1
|
Borck PC, Boyle I, Jankovic K, Bick N, Foster K, Lau AC, Parker-Burns LI, Lubicki DA, Li T, Borah AA, Lofaso NJ, Das Sharma S, Chan T, Kishen RV, Adeagbo A, Raghavan S, Aquilanti E, Prensner JR, Krill-Burger JM, Golub TR, Campbell CD, Dempster JM, Chan EM, Vazquez F. SKI complex loss renders 9p21.3-deleted or MSI-H cancers dependent on PELO. Nature 2025; 638:1104-1111. [PMID: 39910293 PMCID: PMC11864980 DOI: 10.1038/s41586-024-08509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Cancer genome alterations often lead to vulnerabilities that can be used to selectively target cancer cells. Various inhibitors of such synthetic lethal targets have been approved by the FDA or are in clinical trials, highlighting the potential of this approach1-3. Here we analysed large-scale CRISPR knockout screening data from the Cancer Dependency Map and identified a new synthetic lethal target, PELO, for two independent molecular subtypes of cancer: biallelic deletion of chromosomal region 9p21.3 or microsatellite instability-high (MSI-H). In 9p21.3-deleted cancers, PELO dependency emerges from biallelic deletion of the 9p21.3 gene FOCAD, a stabilizer of the superkiller complex (SKIc). In MSI-H cancers, PELO is required owing to MSI-H-associated mutations in TTC37 (also known as SKIC3), a critical component of the SKIc. We show that both cancer subtypes converge to destabilize the SKIc, which extracts mRNA from stalled ribosomes. In SKIc-deficient cells, PELO depletion induces the unfolded protein response, a stress response to accumulation of misfolded or unfolded nascent polypeptides. Together, our findings indicate PELO as a promising therapeutic target for a large patient population with cancers characterized as MSI-H with deleterious TTC37 mutations or with biallelic 9p21.3 deletions involving FOCAD.
Collapse
Affiliation(s)
| | | | - Kristina Jankovic
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nolan Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyla Foster
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony C Lau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucy I Parker-Burns
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tianxia Li
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Lofaso
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sohani Das Sharma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tessla Chan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Riya V Kishen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisa Aquilanti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics and Biological Chemistry, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Edmond M Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | |
Collapse
|
2
|
Ishibashi K, Shichino Y, Han P, Wakabayashi K, Mito M, Inada T, Kimura S, Iwasaki S, Mishima Y. Translation of zinc finger domains induces ribosome collision and Znf598-dependent mRNA decay in zebrafish. PLoS Biol 2024; 22:e3002887. [PMID: 39636823 PMCID: PMC11620358 DOI: 10.1371/journal.pbio.3002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs. However, the impact of RQC and NGD on maintaining the translational homeostasis of endogenous mRNAs has remained unclear. In this study, we investigated the endogenous substrate mRNAs of NGD during the maternal-to-zygotic transition (MZT) of zebrafish development. RNA-Seq analysis of zebrafish znf598 mutant embryos revealed that Znf598 down-regulates mRNAs encoding the C2H2-type zinc finger domain (C2H2-ZF) during the MZT. Reporter assays and disome profiling indicated that ribosomes stall and collide while translating tandem C2H2-ZFs, leading to mRNA degradation by Znf598. Our results suggest that NGD maintains the quality of the translatome by mitigating the risk of ribosome collision at the abundantly present C2H2-ZF sequences in the vertebrate genome.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Peixun Han
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Kimi Wakabayashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Toshifumi Inada
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
3
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. Nucleic Acids Res 2024; 52:7171-7187. [PMID: 38647082 PMCID: PMC11229359 DOI: 10.1093/nar/gkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Chacko J, Ozadam H, Cenik C. RiboGraph: an interactive visualization system for ribosome profiling data at read length resolution. Bioinformatics 2024; 40:btae369. [PMID: 38897662 PMCID: PMC11197854 DOI: 10.1093/bioinformatics/btae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
MOTIVATION Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. RESULTS In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. AVAILABILITY AND IMPLEMENTATION Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.
Collapse
Affiliation(s)
- Jonathan Chacko
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
5
|
Dos Santos OAL, Carneiro RL, Requião RD, Ribeiro-Alves M, Domitrovic T, Palhano FL. Transcriptional profile of ribosome-associated quality control components and their associated phenotypes in mammalian cells. Sci Rep 2024; 14:1439. [PMID: 38228636 PMCID: PMC10792078 DOI: 10.1038/s41598-023-50811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
During protein synthesis, organisms detect translation defects that induce ribosome stalling and result in protein aggregation. The Ribosome-associated Quality Control (RQC) complex, comprising TCF25, LTN1, and NEMF, is responsible for identifying incomplete protein products from unproductive translation events, targeting them for degradation. Although RQC disruption causes adverse effects on vertebrate neurons, data regarding mRNA/protein expression and regulation across tissues are lacking. Employing high-throughput methods, we analyzed public datasets to explore RQC gene expression and phenotypes. Our findings revealed widespread expression of RQC components in human tissues; however, silencing of RQC yielded only mild negative effects on cell growth. Notably, TCF25 exhibited elevated mRNA levels that were not reflected in the protein content. We experimentally demonstrated that this disparity arose from post-translational protein degradation by the proteasome. Additionally, we observed that cellular aging marginally influenced RQC expression, leading to reduced mRNA levels in specific tissues. Our results suggest the necessity of RQC expression in all mammalian tissues. Nevertheless, when RQC falters, alternative mechanisms seem to compensate, ensuring cell survival under nonstress conditions.
Collapse
Affiliation(s)
- Otávio Augusto Leitão Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo L Carneiro
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodrigo D Requião
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Ribeiro-Alves
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, 21040-900, Brazil
| | - Tatiana Domitrovic
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Fernando L Palhano
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
6
|
Chacko J, Ozadam H, Cenik C. RiboGraph: An interactive visualization system for ribosome profiling data at read length resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575228. [PMID: 38260303 PMCID: PMC10802566 DOI: 10.1101/2024.01.11.575228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type and eliminates the need for data preprocessing. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. Availability and Implementation Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.
