1
|
Hao X, Chen Y, Sahu D, Przanowska RK, Aaiyas M, Weidmann CA, Nardi I, Weeks KM, Dutta A. A 36-base hairpin within lncRNA DRAIC, which is modulated by alternative splicing, interacts with the IKKα coiled-coil domain and inhibits NF-κB and tumor cell phenotypes. J Biol Chem 2025:110172. [PMID: 40320073 DOI: 10.1016/j.jbc.2025.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025] Open
Abstract
A tumor-suppressive long noncoding RNA (lncRNA) DRAIC (down-regulated RNA in cancers) inhibits NF-κB activity and physically interacts with IKKα, a kinase component of the IKK complex, in several cancer types. Here we explore the precise molecular mechanism involved in this interaction and suppression. Using SHAPE-MaP, we identified a 36-nucleotide hairpin (A+B) within DRAIC that is necessary and sufficient for its anti-oncogenic function. RNA immunoprecipitation (RIP) and Electrophoretic mobility shift assays (EMSA) confirmed this hairpin physically interacts with the coiled coil domain of IKKα. A+B RNA has a high binding affinity (KD ∼1-7 nM) to the coiled-coil domain of IKKα. The binding of A+B disrupts the dimerization of NEMO and IKKα coiled-coil domains, a critical step for IKK action. Consistent with this, A+B inhibits the phosphorylation of the NF-κB inhibitor IκBα and suppresses NF-κB activity. Publicly available tumor RNAseq data revealed that alternative splicing modulates the presence of this critical hairpin: the inclusion of exon 4a (encoding one side of the A+B hairpin) in lung tumors correlates with reduced NF-κB activity. By demonstrating that the A+B hairpin is both necessary and sufficient to inhibit IKK and oncogenic phenotypes, this study underscores the centrality of IKKα interaction and NF-κB inhibition in DRAIC-mediated cancer suppression and indicates that the activity of this lncRNA is regulated by alternative splicing. This study also reveals the first example of a short RNA disrupting coiled-coil dimerization, offering a new approach to disrupt such dimerization in cancer biology.
Collapse
Affiliation(s)
- Xiaoxiao Hao
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL
| | - Yuechuan Chen
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL
| | - Divya Sahu
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL
| | - Róża K Przanowska
- University of Virginia, Department of Biochemistry and Molecular Genetics, Charlottesville, VA
| | - Mujawar Aaiyas
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | | | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Anindya Dutta
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL
| |
Collapse
|
2
|
Hao X, Chen Y, Sahu D, Przanowska RK, Weidmann CA, Nardi I, Weeks KM, Dutta A. A 36-base hairpin within lncRNA DRAIC , modulated by alternative splicing, interacts with the IKKα coiled-coil domain and inhibits NF-κB and tumor cell phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.629241. [PMID: 39764029 PMCID: PMC11703201 DOI: 10.1101/2024.12.23.629241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear. We used SHAPE-MaP to obtain the secondary structure of the lncRNA to perform structure-functions studies which identified the minimal region of DRAIC necessary for repressing NF-κB. A 36-nucleotide hairpin (A+B) within DRAIC inhibits NF-κB, inhibits IκB phosphorylation and binds specifically with the IKKα coiled- coil domain with a very high affinity: K D of ∼1-5 nM. This interaction weakens the dimerization of of the coiled coil domains of two IKK subunits, a dimerization that is indispensable for IKK activity. A+B is sufficient and necessary to inhibit the oncogenic phenotypes in multiple cancer cell-lines, demonstrating that interaction with IKK and inhibition of NF-κB is key for cancer suppression by DRAIC. Presence of this critical hairpin is modulated by alternative splicing the extends exon 4 to exon 4a of DRAIC and the expression of exon 4a in lung tumors is associated with low NF-κB activity. This is also the first demonstration that a short RNA can disrupt coiled- coil dimerization.
Collapse
|
3
|
Shen T, Hu Z, Sun S, Liu D, Wong F, Wang J, Chen J, Wang Y, Hong L, Xiao J, Zheng L, Krishnamoorthi T, King I, Wang S, Yin P, Collins JJ, Li Y. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 2024; 21:2287-2298. [PMID: 39572716 PMCID: PMC11621015 DOI: 10.1038/s41592-024-02487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Collapse
Affiliation(s)
- Tao Shen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Felix Wong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd, Hong Kong SAR, China
| | - Jiayang Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Xiao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tejas Krishnamoorthi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China.
- Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Whittaker A, Goss DJ. Modeling the structure and DAP5-binding site of the FGF-9 5'-UTR RNA utilized in cap-independent translation. RNA (NEW YORK, N.Y.) 2024; 30:1184-1198. [PMID: 38866431 PMCID: PMC11331406 DOI: 10.1261/rna.080013.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Cap-independent or eukaryotic initiation factor (eIF) 4E-independent, translation initiation in eukaryotes requires scaffolding protein eIF4G or its homolog, death-associated protein 5 (DAP5). eIF4G associates with the 40S ribosomal subunit, recruiting the ribosome to the RNA transcript. A subset of RNA transcripts, such as fibroblast growth factor 9 (FGF-9), contain 5' untranslated regions (5' UTRs) that directly bind DAP5 or eIF4GI. For viral mRNA, eIF recruitment usually utilizes RNA structure, such as a pseudoknot or stem-loops, and the RNA-helicase eIF4A is required for DAP5- or 4G-mediated translation, suggesting these 5' UTRs are structured. However, for cellular IRES-like translation, no consensus RNA structures or sequences have yet been identified for eIF binding. However, the DAP5-binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which require an unpaired, accessible 5' end to stimulate cap-independent translation. Using SHAPE-seq, we modeled the 186 nt FGF-9 5'-UTR RNA's complex secondary structure in vitro. Further, DAP5 footprinting, toeprinting, and UV cross-linking experiments identify DAP5-RNA interactions. Modeling of FGF-9 5'-UTR tertiary structure aligns DAP5-interacting nucleotides on one face of the predicted structure. We propose that RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5-binding site. DAP5 appears to contact nucleotides near the start codon. Our findings offer a new perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF-binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
Affiliation(s)
- Amanda Whittaker
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| | - Dixie J Goss
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| |
Collapse
|
6
|
Li T, Cheng C, Liu J. Chemical and Enzyme-Mediated Chemical Reactions for Studying Nucleic Acids and Their Modifications. Chembiochem 2024; 25:e202400220. [PMID: 38742371 DOI: 10.1002/cbic.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nucleic acids are genetic information-carrying molecules inside cells. Apart from basic nucleotide building blocks, there exist various naturally occurring chemical modifications on nucleobase and ribose moieties, which greatly increase the encoding complexity of nuclei acids, contribute to the alteration of nucleic acid structures, and play versatile regulation roles in gene expression. To study the functions of certain nucleic acids in various biological contexts, robust tools to specifically label and identify these macromolecules and their modifications, and to illuminate their structures are highly necessary. In this review, we summarize recent technique advances of using chemical and enzyme-mediated chemical reactions to study nucleic acids and their modifications and structures. By highlighting the chemical principles of these techniques, we aim to present a perspective on the advancement of the field as well as to offer insights into developing specific chemical reactions and precise enzyme catalysis utilized for nucleic acids and their modifications.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Chongguang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
7
|
Gribling-Burrer AS, Bohn P, Smyth RP. Isoform-specific RNA structure determination using Nano-DMS-MaP. Nat Protoc 2024; 19:1835-1865. [PMID: 38347203 DOI: 10.1038/s41596-024-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 06/12/2024]
Abstract
RNA structure determination is essential to understand how RNA carries out its diverse biological functions. In cells, RNA isoforms are readily expressed with partial variations within their sequences due, for example, to alternative splicing, heterogeneity in the transcription start site, RNA processing or differential termination/polyadenylation. Nanopore dimethyl sulfate mutational profiling (Nano-DMS-MaP) is a method for in situ isoform-specific RNA structure determination. Unlike similar methods that rely on short sequencing reads, Nano-DMS-MaP employs nanopore sequencing to resolve the structures of long and highly similar RNA molecules to reveal their previously hidden structural differences. This Protocol describes the development and applications of Nano-DMS-MaP and outlines the main considerations for designing and implementing a successful experiment: from bench to data analysis. In cell probing experiments can be carried out by an experienced molecular biologist in 3-4 d. Data analysis requires good knowledge of command line tools and Python scripts and requires a further 3-5 d.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Maloney A, Joseph S. Validating the EMCV IRES Secondary Structure with Structure-Function Analysis. Biochemistry 2024; 63:107-115. [PMID: 38081770 PMCID: PMC10896073 DOI: 10.1021/acs.biochem.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The encephalomyocarditis virus internal ribosome entry site (EMCV IRES) is a structured RNA sequence found in the 5' UTR of the genomic RNA of the encephalomyocarditis virus. The EMCV IRES structure facilitates efficient translation initiation without needing a 5' m7G cap or the cap-binding protein eIF4E. The secondary structure of IRES has been the subject of several previous studies, and a number of different structural models have been proposed. Though some domains of the IRES are conserved across the different secondary structure models, domain I of the IRES varies greatly across them. A literature comparison led to the identification of three regions of interest that display structural heterogeneity within past secondary structure models. To test the accuracy of the secondary structure models in these regions, we employed mutational analysis and SHAPE probing. Mutational analysis revealed that two helical regions within the identified regions of interest are important for IRES translation. These helical regions are consistent with only one of the structure predictions in the literature and do not form in EMCV IRES structures predicted using modern secondary structure prediction methods. The importance of these regions is further supported by multiple SHAPE protections when probing was performed after in vitro translation, indicating that these regions are involved in the IRES translation complex. This work validates a published structure and demonstrates the importance of domain I during EMCV IRES translation initiation.
Collapse
Affiliation(s)
- Adam Maloney
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| |
Collapse
|
9
|
Greenwood T, Heitsch CE. How Parameters Influence SHAPE-Directed Predictions. Methods Mol Biol 2024; 2726:105-124. [PMID: 38780729 DOI: 10.1007/978-1-0716-3519-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The structure of an RNA sequence encodes information about its biological function. Dynamic programming algorithms are often used to predict the conformation of an RNA molecule from its sequence alone, and adding experimental data as auxiliary information improves prediction accuracy. This auxiliary data is typically incorporated into the nearest neighbor thermodynamic model22 by converting the data into pseudoenergies. Here, we look at how much of the space of possible structures auxiliary data allows prediction methods to explore. We find that for a large class of RNA sequences, auxiliary data shifts the predictions significantly. Additionally, we find that predictions are highly sensitive to the parameters which define the auxiliary data pseudoenergies. In fact, the parameter space can typically be partitioned into regions where different structural predictions predominate.
