1
|
Peter L, Walotka L, Ptok J, Meyer C, Schüller D, Schaal H, Müller L. Bioinformatics-driven refinement of the commonly used TPI nonsense-mediated decay reporter system. RNA (NEW YORK, N.Y.) 2024; 31:32-42. [PMID: 39414360 DOI: 10.1261/rna.080134.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild-type and a premature termination codon-containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements (SREs) are removed, for example, by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to SREs or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
Collapse
Affiliation(s)
- Laura Peter
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Caroline Meyer
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Llanos-Ardaiz A, Lantero A, Neri L, Mauleón I, Ruiz de Galarreta M, Trigueros-Motos L, Weber ND, Ferrer V, Aldabe R, Gonzalez-Aseguinolaza G. In Vivo Selection of S/MAR Sequences to Favour AAV Episomal Maintenance in Dividing Cells. Int J Mol Sci 2024; 25:12734. [PMID: 39684442 DOI: 10.3390/ijms252312734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy has emerged as a promising alternative to liver transplantation for monogenic metabolic hepatic diseases. AAVs are non-integrative vectors that are maintained primarily as episomes in quiescent cells like adult hepatocytes. This quality, while advantageous from a safety perspective due to a decreased risk of insertional mutagenesis, becomes a disadvantage when treating dividing cells, as it inevitably leads to the loss of the therapeutic genome. This is a challenge for the treatment of hereditary liver diseases that manifest in childhood. One potential approach to avoid vector genome loss involves putting scaffold/matrix attachment regions (S/MARs) into the recombinant AAV (rAAV) genome to facilitate its replication together with the cellular genome. We found that the administration of AAVs carrying the human β-interferon S/MAR sequence to neonatal and infant mice resulted in the maintenance of higher levels of viral genomes. However, we also observed that its inclusion at the 3' end of the mRNA negatively impacted its stability, leading to reduced mRNA and protein levels. This effect can be partially attenuated by incorporating nonsense-mediated decay (NMD)-inhibitory sequences into the S/MAR containing rAAV genome, whose introduction may aid in the development of more efficient and longer-lasting gene therapy rAAV vectors.
Collapse
Affiliation(s)
- Andrea Llanos-Ardaiz
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | - Leire Neri
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Itsaso Mauleón
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | | | | | | | | | - Rafael Aldabe
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- DNA & RNA Medicine Division, Centre for Applied Medical Research (CIMA), University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
3
|
D'Incal CP, Cappuyns E, Choukri K, De Man K, Szrama K, Konings A, Bastini L, Van Meel K, Buys A, Gabriele M, Rizzuti L, Vitriolo A, Testa G, Mohn F, Bühler M, Van der Aa N, Van Dijck A, Kooy RF, Berghe WV. Tracing the invisible mutant ADNP protein in Helsmoortel-Van der Aa syndrome patients. Sci Rep 2024; 14:14710. [PMID: 38926592 PMCID: PMC11208605 DOI: 10.1038/s41598-024-65608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Elisa Cappuyns
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kaoutar Choukri
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin De Man
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristy Szrama
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anthony Konings
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lina Bastini
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kim Van Meel
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Amber Buys
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Ludovico Rizzuti
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Alessandro Vitriolo
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Giuseppe Testa
- Neurogenomics, Human Technopole, Viale Rita Levi-Montacini 1, 20157, Milan, Italy
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Van der Aa
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anke Van Dijck
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cognitive Genetics (COGNET) and Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Singh AK. Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1853. [PMID: 38741356 DOI: 10.1002/wrna.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
6
|
Tocchini C, Mango SE. An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans. PLoS Biol 2024; 22:e3002526. [PMID: 38427703 PMCID: PMC10936773 DOI: 10.1371/journal.pbio.3002526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Live imaging of RNA molecules constitutes an invaluable means to track the dynamics of mRNAs, but live imaging in Caenorhabditis elegans has been difficult to achieve. Endogenous transcripts have been observed in nuclei, but endogenous mRNAs have not been detected in the cytoplasm, and functional mRNAs have not been generated. Here, we have adapted live imaging methods to visualize mRNA in embryonic cells. We have tagged endogenous transcripts with MS2 hairpins in the 3' untranslated region (UTR) and visualized them after adjusting MS2 Coat Protein (MCP) expression. A reduced number of these transcripts accumulates in the cytoplasm, leading to loss-of-function phenotypes. In addition, during epithelial morphogenesis, MS2-tagged mRNAs for dlg-1 fail to associate with the adherens junction, as observed for untagged, endogenous mRNAs. These defects are reversed by inactivating the nonsense-mediated decay pathway. RNA accumulates in the cytoplasm, mutant phenotypes are rescued, and dlg-1 RNA associates with the adherens junction. These data suggest that MS2 repeats can induce the degradation of endogenous RNAs and alter their cytoplasmic distribution. Although our focus is RNAs expressed in epithelial cells during morphogenesis, we find that this method can be applied to other cell types and stages.