Collapse
Affiliation(s)
- Jonathan Chacko
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Present address: Senda Biosciences, Cambridge, MA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
11
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559793. [PMID: 37808677 PMCID: PMC10557687 DOI: 10.1101/2023.09.27.559793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y. Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Sidorova TV, Kutyrev IA, Khabudaev KV, Sukhanova LV, Zheng Y, Dugarov ZN, Mazur OE. Comparative transcriptomic analysis of the larval and adult stages of Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea). Parasitol Res 2023; 122:145-156. [PMID: 36370234 DOI: 10.1007/s00436-022-07708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Tapeworms of the genus Dibothriocephalus are widely distributed throughout the world, some of which are agents of human diphyllobothriasis, one of the most important fish-borne zoonoses caused by a cestode parasite. Genomic and transcriptomic data can be used to develop future diagnostic tools and epidemiological studies. The present work focuses on a comparative analysis of the transcriptomes of adult and plerocercoid D. dendriticus and the identification of their differentially expressed genes (DEGs). Transcriptome assembly and analysis yielded and annotated 35,129 unigenes, noting that 16,568 (47%) unigenes were not annotated in known databases, which may indicate a unique set of expressed transcripts for D. dendriticus. A total of 8022 differentially expressed transcripts were identified, including 3225 upregulated and 4797 downregulated differentially expressed transcripts from the plerocercoid and adult animals. The analysis of DEGs has shown that among the most differentially expressed genes, there are important genes characteristic of each stage. Thus, several genes are characteristic of D. dendriticus plerocercoids, including fatty acid-binding protein and ferritin. Among the most highly expressed DEGs of the adult stage of D. dendriticus is the Kunitz-type serine protease inhibitor, in two putative isoforms. The analyses of GO and KEGG metabolic pathways revealed that a large number of the DEGs of D. dendriticus are associated with the biosynthesis of various substances such as arginine and folate, as well as with various metabolic pathways such as galactose metabolism, selenocompound metabolism, and phosphonate and phosphinate metabolism. This will contribute to further research aimed at identifying targets for new generation drugs and the development of specific vaccines.
Collapse
Affiliation(s)
- Tuyana Valeryevna Sidorova
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.,Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Ivan Alexandrovich Kutyrev
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.
| | | | | | - Yadong Zheng
- Zhejiang A&F University, Zhejiang Province, Hangzhou, China
| | - Zhargal Nimaevich Dugarov
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia
| | - Olga Evgenievna Mazur
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia
| |
Collapse
|
13
|
Ganesan R, Mangkalaphiban K, Baker RE, He F, Jacobson A. Ribosome-bound Upf1 forms distinct 80S complexes and conducts mRNA surveillance. RNA (NEW YORK, N.Y.) 2022; 28:1621-1642. [PMID: 36192133 PMCID: PMC9670811 DOI: 10.1261/rna.079416.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
14
|
Kim JH, Modena MS, Sehgal E, Courney A, Neudorf C, Arribere J. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res 2022; 50:8852-8866. [PMID: 35950494 PMCID: PMC9410879 DOI: 10.1093/nar/gkac681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) protects cells from the toxic and potentially dominant effects of truncated proteins. Targeting of mRNAs with early stop codons is mediated by the ribosome and spatiotemporally aligned with translation termination. Previously we identified a novel NMD intermediate: ribosomes stalled on cleaved stop codons, raising the possibility that NMD begins even prior to ribosome removal from the stop codon. Here we show that this intermediate is the result of mRNA cleavage by the endonuclease SMG-6. Our work supports a model in which ribosomes stall secondary to SMG-6 mRNA cleavage in Caenorhabditis elegans and humans, i.e. that the novel NMD intermediate occurs after a prior ribosome elicits NMD. Our genetic analysis of C. elegans' SMG-6 supports a central role for SMG-6 in metazoan NMD, and provides a context for evaluating its function in other metazoans.
Collapse
Affiliation(s)
- John H Kim
- Department of MCD Biology, UC Santa Cruz, California, USA
| | | | - Enisha Sehgal
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Annie Courney
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Celine W Neudorf
- Department of Biomolecular Engineering, UC Santa Cruz, California, USA
| | | |
Collapse
|
15
|
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis. J Biol Chem 2022; 298:102039. [PMID: 35595100 PMCID: PMC9207662 DOI: 10.1016/j.jbc.2022.102039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Ribosome speed is dictated by multiple factors including substrate availability, cellular conditions, and product (peptide) formation. Translation slows during the synthesis of cationic peptide sequences, potentially influencing the expression of thousands of proteins. Available evidence suggests that ionic interactions between positively charged nascent peptides and the negatively charged ribosome exit tunnel impede translation. However, this hypothesis was difficult to test directly because of inability to decouple the contributions of amino acid charge from mRNA sequence and tRNA identity/abundance in cells. Furthermore, it is unclear if other components of the translation system central to ribosome function (e.g., RNA modification) influence the speed and accuracy of positively charged peptide synthesis. In this study, we used a fully reconstituted Escherichia coli translation system to evaluate the effects of peptide charge, mRNA sequence, and RNA modification status on the translation of lysine-rich peptides. Comparison of translation reactions on poly(lysine)-encoding mRNAs conducted with either Lys-tRNALys or Val-tRNALys reveals that that amino acid charge, while important, only partially accounts for slowed translation on these transcripts. We further find that in addition to peptide charge, mRNA sequence and both tRNA and mRNA modification status influence the rates of amino acid addition and the ribosome’s ability to maintain frame (instead of entering the −2, −1, and +1 frames) during poly(lysine) peptide synthesis. Our observations lead us to expand the model for explaining how the ribosome slows during poly(lysine) peptide synthesis and suggest that posttranscriptional RNA modifications can provide cells a mechanism to precisely control ribosome movements along an mRNA.