Collapse
|
10
|
Whittaker A, Goss DJ. Modeling the Structure and DAP5 Binding Site of a Cap-Independent Translational Enhancer mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.542187. [PMID: 37333283 PMCID: PMC10274784 DOI: 10.1101/2023.06.07.542187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cap-independent translation initiation in eukaryotes involves initiation factor (eIF) binding to a transcript's 5' untranslated region (UTR). Internal-ribosome-entry-site (IRES)-like cap-independent translation initiation does not require a free 5' end for eIF binding, as eIFs recruit the ribosome to or near the start codon. For viral mRNA, recruitment usually utilizes RNA structure, such as a pseudoknot. However, for cellular mRNA cap-independent translation, no consensus RNA structures or sequences have yet been identified for eIF binding. Fibroblast-growth factor 9 (FGF-9) is a member of a subset of mRNA that are cap-independently upregulated in breast and colorectal cancer cells using this IRES-like method. Death-associated factor 5 (DAP5), an eIF4GI homolog, binds directly to the FGF-9 5' UTR to initiate translation. However, the DAP5 binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which need a free 5' end to stimulate cap-independent translation. We propose that a particular RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5 binding site. Using SHAPE-seq, we modeled the FGF-9 5' UTR RNA's complex secondary and tertiary structure in vitro. Further, DAP5 footprinting and toeprinting experiments show DAP5's preference for one face of this structure. DAP5 binding appears to stabilize a higher-energy RNA fold that frees the 5' end to solvent and brings the start codon close to the recruited ribosome. Our findings offer a fresh perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
|
11
|
Monroy-Eklund A, Taylor C, Weidmann CA, Burch C, Laederach A. Structural analysis of MALAT1 long noncoding RNA in cells and in evolution. RNA (NEW YORK, N.Y.) 2023; 29:691-704. [PMID: 36792358 PMCID: PMC10159000 DOI: 10.1261/rna.079388.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Although not canonically polyadenylated, the long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is stabilized by a highly conserved 76-nt triple helix structure on its 3' end. The entire MALAT1 transcript is over 8000 nt long in humans. The strongest structural conservation signal in MALAT1 (as measured by covariation of base pairs) is in the triple helix structure. Primary sequence analysis of covariation alone does not reveal the degree of structural conservation of the entire full-length transcript, however. Furthermore, RNA structure is often context dependent; RNA binding proteins that are differentially expressed in different cell types may alter structure. We investigate here the in-cell and cell-free structures of the full-length human and green monkey (Chlorocebus sabaeus) MALAT1 transcripts in multiple tissue-derived cell lines using SHAPE chemical probing. Our data reveal levels of uniform structural conservation in different cell lines, in cells and cell-free, and even between species, despite significant differences in primary sequence. The uniformity of the structural conservation across the entire transcript suggests that, despite seeing covariation signals only in the triple helix junction of the lncRNA, the rest of the transcript's structure is remarkably conserved, at least in primates and across multiple cell types and conditions.
Collapse
Affiliation(s)
- Anais Monroy-Eklund
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Colin Taylor
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, University of Michigan Medical School, Center for RNA Biomedicine, Rogel Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Christina Burch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
12
|
Grzywacz K, Chełkowska-Pauszek A, Plucinska-Jankowska M, Żywicki M. The Evaluation of SHAPE-MaP RNA Structure Probing Protocols Reveals a Novel Role of Mn 2+ in the Detection of 2'-OH Adducts. Int J Mol Sci 2023; 24:ijms24097890. [PMID: 37175596 PMCID: PMC10178110 DOI: 10.3390/ijms24097890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chemical probing, for decades, has been one of the most popular tools for studying the secondary structure of RNA molecules. Recently, protocols for simultaneous analysis of multiple RNAs have been developed, enabling in vivo transcriptome-wide interrogation of the RNA structure dynamics. One of the most popular methods is the selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP). In this study, we describe the evaluation of this protocol by addressing the influence of the reverse transcription enzymes, buffer conditions, and chemical probes on the properties of the cDNA library and the quality of mutational profiling-derived structural signals. Our results reveal a SuperScript IV (SSIV) reverse transcriptase as a more efficient enzyme for mutational profiling of SHAPE adducts and shed new light on the role of Mn2+ cations in the modulation of SSIV readthrough efficiency.
Collapse
Affiliation(s)
- Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Agnieszka Chełkowska-Pauszek
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marianna Plucinska-Jankowska
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
13
|
Powell P, Bhardwaj U, Goss D. Eukaryotic initiation factor 4F promotes a reorientation of eukaryotic initiation factor 3 binding on the 5' and the 3' UTRs of barley yellow dwarf virus mRNA. Nucleic Acids Res 2022; 50:4988-4999. [PMID: 35446425 PMCID: PMC9122605 DOI: 10.1093/nar/gkac284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
Abstract
Viral mRNAs that lack a 5′ m7GTP cap and a 3′ poly-A tail rely on structural elements in their untranslated regions (UTRs) to form unique RNA-protein complexes that regulate viral translation. Recent studies of the barley yellow dwarf virus (BYDV) have revealed eukaryotic initiation factor 3 (eIF3) plays a significant role in facilitating communication between its 5′ and 3′ UTRs by binding both UTRs simultaneously. This report uses in vitro translation assays, fluorescence anisotropy binding assays, and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting to identify secondary structures that are selectively interacting with eIF3. SHAPE data also show that eIF3 alters its interaction with BYDV structures when another factor crucial for BYDV translation, eIF4F, is introduced by the 3′ BYDV translational enhancer (BTE). The observed BTE and eIF4F-induced shift of eIF3 position on the 5’ UTR and the translational effects of altering eIF3-binding structures (SLC and SLII) support a new model for BYDV translation initiation that requires the reorientation of eIF3 on BYDV UTRs. This eIF3 function in BYDV translation initiation is both reminiscent of and distinct from eIF3–RNA interactions found in other non-canonically translating mRNAs (e.g. HCV). This characterization of a new role in translation initiation expands the known functionality of eIF3 and may be broadly applicable to other non-canonically translating mRNAs.
Collapse
Affiliation(s)
- Paul Powell
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA
| | - Dixie Goss
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
14
|
De Bisschop G, Allouche D, Frezza E, Masquida B, Ponty Y, Will S, Sargueil B. Progress toward SHAPE Constrained Computational Prediction of Tertiary Interactions in RNA Structure. Noncoding RNA 2021; 7:71. [PMID: 34842779 PMCID: PMC8628965 DOI: 10.3390/ncrna7040071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.