Collapse
|
7
|
Dana J, Dorval G, Martin CS, Belhous K, Levy R, Marlin S, De Bie I, Mautret-Godefroy M, Rausell A, Rio M, Boucher-Brischoux E, Attié-Bitach T, Boddaert N, Pingault V. Investigating genotype-to-phenotype correlation in CHARGE syndrome by deep phenotyping and multiparametric clustering. Clin Genet 2023; 104:466-471. [PMID: 37243350 DOI: 10.1111/cge.14363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
CHARGE syndrome, due to CHD7 pathogenic variations, is an autosomal dominant disorder characterized by a large spectrum of severity. Despite the great number of variations reported, no clear genotype-to-phenotype correlation has been reported. Unsupervised machine learning and clustering was undertaken using a retrospective cohort of 42 patients, after deep radiologic and clinical phenotyping, to establish genotype-phenotype correlation for CHD7-related CHARGE syndrome. It resulted in three clusters showing phenotypes of different severities. While no clear genotype-phenotype correlation appeared within the first two clusters, a single patient was outlying the cohort data (cluster 3) with the most atypical phenotype and the most distal frameshift variant in the gene. We added two other patients with similar distal pathogenic variants and observed a tendency toward mild and/or atypical phenotypes. We hypothesized that this finding could potentially be related to escaping nonsense mediated RNA decay, but found no evidence of such decay in vivo for any of the CHD7 pathogenic variation tested. This indicates that this milder phenotype may rather result from the production of a protein retaining all functional domains.
Collapse
Affiliation(s)
- Jérémy Dana
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Radiologie Pédiatrique, AP-HP, Hôpital Necker Enfants Malades, Université Paris cite, Paris, France
- Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Guillaume Dorval
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Christine Saint Martin
- Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kahina Belhous
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| | - Raphael Levy
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| | - Sandrine Marlin
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Isabelle De Bie
- Division de génétique médicale, département de médecine spécialisée, centre universitaire de santé McGill, Montréal, Québec, Canada
| | - Manon Mautret-Godefroy
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Antonio Rausell
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Marlène Rio
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Tania Attié-Bitach
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Nathalie Boddaert
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Radiologie Pédiatrique, AP-HP, Hôpital Necker Enfants Malades, Université Paris cite, Paris, France
| | - Véronique Pingault
- Université Paris Cité, Institut Imagine, Inserm U1163, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
8
|
Halbout M, Bury M, Hanet A, Gerin I, Graff J, Killian T, Gatto L, Vertommen D, Bommer GT. SUZ domain-containing proteins have multiple effects on nonsense-mediated decay target transcripts. J Biol Chem 2023; 299:105095. [PMID: 37507022 PMCID: PMC10470013 DOI: 10.1016/j.jbc.2023.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Collapse
Affiliation(s)
- Mathias Halbout
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Marina Bury
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Aoife Hanet
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Isabelle Gerin
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Julie Graff
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Theodore Killian
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Laurent Gatto
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
9
|
Muñoz O, Lore M, Jagannathan S. The long and short of EJC-independent nonsense-mediated RNA decay. Biochem Soc Trans 2023; 51:1121-1129. [PMID: 37145092 DOI: 10.1042/bst20221131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated RNA decay (NMD) plays a dual role as an RNA surveillance mechanism against aberrant transcripts containing premature termination codons and as a gene regulatory mechanism for normal physiological transcripts. This dual function is possible because NMD recognizes its substrates based on the functional definition of a premature translation termination event. An efficient mode of NMD target recognition involves the presence of exon-junction complexes (EJCs) downstream of the terminating ribosome. A less efficient, but highly conserved, mode of NMD is triggered by long 3' untranslated regions (UTRs) that lack EJCs (termed EJC-independent NMD). While EJC-independent NMD plays an important regulatory role across organisms, our understanding of its mechanism, especially in mammalian cells, is incomplete. This review focuses on EJC-independent NMD and discusses the current state of knowledge and factors that contribute to the variability in the efficiency of this mechanism.
Collapse
Affiliation(s)
- Oscar Muñoz
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
10
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
11
|
Nonsense-Mediated mRNA Decay as a Mediator of Tumorigenesis. Genes (Basel) 2023; 14:genes14020357. [PMID: 36833284 PMCID: PMC9956241 DOI: 10.3390/genes14020357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved and well-characterized biological mechanism that ensures the fidelity and regulation of gene expression. Initially, NMD was described as a cellular surveillance or quality control process to promote selective recognition and rapid degradation of erroneous transcripts harboring a premature translation-termination codon (PTC). As estimated, one-third of mutated and disease-causing mRNAs were reported to be targeted and degraded by NMD, suggesting the significance of this intricate mechanism in maintaining cellular integrity. It was later revealed that NMD also elicits down-regulation of many endogenous mRNAs without mutations (~10% of the human transcriptome). Therefore, NMD modulates gene expression to evade the generation of aberrant truncated proteins with detrimental functions, compromised activities, or dominant-negative effects, as well as by controlling the abundance of endogenous mRNAs. By regulating gene expression, NMD promotes diverse biological functions during development and differentiation, and facilitates cellular responses to adaptation, physiological changes, stresses, environmental insults, etc. Mutations or alterations (such as abnormal expression, degradation, post-translational modification, etc.) that impair the function or expression of proteins associated with the NMD pathway can be deleterious to cells and may cause pathological consequences, as implicated in developmental and intellectual disabilities, genetic defects, and cancer. Growing evidence in past decades has highlighted NMD as a critical driver of tumorigenesis. Advances in sequencing technologies provided the opportunity to identify many NMD substrate mRNAs in tumor samples compared to matched normal tissues. Interestingly, many of these changes are tumor-specific and are often fine-tuned in a tumor-specific manner, suggesting the complex regulation of NMD in cancer. Tumor cells differentially exploit NMD for survival benefits. Some tumors promote NMD to degrade a subset of mRNAs, such as those encoding tumor suppressors, stress response proteins, signaling proteins, RNA binding proteins, splicing factors, and immunogenic neoantigens. In contrast, some tumors suppress NMD to facilitate the expression of oncoproteins or other proteins beneficial for tumor growth and progression. In this review, we discuss how NMD is regulated as a critical mediator of oncogenesis to promote the development and progression of tumor cells. Understanding how NMD affects tumorigenesis differentially will pave the way for the development of more effective and less toxic, targeted therapeutic opportunities in the era of personalized medicine.
