1
|
Li Y, Li Z, Yan P, Hua C, Kong J, Wu W, Cui Y, Duan Y, Li S, Li G, Ji S, Chen Y, Zhao Y, Yang P, Hu C, Lu M, Chen M, Xiao Y. Antiviral signaling of a type III CRISPR-associated deaminase. Science 2025; 387:eadr0393. [PMID: 39666823 DOI: 10.1126/science.adr0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Prokaryotes have evolved diverse defense strategies against viral infection, including foreign nucleic acid degradation by CRISPR-Cas systems and DNA and RNA synthesis inhibition through nucleotide pool depletion. Here, we report an antiviral mechanism of type III CRISPR-Cas-regulated adenosine triphosphate (ATP) depletion in which ATP is converted into inosine triphosphate (ITP) by CRISPR-Cas-associated adenosine deaminase (CAAD) upon activation by either cA4 or cA6, followed by hydrolysis into inosine monophosphate (IMP) by Nudix hydrolase, ultimately resulting in cell growth arrest. The cryo-electron microscopy structures of CAAD in its apo and activated forms, together with biochemical evidence, revealed how cA4 or cA6 binds to the CRISPR-associated Rossmann fold (CARF) domain and abrogates CAAD autoinhibition, inducing substantial conformational changes that reshape the structure of CAAD and induce its deaminase activity. Our results reveal the mechanism of a CRISPR-Cas-regulated ATP depletion antiviral strategy.
Collapse
Affiliation(s)
- Yutao Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhaoxing Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| | - Purui Yan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chenyang Hua
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jianping Kong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wanqian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yurong Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Guanglei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Shunli Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yucheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Peng Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| | - Chunyi Hu
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meirong Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China
| |
Collapse
|
2
|
Johnson S, Weigele P, Fomenkov A, Ge A, Vincze A, Eaglesham J, Roberts R, Sun Z. Domainator, a flexible software suite for domain-based annotation and neighborhood analysis, identifies proteins involved in antiviral systems. Nucleic Acids Res 2025; 53:gkae1175. [PMID: 39657740 PMCID: PMC11754643 DOI: 10.1093/nar/gkae1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The availability of large databases of biological sequences presents an opportunity for in-depth exploration of gene diversity and function. Bacterial defense systems are a rich source of diverse but difficult to annotate genes with biotechnological applications. In this work, we present Domainator, a flexible and modular software suite for domain-based gene neighborhood and protein search, extraction and clustering. We demonstrate the utility of Domainator through three examples related to bacterial defense systems. First, we cluster CRISPR-associated Rossman fold (CARF) containing proteins with difficult to annotate effector domains, classifying most of them as likely transcriptional regulators and a subset as likely RNases. Second, we extract and cluster P4-like phage satellite defense hotspots, identify an abundant variant of Lamassu defense systems and demonstrate its in vivo activity against several T-even phages. Third, we integrate a protein language model into Domainator and use it to identify restriction endonucleases with low similarity to known reference sequences, validating the activity of one example in vitro. Domainator is made available as an open-source package with detailed documentation and usage examples.
Collapse
Affiliation(s)
| | | | | | - Andrew Ge
- New England Biolabs Inc., Ipswich, MA 01938, USA
| | - Anna Vincze
- New England Biolabs Inc., Ipswich, MA 01938, USA
| | | | | | - Zhiyi Sun
- New England Biolabs Inc., Ipswich, MA 01938, USA
| |
Collapse
|
3
|
Baca CF, Majumder P, Hickling JH, Ye L, Teplova M, Brady SF, Patel DJ, Marraffini LA. The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity. Cell 2024; 187:7183-7195.e24. [PMID: 39471810 PMCID: PMC11645235 DOI: 10.1016/j.cell.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Type III CRISPR systems provide immunity against genetic invaders through the production of cyclic oligo-adenylate (cAn) molecules that activate effector proteins that contain CRISPR-associated Rossman fold (CARF) domains. Here, we characterized the function and structure of an effector in which the CARF domain is fused to an adenosine deaminase domain, CRISPR-associated adenosine deaminase 1 (Cad1). We show that upon binding of cA4 or cA6 to its CARF domain, Cad1 converts ATP to ITP, both in vivo and in vitro. Cryoelectron microscopy (cryo-EM) structural studies on full-length Cad1 reveal an hexameric assembly composed of a trimer of dimers, with bound ATP at inter-domain sites required for activity and ATP/ITP within deaminase active sites. Upon synthesis of cAn during phage infection, Cad1 activation leads to a growth arrest of the host that prevents viral propagation. Our findings reveal that CRISPR-Cas systems employ a wide range of molecular mechanisms beyond nucleic acid degradation to provide adaptive immunity in prokaryotes.