Collapse
|
16
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
18
|
Blatt P, Wong-Deyrup SW, McCarthy A, Breznak S, Hurton MD, Upadhyay M, Bennink B, Camacho J, Lee MT, Rangan P. RNA degradation is required for the germ-cell to maternal transition in Drosophila. Curr Biol 2021; 31:2984-2994.e7. [PMID: 33989522 PMCID: PMC8319052 DOI: 10.1016/j.cub.2021.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
In sexually reproducing animals, the oocyte contributes a large supply of RNAs that are essential to launch development upon fertilization. The mechanisms that regulate the composition of the maternal RNA contribution during oogenesis are unclear. Here, we show that a subset of RNAs expressed during the early stages of oogenesis is subjected to regulated degradation during oocyte specification. Failure to remove these RNAs results in oocyte dysfunction and death. We identify the RNA-degrading Super Killer complex and No-Go Decay factor Pelota as key regulators of oogenesis via targeted degradation of specific RNAs expressed in undifferentiated germ cells. These regulators target RNAs enriched for cytidine sequences that are bound by the polypyrimidine tract binding protein Half pint. Thus, RNA degradation helps orchestrate a germ cell-to-maternal transition that gives rise to the maternal contribution to the zygote.
Collapse
Affiliation(s)
- Patrick Blatt
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Siu Wah Wong-Deyrup
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Alicia McCarthy
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222; 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA, 94588
| | - Shane Breznak
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Matthew D Hurton
- University of Pittsburgh, Department of Biological Sciences; 4249 Fifth Avenue, Pittsburgh, PA 15260
| | - Maitreyi Upadhyay
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222; Department of Stem Cell and Regenerative Biology, Sherman Fairchild 100, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Benjamin Bennink
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Justin Camacho
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Miler T Lee
- University of Pittsburgh, Department of Biological Sciences; 4249 Fifth Avenue, Pittsburgh, PA 15260.
| | - Prashanth Rangan
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222.
| |
Collapse
|
19
|
Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Yoshida M, Mishima Y, Inada T, Iwasaki S. Genome-wide Survey of Ribosome Collision. Cell Rep 2021; 31:107610. [PMID: 32375038 DOI: 10.1016/j.celrep.2020.107610] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Ribosome movement is not always smooth and is rather often impeded. For ribosome pauses, fundamental issues remain to be addressed, including where ribosomes pause on mRNAs, what kind of RNA/amino acid sequence causes this pause, and the physiological significance of this attenuation of protein synthesis. Here, we survey the positions of ribosome collisions caused by ribosome pauses in humans and zebrafish using modified ribosome profiling. Collided ribosomes, i.e., disomes, emerge at various sites: Pro-Pro/Gly/Asp motifs; Arg-X-Lys motifs; stop codons; and 3' untranslated regions. The electrostatic interaction between the charged nascent chain and the ribosome exit tunnel determines the eIF5A-mediated disome rescue at the Pro-Pro sites. In particular, XBP1u, a precursor of endoplasmic reticulum (ER)-stress-responsive transcription factor, shows striking queues of collided ribosomes and thus acts as a degradation substrate by ribosome-associated quality control. Our results provide insight into the causes and consequences of ribosome pause by dissecting collided ribosomes.
Collapse
Affiliation(s)
- Peixun Han
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuichiro Mishima
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
20
|
Auth M, Nyikó T, Auber A, Silhavy D. The role of RST1 and RIPR proteins in plant RNA quality control systems. PLANT MOLECULAR BIOLOGY 2021; 106:271-284. [PMID: 33864582 PMCID: PMC8116306 DOI: 10.1007/s11103-021-01145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.
Collapse
Affiliation(s)
- Mariann Auth
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary.
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary.
| |
Collapse
|
21
|
Young DJ, Meydan S, Guydosh NR. 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 2021; 12:2976. [PMID: 34016977 PMCID: PMC8137927 DOI: 10.1038/s41467-021-23223-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Terrey M, Adamson SI, Chuang JH, Ackerman SL. Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. eLife 2021; 10:e66904. [PMID: 33899734 PMCID: PMC8075583 DOI: 10.7554/elife.66904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts revealed translational pauses, alteration of signaling pathways, and translational reprogramming. Similar effects on signaling pathways, including mTOR activation, the translatome and mouse cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal that these quality control pathways that function to mitigate errors at distinct steps in translation can evoke similar cellular responses.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| |
Collapse
|
23
|
Kosinski LJ, Masel J. Readthrough Errors Purge Deleterious Cryptic Sequences, Facilitating the Birth of Coding Sequences. Mol Biol Evol 2021; 37:1761-1774. [PMID: 32101291 DOI: 10.1093/molbev/msaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
De novo protein-coding innovations sometimes emerge from ancestrally noncoding DNA, despite the expectation that translating random sequences is overwhelmingly likely to be deleterious. The "preadapting selection" hypothesis claims that emergence is facilitated by prior, low-level translation of noncoding sequences via molecular errors. It predicts that selection on polypeptides translated only in error is strong enough to matter and is strongest when erroneous expression is high. To test this hypothesis, we examined noncoding sequences located downstream of stop codons (i.e., those potentially translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of "fragile" proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. Among the remainder, sequences showing evidence of readthrough translation, as assessed by ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting the preadapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are robust to controlling for the fact that stronger selection also reduces the length of C-terminal extensions. These findings indicate that selection acts on 3' UTRs in Saccharomyces cerevisiae to purge potentially deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more readthrough errors.