Collapse
|
12
|
Leon KE, Khalid MM, Flynn RA, Fontaine KA, Nguyen TT, Kumar GR, Simoneau CR, Tomar S, Jimenez-Morales D, Dunlap M, Kaye J, Shah PS, Finkbeiner S, Krogan NJ, Bertozzi C, Carette JE, Ott M. Nuclear accumulation of host transcripts during Zika Virus Infection. PLoS Pathog 2023; 19:e1011070. [PMID: 36603024 PMCID: PMC9847913 DOI: 10.1371/journal.ppat.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/18/2023] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.
Collapse
Affiliation(s)
- Kristoffer E. Leon
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Medical Scientist Training Program, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Mir M. Khalid
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Ryan A. Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Krystal A. Fontaine
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Thong T. Nguyen
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - G. Renuka Kumar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Camille R. Simoneau
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Sakshi Tomar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David Jimenez-Morales
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Mariah Dunlap
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Julia Kaye
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Priya S. Shah
- Departments of Chemical Engineering and Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Steven Finkbeiner
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, United States of America
- Departments of Neurology and Physiology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Carolyn Bertozzi
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
13
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
14
|
Schlautmann LP, Lackmann JW, Altmüller J, Dieterich C, Boehm V, Gehring N. Exon junction complex-associated multi-adapter RNPS1 nucleates splicing regulatory complexes to maintain transcriptome surveillance. Nucleic Acids Res 2022; 50:5899-5918. [PMID: 35640609 PMCID: PMC9178013 DOI: 10.1093/nar/gkac428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) is an RNA-binding multi-protein complex with critical functions in post-transcriptional gene regulation. It is deposited on the mRNA during splicing and regulates diverse processes including pre-mRNA splicing and nonsense-mediated mRNA decay (NMD) via various interacting proteins. The peripheral EJC-binding protein RNPS1 was reported to serve two insufficiently characterized functions: suppressing mis-splicing of cryptic splice sites and activating NMD in the cytoplasm. The analysis of transcriptome-wide effects of EJC and RNPS1 knockdowns in different human cell lines supports the conclusion that RNPS1 can moderately influence NMD activity, but is not a globally essential NMD factor. However, numerous aberrant splicing events strongly suggest that the main function of RNPS1 is splicing regulation. Rescue analyses revealed that the RRM and C-terminal domain of RNPS1 both contribute partially to regulate RNPS1-dependent splicing events. We defined the RNPS1 core interactome using complementary immunoprecipitations and proximity labeling, which identified interactions with splicing-regulatory factors that are dependent on the C-terminus or the RRM domain of RNPS1. Thus, RNPS1 emerges as a multifunctional splicing regulator that promotes correct and efficient splicing of different vulnerable splicing events via the formation of diverse splicing-promoting complexes.
Collapse
Affiliation(s)
- Lena P Schlautmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
15
|
Fritz SE, Ranganathan S, Wang CD, Hogg JR. An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. EMBO J 2022; 41:e108898. [PMID: 35403729 PMCID: PMC9108617 DOI: 10.15252/embj.2021108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.
Collapse
Affiliation(s)
- Sarah E Fritz
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Soumya Ranganathan
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Clara D Wang
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - J Robert Hogg
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
16
|
Chu V, Feng Q, Lim Y, Shao S. Selective destabilization of polypeptides synthesized from NMD-targeted transcripts. Mol Biol Cell 2021; 32:ar38. [PMID: 34586879 PMCID: PMC8694075 DOI: 10.1091/mbc.e21-08-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The translation of mRNAs that contain a premature termination codon (PTC) generates truncated proteins that may have toxic dominant negative effects. Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that degrades PTC-containing mRNAs to limit the production of truncated proteins. NMD activation requires a ribosome terminating translation at a PTC, but what happens to the polypeptides synthesized during the translation cycle needed to activate NMD is incompletely understood. Here, by establishing reporter systems that encode the same polypeptide sequence before a normal termination codon or PTC, we show that termination of protein synthesis at a PTC is sufficient to selectively destabilize polypeptides in mammalian cells. Proteasome inhibition specifically rescues the levels of nascent polypeptides produced from PTC-containing mRNAs within an hour, but also disrupts mRNA homeostasis within a few hours. PTC-terminated polypeptide destabilization is also alleviated by depleting the central NMD factor UPF1 or SMG1, the kinase that phosphorylates UPF1 to activate NMD, but not by inhibiting SMG1 kinase activity. Our results suggest that polypeptide degradation is linked to PTC recognition in mammalian cells and clarify a framework to investigate these mechanisms.