Collapse
Affiliation(s)
- Christian F Baca
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Puja Majumder
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James H Hickling
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Linzhi Ye
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Aviram N, Shilton AK, Lyn NG, Reis BS, Brivanlou A, Marraffini LA. Cas10 relieves host growth arrest to facilitate spacer retention during type III-A CRISPR-Cas immunity. Cell Host Microbe 2024; 32:2050-2062.e6. [PMID: 39626678 PMCID: PMC11708336 DOI: 10.1016/j.chom.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Cells from all kingdoms of life can enter growth arrest in unfavorable environmental conditions. Key to this process are mechanisms enabling recovery from this state. Staphylococcal type III-A CRISPR-Cas loci encode the Cas10 complex that uses a guide RNA to locate complementary viral transcripts and start an immune response. When the target sequence is expressed late in the viral lytic cycle, defense requires the activity of Csm6, a non-specific RNase that inhibits the growth of the infected cell. How Csm6 protects from infection and whether growth can be restored is not known. Here, we show that growth arrest provides immunity at the population level, preventing viral replication and allowing uninfected cells to propagate. In addition, the ssDNase activity of Cas10 is required for the regrowth of a subset of the arrested cells and the recovery of the infected host, presumably ending the immune response through degradation of the viral DNA.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | - Amanda K Shilton
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Nia G Lyn
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Amir Brivanlou
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| |
Collapse
|
5
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Johnson K, Garrett S, Noble-Molnar C, Elgarhi H, Woodside W, Cooper C, Zhang X, Olson S, Catchpole R, Graveley B, Terns M. Selective degradation of phage RNAs by the Csm6 ribonuclease provides robust type III CRISPR immunity in Streptococcus thermophilus. Nucleic Acids Res 2024; 52:12549-12564. [PMID: 39360614 PMCID: PMC11551762 DOI: 10.1093/nar/gkae856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Type III CRISPR immune systems bind viral or plasmid RNA transcripts and activate Csm3/Cmr4 and Cas10 nucleases to uniquely cleave both invader RNA and DNA, respectively. Additionally, type III effector complexes generate cyclic oligoadenylate (cOA) signaling molecules to activate trans-acting, auxiliary Csm6/Csx1 ribonucleases, previously proposed to be non-specific in their in vivo RNA cleavage preference. Despite extensive in vitro studies, the nuclease requirements of type III systems in their native contexts remain poorly understood. Here we systematically investigated the in vivo roles for immunity of each of the three Streptococcus thermophilus (Sth) type III-A Cas nucleases and cOA signaling by challenging nuclease defective mutant strains with plasmid and phage infections. Our results reveal that RNA cleavage by Csm6 is both sufficient and essential for maintaining wild-type levels of immunity. Importantly, Csm6 RNase activity leads to immunity against even high levels of phage challenge without causing host cell dormancy or death. Transcriptomic analyses during phage infection indicated Csm6-mediated and crRNA-directed preferential cleavage of phage transcripts. Our findings highlight the critical role of Csm6 RNase activity in type III immunity and demonstrate specificity for invader RNA transcripts by Csm6 to ensure host cell survival upon phage infection.
Collapse
Affiliation(s)
- Katie A Johnson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | | | - Hanna A Elgarhi
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Walter T Woodside
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Clare Cooper
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Xinfu Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Ryan J Catchpole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Zhang D, Du L, Gao H, Yuan C, Lin Z. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system. Nucleic Acids Res 2024; 52:8419-8430. [PMID: 38967023 PMCID: PMC11317161 DOI: 10.1093/nar/gkae569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
In the type III CRISPR system, cyclic oligoadenylate (cOA) molecules act as second messengers, activating various promiscuous ancillary nucleases that indiscriminately degrade host and viral DNA/RNA. Conversely, ring nucleases, by specifically cleaving cOA molecules, function as off-switches to protect host cells from dormancy or death, and allow viruses to counteract immune responses. The fusion protein Csx1-Crn2, combining host ribonuclease with viral ring nuclease, represents a unique self-limiting ribonuclease family. Here, we describe the structures of Csx1-Crn2 from the organism of Marinitoga sp., in both its full-length and truncated forms, as well as in complex with cA4. We show that Csx1-Crn2 operates as a homo-tetramer, a configuration crucial for preserving the structural integrity of the HEPN domain and ensuring effective ssRNA cleavage. The binding of cA4 to the CARF domain triggers significant conformational changes across the CARF, HTH, and into the HEPN domains, leading the two R-X4-6-H motifs to form a composite catalytic site. Intriguingly, an acetate ion was found to bind at this composite site by mimicking the scissile phosphate. Further molecular docking analysis reveals that the HEPN domain can accommodate a single ssRNA molecule involving both R-X4-6-H motifs, underscoring the importance of HEPN domain dimerization for its activation.
Collapse
Affiliation(s)
- Danping Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Haishan Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Hoikkala V, Graham S, White MF. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families. Nucleic Acids Res 2024; 52:7129-7141. [PMID: 38808661 PMCID: PMC11229360 DOI: 10.1093/nar/gkae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Recognition of RNA from invading mobile genetic elements (MGE) prompts type III CRISPR systems to activate an HD nuclease domain and/or a nucleotide cyclase domain in the Cas10 subunit, eliciting an immune response. The cyclase domain can generate a range of nucleotide second messengers, which in turn activate a diverse family of ancillary effector proteins. These provide immunity by non-specific degradation of host and MGE nucleic acids or proteins, perturbation of membrane potentials, transcriptional responses, or the arrest of translation. The wide range of nucleotide activators and downstream effectors generates a complex picture that is gradually being resolved. Here, we carry out a global bioinformatic analysis of type III CRISPR loci in prokaryotic genomes, defining the relationships of Cas10 proteins and their ancillary effectors. Our study reveals that cyclic tetra-adenylate is by far the most common signalling molecule used and that many loci have multiple effectors. These typically share the same activator and may work synergistically to combat MGE. We propose four new candidate effector protein families and confirm experimentally that the Csm6-2 protein, a highly diverged, fused Csm6 effector, is a ribonuclease activated by cyclic hexa-adenylate.
Collapse
Affiliation(s)
- Ville Hoikkala
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
9
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
10
|
Gapińska M, Zajko W, Skowronek K, Figiel M, Krawczyk P, Egorov A, Dziembowski A, Johansson MO, Nowotny M. Structure-functional characterization of Lactococcus AbiA phage defense system. Nucleic Acids Res 2024; 52:4723-4738. [PMID: 38587192 PMCID: PMC11077055 DOI: 10.1093/nar/gkae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.