Collapse
Affiliation(s)
- Grégoire De Bisschop
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Delphine Allouche
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
- Institut Necker-Enfants Malades (INEM), Inserm U1151, 156 rue de Vaugirard, CEDEX 15, 75015 Paris, France
| | - Elisa Frezza
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| | - Benoît Masquida
- Université de Strasbourg, CNRS UMR7156 GMGM, 67084 Strasbourg, France;
| | - Yann Ponty
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Sebastian Will
- Ecole Polytechnique, CNRS UMR 7161, LIX, 91120 Palaiseau, France; (Y.P.); (S.W.)
| | - Bruno Sargueil
- Université de Paris, CNRS, UMR 8038/CiTCoM, F-75006 Paris, France; (G.D.B.); (D.A.); (E.F.)
| |
Collapse
|
15
|
Mazzanti L, Alferkh L, Frezza E, Pasquali S. Biasing RNA Coarse-Grained Folding Simulations with Small-Angle X-ray Scattering Data. J Chem Theory Comput 2021; 17:6509-6521. [PMID: 34506136 DOI: 10.1021/acs.jctc.1c00441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA molecules can easily adopt alternative structures in response to different environmental conditions. As a result, a molecule's energy landscape is rough and can exhibit a multitude of deep basins. In the absence of a high-resolution structure, small-angle X-ray scattering data (SAXS) can narrow down the conformational space available to the molecule and be used in conjunction with physical modeling to obtain high-resolution putative structures to be further tested by experiments. Because of the low resolution of these data, it is natural to implement the integration of SAXS data into simulations using a coarse-grained representation of the molecule, allowing for much wider searches and faster evaluation of SAXS theoretical intensity curves than with atomistic models. We present here the theoretical framework and the implementation of a simulation approach based on our coarse-grained model HiRE-RNA combined with SAXS evaluations "on-the-fly" leading the simulation toward conformations agreeing with the scattering data, starting from partially folded structures as the ones that can easily be obtained from secondary structure prediction-based tools. We show on three benchmark systems how our approach can successfully achieve high-resolution structures with remarkable similarity with the native structure recovering not only the overall shape, as imposed by SAXS data, but also the details of initially missing base pairs.
Collapse
Affiliation(s)
- Liuba Mazzanti
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Lina Alferkh
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Elisa Frezza
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Samuela Pasquali
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| |
Collapse
|
16
|
Romero-López C, Berzal-Herranz A, Martínez-Guitarte JL, de la Fuente M. CriTER-A: A Novel Temperature-Dependent Noncoding RNA Switch in the Telomeric Transcriptome of Chironomus riparius. Int J Mol Sci 2021; 22:10310. [PMID: 34638651 PMCID: PMC8508857 DOI: 10.3390/ijms221910310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
The telomeric transcriptome of Chironomus riparius has been involved in thermal stress response. One of the telomeric transcripts, the so-called CriTER-A variant, is highly overexpressed upon heat shock. On the other hand, its homologous variant CriTER-B, which is the most frequently encoded noncoding RNA in the telomeres of C. riparius, is only slightly affected by thermal stress. Interestingly, both transcripts show high sequence homology, but less is known about their folding and how this could influence their differential behaviour. Our study suggests that CriTER-A folds as two different conformers, whose relative proportion is influenced by temperature conditions. Meanwhile, the CriTER-B variant shows only one dominant conformer. Thus, a temperature-dependent conformational equilibrium can be established for CriTER-A, suggesting a putative functional role of the telomeric transcriptome in relation to thermal stress that could rely on the structure-function relationship of the CriTER-A transcripts.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, 18016 Armilla, Granada, Spain;
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, 18016 Armilla, Granada, Spain;
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28230 Las Rozas, Madrid, Spain;
| | - Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia (UNED), 28230 Las Rozas, Madrid, Spain
| |
Collapse
|
17
|
Cao J, Xue Y. Characteristic chemical probing patterns of loop motifs improve prediction accuracy of RNA secondary structures. Nucleic Acids Res 2021; 49:4294-4307. [PMID: 33849076 PMCID: PMC8096282 DOI: 10.1093/nar/gkab250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
RNA structures play a fundamental role in nearly every aspect of cellular physiology and pathology. Gaining insights into the functions of RNA molecules requires accurate predictions of RNA secondary structures. However, the existing thermodynamic folding models remain less accurate than desired, even when chemical probing data, such as selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reactivities, are used as restraints. Unlike most SHAPE-directed algorithms that only consider SHAPE restraints for base pairing, we extract two-dimensional structural features encoded in SHAPE data and establish robust relationships between characteristic SHAPE patterns and loop motifs of various types (hairpin, internal, and bulge) and lengths (2-11 nucleotides). Such characteristic SHAPE patterns are closely related to the sugar pucker conformations of loop residues. Based on these patterns, we propose a computational method, SHAPELoop, which refines the predicted results of the existing methods, thereby further improving their prediction accuracy. In addition, SHAPELoop can provide information about local or global structural rearrangements (including pseudoknots) and help researchers to easily test their hypothesized secondary structures.