Collapse
Affiliation(s)
- Luke J Kosinski
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
24
|
D'Orazio KN, Green R. Ribosome states signal RNA quality control. Mol Cell 2021; 81:1372-1383. [PMID: 33713598 PMCID: PMC8041214 DOI: 10.1016/j.molcel.2021.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells integrate multiple quality control (QC) responses during protein synthesis in the cytoplasm. These QC responses are signaled by slow or stalled elongating ribosomes. Depending on the nature of the delay, the signal may lead to translational repression, messenger RNA decay, ribosome rescue, and/or nascent protein degradation. Here, we discuss how the structure and composition of an elongating ribosome in a troubled state determine the downstream quality control pathway(s) that ensue. We highlight the intersecting pathways involved in RNA decay and the crosstalk that occurs between RNA decay and ribosome rescue.
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Wang YJ, Gilbert WV. Quantitative Comparisons of Translation Activity by Ribosome Profiling with Internal Standards. Methods Mol Biol 2021; 2252:127-149. [PMID: 33765273 DOI: 10.1007/978-1-0716-1150-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ribosome profiling is a genome-wide approach to map the positions of ribosomes on messenger RNAs. The abundance of ribosome-protected fragments can be used within condition to compare relative translation activities between different transcripts and between distinct conditions for the same transcript. A unified and routine method is currently lacking, however, to normalize between conditions for differences in global translation levels. Here we describe experimental and computational methods to use an orthogonal species spike-in, or internal standard, to enable absolute comparisons of translation activity between conditions. This simple modification of standard ribosome profiling provides a robust approach for accurately interpreting the effects of diverse genetic, chemical, and environmental perturbations of translation.
Collapse
Affiliation(s)
- Yinuo J Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Arrakis Therapeutics, Waltham, MA, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Abstract
Translation is a central biological process in living cells. Ribosome profiling approach enables assessing translation on a global, cell-wide level. Extracting versatile information from the ribosome profiling data usually requires specialized expertise for handling the sequencing data that is not available to the broad community of experimentalists. Here, we provide an easy-to-use and modifiable workflow that uses a small set of commands and enables full data analysis in a standardized way, including precise positioning of the ribosome-protected fragments, for determining codon-specific translation features. The workflow is complemented with simple step-by-step explanations and is accessible to scientists with no computational background.
Collapse
Affiliation(s)
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
27
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
28
|
A cellular handbook for collided ribosomes: surveillance pathways and collision types. Curr Genet 2020; 67:19-26. [PMID: 33044589 DOI: 10.1007/s00294-020-01111-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Translating ribosomes slow down or completely stall when they encounter obstacles on mRNAs. Such events can lead to ribosomes colliding with each other and forming complexes of two (disome), three (trisome) or more ribosomes. While these events can activate surveillance pathways, it has been unclear if collisions are common on endogenous mRNAs and whether they are usually detected by these cellular pathways. Recent genome-wide surveys of collisions revealed widespread distribution of disomes and trisomes across endogenous mRNAs in eukaryotic cells. Several studies further hinted that the recognition of collisions and response to them by multiple surveillance pathways depend on the context and duration of the ribosome stalling. This review considers recent efforts in the identification of endogenous ribosome collisions and cellular pathways dedicated to sense their severity. We further discuss the potential role of collided ribosomes in modulating co-translational events and contributing to cellular homeostasis.
Collapse
|
29
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
30
|
Friedrich S, Sonnhammer ELL. Fusion transcript detection using spatial transcriptomics. BMC Med Genomics 2020; 13:110. [PMID: 32753032 PMCID: PMC7437936 DOI: 10.1186/s12920-020-00738-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fusion transcripts are involved in tumourigenesis and play a crucial role in tumour heterogeneity, tumour evolution and cancer treatment resistance. However, fusion transcripts have not been studied at high spatial resolution in tissue sections due to the lack of full-length transcripts with spatial information. New high-throughput technologies like spatial transcriptomics measure the transcriptome of tissue sections on almost single-cell level. While this technique does not allow for direct detection of fusion transcripts, we show that they can be inferred using the relative poly(A) tail abundance of the involved parental genes. METHOD We present a new method STfusion, which uses spatial transcriptomics to infer the presence and absence of poly(A) tails. A fusion transcript lacks a poly(A) tail for the 5' gene and has an elevated number of poly(A) tails for the 3' gene. Its expression level is defined by the upstream promoter of the 5' gene. STfusion measures the difference between the observed and expected number of poly(A) tails with a novel C-score. RESULTS We verified the STfusion ability to predict fusion transcripts on HeLa cells with known fusions. STfusion and C-score applied to clinical prostate cancer data revealed the spatial distribution of the cis-SAGe SLC45A3-ELK4 in 12 tissue sections with almost single-cell resolution. The cis-SAGe occurred in disease areas, e.g. inflamed, prostatic intraepithelial neoplastic, or cancerous areas, and occasionally in normal glands. CONCLUSIONS STfusion detects fusion transcripts in cancer cell line and clinical tissue data, and distinguishes chimeric transcripts from chimeras caused by trans-splicing events. With STfusion and the use of C-scores, fusion transcripts can be spatially localised in clinical tissue sections on almost single cell level.
Collapse
Affiliation(s)
- Stefanie Friedrich
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121, Solna, Sweden.