Collapse
Affiliation(s)
- Marta Gapińska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
11
|
Aviram N, Shilton AK, Lyn NG, Reis BS, Brivanlou A, Marraffini LA. The Cas10 nuclease activity relieves host dormancy to facilitate spacer acquisition and retention during type III-A CRISPR immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579731. [PMID: 38405743 PMCID: PMC10888962 DOI: 10.1101/2024.02.11.579731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A hallmark of CRISPR immunity is the acquisition of short viral DNA sequences, known as spacers, that are transcribed into guide RNAs to recognize complementary sequences. The staphylococcal type III-A CRISPR-Cas system uses guide RNAs to locate viral transcripts and start a response that displays two mechanisms of immunity. When immunity is triggered by an early-expressed phage RNA, degradation of viral ssDNA can cure the host from infection. In contrast, when the RNA guide targets a late-expressed transcript, defense requires the activity of Csm6, a non-specific RNase. Here we show that Csm6 triggers a growth arrest of the host that provides immunity at the population level which hinders viral propagation to allow the replication of non-infected cells. We demonstrate that this mechanism leads to defense against not only the target phage but also other viruses present in the population that fail to replicate in the arrested cells. On the other hand, dormancy limits the acquisition and retention of spacers that trigger it. We found that the ssDNase activity of type III-A systems is required for the re-growth of a subset of the arrested cells, presumably through the degradation of the phage DNA, ending target transcription and inactivating the immune response. Altogether, our work reveals a built-in mechanism within type III-A CRISPR-Cas systems that allows the exit from dormancy needed for the subsistence of spacers that provide broad-spectrum immunity.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Amanda K Shilton
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Nia G Lyn
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Amir Brivanlou
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, the Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
12
|
Jungfer K, Sigg A, Jinek M. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2. Nucleic Acids Res 2024; 52:462-473. [PMID: 38033326 PMCID: PMC10783487 DOI: 10.1093/nar/gkad1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.
Collapse
Affiliation(s)
- Kenny Jungfer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Annina Sigg
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Du L, Zhu Q, Lin Z. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate. EMBO J 2024; 43:304-315. [PMID: 38177499 PMCID: PMC10897365 DOI: 10.1038/s44318-023-00017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Type III CRISPR systems are innate immune systems found in bacteria and archaea, which produce cyclic oligoadenylate (cOA) second messengers in response to viral infections. In these systems, Csm6 proteins serve as ancillary nucleases that degrade single-stranded RNA (ssRNA) upon activation by cOA. In addition, Csm6 proteins also possess cOA-degrading activity as an intrinsic off-switch to avoid degradation of host RNA and DNA that would eventually lead to cell dormancy or cell death. Here, we present the crystal structures of Thermus thermophilus (Tt) Csm6 alone, and in complex with cyclic tetra-adenylate (cA4) in both pre- and post-cleavage states. These structures establish the molecular basis of the long-range allosteric activation of TtCsm6 ribonuclease by cA4. cA4 binding induces significant conformational changes, including closure of the CARF domain, dimerization of the HTH domain, and reorganization of the R-X4-6-H motif within the HEPN domain. The cleavage of cA4 by the CARF domain restores each domain to a conformation similar to its apo state. Furthermore, we have identified hyperactive TtCsm6 variants that exhibit sustained cA4-activated RNase activity, showing great promise for their applications in genome editing and diagnostics.
Collapse
Affiliation(s)
- Liyang Du
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Qinwei Zhu
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
| |
Collapse
|
14
|
Lin J, Alfastsen L, Bhoobalan-Chitty Y, Peng X. Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein. Cell Host Microbe 2023; 31:1837-1849.e5. [PMID: 37909049 DOI: 10.1016/j.chom.2023.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Despite a wide presence of type III clustered regularly interspaced short palindromic repeats, CRISPR-associated (CRISPR-Cas) in archaea and bacteria, very few anti-CRISPR (Acr) proteins inhibiting type III immunity have been identified, and even less is known about their inhibition mechanism. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB2, encoded by Sulfolobus virus S. islandicus rod-shaped virus 3 (SIRV3). AcrIIIB2 inhibits type III-B CRISPR-Cas immune response to protospacers encoded in middle/late-expressed viral genes. Investigation of the interactions between S. islandicus type III-B CRISPR-Cas Cmr-α-related proteins and AcrIIIB2 reveals that the Acr does not bind to Csx1 but rather interacts with the Cmr-α effector complex. Furthermore, in vitro assays demonstrate that AcrIIIB2 can block the dissociation of cleaved target RNA from the Cmr-α complex, thereby inhibiting the Cmr-α turnover, thus preventing host cellular dormancy and further viral genome degradation by the type III-B CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Jinzhong Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lauge Alfastsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
15
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
McQuarrie S, Athukoralage JS, McMahon SA, Graham S, Ackermann K, Bode BE, White MF, Gloster TM. Activation of Csm6 ribonuclease by cyclic nucleotide binding: in an emergency, twist to open. Nucleic Acids Res 2023; 51:10590-10605. [PMID: 37747760 DOI: 10.1093/nar/gkad739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Type III CRISPR systems synthesize cyclic oligoadenylate (cOA) second messengers as part of a multi-faceted immune response against invading mobile genetic elements (MGEs). cOA activates non-specific CRISPR ancillary defence nucleases to create a hostile environment for MGE replication. Csm6 ribonucleases bind cOA using a CARF (CRISPR-associated Rossmann Fold) domain, resulting in activation of a fused HEPN (Higher Eukaryotes and Prokaryotes Nucleotide binding) ribonuclease domain. Csm6 enzymes are widely used in a new generation of diagnostic assays for the detection of specific nucleic acid species. However, the activation mechanism is not fully understood. Here we characterised the cyclic hexa-adenylate (cA6) activated Csm6' ribonuclease from the industrially important bacterium Streptococcus thermophilus. Crystal structures of Csm6' in the inactive and cA6 bound active states illuminate the conformational changes which trigger mRNA destruction. Upon binding of cA6, there is a close to 60° rotation between the CARF and HEPN domains, which causes the 'jaws' of the HEPN domain to open and reposition active site residues. Key to this transition is the 6H domain, a right-handed solenoid domain connecting the CARF and HEPN domains, which transmits the conformational changes for activation.
