoclonal antibody that cross-reacts with rodent L1CAM. MAbs 2016; 8:414-25. [PMID: 26785809 PMCID: PMC5037990 DOI: 10.1080/19420862.2015.1125067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent.
Collapse
Affiliation(s)
- Seulki Cho
- a Department of Functional Genomics , University of Science & Technology , Daejeon , Korea.,b Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon , Korea
| | - Insoo Park
- c Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology , Daejeon , Korea
| | - Haejung Kim
- b Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon , Korea
| | - Mun Sik Jeong
- d Department of Systems Immunology , Kangwon National University , Chuncheon , Korea
| | - Mooney Lim
- d Department of Systems Immunology , Kangwon National University , Chuncheon , Korea
| | - Eung Suk Lee
- b Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon , Korea
| | - Jin Hong Kim
- b Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon , Korea
| | - Semi Kim
- c Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology , Daejeon , Korea
| | - Hyo Jeong Hong
- b Institute of Bioscience and Biotechnology, Kangwon National University , Chuncheon , Korea.,d Department of Systems Immunology , Kangwon National University , Chuncheon , Korea
| |
Collapse
|
18
|
Age-Related Expression of a Repeat-Rich Intergenic Long Noncoding RNA in the Rat Brain. Mol Neurobiol 2016; 54:639-660. [DOI: 10.1007/s12035-015-9634-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
|