Collapse
Affiliation(s)
- Jingyi Cao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yi Xue
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
19
|
Zhang D, Li J, Chen SJ. IsRNA1: De Novo Prediction and Blind Screening of RNA 3D Structures. J Chem Theory Comput 2021; 17:1842-1857. [PMID: 33560836 DOI: 10.1021/acs.jctc.0c01148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling structures and functions of large ribonucleic acid (RNAs) especially with complicated topologies is highly challenging due to the inefficiency of large conformational sampling and the presence of complicated tertiary interactions. To address this problem, one highly promising approach is coarse-grained modeling. Here, following an iterative simulated reference state approach to decipher the correlations between different structural parameters, we developed a potent coarse-grained RNA model named as IsRNA1 for RNA studies. Molecular dynamics simulations in the IsRNA1 can predict the native structures of small RNAs from a sequence and fold medium-sized RNAs into near-native tertiary structures with the assistance of secondary structure constraints. A large-scale benchmark test on RNA 3D structure prediction shows that IsRNA1 exhibits improved performance for relatively large RNAs of complicated topologies, such as large stem-loop structures and structures containing long-range tertiary interactions. The advantages of IsRNA1 include the consideration of the correlations between the different structural variables, the appropriate characterization of canonical base-pairing and base-stacking interactions, and the better sampling for the backbone conformations. Moreover, a blind screening protocol was developed based on IsRNA1 to identify good structural models from a pool of candidates without prior knowledge of the native structures.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Jun Li
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
20
|
Gong P, Li X, Wu W, Cao L, Zhao P, Li X, Ren B, Li J, Zhang X. A Novel MicroRNA From the Translated Region of the Giardiavirus rdrp Gene Governs Virus Copy Number in Giardia duodenalis. Front Microbiol 2020; 11:569412. [PMID: 33329426 PMCID: PMC7719678 DOI: 10.3389/fmicb.2020.569412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Giardia duodenalis is an important zoonotic parasite that can cause human and animal diarrhea. Giardiavirus (GLV) is a double-stranded RNA virus in Totiviridae family, which specifically infects trophozoites of the primitive protozoan parasite G. duodenalis. However, the GLV infectious and the pathogenicity of the G. duodenalis still remain to be confirmed. The GLV genome is 6,277 bp, which encodes two proteins (Gag and Gag-Pol). The expression of Gag-Pol protein is regulated by a-1 ribosomal frameshift. In this report, we identified a novel microRNA (GLV miRNA1) from the GLV. Split ligation northern results showed that GLV miRNA1 is a special expression product of GLV, and the precursor was also identified by primer extension. Antisense sequence of the GLV miRNA1 could increase the copy number of virus in G. duodenalis. It suggests that GLV miRNA1 governs the copy number of Giardiavirus in G. duodenalis. Most importantly, the GLV miRNA1 lies at the translated region of the rdrp gene, which is the first case that microRNA locates in the translated region of a known protein. It may be implying a novel phenomenon for miRNA biogenesis.
Collapse
Affiliation(s)
- Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xianhe Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baoyan Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays 2020; 42:e2000027. [PMID: 33164244 DOI: 10.1002/bies.202000027] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Indexed: 12/13/2022]
Abstract
RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein-coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi-protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function-in many cases-is dependent on structural conservation rather than primary sequence conservation. Whereas for many proteins, structure and its associated function are closely connected, for lncRNAs, the structural domains that determine functionality and its interactome are still not well understood. Numerous approaches for analyzing the structural configuration of lncRNAs have been developed recently. Here, will provide an overview of major experimental approaches used in the field, and discuss the potential benefit of using combinatorial strategies to analyze lncRNA modes of action based on structural information.
Collapse
Affiliation(s)
- Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
23
|
Greenwood T, Heitsch CE. On the Problem of Reconstructing a Mixture of RNA Structures. Bull Math Biol 2020; 82:133. [PMID: 33029669 DOI: 10.1007/s11538-020-00804-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023]
Abstract
A growing number of RNA sequences are now known to exist in some distribution with two or more different stable structures. Recent algorithms attempt to reconstruct such mixtures using the list of nucleotides in a sequence in conjunction with auxiliary experimental footprinting data. In this paper, we demonstrate some challenges which remain in addressing this problem; in particular we consider the difficulty of reconstructing a mixture of two RNA structures across a spectrum of different relative abundances. Although progress has been made in identifying the stable structures present, it remains nontrivial to predict the relative abundance of each within the experimentally sampled mixture. Because the ratio of structures present can change depending on experimental conditions, it is the footprinting data-and not the sequence-which must encode information on changes in the relative abundance. Here, we use simulated experimental data to demonstrate that there exist RNA sequences and relative abundance combinations which cannot be recovered by current methods. We then prove that this is not a single exception, but rather part of the rule. In particular, we show, using a Nussinov-Jacobson model, that recovering the relative abundances is difficult for a large proportion of RNA structure pairs. Lastly, we use information theory to establish a framework for quantifying how useful auxiliary data is in predicting the relative abundance of a structure. Together, these results demonstrate that aspects of the problem of reconstructing a mixture of RNA structures from experimental data remain open.
Collapse
|
24
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
25
|
Saaidi A, Allouche D, Regnier M, Sargueil B, Ponty Y. IPANEMAP: integrative probing analysis of nucleic acids empowered by multiple accessibility profiles. Nucleic Acids Res 2020; 48:8276-8289. [PMID: 32735675 PMCID: PMC7470984 DOI: 10.1093/nar/gkaa607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
The manual production of reliable RNA structure models from chemical probing experiments benefits from the integration of information derived from multiple protocols and reagents. However, the interpretation of multiple probing profiles remains a complex task, hindering the quality and reproducibility of modeling efforts. We introduce IPANEMAP, the first automated method for the modeling of RNA structure from multiple probing reactivity profiles. Input profiles can result from experiments based on diverse protocols, reagents, or collection of variants, and are jointly analyzed to predict the dominant conformations of an RNA. IPANEMAP combines sampling, clustering and multi-optimization, to produce secondary structure models that are both stable and well-supported by experimental evidences. The analysis of multiple reactivity profiles, both publicly available and produced in our study, demonstrates the good performances of IPANEMAP, even in a mono probing setting. It confirms the potential of integrating multiple sources of probing data, informing the design of informative probing assays.