Collapse
Affiliation(s)
- Vincent Chu
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Qing Feng
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| |
Collapse
|
17
|
Baudu T, Parratte C, Perez V, Ancion M, Millevoi S, Hervouet E, Peigney A, Peixoto P, Overs A, Herfs M, Fraichard A, Guittaut M, Baguet A. The NMD Pathway Regulates GABARAPL1 mRNA during the EMT. Biomedicines 2021; 9:biomedicines9101302. [PMID: 34680418 PMCID: PMC8533616 DOI: 10.3390/biomedicines9101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (GABARAP, GABARAPL1, LC3B) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation. IHC experiments, which were conducted in a cohort of patients presenting lung adenocarcinomas, showed high GABARAPL1 and low UPF1 levels in EMT+ tumors. We observed increased levels of GABARAPL1 correlated with decreased levels of NMD factors in A549 cells in vitro. We then confirmed that GABARAPL1 mRNA was indeed targeted by the NMD in a 3′UTR-dependent manner and we identified four overlapping binding sites for UPF1 and eIF4A3 that are potentially involved in the recognition of this transcript by the NMD pathway. Our study suggests that 3′UTR-dependent NMD might be an important mechanism that is involved in the induction of autophagy and could represent a promising target in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Timothée Baudu
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
| | - Chloé Parratte
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
| | - Valérie Perez
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, B-4000 Liege, Belgium; (M.A.); (M.H.)
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, INSERM UMR 1037, Université Toulouse III-Paul Sabatier, 31330 Toulouse, France;
| | - Eric Hervouet
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- DImaCell platform, University Bourgogne Franche-Comté, 25000 Besançon, France
- EPIGENEXP platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Anne Peigney
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- EPIGENEXP platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Paul Peixoto
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- EPIGENEXP platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Alexis Overs
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- Laboratoire de Biochimie, CHU Besançon, 25000 Besançon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, B-4000 Liege, Belgium; (M.A.); (M.H.)
| | - Annick Fraichard
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
| | - Michaël Guittaut
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- DImaCell platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Aurélie Baguet
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, 25000 Besançon, France; (T.B.); (C.P.); (V.P.); (E.H.); (A.P.); (P.P.); (A.O.); (A.F.); (M.G.)
- DImaCell platform, University Bourgogne Franche-Comté, 25000 Besançon, France
- Correspondence:
| |
Collapse
|
18
|
Supek F, Lehner B, Lindeboom RG. To NMD or Not To NMD: Nonsense-Mediated mRNA Decay in Cancer and Other Genetic Diseases. Trends Genet 2021; 37:657-668. [DOI: 10.1016/j.tig.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
|
19
|
SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat Commun 2021; 12:3965. [PMID: 34172724 PMCID: PMC8233366 DOI: 10.1038/s41467-021-24046-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/30/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps. Transcriptome-wide analyses of SMG5-SMG7-depleted cells confirm exhaustive NMD inhibition resulting in massive transcriptomic alterations. Intriguingly, we find that the functionally underestimated SMG5 can substitute the role of SMG7 and individually activate NMD. Furthermore, the presence of either SMG5 or SMG7 is sufficient to support SMG6-mediated endonucleolysis of NMD targets. Our data support an improved model for NMD execution that features two-factor authentication involving UPF1 phosphorylation and SMG5-SMG7 recruitment to access SMG6 activity. Degradation of nonsense mediated mRNA decay (NMD) substrates is carried out by two seemingly independent pathways, SMG6-mediated endonucleolytic cleavage and/or SMG5-SMG7-induced accelerated deadenylation. Here the authors show that SMG5-SMG7 maintain NMD activity by permitting SMG6 activation.
Collapse
|
20
|
van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021; 19:e3001097. [PMID: 33596193 PMCID: PMC7888593 DOI: 10.1371/journal.pbio.3001097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adrian Reich
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Chiba T, Kurimoto R, Matsushima T, Ito Y, Nakamichi R, Lotz M, Asahara H. MicroRNA Expression Profiling, Target Identification, and Validation in Chondrocytes. Methods Mol Biol 2021; 2245:151-166. [PMID: 33315201 PMCID: PMC7817244 DOI: 10.1007/978-1-0716-1119-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
MicroRNAs (miRNAs) are a class of noncoding small RNAs, which play a critical role in various biological processes including musculoskeletal formation and arthritis pathogenesis via regulating target gene expressions, raising the potentially substantial effects on gene expression networks. Over 2000 miRNAs are encoded in the human genome and a single miRNA potentially targets hundreds of genes. To examine the expression and function of miRNAs in chondrocytes and arthritis pathogenesis, we describe the protocols for the current miRNA related experiments including miRNA expression profiling by (1) Next Generation Sequencing and by TaqMan Array system, (2) miRNA target prediction by TargetScan, (3) miRNA target screening by cell-based reporter library assay, and (4) miRNA and its target interaction by HITS-CLIP (high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation) in cartilage and chondrocyte research.