Collapse
Affiliation(s)
- Stuart McQuarrie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Stephen A McMahon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Katrin Ackermann
- Biomedical Sciences Research Complex, School of Chemistry, Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Bela E Bode
- Biomedical Sciences Research Complex, School of Chemistry, Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
17
|
Deng B, Xue J. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Comput Struct Biotechnol J 2023; 21:4409-4423. [PMID: 37711183 PMCID: PMC10498128 DOI: 10.1016/j.csbj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection poses substantial medical risks to global public health. An essential strategy to combat the HIV epidemic is timely and effective virus testing. CRISPR-based assays combine the highly compatible CRISPR system with different elements, yielding portability, digitization capabilities, low economic burden and low operational thresholds. The application of CRISPR-based assays has demonstrated rapid, accurate, and accessible means of pathogen testing, suggesting great potential as point-of-care (POC) assays. This review outlines the different types of CRISPR/Cas systems based on Cas proteins and their applications for the detection of HIV. Additionally, we also offer an overview of future perspectives on CRISPR-based methods for HIV detection, including advances in nucleic acid amplification-free testing, improved personal testing, and refined testing for HIV genotypes and drug-resistant strains.
Collapse
Affiliation(s)
- Bingpeng Deng
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Fang L, Yang L, Han M, Xu H, Ding W, Dong X. CRISPR-cas technology: A key approach for SARS-CoV-2 detection. Front Bioeng Biotechnol 2023; 11:1158672. [PMID: 37214290 PMCID: PMC10198440 DOI: 10.3389/fbioe.2023.1158672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
The CRISPR (Clustered Regularly Spaced Short Palindromic Repeats) system was first discovered in prokaryotes as a unique immune mechanism to clear foreign nucleic acids. It has been rapidly and extensively used in basic and applied research owing to its strong ability of gene editing, regulation and detection in eukaryotes. Hererin in this article, we reviewed the biology, mechanisms and relevance of CRISPR-Cas technology and its applications in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis. CRISPR-Cas nucleic acid detection tools include CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, CRISPR-Cas14, CRISPR nucleic acid amplification detection technology, and CRISPR colorimetric readout detection system. The above CRISPR technologies have been applied to the nucleic acid detection, including SARS-CoV-2 detection. Common nucleic acid detection based on CRISPR derivation technology include SHERLOCK, DETECTR, and STOPCovid. CRISPR-Cas biosensing technology has been widely applied to point-of-care testing (POCT) by targeting recognition of both DNA molecules and RNA Molecules.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Huimei Xu
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Wenshuai Ding
- Department of Laboratory Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Xuejun Dong
- Medical Laboratory, Zhejiang University Shaoxing Hospital, Shaoxing, China
| |
Collapse
|
19
|
Du L, Zhang D, Luo Z, Lin Z. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081. Nucleic Acids Res 2023; 51:2485-2495. [PMID: 36807980 PMCID: PMC10018336 DOI: 10.1093/nar/gkad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023] Open
Abstract
The cyclic oligoadenylates (cOAs) act as second messengers of the type III CRISPR immunity system through activating the auxiliary nucleases for indiscriminate RNA degradation. The cOA-degrading nucleases (ring nucleases) provide an 'off-switch' regulation of the signaling, thereby preventing cell dormancy or cell death. Here, we describe the crystal structures of the founding member of CRISPR-associated ring nuclease 1 (Crn1) Sso2081 from Saccharolobus solfataricus, alone, bound to phosphate ions or cA4 in both pre-cleavage and cleavage intermediate states. These structures together with biochemical characterizations establish the molecular basis of cA4 recognition and catalysis by Sso2081. The conformational changes in the C-terminal helical insert upon the binding of phosphate ions or cA4 reveal a gate-locking mechanism for ligand binding. The critical residues and motifs identified in this study provide a new insight to distinguish between cOA-degrading and -nondegrading CARF domain-containing proteins.
Collapse
Affiliation(s)
- Liyang Du
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Danping Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhipu Luo
- Correspondence may also be addressed to Zhipu Luo.
| | - Zhonghui Lin
- To whom correspondence should be addressed. Tel: +86 0591 22867273;
| |
Collapse
|
20
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
21
|
Patel DJ, Yu Y, Jia N. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling. Mol Cell 2022; 82:4591-4610. [PMID: 36460008 PMCID: PMC9772257 DOI: 10.1016/j.molcel.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Second-messenger-mediated signaling by cyclic oligonucleotides (cOs) composed of distinct base, ring size, and 3'-5'/2'-5' linkage combinations constitutes the initial trigger resulting in activation of signaling pathways that have an impact on immune-mediated antiviral defense against invading viruses and phages. Bacteria and archaea have evolved CRISPR, CBASS, Pycsar, and Thoeris surveillance complexes that involve cO-mediated activation of effectors resulting in antiviral defense through either targeted nuclease activity, effector oligomerization-mediated depletion of essential cellular metabolites or disruption of host cell membrane functions. Notably, antiviral defense capitalizes on an abortive infection mechanism, whereby infected cells die prior to completion of the phage replication cycle. In turn, phages have evolved small proteins that target and degrade/sequester cOs, thereby suppressing host immunity. This review presents a structure-based mechanistic perspective of recent advances in the field of cO-mediated antiviral defense, in particular highlighting the ancient evolutionary adaptation by metazoans of bacterial cell-autonomous innate immune mechanisms.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - You Yu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mol Cell 2022; 82:4471-4486.e9. [PMID: 36395770 DOI: 10.1016/j.molcel.2022.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.
Collapse
|
23
|
Steens JA, Salazar CRP, Staals RH. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors. Biochem Soc Trans 2022; 50:1353-1364. [PMID: 36282000 PMCID: PMC9704534 DOI: 10.1042/bst20220289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 09/14/2023]
Abstract
Type III CRISPR-Cas systems make use of a multi-subunit effector complex to target foreign (m)RNA transcripts complementary to the guide/CRISPR RNA (crRNA). Base-pairing of the target RNA with specialized regions in the crRNA not only triggers target RNA cleavage, but also activates the characteristic Cas10 subunit and sets in motion a variety of catalytic activities that starts with the production of cyclic oligoadenylate (cOA) second messenger molecules. These messenger molecules can activate an extensive arsenal of ancillary effector proteins carrying the appropriate sensory domain. Notably, the CARF and SAVED effector proteins have been responsible for renewed interest in type III CRISPR-Cas due to the extraordinary diversity of defenses against invading genetic elements. Whereas only a handful of CARF and SAVED proteins have been studied so far, many of them seem to provoke abortive infection, aimed to kill the host and provide population-wide immunity. A defining feature of these effector proteins is the variety of in silico-predicted catalytic domains they are fused to. In this mini-review, we discuss all currently characterized type III-associated CARF and SAVED effector proteins, highlight a few examples of predicted CARF and SAVED proteins with interesting predicted catalytic activities, and speculate how they could contribute to type III immunity.