| | - Erik L L Sonnhammer
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121, Solna, Sweden
| |
Collapse
|
31
|
Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY, Hegde RS. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. eLife 2020; 9:e60038. [PMID: 32657267 PMCID: PMC7381030 DOI: 10.7554/elife.60038] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Translation of aberrant mRNAs can cause ribosomes to stall, leading to collisions with trailing ribosomes. Collided ribosomes are specifically recognised by ZNF598 to initiate protein and mRNA quality control pathways. Here we found using quantitative proteomics of collided ribosomes that EDF1 is a ZNF598-independent sensor of ribosome collisions. EDF1 stabilises GIGYF2 at collisions to inhibit translation initiation in cis via 4EHP. The GIGYF2 axis acts independently of the ZNF598 axis, but each pathway's output is more pronounced without the other. We propose that the widely conserved and highly abundant EDF1 monitors the transcriptome for excessive ribosome density, then triggers a GIGYF2-mediated response to locally and temporarily reduce ribosome loading. Only when collisions persist is translation abandoned to initiate ZNF598-dependent quality control. This tiered response to ribosome collisions would allow cells to dynamically tune translation rates while ensuring fidelity of the resulting protein products.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Greg Slodkowicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Zhewang Lin
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | | | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| |
Collapse
|
32
|
Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. Mol Cell 2020; 79:588-602.e6. [PMID: 32615089 DOI: 10.1016/j.molcel.2020.06.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
Abstract
The ribosome-associated protein quality control (RQC) system that resolves stalled translation events is activated when ribosomes collide and form disome, trisome, or higher-order complexes. However, it is unclear whether this system distinguishes collision complexes formed on defective mRNAs from those with functional roles on endogenous transcripts. Here, we performed disome and trisome footprint profiling in yeast and found collisions were enriched on diverse sequence motifs known to slow translation. When 60S recycling was inhibited, disomes accumulated at stop codons and could move into the 3' UTR to reinitiate translation. The ubiquitin ligase and RQC factor Hel2/ZNF598 generally recognized collisions but did not induce degradation of endogenous transcripts. However, loss of Hel2 triggered the integrated stress response, via phosphorylation of eIF2α, thus linking these pathways. Our results suggest that Hel2 has a role in sensing ribosome collisions on endogenous mRNAs, and such events may be important for cellular homeostasis.
Collapse
|
33
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
34
|
Ozadam H, Geng M, Cenik C. RiboFlow, RiboR and RiboPy: an ecosystem for analyzing ribosome profiling data at read length resolution. Bioinformatics 2020; 36:2929-2931. [PMID: 31930375 PMCID: PMC7203755 DOI: 10.1093/bioinformatics/btaa028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
SUMMARY Ribosome occupancy measurements enable protein abundance estimation and infer mechanisms of translation. Recent studies have revealed that sequence read lengths in ribosome profiling data are highly variable and carry critical information. Consequently, data analyses require the computation and storage of multiple metrics for a wide range of ribosome footprint lengths. We developed a software ecosystem including a new efficient binary file format named 'ribo'. Ribo files store all essential data grouped by ribosome footprint lengths. Users can assemble ribo files using our RiboFlow pipeline that processes raw ribosomal profiling sequencing data. RiboFlow is highly portable and customizable across a large number of computational environments with built-in capabilities for parallelization. We also developed interfaces for writing and reading ribo files in the R (RiboR) and Python (RiboPy) environments. Using RiboR and RiboPy, users can efficiently access ribosome profiling quality control metrics, generate essential plots and carry out analyses. Altogether, these components create a software ecosystem for researchers to study translation through ribosome profiling. AVAILABILITY AND IMPLEMENTATION For a quickstart, please see https://ribosomeprofiling.github.io. Source code, installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Michael Geng
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78705, USA
| |
Collapse
|
35
|
Tuck AC, Rankova A, Arpat AB, Liechti LA, Hess D, Iesmantavicius V, Castelo-Szekely V, Gatfield D, Bühler M. Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Mol Cell 2020; 77:1222-1236.e13. [PMID: 32048998 PMCID: PMC7083229 DOI: 10.1016/j.molcel.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.
Collapse
Affiliation(s)
- Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
36
|
Inada T. Quality controls induced by aberrant translation. Nucleic Acids Res 2020; 48:1084-1096. [PMID: 31950154 PMCID: PMC7026593 DOI: 10.1093/nar/gkz1201] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
During protein synthesis, translating ribosomes encounter many challenges imposed by various types of defective mRNAs that can lead to reduced cellular fitness and, in some cases, even threaten cell viability. Aberrant translation leads to activation of one of several quality control pathways depending on the nature of the problem. These pathways promote the degradation of the problematic mRNA as well as the incomplete translation product, the nascent polypeptide chain. Many of these quality control systems feature critical roles for specialized regulatory factors that work in concert with conventional factors. This review focuses on the mechanisms used by these quality control pathways to recognize aberrant ribosome stalling and discusses the conservation of these systems.
Collapse
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
37
|
Garshott DM, Sundaramoorthy E, Leonard M, Bennett EJ. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 2020; 9:54023. [PMID: 32011234 PMCID: PMC7064338 DOI: 10.7554/elife.54023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/01/2020] [Indexed: 11/13/2022] Open
Abstract
Activation of the integrated stress response (ISR) or the ribosome-associated quality control (RQC) pathway stimulates regulatory ribosomal ubiquitylation (RRub) on distinct 40S ribosomal proteins, yet the cellular role and fate of ubiquitylated proteins remain unclear. We demonstrate that uS10 and uS5 ubiquitylation are dependent upon eS10 or uS3 ubiquitylation, respectively, suggesting that a hierarchical relationship exists among RRub events establishing a ubiquitin code on ribosomes. We show that stress dependent RRub events diminish after initial stimuli and that demodification by deubiquitylating enzymes contributes to reduced RRub levels during stress recovery. Utilizing an optical RQC reporter we identify OTUD3 and USP21 as deubiquitylating enzymes that antagonize ZNF598-mediated 40S ubiquitylation and can limit RQC activation. Critically, cells lacking USP21 or OTUD3 have altered RQC activity and delayed eS10 deubiquitylation indicating a functional role for deubiquitylating enzymes within the RQC pathway. Ribosomes are cellular machines that build proteins by latching on and then reading template molecules known as mRNAs. Several ribosomes may be moving along the same piece of mRNA at the same time, each making their own copy of the same protein. Damage to an mRNA or other problems may cause a ribosome to stall, leading to subsequent collisions. A quality control pathway exists to identify stalled ribosomes and fix the ‘traffic jams’. It relies on enzymes that tag halted ribosomes with molecules known as ubiquitin. The cell then removes these ribosomes from the mRNA and destroys the proteins they were making. Afterwards, additional enzymes take off the ubiquitin tags so the cell can recycle the ribosomes. These enzymes are key to signaling the end of the quality control event, yet their identity was still unclear. Garshott et al. used genetic approaches to study traffic jams of ribosomes in mammalian cells. The experiments showed that cells added sets of ubiquitin tags to stalled ribosomes in a specific order. Two enzymes, known as USP21 and OTUD3, could stop this process; this allowed ribosomes to carry on reading mRNA. Further work revealed that the ribosomes in cells that produce higher levels of USP21 and OTUD3 were less likely to stall on mRNA. On the other hand, ribosomes in cells lacking USP1 and OTUD3 retained their ubiquitin tags for longer and were more likely to stall. The findings of Garshott et al. reveal that USP21 and OTUD3 are involved in the quality control pathway which fixes ribosome traffic jams. In mice, problems in this pathway have been linked with neurons dying or being damaged because toxic protein products start to accumulate in cells; this is similar to what happens in human conditions such as Alzheimer's and Parkinson's diseases. Using ubiquitin to target and potentially fix the pathway could therefore open the door to new therapies.