Collapse
Affiliation(s)
- Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Nakamichi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
23
|
Abstract
Viruses have evolved in tandem with the organisms that they infect. Afflictions of the plant and animal kingdoms with viral infections have forced the host organism to evolve new or exploit existing systems to develop the countermeasures needed to offset viral insults. As one example, nonsense-mediated mRNA decay, a cellular quality-control mechanism ensuring the translational fidelity of mRNA transcripts, has been used to restrict virus replication in both plants and animals. In response, viruses have developed a slew of means to disrupt or become insensitive to NMD, providing researchers with potential new reagents that can be used to more fully understand the NMD mechanism.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
24
|
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: From nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie 2020; 180:10-22. [PMID: 33132159 DOI: 10.1016/j.biochi.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins. Intriguingly, in humans, UPF3 exists as paralog proteins, UPF3A, and UPF3B. While UPF3 paralogs are traditionally known to be involved in the NMD pathway, there is a growing consensus that there are other critical cellular functions beyond quality control that are dictated by the UPF3 proteins. This review presents the current knowledge on the biochemical functions of UPF3 paralogs in diverse cellular processes, including NMD, translation, and genetic compensation response. We also discuss the contribution of the UPF3 paralogs in development and function of the central nervous system and germ cells. Furthermore, significant advances in the past decade have provided new perspectives on the implications of UPF3 paralogs in neurodevelopmental diseases. In this regard, genome- and transcriptome-wide sequencing analysis of patient samples revealed that loss of UPF3B is associated with brain disorders such as intellectual disability, autism, attention deficit hyperactivity disorder, and schizophrenia. Therefore, we further aim to provide an insight into the brain diseases associated with loss-of-function mutations of UPF3B.
Collapse
Affiliation(s)
- Bhagyashree Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
25
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
26
|
Lavysh D, Neu-Yilik G. UPF1-Mediated RNA Decay-Danse Macabre in a Cloud. Biomolecules 2020; 10:E999. [PMID: 32635561 PMCID: PMC7407380 DOI: 10.3390/biom10070999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs.
Collapse
Affiliation(s)
- Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
28
|
Leon K, Ott M. An 'Arms Race' between the Nonsense-mediated mRNA Decay Pathway and Viral Infections. Semin Cell Dev Biol 2020; 111:101-107. [PMID: 32553580 PMCID: PMC7295464 DOI: 10.1016/j.semcdb.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
The Nonsense-mediated mRNA Decay (NMD) pathway is an RNA quality control pathway conserved among eukaryotic cells. While historically thought to predominantly recognize transcripts with premature termination codons, it is now known that the NMD pathway plays a variety of roles, from homeostatic events to control of viral pathogens. In this review we highlight the reciprocal interactions between the host NMD pathway and viral pathogens, which have shaped both the host antiviral defense and viral pathogenesis.
Collapse
Affiliation(s)
- Kristoffer Leon
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
29
|
Torres-Fernández LA, Jux B, Bille M, Port Y, Schneider K, Geyer M, Mayer G, Kolanus W. The mRNA repressor TRIM71 cooperates with Nonsense-Mediated Decay factors to destabilize the mRNA of CDKN1A/p21. Nucleic Acids Res 2020; 47:11861-11879. [PMID: 31732746 PMCID: PMC7145526 DOI: 10.1093/nar/gkz1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.
Collapse
Affiliation(s)
- Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Maximilian Bille
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Yasmine Port
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Karin Schneider
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Center of Aptamer Research & Development; Chemical Biology & Chemical Genetics, Life & Medical Sciences Institute (LIMES). University of Bonn, 53121 Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
30
|
Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029-1042. [PMID: 31504789 DOI: 10.1093/nar/gkz734] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.
Collapse
Affiliation(s)
- Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. mBio 2020; 11:e00204-20. [PMID: 32156817 PMCID: PMC7064760 DOI: 10.1128/mbio.00204-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant's vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor.IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Muhammad Ilyas
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| |
Collapse
|
32
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
33
|
Beißel C, Grosse S, Krebber H. Dbp5/DDX19 between Translational Readthrough and Nonsense Mediated Decay. Int J Mol Sci 2020; 21:ijms21031085. [PMID: 32041247 PMCID: PMC7037193 DOI: 10.3390/ijms21031085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/21/2023] Open
Abstract
The DEAD-box protein Dbp5 (human DDX19) remodels RNA-protein complexes. Dbp5 functions in ribonucleoprotein export and translation termination. Termination occurs, when the ribosome has reached a stop codon through the Dbp5 mediated delivery of the eukaryotic termination factor eRF1. eRF1 contacts eRF3 upon dissociation of Dbp5, resulting in polypeptide chain release and subsequent ribosomal subunit splitting. Mutations in DBP5 lead to stop codon readthrough, because the eRF1 and eRF3 interaction is not controlled and occurs prematurely. This identifies Dbp5/DDX19 as a possible potent drug target for nonsense suppression therapy. Neurodegenerative diseases and cancer are caused in many cases by the loss of a gene product, because its mRNA contained a premature termination codon (PTC) and is thus eliminated through the nonsense mediated decay (NMD) pathway, which is described in the second half of this review. We discuss translation termination and NMD in the light of Dbp5/DDX19 and subsequently speculate on reducing Dbp5/DDX19 activity to allow readthrough of the PTC and production of a full-length protein to detract the RNA from NMD as a possible treatment for diseases.