Collapse
Affiliation(s)
- Afaf Saaidi
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Delphine Allouche
- CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France
| | - Mireille Regnier
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France
| | - Yann Ponty
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| |
Collapse
|
26
|
Kladwang W, Topkar VV, Liu B, Rangan R, Hodges TL, Keane SC, Al-Hashimi H, Das R. Anomalous Reverse Transcription through Chemical Modifications in Polyadenosine Stretches. Biochemistry 2020; 59:2154-2170. [PMID: 32407625 DOI: 10.1021/acs.biochem.0c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thermostable reverse transcriptases are workhorse enzymes underlying nearly all modern techniques for RNA structure mapping and for the transcriptome-wide discovery of RNA chemical modifications. Despite their wide use, these enzymes' behaviors at chemical modified nucleotides remain poorly understood. Wellington-Oguri et al. recently reported an apparent loss of chemical modification within putatively unstructured polyadenosine stretches modified by dimethyl sulfate or 2' hydroxyl acylation, as probed by reverse transcription. Here, reanalysis of these and other publicly available data, capillary electrophoresis experiments on chemically modified RNAs, and nuclear magnetic resonance spectroscopy on (A)12 and variants show that this effect is unlikely to arise from an unusual structure of polyadenosine. Instead, tests of different reverse transcriptases on chemically modified RNAs and molecules synthesized with single 1-methyladenosines implicate a previously uncharacterized reverse transcriptase behavior: near-quantitative bypass through chemical modifications within polyadenosine stretches. All tested natural and engineered reverse transcriptases (MMLV; SuperScript II, III, and IV; TGIRT-III; and MarathonRT) exhibit this anomalous bypass behavior. Accurate DMS-guided structure modeling of the polyadenylated HIV-1 3' untranslated region requires taking into account this anomaly. Our results suggest that poly(rA-dT) hybrid duplexes can trigger an unexpectedly effective reverse transcriptase bypass and that chemical modifications in mRNA poly(A) tails may be generally undercounted.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ved V Topkar
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States.,Biophysics Program, Stanford University, Stanford, California 94305, United States.,Department of Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Zhang Z, Xiong P, Zhang T, Wang J, Zhan J, Zhou Y. Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity. Nucleic Acids Res 2020; 48:1451-1465. [PMID: 31872260 PMCID: PMC7026644 DOI: 10.1093/nar/gkz1192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/12/2022] Open
Abstract
Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.
Collapse
Affiliation(s)
- Zhe Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Peng Xiong
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, Anhui, P. R. China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
- School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
28
|
Lalaouna D, Baude J, Wu Z, Tomasini A, Chicher J, Marzi S, Vandenesch F, Romby P, Caldelari I, Moreau K. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res 2019; 47:9871-9887. [PMID: 31504767 PMCID: PMC6765141 DOI: 10.1093/nar/gkz728] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5′ end while its 3′ part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3′UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.
Collapse
Affiliation(s)
- David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Jessica Baude
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Arnaud Tomasini
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg-Esplanade, IBMC-CNRS, Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| |
Collapse
|
29
|
Abstract
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Jeffrey E Ehrhardt
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| |
Collapse
|
30
|
Zinshteyn B, Chan D, England W, Feng C, Green R, Spitale RC. Assaying RNA structure with LASER-Seq. Nucleic Acids Res 2019; 47:43-55. [PMID: 30476193 PMCID: PMC6326810 DOI: 10.1093/nar/gky1172] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/17/2018] [Indexed: 01/06/2023] Open
Abstract
Chemical probing methods are crucial to our understanding of the structure and function of RNA molecules. The majority of chemical methods used to probe RNA structure report on Watson–Crick pairing, but tertiary structure parameters such as solvent accessibility can provide an additional layer of structural information, particularly in RNA-protein complexes. Herein we report the development of Light Activated Structural Examination of RNA by high-throughput sequencing, or LASER-Seq, for measuring RNA structure in cells with deep sequencing. LASER relies on a light-generated nicotinoyl nitrenium ion to form covalent adducts with the C8 position of adenosine and guanosine. Reactivity is governed by the accessibility of C8 to the light-generated probe. We compare structure probing by RT-stop and mutational profiling (MaP), demonstrating that LASER can be integrated with both platforms for RNA structure analyses. We find that LASER reactivity correlates with solvent accessibility across the entire ribosome, and that LASER can be used to rapidly survey for ligand binding sites in an unbiased fashion. LASER has a particular advantage in this last application, as it readily modifies paired nucleotides, enabling the identification of binding sites and conformational changes in highly structured RNA.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University. Baltimore, MD 21205, USA
| | - Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University. Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
31
|
Conserved Pseudoknots in lncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Mol Cell 2019; 75:982-995.e9. [PMID: 31444106 PMCID: PMC6739425 DOI: 10.1016/j.molcel.2019.07.025] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.
Collapse
|
32
|
Giannetti CA, Busan S, Weidmann CA, Weeks KM. SHAPE Probing Reveals Human rRNAs Are Largely Unfolded in Solution. Biochemistry 2019; 58:3377-3385. [PMID: 31305988 DOI: 10.1021/acs.biochem.9b00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemical probing experiments, coupled with empirically determined free energy change relationships, can enable accurate modeling of the secondary structures of diverse and complex RNAs. A current frontier lies in modeling large and structurally heterogeneous transcripts, including complex eukaryotic RNAs. To validate and improve on experimentally driven approaches for modeling large transcripts, we obtained high-quality SHAPE data for the protein-free human 18S and 28S ribosomal RNAs (rRNAs). To our surprise, SHAPE-directed structure models for the human rRNAs poorly matched accepted structures. Analysis of predicted rRNA structures based on low-SHAPE and low-entropy (lowSS) metrics revealed that, whereas ∼75% of Escherichia coli rRNA sequences form well-determined lowSS secondary structure, only ∼40% of the human rRNAs do. Critically, regions of the human rRNAs that specifically fold into well-determined lowSS structures were modeled to high accuracy using SHAPE data. This work reveals that eukaryotic rRNAs are more unfolded than are those of prokaryotic rRNAs and indeed are largely unfolded overall, likely reflecting increased protein dependence for eukaryotic ribosome structure. In addition, those regions and substructures that are well-determined can be identified de novo and successfully modeled by SHAPE-directed folding.