Collapse
Affiliation(s)
- Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
38
|
Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5'-OH ends phosphorylated by Trl1. Nat Commun 2020; 11:122. [PMID: 31913314 PMCID: PMC6949252 DOI: 10.1038/s41467-019-13991-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
The No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. Here we use mRNAs expressing a 3'-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5'-hydroxylated RNA fragments requiring 5'-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.
Collapse
Affiliation(s)
- Albertas Navickas
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sébastien Chamois
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Rénette Saint-Fort
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Julien Henri
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie moléculaire et Cellulaire des Eucaryotes, Paris, France.
| |
Collapse
|
39
|
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 2019; 10:5611. [PMID: 31819057 PMCID: PMC6901537 DOI: 10.1038/s41467-019-13579-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
40
|
Erath J, Djuranovic S, Djuranovic SP. Adaptation of Translational Machinery in Malaria Parasites to Accommodate Translation of Poly-Adenosine Stretches Throughout Its Life Cycle. Front Microbiol 2019; 10:2823. [PMID: 31866984 PMCID: PMC6908487 DOI: 10.3389/fmicb.2019.02823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is caused by unicellular apicomplexan parasites of the genus Plasmodium, which includes the major human parasite Plasmodium falciparum. The complex cycle of the malaria parasite in both mosquito and human hosts has been studied extensively. There is tight control of gene expression in each developmental stage, and at every level of gene synthesis: from RNA transcription, to its subsequent translation, and finally post-translational modifications of the resulting protein. Whole-genome sequencing of P. falciparum has laid the foundation for significant biological advances by revealing surprising genomic information. The P. falciparum genome is extremely AT-rich (∼80%), with a substantial portion of genes encoding intragenic polyadenosine (polyA) tracks being expressed throughout the entire parasite life cycle. In most eukaryotes, intragenic polyA runs act as negative regulators of gene expression. Recent studies have shown that translation of mRNAs containing 12 or more consecutive adenosines results in ribosomal stalling and frameshifting; activating mRNA surveillance mechanisms. In contrast, P. falciparum translational machinery can efficiently and accurately translate polyA tracks without activating mRNA surveillance pathways. This unique feature of P. falciparum raises interesting questions: (1) How is P. falciparum able to efficiently and correctly translate polyA track transcripts, and (2) What are the specifics of the translational machinery and mRNA surveillance mechanisms that separate P. falciparum from other organisms? In this review, we analyze possible evolutionary shifts in P. falciparum protein synthesis machinery that allow efficient translation of an AU rich-transcriptome. We focus on physiological and structural differences of P. falciparum stage specific ribosomes, ribosome-associated proteins, and changes in mRNA surveillance mechanisms throughout the complete parasite life cycle, with an emphasis on the mosquito and liver stages.
Collapse
Affiliation(s)
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
41
|
Mechanism of ribosome stalling during translation of a poly(A) tail. Nat Struct Mol Biol 2019; 26:1132-1140. [PMID: 31768042 PMCID: PMC6900289 DOI: 10.1038/s41594-019-0331-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
Faulty or damaged mRNAs are detected by the cell when translating ribosomes stall during elongation and trigger pathways of mRNA decay, nascent protein degradation, and ribosome recycling. The most common mRNA defect in eukaryotes is probably inappropriate poly-adenylation at near-cognate sites within the coding region. How ribosomes stall selectively when they encounter poly(A) is unclear. Here, we use biochemical and structural approaches in mammalian systems to show that poly-lysine, encoded by poly(A), favors a peptidyl-tRNA conformation sub-optimal for peptide bond formation. This conformation partially slows elongation, permitting poly(A) mRNA in the ribosome’s decoding center to adopt an rRNA-stabilized single-stranded helix. The reconfigured decoding center clashes with incoming aminoacyl-tRNA, thereby precluding elongation. Thus, coincidence detection of poly-lysine in the exit tunnel and poly(A) in the decoding center allows ribosomes to detect aberrant mRNAs selectively, stall elongation, and trigger downstream quality control pathways essential for cellular homeostasis.