Collapse
|
34
|
Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: Mechanisms and consequences of escape from nonsense-mediated RNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1560. [PMID: 31359616 PMCID: PMC10685860 DOI: 10.1002/wrna.1560] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control process that serves both as a mechanism to eliminate aberrant transcripts carrying premature stop codons, and to regulate expression of some normal transcripts. For a quality control process, NMD exhibits surprising variability in its efficiency across transcripts, cells, tissues, and individuals in both physiological and pathological contexts. Whether an aberrant RNA is spared or degraded, and by what mechanism, could determine the phenotypic outcome of a disease-causing mutation. Hence, understanding the variability in NMD is not only important for clinical interpretation of genetic variants but also may provide clues to identify novel therapeutic approaches to counter genetic disorders caused by nonsense mutations. Here, we discuss the current knowledge of NMD variability and the mechanisms that allow certain transcripts to escape NMD despite the presence of NMD-inducing features. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Michael C. Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
36
|
Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol 2019; 4:985-995. [PMID: 30833725 PMCID: PMC6533143 DOI: 10.1038/s41564-019-0375-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV) is an emerging mosquito-borne flavivirus, related to dengue virus and Zika virus. To gain insight into host pathways involved in WNV infection, we performed a systematic affinity-tag purification mass spectrometry (AP-MS) study to identify 259 WNV-interacting human proteins. RNAi screening revealed 26 genes that both interact with WNV proteins and influence WNV infection. We found that WNV, dengue and Zika virus capsids interact with a conserved subset of proteins that impact infection. These include the exon-junction complex (EJC) recycling factor, PYM1, which is antiviral against all three viruses. The EJC has roles in nonsense-mediated decay (NMD), and we found that both the EJC and NMD are antiviral and the EJC protein RBM8A directly binds WNV RNA. To counteract this, flavivirus infection inhibits NMD and the capsid-PYM1 interaction interferes with EJC protein function and localization. Depletion of PYM1 attenuates RBM8A binding to viral RNA, suggesting that WNV sequesters PYM1 to protect viral RNA from decay. Together, these data suggest a complex interplay between the virus and host in regulating NMD and the EJC.
Collapse
|
37
|
Karousis ED, Mühlemann O. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032862. [PMID: 29891560 DOI: 10.1101/cshperspect.a032862] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is arguably the best-studied eukaryotic messenger RNA (mRNA) surveillance pathway, yet fundamental questions concerning the molecular mechanism of target RNA selection remain unsolved. Besides degrading defective mRNAs harboring premature termination codons (PTCs), NMD also targets many mRNAs encoding functional full-length proteins. Thus, NMD impacts on a cell's transcriptome and is implicated in a range of biological processes that affect a broad spectrum of cellular homeostasis. Here, we focus on the steps involved in the recognition of NMD targets and the activation of NMD. We summarize the accumulating evidence that tightly links NMD to translation termination and we further discuss the recruitment and activation of the mRNA degradation machinery and the regulation of this complex series of events. Finally, we review emerging ideas concerning the mechanistic details of NMD activation and the potential role of NMD as a general surveyor of translation efficacy.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
38
|
Abstract
Despite intense scrutiny, the signals that determine whether a given RNA is degraded by the highly conserved and selective nonsense‐mediated RNA decay (NMD ) pathway remain murky. In this issue of The EMBO Journal , Kishor et al shed light on this issue by demonstrating that the RNA ‐binding protein, hnRNP L, protects a subset of RNA s from degradation by NMD . This mechanism is responsible for stabilizing the mRNA encoding the pro‐survival “oncogenic” protein, BCL ‐2, in B‐cell lymphoma.