Collapse
Affiliation(s)
- Jurre A. Steens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
24
|
Abstract
Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.
Collapse
Affiliation(s)
- Januka S Athukoralage
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, United Kingdom;
| |
Collapse
|
25
|
Zhang Y, Lin J, Tian X, Wang Y, Zhao R, Wu C, Wang X, Zhao P, Bi X, Yu Z, Han W, Peng N, Liang YX, She Q. Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in Saccharolobus islandicus. Int J Mol Sci 2022; 23:ijms23158515. [PMID: 35955649 PMCID: PMC9368842 DOI: 10.3390/ijms23158515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis of Cmr4 conserved amino acids in Saccharolobus islandicus, and this revealed that Cmr4α RNase-dead (dCmr4α) mutation yields cell dormancy/death. We also found that plasmid-borne expression of dCmr4α in the wild-type strain strongly reduced plasmid transformation efficiency, and deletion of CRISPR arrays in the host genome reversed the dCmr4α inhibition. Expression of dCmr4α also strongly inhibited plasmid transformation with Cmr2αHD and Cmr2αPalm mutants, but the inhibition was diminished in Cmr2αHD,Palm. Since dCmr4α-containing effectors lack spatiotemporal regulation, this allows an everlasting interaction between crRNA and cellular RNAs to occur. As a result, some cellular RNAs, which are not effective in mediating immunity due to the presence of spatiotemporal regulation, trigger autoimmunity of the Cmr-α system in the S. islandicus cells expressing dCmr4α. Together, these results pinpoint the crucial importance of tgRNA cleavage in autoimmunity avoidance and in the regulation of immunization of type III systems.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China;
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Jinzhong Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| | - Xuhui Tian
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Yuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Chenwei Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Xiaonan Bi
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Zhenxiao Yu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
- Correspondence:
| |
Collapse
|
26
|
Frazier MN, Wilson IM, Krahn JM, Butay KJ, Dillard LB, Borgnia MJ, Stanley RE. Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease. Nucleic Acids Res 2022; 50:8290-8301. [PMID: 35801916 DOI: 10.1093/nar/gkac589] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023] Open
Abstract
Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, Dziewit L, Singleton CM, Nielsen PH, Weissbrodt DG, Manaia CM. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127407. [PMID: 34629195 DOI: 10.1016/j.jhazmat.2021.127407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 05/10/2023]
Abstract
Antibiotic resistance (AR) is a global problem requiring international cooperation and coordinated action. Global monitoring must rely on methods available and comparable across nations to quantify AR occurrence and identify sources and reservoirs, as well as paths of AR dissemination. Numerous analytical tools that are gaining relevance in microbiology, have the potential to be applied to AR research. This review summarizes the state of the art of AR monitoring methods, considering distinct needs, objectives and available resources. Based on the overview of distinct approaches that are used or can be adapted to monitor AR, it is discussed the potential to establish reliable and useful monitoring schemes that can be implemented in distinct contexts. This discussion places the environmental monitoring within the One-Health approach, where two types of risk, dissemination across distinct environmental compartments, and transmission to humans, must be considered. The plethora of methodological approaches to monitor AR and the variable features of the monitored sites challenge the capacity of the scientific community and policy makers to reach a common understanding. However, the dialogue between different methods and the production of action-oriented data is a priority. The review aims to warm up this discussion.
Collapse
Affiliation(s)
- Aleksandra Miłobedzka
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Evolutionary Biology, University of Warsaw, Warsaw, Poland.
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | - Adrian Gorecki
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Caitlin M Singleton
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
28
|
Duncan-Lowey B, Kranzusch PJ. CBASS phage defense and evolution of antiviral nucleotide signaling. Curr Opin Immunol 2022; 74:156-163. [PMID: 35123147 DOI: 10.1016/j.coi.2022.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/16/2022]
Abstract
Cyclic oligonucleotide-based antiphage signaling system (CBASS) immunity is a widespread form of antiphage defense in bacteria and archaea. Each CBASS operon encodes a cGAS/DncV-like Nucleotidyltransferase (CD-NTase) enzyme that synthesizes a nucleotide second messenger in response to viral infection. An associated Cap effector protein then binds the nucleotide signal and executes cell death to destroy the host cell and block phage propagation. Here we build upon recent advances to establish rules controlling each step of CBASS activation and antiphage defense. Comparative analysis of CBASS, CRISPR, Pycsar, and cGAS-STING immunity provides insight into the evolution of phage defense and animal innate immunity and highlights new questions emerging in the role of nucleotide second messenger signaling in host-virus interactions.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Kwon S, Shin HY. Advanced CRISPR-Cas Effector Enzyme-Based Diagnostics for Infectious Diseases, Including COVID-19. Life (Basel) 2021; 11:life11121356. [PMID: 34947888 PMCID: PMC8705966 DOI: 10.3390/life11121356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid and precise diagnostic tests can prevent the spread of diseases, including worldwide pandemics. Current commonly used diagnostic methods include nucleic-acid-amplification-based detection methods and immunoassays. These techniques, however, have several drawbacks in diagnosis time, accuracy, and cost. Nucleic acid amplification methods are sensitive but time-consuming, whereas immunoassays are more rapid but relatively insensitive. Recently developed CRISPR-based nucleic acid detection methods have been found to compensate for these limitations. In particular, the unique collateral enzymatic activities of Cas12 and Cas13 have dramatically reduced the diagnosis times and costs, while improving diagnostic accuracy and sensitivity. This review provides a comprehensive description of the distinct enzymatic features of Cas12 and Cas13 and their applications in the development of molecular diagnostic platforms for pathogen detection. Moreover, it describes the current utilization of CRISPR-Cas-based diagnostic techniques to identify SARS-CoV-2 infection, as well as recent progress in the development of CRISPR-Cas-based detection strategies for various infectious diseases. These findings provide insights into designing effective molecular diagnostic platforms for potential pandemics.