Collapse
Affiliation(s)
- Catherine A Giannetti
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Steven Busan
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
33
|
Abstract
RNA performs and regulates a diverse range of cellular processes, with new functional roles being uncovered at a rapid pace. Interest is growing in how these functions are linked to RNA structures that form in the complex cellular environment. A growing suite of technologies that use advances in RNA structural probes, high-throughput sequencing and new computational approaches to interrogate RNA structure at unprecedented throughput are beginning to provide insights into RNA structures at new spatial, temporal and cellular scales.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Abstract
Understanding RNA-mediated functions requires a detailed characterization of the underlying RNA structure. In many cases, structure probing experiments are performed on RNA that has been "refolded" in some way, which may cause the conformation to differ from that of the native RNA. We used SHAPE-MaP (selective 2'-hydroxyl acylation analyzed by primer extension, read out by mutational profiling), to probe the structure of the Dengue virus (DENV) RNA genome after gentle extraction of the native RNA from intact virions (ex virion) and after heat denaturation and refolding. Comparison of mutiple SHAPE-informed structural features revealed that refolded RNA is more highly structured and samples fewer conformations than the ex virion RNA. Regions with similar structural features are generally those with low SHAPE reactivity and low Shannon entropy (lowSS regions), which correspond to elements with high levels of well-determined structure. This high-structure and low-entropy analysis framework, previously shown to make possible discovery of functional RNA structures, is thus now shown to allow de novo identification of structural elements in a refolded RNA that are likely to recapitulate RNA structures in the ex virion RNA state. Regions with less well-defined structures, which occurred more frequently in the more native-like ex virion RNA and may contain RNA switches, are challenging to recapitulate using refolded RNA.
Collapse
Affiliation(s)
- Elizabeth A Dethoff
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
35
|
Cheng MSQ, Su MXX, Wang MXN, Sun MZY, Ou TM. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions. Methods 2019; 167:124-133. [PMID: 31185274 DOI: 10.1016/j.ymeth.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis is critical to cell survival and translation regulation is essential to post-transcriptional gene expression regulation. Disorders of this process, particularly through RNA-binding proteins, is associated with the development and progression of a number of diseases, including cancers. However, the molecular mechanisms underlying the initiation of protein synthesis are intricate, making it difficult to find a drug that interferes with this process. Chemical probes are useful in elucidating the structures of RNA-protein complex and molecular mechanism of biological events. Moreover, some of these chemical probes show certain therapeutic benefits and can be further developed as leading compounds. Here, we will briefly review the general process and mechanism of protein synthesis, and emphasis on chemical probes in examples of probing the RNA structural changes and RNA-protein interactions. Moreover, the therapeutic potential of these probes is also discussed to give a comprehensive understanding.
Collapse
Affiliation(s)
- Miss Sui-Qi Cheng
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Xiao-Xuan Su
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China.
| | - Miss Xiao-Na Wang
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Zhi-Yin Sun
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Tian-Miao Ou
- Sun Yat-Sen University, School of Pharmaceutical Sciences, 132 Waihuan East Road, Guangzhou University City, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Busan S, Weidmann CA, Sengupta A, Weeks KM. Guidelines for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies. Biochemistry 2019; 58:2655-2664. [PMID: 31117385 DOI: 10.1021/acs.biochem.8b01218] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical probing is an important tool for characterizing the complex folded structures of RNA molecules, many of which play key cellular roles. Electrophilic SHAPE reagents create adducts at the 2'-hydroxyl position on the RNA backbone of flexible ribonucleotides with relatively little dependence on nucleotide identity. Strategies for adduct detection such as mutational profiling (MaP) allow accurate, automated calculation of relative adduct frequencies for each nucleotide in a given RNA or group of RNAs. A number of alternative reagents and adduct detection strategies have been proposed, especially for use in living cells. Here we evaluate five SHAPE reagents: three previously well-validated reagents 1M7 (1-methyl-7-nitroisatoic anhydride), 1M6 (1-methyl-6-nitroisatoic anhydride), and NMIA ( N-methylisatoic anhydride), one more recently proposed NAI (2-methylnicotinic acid imidazolide), and one novel reagent 5NIA (5-nitroisatoic anhydride). We clarify the importance of carefully designed software in reading out SHAPE experiments using massively parallel sequencing approaches. We examine SHAPE modification in living cells in diverse cell lines, compare MaP and reverse transcription-truncation as SHAPE adduct detection strategies, make recommendations for SHAPE reagent choice, and outline areas for future development.
Collapse
Affiliation(s)
- Steven Busan
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Arnab Sengupta
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
37
|
Frezza E, Courban A, Allouche D, Sargueil B, Pasquali S. The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study. Methods 2019; 162-163:108-127. [PMID: 31145972 DOI: 10.1016/j.ymeth.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Determination of the tridimensional structure of ribonucleic acid molecules is fundamental for understanding their function in the cell. A common method to investigate RNA structures of large molecules is the use of chemical probes such as SHAPE (2'-hydroxyl acylation analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is dependent on the local structural properties of each nucleotide. In order to understand the interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity of the probes, we performed all-atom molecular dynamics simulations on a set of RNA molecules for which both tridimensional structure and chemical probing data are available and we analyzed the correlations between geometrical parameters and the chemical reactivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the different chemical moieties but suggests that a combination of multiple parameters is needed to better understand the implications of the reactivity at the molecular level. This is also the case for DMS and CMCT for which the reactivity appears to be more complex than commonly accepted.
Collapse
Affiliation(s)
- Elisa Frezza
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Antoine Courban
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Delphine Allouche
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Bruno Sargueil
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Samuela Pasquali
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| |
Collapse
|
38
|
Eubanks CS, Zhao B, Patwardhan NN, Thompson RD, Zhang Q, Hargrove AE. Visualizing RNA Conformational Changes via Pattern Recognition of RNA by Small Molecules. J Am Chem Soc 2019; 141:5692-5698. [DOI: 10.1021/jacs.8b09665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
40
|
Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 2018; 115:11513-11518. [PMID: 30341219 DOI: 10.1073/pnas.1716689115] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.