Collapse
|
39
|
Kishor A, Ge Z, Hogg JR. hnRNP L-dependent protection of normal mRNAs from NMD subverts quality control in B cell lymphoma. EMBO J 2018; 38:embj.201899128. [PMID: 30530525 DOI: 10.15252/embj.201899128] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
The human nonsense-mediated mRNA decay pathway (NMD) performs quality control and regulatory functions within complex post-transcriptional regulatory networks. In addition to degradation-promoting factors, efficient and accurate detection of NMD substrates involves proteins that safeguard normal mRNAs. Here, we identify hnRNP L as a factor that protects mRNAs with NMD-inducing features including long 3'UTRs. Using biochemical and transcriptome-wide approaches, we provide evidence that the susceptibility of a given transcript to NMD can be modulated by its 3'UTR length and ability to recruit hnRNP L. Integrating these findings with the previously defined role of polypyrimidine tract binding protein 1 in NMD evasion enables enhanced prediction of transcript susceptibility to NMD. Unexpectedly, this system is subverted in B cell lymphomas harboring translocations that produce BCL2:IGH fusion mRNAs. CRISPR/Cas9 deletion of hnRNP L binding sites near the BCL2 stop codon reduces expression of the fusion mRNAs and induces apoptosis. Together, our data indicate that protection by hnRNP L overrides the presence of multiple 3'UTR introns, allowing these aberrant mRNAs to evade NMD and promoting BCL2 overexpression and neoplasia.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
May JP, Yuan X, Sawicki E, Simon AE. RNA virus evasion of nonsense-mediated decay. PLoS Pathog 2018; 14:e1007459. [PMID: 30452463 PMCID: PMC6277124 DOI: 10.1371/journal.ppat.1007459] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated decay (NMD) is a host RNA control pathway that removes aberrant transcripts with long 3' untranslated regions (UTRs) due to premature termination codons (PTCs) that arise through mutation or defective splicing. To maximize coding potential, RNA viruses often contain internally located stop codons that should also be prime targets for NMD. Using an agroinfiltration-based NMD assay in Nicotiana benthamiana, we identified two segments conferring NMD-resistance in the carmovirus Turnip crinkle virus (TCV) genome. The ribosome readthrough structure just downstream of the TCV p28 termination codon stabilized an NMD-sensitive reporter as did a frameshifting element from umbravirus Pea enation mosaic virus. In addition, a 51-nt unstructured region (USR) at the beginning of the TCV 3' UTR increased NMD-resistance 3-fold when inserted into an unrelated NMD-sensitive 3' UTR. Several additional carmovirus 3' UTRs also conferred varying levels of NMD resistance depending on the construct despite no sequence similarity in the analogous region. Instead, these regions displayed a marked lack of RNA structure immediately following the NMD-targeted stop codon. NMD-resistance was only slightly reduced by conversion of 19 pyrimidines in the USR to purines, but resistance was abolished when a 2-nt mutation was introduced downstream of the USR that substantially increased the secondary structure in the USR through formation of a stable hairpin. The same 2-nt mutation also enhanced the NMD susceptibility of a subgenomic RNA expressed independently of the genomic RNA. The conserved lack of RNA structure among most carmoviruses at the 5' end of their 3' UTR could serve to enhance subgenomic RNA stability, which would increase expression of the encoded capsid protein that also functions as the RNA silencing suppressor. These results demonstrate that the TCV genome has features that are inherently NMD-resistant and these strategies could be widespread among RNA viruses and NMD-resistant host mRNAs with long 3' UTRs.
Collapse
Affiliation(s)
- Jared P. May
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, P.R.China
| | - Erika Sawicki
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| |
Collapse
|
41
|
Seko Y, Iwanami M, Miyamoto-Matsui K, Takita S, Aoi N, Umezawa A, Kato S. The manner of decay of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts derived from retinitis pigmentosa patients depends on the type of mutation. Stem Cell Res Ther 2018; 9:279. [PMID: 30359287 PMCID: PMC6202841 DOI: 10.1186/s13287-018-1016-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
Background Generation of induced photoreceptors holds promise for in vitro modeling of intractable retinal diseases. Retinitis pigmentosa is an inherited retinal dystrophy that leads to visual impairment. The EYS gene was reported to be the most common gene responsible for autosomal recessive retinitis pigmentosa (arRP). arRP with defects in the EYS gene is denoted by “EYS-RP”. We previously established a “redirect differentiation” method to generate photosensitive photoreceptor-like cells from commercially available human dermal fibroblasts. In this study, we produced photoreceptor-like cells from dermal fibroblasts of EYS-RP patients as a replacement for the degenerative retinas using “redirect differentiation”. We analyzed defective transcripts of the EYS gene in these cells to elucidate phenotypes of EYS-RP patients because decay of transcripts was previously suggested to be involved in phenotypic variation associated with diseases. Methods Using “redirect differentiation” by CRX, RAX, NeuroD and OTX2, we made photoreceptor-directed fibroblasts derived from three normal volunteers and three EYS-RP patients with homozygous or heterozygous mutations. We tested inducible expression of the photoreceptor-specific genes (blue opsin, rhodopsin, recoverin, S-antigen, PDE6C) in these cells. We then analyzed transcripts derived from three different types of the defective EYS gene, c.1211dupA, c.4957dupA and c.8805C > A, expressed in these cells by RT-PCR and sequencing. Results Photoreceptor-specific genes including the EYS gene were up-regulated in all the photoreceptor-directed fibroblasts tested. However, expression levels of defective transcripts were markedly different depending on the type of mutation. Transcripts derived from these three defective genes were scarcely detected, expressed at a lower level, and expressed at almost the same level as in normal volunteers, respectively. Conclusions Expression levels of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts of EYS-RP patients vary depending on the type of mutation. Variation in expression levels in transcripts having c.1211dupA, c.4957dupA and c.8805C > A suggests that almost complete nonsense-mediated mRNA decay (NMD), partial NMD and escape from NMD occurred for these transcripts, respectively. To determine the relationship with phenotypic variations in EYS-RP patients, more samples are needed. The present study also suggests that the redirect differentiation method could be a valuable tool for disease modeling despite some limitations. Electronic supplementary material The online version of this article (10.1186/s13287-018-1016-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuko Seko
- Sensory Functions Section, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan. .,Department of Ophthalmology, Hospital, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan.