Collapse
|
30
|
Duncan-Lowey B, McNamara-Bordewick NK, Tal N, Sorek R, Kranzusch PJ. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol Cell 2021; 81:5039-5051.e5. [PMID: 34784509 DOI: 10.1016/j.molcel.2021.10.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded β-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Kolesnik MV, Fedorova I, Karneyeva KA, Artamonova DN, Severinov KV. Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1301-1314. [PMID: 34903162 PMCID: PMC8527444 DOI: 10.1134/s0006297921100114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The emergence and persistence of selfish genetic elements is an intrinsic feature of all living systems. Cellular organisms have evolved a plethora of elaborate defense systems that limit the spread of such genetic parasites. CRISPR-Cas are RNA-guided defense systems used by prokaryotes to recognize and destroy foreign nucleic acids. These systems acquire and store fragments of foreign nucleic acids and utilize the stored sequences as guides to recognize and destroy genetic invaders. CRISPR-Cas systems have been extensively studied, as some of them are used in various genome editing technologies. Although Type III CRISPR-Cas systems are among the most common CRISPR-Cas systems, they are also some of the least investigated ones, mostly due to the complexity of their action compared to other CRISPR-Cas system types. Type III effector complexes specifically recognize and cleave RNA molecules. The recognition of the target RNA activates the effector large subunit - the so-called CRISPR polymerase - which cleaves DNA and produces small cyclic oligonucleotides that act as signaling molecules to activate auxiliary effectors, notably non-specific RNases. In this review, we provide a historical overview of the sometimes meandering pathway of the Type III CRISPR research. We also review the current data on the structures and activities of Type III CRISPR-Cas systems components, their biological roles, and evolutionary history. Finally, using structural modeling with AlphaFold2, we show that the archaeal HRAMP signature protein, which heretofore has had no assigned function, is a degenerate relative of Type III CRISPR-Cas signature protein Cas10, suggesting that HRAMP systems have descended from Type III CRISPR-Cas systems or their ancestors.
Collapse
Affiliation(s)
- Matvey V Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Iana Fedorova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Karyna A Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Daria N Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Konstantin V Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Campa AR, Smith LM, Hampton HG, Sharma S, Jackson SA, Bischler T, Sharma CM, Fineran PC. The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR-Cas immune systems. Nucleic Acids Res 2021; 49:9508-9525. [PMID: 34403463 PMCID: PMC8450108 DOI: 10.1093/nar/gkab704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against phages and plasmids; however, pathways regulating their activity are not well defined. We recently developed a high-throughput genome-wide method (SorTn-seq) and used this to uncover CRISPR-Cas regulators. Here, we demonstrate that the widespread Rsm/Csr pathway regulates the expression of multiple CRISPR-Cas systems in Serratia (type I-E, I-F and III-A). The main pathway component, RsmA (CsrA), is an RNA-binding post-transcriptional regulator of carbon utilisation, virulence and motility. RsmA binds cas mRNAs and suppresses type I and III CRISPR-Cas interference in addition to adaptation by type I systems. Coregulation of CRISPR-Cas and flagella by the Rsm pathway allows modulation of adaptive immunity when changes in receptor availability would alter susceptibility to flagella-tropic phages. Furthermore, we show that Rsm controls CRISPR-Cas in other genera, suggesting conservation of this regulatory strategy. Finally, we identify genes encoding RsmA homologues in phages, which have the potential to manipulate the physiology of host bacteria and might provide an anti-CRISPR activity.
Collapse
Affiliation(s)
- Aroa Rey Campa
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bio-Protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sahil Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bio-Protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, Díaz de León Derby M, Switz NA, Armstrong M, Harris AR, Charles EJ, Thornton BW, Fozouni P, Shu J, Stephens SI, Kumar GR, Zhao C, Mok A, Iavarone AT, Escajeda AM, McIntosh R, Kim S, Dugan EJ, Pollard KS, Tan MX, Ott M, Fletcher DA, Lareau LF, Hsu PD, Savage DF, Doudna JA. Accelerated RNA detection using tandem CRISPR nucleases. Nat Chem Biol 2021; 17:982-988. [PMID: 34354262 PMCID: PMC10184463 DOI: 10.1038/s41589-021-00842-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | - Dylan C J Smock
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - John J Desmarais
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shrutee Jakhanwal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shreeya Agrawal
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Neil A Switz
- Department of Physics and Astronomy, San José State University, San José, CA, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Emeric J Charles
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Brittney W Thornton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey Shu
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie I Stephens
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - G Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chunyu Zhao
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Shineui Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eli J Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley, UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Liana F Lareau
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick D Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA, USA.
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
34
|
Frazier MN, Dillard LB, Krahn JM, Perera L, Williams JG, Wilson IM, Stewart ZD, Pillon MC, Deterding LJ, Borgnia MJ, Stanley RE. Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res 2021; 49:10136-10149. [PMID: 34403466 PMCID: PMC8385992 DOI: 10.1093/nar/gkab719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3′ of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3′ of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
35
|
Lin J, Shen Y, Ni J, She Q. A type III-A CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Res 2021; 49:7628-7643. [PMID: 34197611 PMCID: PMC8287949 DOI: 10.1093/nar/gkab590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Many type III CRISPR–Cas systems rely on the cyclic oligoadenylate (cOA) signaling pathway to exert immunization. However, LdCsm, a type III-A lactobacilli immune system mediates efficient plasmid clearance in spite of lacking cOA signaling. Thus, the system provides a good model for detailed characterization of the RNA-activated DNase in vitro and in vivo. We found ATP functions as a ligand to enhance the LdCsm ssDNase, and the ATP enhancement is essential for in vivo plasmid clearance. In vitro assays demonstrated LdCsm cleaved transcriptional bubbles at any positions in non-template strand, suggesting that DNA cleavage may occur for transcribing DNA. Destiny of target plasmid versus nontarget plasmid in Escherichia coli cells was investigated, and this revealed that the LdCsm effectors mediated co-transcriptional DNA cleavage to both target and nontarget plasmids, suggesting LdCsm effectors can mediate DNA cleavage to any transcriptional bubbles in close proximity upon activation. Subcellular locations of active LdCsm effectors were then manipulated by differential expression of LdCsm and CTR, and the data supported the hypothesis. Strikingly, stepwise induction experiments indicated allowing diffusion of LdCsm effector led to massive chromosomal DNA degradation, suggesting this unique IIIA system can facilitate infection abortion to eliminate virus-infected cells.