Collapse
|
42
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pule MN, Glover ML, Fire AZ, Arribere JA. Ribosome clearance during RNA interference. RNA (NEW YORK, N.Y.) 2019; 25:963-974. [PMID: 31110136 PMCID: PMC6633202 DOI: 10.1261/rna.070813.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
In the course of identifying and cleaving RNA, the RNAi machinery must encounter and contend with the megadalton-sized ribosomes that carry out translation. We investigated this interface by examining the fate of actively translated mRNAs subjected to RNAi in C. elegans Quantifying RNA levels (RNA-seq) and ongoing translation (Ribo-seq), we found there is a greater fold repression of ongoing translation than expected from loss of RNA alone, observing stronger translation repression relative to RNA repression for multiple, independent double-stranded RNA triggers, and for multiple genes. In animals that lack the RNA helicase SKI complex and the ribosome rescue factor PELOTA, ribosomes stall on the 3' edges of mRNAs at and upstream of the RNAi trigger. One model to explain these observations is that ribosomes are actively cleared from mRNAs by SKI and PELO during or following mRNA cleavage. Our results expand prior studies that show a role for the SKI RNA helicase complex in removing RNA targets following RNAi in flies and plants, illuminating the widespread role of the nonstop translation surveillance in RNA silencing during RNAi. Our results are also consistent with proposals that RNAi can attack messages during active translation.
Collapse
Affiliation(s)
- Makena N Pule
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Marissa L Glover
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joshua A Arribere
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
44
|
D'Orazio KN, Wu CCC, Sinha N, Loll-Krippleber R, Brown GW, Green R. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife 2019; 8:e49117. [PMID: 31219035 PMCID: PMC6598757 DOI: 10.7554/elife.49117] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
Translation of problematic sequences in mRNAs leads to ribosome collisions that trigger a series of quality control events including ribosome rescue, degradation of the stalled nascent polypeptide, and targeting of the mRNA for decay (No Go Decay or NGD). Using a reverse genetic screen in yeast, we identify Cue2 as the conserved endonuclease that is recruited to stalled ribosomes to promote NGD. Ribosome profiling and biochemistry provide strong evidence that Cue2 cleaves mRNA within the A site of the colliding ribosome. We demonstrate that NGD primarily proceeds via Xrn1-mediated exonucleolytic decay and Cue2-mediated endonucleolytic decay normally constitutes a secondary decay pathway. Finally, we show that the Cue2-dependent pathway becomes a major contributor to NGD in cells depleted of factors required for the resolution of stalled ribosome complexes. Together these results provide insights into how multiple decay processes converge to process problematic mRNAs in eukaryotic cells..
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Niladri Sinha
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Raphael Loll-Krippleber
- Donnelly Centre for Cellular and Biomolecular Research, Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Grant W Brown
- Donnelly Centre for Cellular and Biomolecular Research, Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Rachel Green
- Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
45
|
Ibrahim F, Mourelatos Z. Capturing 5' and 3' native ends of mRNAs concurrently with Akron sequencing. Nat Protoc 2019; 14:1578-1602. [PMID: 30971782 DOI: 10.1038/s41596-019-0151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/19/2019] [Indexed: 11/09/2022]
Abstract
Advances in RNA-sequencing methods have uncovered many aspects of RNA metabolism but are limited to surveying either the 3' or 5' terminus of RNAs, thus missing mechanistic aspects that could be revealed if both ends were captured. We developed Akron sequencing (Akron-seq), a method that captures in parallel the native 5' ends of uncapped, polyadenylated mRNAs and 3' ends of capped mRNAs from the same input RNA. Thus, Akron-seq uniquely enables assessment of full-length and truncated mRNAs at single-nucleotide resolution. Akron-seq involves RNA isolation, depletion of ribosomal and abundant small capped RNAs, and selection of capped and polyadenylated mRNAs. The endogenous ends of mRNAs are marked by adaptor ligation, followed by fragmentation, cDNA generation, PCR amplification, and deep sequencing. The step-by-step protocol we describe here is optimized for cultured human cells but can be adapted to primary cells and tissues. Akron-seq can be completed within 6 d, and sequencing and analysis can be completed within 6 d.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA. .,Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Zissimos Mourelatos
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.,Penn Medicine Translational Neuroscience Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Skorupa M, Gołębiewski M, Kurnik K, Niedojadło J, Kęsy J, Klamkowski K, Wójcik K, Treder W, Tretyn A, Tyburski J. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. BMC PLANT BIOLOGY 2019; 19:57. [PMID: 30727960 PMCID: PMC6364445 DOI: 10.1186/s12870-019-1661-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sugar beet is a highly salt-tolerant crop. However, its ability to withstand high salinity is reduced compared to sea beet, a wild ancestor of all beet crops. The aim of this study was to investigate transcriptional patterns associated with physiological, cytological and biochemical mechanisms involved in salt response in these closely related subspecies. Salt acclimation strategies were assessed in plants subjected to either gradually increasing salt levels (salt-stress) or in excised leaves, exposed instantly to salinity (salt-shock). RESULT The majority of DEGs was down-regulated under stress, which may lead to certain aspects of metabolism being reduced in this treatment, as exemplified by lowered transpiration and photosynthesis. This effect was more pronounced in sugar beet. Additionally, sugar beet, but not sea beet, growth was restricted. Silencing of genes encoding numerous transcription factors and signaling proteins was observed, concomitantly with the up-regulation of lipid transfer protein-encoding genes and those coding for NRTs. Bark storage protein genes were up-regulated in sugar beet to the level observed in unstressed sea beet. Osmotic adjustment, manifested by increased water and proline content, occurred in salt-shocked leaves of both genotypes, due to the concerted activation of genes encoding aquaporins, ion channels and osmoprotectants synthesizing enzymes. bHLH137 was the only TF-encoding gene induced by salt in a dose-dependent manner irrespective of the mode of salt treatment. Moreover, the incidence of bHLH-binding motives in promoter regions of salinity-regulated genes was significantly greater than in non-regulated ones. CONCLUSIONS Maintaining homeostasis under salt stress requires deeper transcriptomic changes in the sugar beet than in the sea beet. In both genotypes salt shock elicits greater transcriptomic changes than stress and it results in greater number of up-regulated genes compared to the latter. NRTs and bark storage protein may play a yet undefined role in salt stress-acclimation in beet. bHLH is a putative regulator of salt response in beet leaves and a promising candidate for further studies.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Gołębiewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | | | | | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
47
|
Mohammad F, Green R, Buskirk AR. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 2019; 8:e42591. [PMID: 30724162 PMCID: PMC6377232 DOI: 10.7554/elife.42591] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
In eukaryotes, ribosome profiling provides insight into the mechanism of protein synthesis at the codon level. In bacteria, however, the method has been more problematic and no consensus has emerged for how to best prepare profiling samples. Here, we identify the sources of these problems and describe new solutions for arresting translation and harvesting cells in order to overcome them. These improvements remove confounding artifacts and improve the resolution to allow analyses of ribosome behavior at the codon level. With a clearer view of the translational landscape in vivo, we observe that filtering cultures leads to translational pauses at serine and glycine codons through the reduction of tRNA aminoacylation levels. This observation illustrates how bacterial ribosome profiling studies can yield insight into the mechanism of protein synthesis at the codon level and how these mechanisms are regulated in response to changes in the physiology of the cell.