| | - Masaki Iwanami
- Department of Ophthalmology, Hospital, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan.,Present Address: Iwanami Eye Clinic, 7-1-3, Tsuchihashi, Miyamae-ku Kawasaki-shi, Kanagawa, 216-0005, Japan
| | - Kiyoko Miyamoto-Matsui
- Sensory Functions Section, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan
| | - Shimpei Takita
- Sensory Functions Section, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan
| | - Noriyuki Aoi
- Department of Plastic, Oral and Maxillofacial Surgery, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Itabashi, 173-8605, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya, 157-8535, Japan
| | - Seishi Kato
- Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, 359-8555, Japan
| |
Collapse
|
42
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
43
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
44
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
45
|
Katoh-Fukui Y, Yatsuga S, Shima H, Hattori A, Nakamura A, Okamura K, Yanagi K, Iso M, Kaname T, Matsubara Y, Fukami M. An unclassified variant of CHD7 activates a cryptic splice site in a patient with CHARGE syndrome. Hum Genome Var 2018; 5:18006. [PMID: 29531775 PMCID: PMC5842149 DOI: 10.1038/hgv.2018.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022] Open
Abstract
CHARGE syndrome is a rare autosomal dominant disease that is typically caused by heterozygous CHD7 mutations. A de novo variant in a CHD7 splicing acceptor site (NM_017780.3:c.7165-4A>G) was identified in a Japanese boy with CHARGE syndrome. This variant has been considered to be an "unclassified variant" due to its position outside the consensus splicing sites. In this study, abnormal splicing derived from this known variant was confirmed by cDNA sequencing.
Collapse
Affiliation(s)
- Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuichi Yatsuga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Hirohito Shima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Manami Iso
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
46
|
Vasileiou G, Vergarajauregui S, Endele S, Popp B, Büttner C, Ekici AB, Gerard M, Bramswig NC, Albrecht B, Clayton-Smith J, Morton J, Tomkins S, Low K, Weber A, Wenzel M, Altmüller J, Li Y, Wollnik B, Hoganson G, Plona MR, Cho MT, Thiel CT, Lüdecke HJ, Strom TM, Calpena E, Wilkie AOM, Wieczorek D, Engel FB, Reis A. Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome. Am J Hum Genet 2018; 102:468-479. [PMID: 29429572 DOI: 10.1016/j.ajhg.2018.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity.
Collapse
Affiliation(s)
- Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marion Gerard
- Génétique Clinique, Centre Hospitalier Universitaire de Caen, Caen 14000, France
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Susan Tomkins
- Clinical Genetics Service, University Hospitals of Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Karen Low
- Clinical Genetics Service, University Hospitals of Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Astrid Weber
- Merseyside and Cheshire Clinical Genetics Service, Liverpool Women's NHS Foundation Hospital Trust, Liverpool L8 7SS, UK
| | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - George Hoganson
- Pediatric Genetics, University of Illinois Hospital, Chicago, IL 60612, USA
| | - Maria-Renée Plona
- Pediatric Genetics, University of Illinois Hospital, Chicago, IL 60612, USA
| | | | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany; Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany; Institut für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
47
|
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition. Nat Commun 2018; 9:431. [PMID: 29382845 PMCID: PMC5789848 DOI: 10.1038/s41467-017-02793-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022] Open
Abstract
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome. UPF1 is a central protein in nonsense-mediated mRNA decay (NMD), but contribution of its RNA processivity to NMD is unclear. Here, the authors show how the retroviral Tax protein interacts with and inhibits UPF1, and demonstrate that UPF1’s translocase activity contributes to NMD.
Collapse
|
48
|
Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 2018; 50:175-185. [PMID: 28115040 PMCID: PMC5437961 DOI: 10.5483/bmbrep.2017.50.4.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.
Collapse
Affiliation(s)
- Fabrice Lejeune
- University Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies; CNRS, UMR 8161, 3Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
49
|
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2017; 45:39-55. [PMID: 29282598 DOI: 10.1007/s11033-017-4139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.
Collapse
Affiliation(s)
- Puneet Gupta
- Harvard College, Harvard University, Cambridge, MA, 02138, USA.,School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Yan-Ruide Li
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA. .,College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Shelby MV. Waardenburg Syndrome Expression and Penetrance. JOURNAL OF RARE DISEASES RESEARCH & TREATMENT 2017; 2:31-40. [PMID: 30854529 PMCID: PMC6404762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Through a combination of in silico research and reviews of previous work, mechanisms by which nonsense-mediated mRNA decay (NMD) affects the inheritance and expressivity of Waardenburg syndrome is realized. While expressivity and inheritance both relate to biochemical processes underlying a gene's function, this research explores how alternative splicing and premature termination codons (PTC's) within mRNAs mutated in the disease are either translated into deleterious proteins or decayed to minimize expression of altered proteins. Elucidation of splice variants coupled with NMD perpetuating the various symptoms and inheritance patterns of this disease represent novel findings. By investigating nonsense mutations that lie within and outside the NMD boundary of these transcripts we can evaluate the effects of protein truncation versus minimized protein expression on the variable expressivity found between Type I and Type III Waardenburg syndrome, PAX3, while comparatively evaluating EDN3 and SOX10's role in inheritance of Type IV subtypes of the disease. This review will demonstrate how alternative splicing perpetuates or limits NMD activity by way of PTC positioning, thereby affecting the presentation of Waardenburg syndrome.
Collapse
Affiliation(s)
- Myeshia V. Shelby
- Department of Genetics and Human Genetics, Howard University Graduate School, Howard University, USA
| |
Collapse
|