Collapse
Affiliation(s)
- Jinzhong Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong 266237, P.R. China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
36
|
Garcia-Rodriguez G, Charlier D, Wilmaerts D, Michiels J, Loris R. Alternative dimerization is required for activity and inhibition of the HEPN ribonuclease RnlA. Nucleic Acids Res 2021; 49:7164-7178. [PMID: 34139012 PMCID: PMC8266594 DOI: 10.1093/nar/gkab513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/09/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
The rnlAB toxin-antitoxin operon from Escherichia coli functions as an anti-phage defense system. RnlA was identified as a member of the HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding domain) superfamily of ribonucleases. The activity of the toxin RnlA requires tight regulation by the antitoxin RnlB, the mechanism of which remains unknown. Here we show that RnlA exists in an equilibrium between two different homodimer states: an inactive resting state and an active canonical HEPN dimer. Mutants interfering with the transition between states show that canonical HEPN dimerization via the highly conserved RX4-6H motif is required for activity. The antitoxin RnlB binds the canonical HEPN dimer conformation, inhibiting RnlA by blocking access to its active site. Single-alanine substitutions mutants of the highly conserved R255, E258, R318 and H323 show that these residues are involved in catalysis and substrate binding and locate the catalytic site near the dimer interface of the canonical HEPN dimer rather than in a groove located between the HEPN domain and the preceding TBP-like domain. Overall, these findings elucidate the structural basis of the activity and inhibition of RnlA and highlight the crucial role of conformational heterogeneity in protein function.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Dorien Wilmaerts
- Center of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001 Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Jan Michiels
- Center of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001 Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| |
Collapse
|
37
|
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, de León Derby MD, Switz NA, Armstrong M, Harris AR, Charles EJ, Thornton BW, Fozouni P, Shu J, Stephens SI, Kumar GR, Zhao C, Mok A, Iavarone AT, Escajeda AM, McIntosh R, Kim SE, Dugan EJ, IGI Testing Consortium, Pollard KS, Tan MX, Ott M, Fletcher DA, Lareau LF, Hsu PD, Savage DF, Doudna JA. Accelerated RNA detection using tandem CRISPR nucleases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.19.21253328. [PMID: 33791736 PMCID: PMC8010768 DOI: 10.1101/2021.03.19.21253328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.
Collapse
Affiliation(s)
- Tina Y. Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J. Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, VIC 3800, Australia
| | - Dylan C. J. Smock
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - John J. Desmarais
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shrutee Jakhanwal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shreeya Agrawal
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Neil A. Switz
- Department of Physics and Astronomy, San José State University, San José, CA, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew R. Harris
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Emeric J. Charles
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Brittney W. Thornton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey Shu
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie I. Stephens
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - G. Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chunyu Zhao
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Shin E. Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eli J. Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Katherine S. Pollard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | | | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Liana F. Lareau
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Patrick D. Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
38
|
Wang B, Zhang T, Yin J, Yu Y, Xu W, Ding J, Patel DJ, Yang H. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Mol Cell 2021; 81:1100-1115.e5. [PMID: 33472057 PMCID: PMC8274241 DOI: 10.1016/j.molcel.2020.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenhao Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
39
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
40
|
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nat Chem Biol 2021; 17:10-19. [PMID: 33328654 PMCID: PMC8101458 DOI: 10.1038/s41589-020-00700-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.
Collapse
Affiliation(s)
- Haridha Shivram
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brady F Cress
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Karimi S, Ahmadi M, Goudarzi F, Ferdousi R. A computational model for GPCR-ligand interaction prediction. J Integr Bioinform 2020; 18:155-165. [PMID: 34171942 PMCID: PMC7790179 DOI: 10.1515/jib-2019-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play an essential role in critical human activities, and they are considered targets for a wide range of drugs. Accordingly, based on these crucial roles, GPCRs are mainly considered and focused on pharmaceutical research. Hence, there are a lot of investigations on GPCRs. Experimental laboratory research is very costly in terms of time and expenses, and accordingly, there is a marked tendency to use computational methods as an alternative method. In this study, a prediction model based on machine learning (ML) approaches was developed to predict GPCRs and ligand interactions. Decision tree (DT), random forest (RF), multilayer perceptron (MLP), support vector machine (SVM), and Naive Bayes (NB) were the algorithms that were investigated in this study. After several optimization steps, receiver operating characteristic (ROC) for DT, RF, MLP, SVM, and NB algorithm were 95.2, 98.1, 96.3, 95.5, and 97.3, respectively. Accordingly final model was made base on the RF algorithm. The current computational study compared with others focused on specific and important types of proteins (GPCR) interaction and employed/examined different types of sequence-based features to obtain more accurate results. Drug science researchers could widely use the developed prediction model in this study. The developed predictor was applied over 16,132 GPCR-ligand pairs and about 6778 potential interactions predicted.
Collapse
Affiliation(s)
- Shiva Karimi
- Health Information Management Department, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Ahmadi
- Department of Health Information Management, School of Management and Medical Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Songailiene I, Juozapaitis J, Tamulaitiene G, Ruksenaite A, Šulčius S, Sasnauskas G, Venclovas Č, Siksnys V. HEPN-MNT Toxin-Antitoxin System: The HEPN Ribonuclease Is Neutralized by OligoAMPylation. Mol Cell 2020; 80:955-970.e7. [PMID: 33290744 DOI: 10.1016/j.molcel.2020.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.