Collapse
|
41
|
Kharytonchyk S, Brown JD, Stilger K, Yasin S, Iyer AS, Collins J, Summers MF, Telesnitsky A. Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function. J Mol Biol 2018; 430:2066-2079. [PMID: 29787767 PMCID: PMC6082134 DOI: 10.1016/j.jmb.2018.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022]
Abstract
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Joshua D Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Krista Stilger
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Saif Yasin
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Aishwarya S Iyer
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - John Collins
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States.
| |
Collapse
|
42
|
Ribosome-dependent conformational flexibility changes and RNA dynamics of IRES domains revealed by differential SHAPE. Sci Rep 2018; 8:5545. [PMID: 29615727 PMCID: PMC5882922 DOI: 10.1038/s41598-018-23845-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Internal ribosome entry site (IRES) elements are RNA regions that recruit the translation machinery internally. Here we investigated the conformational changes and RNA dynamics of a picornavirus IRES upon incubation with distinct ribosomal fractions. Differential SHAPE analysis of the free RNA showed that nucleotides reaching the final conformation on long timescales were placed at domains 4 and 5, while candidates for long-range interactions were located in domain 3. Salt-washed ribosomes induced a fast RNA local flexibility modification of domains 2 and 3, while ribosome-associated factors changed domains 4 and 5. Consistent with this, modeling of the three-dimensional RNA structure indicated that incubation of the IRES with native ribosomes induced a local rearrangement of the apical region of domain 3, and a reorientation of domains 4 and 5. Furthermore, specific motifs within domains 2 and 3 showed a decreased flexibility upon incubation with ribosomal subunits in vitro, and presence of the IRES enhanced mRNA association to the ribosomal subunits in whole cell lysates. The finding that RNA modules can provide direct IRES-ribosome interaction suggests that linking these motifs to additional sequences able to recruit trans-acting factors could be useful to design synthetic IRESs with novel activities.
Collapse
|
43
|
Woods CT, Laederach A. Classification of RNA structure change by 'gazing' at experimental data. Bioinformatics 2018; 33:1647-1655. [PMID: 28130241 PMCID: PMC5447233 DOI: 10.1093/bioinformatics/btx041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/20/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid structures that cause local or global conformational change are riboSNitches. Predicting riboSNitches is challenging, as it requires making two, albeit related, structure predictions. The data most often used to experimentally validate riboSNitch predictions is Selective 2' Hydroxyl Acylation by Primer Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative comparison of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was collected on electropherograms and change in structure was evaluated by 'gel gazing.' SHAPE data is now routinely collected with next generation sequencing and/or capillary sequencers. We aim to establish a classifier capable of simulating human 'gazing' by identifying features of the SHAPE profile that human experts agree 'looks' like a riboSNitch. Results We find strong quantitative agreement between experts when RNA scientists 'gaze' at SHAPE data and identify riboSNitches. We identify dynamic time warping and seven other features predictive of the human consensus. The classSNitch classifier reported here accurately reproduces human consensus for 167 mutant/WT comparisons with an Area Under the Curve (AUC) above 0.8. When we analyze 2019 mutant traces for 17 different RNAs, we find that features of the WT SHAPE reactivity allow us to improve thermodynamic structure predictions of riboSNitches. This is significant, as accurate RNA structural analysis and prediction is likely to become an important aspect of precision medicine. Availability and Implementation The classSNitch R package is freely available at http://classsnitch.r-forge.r-project.org . Contact alain@email.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chanin Tolson Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 2017; 44:1395-1410. [PMID: 27911722 DOI: 10.1042/bst20160075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases.
Collapse
|
45
|
Abstract
In addition to continuous rapid progress in RNA structure determination, probing, and biophysical studies, the past decade has seen remarkable advances in the development of a new generation of RNA folding theories and models. In this article, we review RNA structure prediction models and models for ion-RNA and ligand-RNA interactions. These new models are becoming increasingly important for a mechanistic understanding of RNA function and quantitative design of RNA nanotechnology. We focus on new methods for physics-based, knowledge-based, and experimental data-directed modeling for RNA structures and explore the new theories for the predictions of metal ion and ligand binding sites and metal ion-dependent RNA stabilities. The integration of these new methods with theories about the cellular environment effects in RNA folding, such as molecular crowding and cotranscriptional kinetic effects, may ultimately lead to an all-encompassing RNA folding model.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
46
|
Larman BC, Dethoff EA, Weeks KM. Packaged and Free Satellite Tobacco Mosaic Virus (STMV) RNA Genomes Adopt Distinct Conformational States. Biochemistry 2017; 56:2175-2183. [PMID: 28332826 DOI: 10.1021/acs.biochem.6b01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA genomes of viruses likely undergo multiple functionally important conformational changes during their replication cycles, changes that are poorly understood at present. We used two complementary in-solution RNA structure probing strategies (SHAPE-MaP and RING-MaP) to examine the structure of the RNA genome of satellite tobacco mosaic virus inside authentic virions and in a capsid-free state. Both RNA states feature similar three-domain architectures in which each major replicative function-translation, capsid coding, and genome synthesis-fall into distinct domains. There are, however, large conformational differences between the in-virion and capsid-free states, primarily in one arm of the central T domain. These data support a model in which the packaged capsid-bound RNA is constrained in a local high-energy conformation by the native capsid shell. The removal of the viral capsid then allows the RNA genome to relax into a more thermodynamically stable conformation. The RNA architecture of the central T domain thus likely changes during capsid assembly and disassembly and may play a role in genome packaging.
Collapse
Affiliation(s)
- Bridget C Larman
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
47
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
48
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
49
|
Romero-López C, Barroso-delJesus A, Berzal-Herranz A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Sci Rep 2017; 7:43415. [PMID: 28233845 PMCID: PMC5324077 DOI: 10.1038/srep43415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alicia Barroso-delJesus
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
50
|
Lian DS, Zhao SJ. Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease. Clin Chem Lab Med 2017; 54:707-38. [PMID: 26352354 DOI: 10.1515/cclm-2015-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023]
Abstract
Rapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.
Collapse
|