Collapse
Affiliation(s)
- Fuad Mohammad
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Rachel Green
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Allen R Buskirk
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
48
|
Winz ML, Peil L, Turowski TW, Rappsilber J, Tollervey D. Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control. Nat Commun 2019; 10:563. [PMID: 30718516 PMCID: PMC6362110 DOI: 10.1038/s41467-019-08382-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Ribosome-associated quality control (RQC) pathways monitor and respond to ribosome stalling. Using in vivo UV-crosslinking and mass spectrometry, we identified a C-terminal region in Hel2/Rqt1 as an RNA binding domain. Complementary crosslinking and sequencing data for Hel2 revealed binding to 18S rRNA and translated mRNAs. Hel2 preferentially bound mRNAs upstream and downstream of the stop codon. C-terminal truncation of Hel2 abolished the major 18S crosslink and polysome association, and altered mRNA binding. HEL2 deletion caused loss of RQC and, we report here, no-go decay (NGD), with comparable effects for Hel2 truncation including the RNA-binding site. Asc1 acts upstream of Hel2 in RQC and asc1∆ impaired Hel2 binding to 18S and mRNA. In conclusion: Hel2 is recruited or stabilized on translating 40S ribosomal subunits by interactions with 18S rRNA and Asc1. This 18S interaction is required for Hel2 function in RQC and NGD. Hel2 probably interacts with mRNA during translation termination. Ribosome-associated quality control (RQC) pathways monitor and respond to stalling of the translating ribosome. Here the authors show that the ribosome associated RQC factor Hel2/ZNF598, an E3 ubiquitin ligase, generally interacts with mRNAs in the vicinity of stop codons.
Collapse
Affiliation(s)
- Marie-Luise Winz
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland
| | - Lauri Peil
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.,Institute of Technology, University of Tartu, Nooruse 150411, Tartu, Estonia
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, Scotland.
| |
Collapse
|
49
|
Simms CL, Kim KQ, Yan LL, Qiu J, Zaher HS. Interactions between the mRNA and Rps3/uS3 at the entry tunnel of the ribosomal small subunit are important for no-go decay. PLoS Genet 2018; 14:e1007818. [PMID: 30475795 PMCID: PMC6283612 DOI: 10.1371/journal.pgen.1007818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022] Open
Abstract
No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD. In all organisms, optimum cellular fitness depends on the ability of cells to recognize and degrade aberrant molecules. Messenger RNA is subject to alterations and, as a result, often presents roadblocks for the translating ribosomes. It is not surprising, then, that organisms evolved pathways to resolve these valuable stuck ribosomes. In eukaryotes, this process is called no-go decay (NGD) because it is coupled with decay of mRNAs that are associated with ribosomes that do not ‘go’. This decay process initiates with cleavage of the mRNA near the stall site, but some important details about this reaction are lacking. Here, we show that the ribosome itself is very central to the cleavage reaction. In particular, we identified a pair of residues of a ribosomal protein to be important for cleavage efficiency. These observations are consistent with prior structural studies showing that the residues make intimate contacts with the incoming mRNA in the entry tunnel. Altogether our data provide important clues about this quality-control pathway and suggest that the endonuclease not only recognizes stalled ribosomes but may have coevolved with the translation machinery to take advantage of certain residues of the ribosome to fulfill its function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Genes, Fungal
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Peptide Chain Elongation, Translational
- Protein Conformation
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small/genetics
- Ribosome Subunits, Small/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Ubiquitination
Collapse
Affiliation(s)
- Carrie L. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jessica Qiu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
50
|
Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Mol Cell 2018; 72:469-481.e7. [PMID: 30293783 PMCID: PMC6224477 DOI: 10.1016/j.molcel.2018.08.037] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
Aberrantly slow translation elicits quality control pathways initiated by the ubiquitin ligase ZNF598. How ZNF598 discriminates physiologic from pathologic translation complexes and ubiquitinates stalled ribosomes selectively is unclear. Here, we find that the minimal unit engaged by ZNF598 is the collided di-ribosome, a molecular species that arises when a trailing ribosome encounters a slower leading ribosome. The collided di-ribosome structure reveals an extensive 40S-40S interface in which the ubiquitination targets of ZNF598 reside. The paucity of 60S interactions allows for different ribosome rotation states, explaining why ZNF598 recognition is indifferent to how the leading ribosome has stalled. The use of ribosome collisions as a proxy for stalling allows the degree of tolerable slowdown to be tuned by the initiation rate on that mRNA; hence, the threshold for triggering quality control is substrate specific. These findings illustrate how higher-order ribosome architecture can be exploited by cellular factors to monitor translation status. ZNF598 is a direct sensor of ribosome collisions incurred by many unrelated causes The minimal target recognized and ubiquitinated by ZNF598 is a collided di-ribosome Collided di-ribosome structure shows that ZNF598 ubiquitin sites are near the interface Collisions are required to terminally arrest translation in ZNF598-dependent manner
Collapse
Affiliation(s)
| | | | - Zhewang Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|