Collapse
Affiliation(s)
- Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Jonas Juozapaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
43
|
Molina R, Sofos N, Montoya G. Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Curr Opin Struct Biol 2020; 65:119-129. [DOI: 10.1016/j.sbi.2020.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
|
44
|
Artamonova D, Karneyeva K, Medvedeva S, Klimuk E, Kolesnik M, Yasinskaya A, Samolygo A, Severinov K. Spacer acquisition by Type III CRISPR-Cas system during bacteriophage infection of Thermus thermophilus. Nucleic Acids Res 2020; 48:9787-9803. [PMID: 32821943 PMCID: PMC7515739 DOI: 10.1093/nar/gkaa685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Type III CRISPR–Cas systems provide immunity to foreign DNA by targeting its transcripts. Target recognition activates RNases and DNases that may either destroy foreign DNA directly or elicit collateral damage inducing death of infected cells. While some Type III systems encode a reverse transcriptase to acquire spacers from foreign transcripts, most contain conventional spacer acquisition machinery found in DNA-targeting systems. We studied Type III spacer acquisition in phage-infected Thermus thermophilus, a bacterium that lacks either a standalone reverse transcriptase or its fusion to spacer integrase Cas1. Cells with spacers targeting a subset of phage transcripts survived the infection, indicating that Type III immunity does not operate through altruistic suicide. In the absence of selection spacers were acquired from both strands of phage DNA, indicating that no mechanism ensuring acquisition of RNA-targeting spacers exists. Spacers that protect the host from the phage demonstrate a very strong strand bias due to positive selection during infection. Phages that escaped Type III interference accumulated deletions of integral number of codons in an essential gene and much longer deletions in a non-essential gene. This and the fact that Type III immunity can be provided by plasmid-borne mini-arrays open ways for genomic manipulation of Thermus phages.
Collapse
Affiliation(s)
- Daria Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Karyna Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Sofia Medvedeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Evgeny Klimuk
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Matvey Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna Yasinskaya
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Aleksei Samolygo
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Konstantin Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute, Rutgers, The State University of New Jersey, NJ 08854 USA
| |
Collapse
|
45
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
46
|
CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms. SCIENCE CHINA-LIFE SCIENCES 2020; 64:678-696. [DOI: 10.1007/s11427-020-1745-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
47
|
Makarova KS, Timinskas A, Wolf YI, Gussow AB, Siksnys V, Venclovas Č, Koonin EV. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res 2020; 48:8828-8847. [PMID: 32735657 DOI: 10.1093/nar/gkaa635] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR-associated Rossmann Fold (CARF) and SMODS-associated and fused to various effector domains (SAVED) are key components of cyclic oligonucleotide-based antiphage signaling systems (CBASS) that sense cyclic oligonucleotides and transmit the signal to an effector inducing cell dormancy or death. Most of the CARFs are components of a CBASS built into type III CRISPR-Cas systems, where the CARF domain binds cyclic oligoA (cOA) synthesized by Cas10 polymerase-cyclase and allosterically activates the effector, typically a promiscuous ribonuclease. Additionally, this signaling pathway includes a ring nuclease, often also a CARF domain (either the sensor itself or a specialized enzyme) that cleaves cOA and mitigates dormancy or death induction. We present a comprehensive census of CARF and SAVED domains in bacteria and archaea, and their sequence- and structure-based classification. There are 10 major families of CARF domains and multiple smaller groups that differ in structural features, association with distinct effectors, and presence or absence of the ring nuclease activity. By comparative genome analysis, we predict specific functions of CARF and SAVED domains and partition the CARF domains into those with both sensor and ring nuclease functions, and sensor-only ones. Several families of ring nucleases functionally associated with sensor-only CARF domains are also predicted.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
48
|
Liu TY, Doudna JA. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J Biol Chem 2020; 295:14473-14487. [PMID: 32817336 PMCID: PMC7573268 DOI: 10.1074/jbc.rev120.007034] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Among the multiple antiviral defense mechanisms found in prokaryotes, CRISPR-Cas systems stand out as the only known RNA-programmed pathways for detecting and destroying bacteriophages and plasmids. Class 1 CRISPR-Cas systems, the most widespread and diverse of these adaptive immune systems, use an RNA-guided multiprotein complex to find foreign nucleic acids and trigger their destruction. In this review, we describe how these multisubunit complexes target and cleave DNA and RNA and how regulatory molecules control their activities. We also highlight similarities to and differences from Class 2 CRISPR-Cas systems, which use a single-protein effector, as well as other types of bacterial and eukaryotic immune systems. We summarize current applications of the Class 1 CRISPR-Cas systems for DNA/RNA modification, control of gene expression, and nucleic acid detection.
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Gladstone Institutes, University of California, San Francisco, California, USA
| |
Collapse
|
49
|
Athukoralage JS, McQuarrie S, Grüschow S, Graham S, Gloster TM, White MF. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. eLife 2020; 9:e57627. [PMID: 32597755 PMCID: PMC7371418 DOI: 10.7554/elife.57627] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.
Collapse
Affiliation(s)
- Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Stuart McQuarrie
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
50
|
Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, Antine SP, Cabrera VJ, Kashin D, Niemann P, Jain M, Schwede F, Mekalanos JJ, Shao S, Lee ASY, Kranzusch PJ. CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection. Cell 2020; 182:38-49.e17. [PMID: 32544385 DOI: 10.1016/j.cell.2020.05.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.
Collapse
Affiliation(s)
- Brianna Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Aaron T Whiteley
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ian T Mathews
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92161, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92161, USA
| | - Sadie P Antine
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Victor J Cabrera
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitry Kashin
- Biolog Life Science Institute GmbH KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Percy Niemann
- Biolog Life Science Institute GmbH KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Mohit Jain
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92161, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92161, USA
| | - Frank Schwede
- Biolog Life Science Institute GmbH KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy S Y Lee
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|