1
|
Murakami S, Olarerin-George AO, Liu JF, Zaccara S, Hawley B, Jaffrey SR. m 6A alters ribosome dynamics to initiate mRNA degradation. Cell 2025:S0092-8674(25)00455-6. [PMID: 40328256 DOI: 10.1016/j.cell.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Degradation of mRNA containing N6-methyladenosine (m6A) is essential for cell growth, differentiation, and stress responses. Here, we show that m6A markedly alters ribosome dynamics and that these alterations mediate the degradation effect of m6A on mRNA. We find that m6A is a potent inducer of ribosome stalling, and these stalls lead to ribosome collisions that form a unique conformation unlike those seen in other contexts. We find that the degree of ribosome stalling correlates with m6A-mediated mRNA degradation, and increasing the persistence of collided ribosomes correlates with enhanced m6A-mediated mRNA degradation. Ribosome stalling and collision at m6A is followed by recruitment of YTHDF m6A reader proteins to promote mRNA degradation. We show that mechanisms that reduce ribosome stalling and collisions, such as translation suppression during stress, stabilize m6A-mRNAs and increase their abundance, enabling stress responses. Overall, our study reveals the ribosome as the initial m6A sensor for beginning m6A-mRNA degradation.
Collapse
Affiliation(s)
- Shino Murakami
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Anthony O Olarerin-George
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Jianheng Fox Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Ben Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
3
|
Garat J, Di Paolo A, Eastman G, Castillo PE, Sotelo-Silveira J. The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes. Neuroscience 2025; 567:195-208. [PMID: 39755230 DOI: 10.1016/j.neuroscience.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. However, compelling evidence supports its essential and pervasive role in axonal function in the mature nervous system. Remarkably, in the last five decades, Uruguayan neuroscientists have contributed significantly to demonstrating axonal LPS by studying motor and sensory axons of the peripheral nervous system of mammals, as well as giant axons of the squid and the Mauthner cell of fish. For LPS to occur, a highly regulated transport system must deliver the necessary macromolecules, such as mRNAs and ribosomes. This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
Collapse
Affiliation(s)
- Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| |
Collapse
|
4
|
Khalatyan N, Cornish D, Ferrell AJ, Savas JN, Shen PS, Hultquist JF, Walsh D. Ribosome customization and functional diversification among P-stalk proteins regulate late poxvirus protein synthesis. Cell Rep 2025; 44:115119. [PMID: 39786991 PMCID: PMC11834158 DOI: 10.1016/j.celrep.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/29/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2. RACK1 is a component of the altered 40S head domain, while RPLP2 is a subunit of the P-stalk, wherein RPLP0 anchors two heterodimers of RPLP1 and RPLP2 to the large 60S subunit. RPLP0 was required for global translation, yet RPLP1 was dispensable, while RPLP2 was specifically required for non-canonical poxvirus protein synthesis. From these combined results, we demonstrate that poxviruses structurally customize ribosomes and become reliant upon traditionally non-essential RPs from both ribosomal subunits for efficient initiation on their late mRNAs.
Collapse
Affiliation(s)
- Natalia Khalatyan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daphne Cornish
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Aaron J Ferrell
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Smith MR, Costa G. Insights into the regulation of mRNA translation by scaffolding proteins. Biochem Soc Trans 2024; 52:2569-2578. [PMID: 39641595 PMCID: PMC11668292 DOI: 10.1042/bst20241021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Regionalisation of molecular mechanisms allows cells to fine-tune their responses to dynamic environments. In this context, scaffolds are well-known mediators of localised protein activity. These phenomenal proteins act as docking sites where pathway components are brought together to ensure efficient and reliable flow of information within the cell. Although scaffolds are mostly understood as hubs for signalling communication, some have also been studied as regulators of mRNA translation. Here, we provide a brief overview of the work unravelling how scaffolding proteins facilitate the cross-talk between the two processes. Firstly, we examine the activity of AKAP1 and AKAP12, two signalling proteins that not only have the capacity to anchor mRNAs to membranes but can also regulate protein synthesis. Next, we review the studies that uncovered how the ribosome-associated protein RACK1 orchestrates translation initiation. We also discuss the evidence pointing to the scaffolds Ezrin and LASP1 as regulators of early translation stages. In the end, we conclude with some open questions and propose future directions that will bring new insights into the regulation of mRNA translation by scaffolding proteins.
Collapse
Affiliation(s)
- Madeleine R. Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K
| |
Collapse
|
6
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
7
|
Gemin O, Gluc M, Rosa H, Purdy M, Niemann M, Peskova Y, Mattei S, Jomaa A. Ribosomes hibernate on mitochondria during cellular stress. Nat Commun 2024; 15:8666. [PMID: 39379376 PMCID: PMC11461667 DOI: 10.1038/s41467-024-52911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Cell survival under nutrient-deprived conditions relies on cells' ability to adapt their organelles and rewire their metabolic pathways. In yeast, glucose depletion induces a stress response mediated by mitochondrial fragmentation and sequestration of cytosolic ribosomes on mitochondria. This cellular adaptation promotes survival under harsh environmental conditions; however, the underlying mechanism of this response remains unknown. Here, we demonstrate that upon glucose depletion protein synthesis is halted. Cryo-electron microscopy structure of the ribosomes show that they are devoid of both tRNA and mRNA, and a subset of the particles depicted a conformational change in rRNA H69 that could prevent tRNA binding. Our in situ structural analyses reveal that the hibernating ribosomes tether to fragmented mitochondria and establish eukaryotic-specific, higher-order storage structures by assembling into oligomeric arrays on the mitochondrial surface. Notably, we show that hibernating ribosomes exclusively bind to the outer mitochondrial membrane via the small ribosomal subunit during cellular stress. We identify the ribosomal protein Cpc2/RACK1 as the molecule mediating ribosomal tethering to mitochondria. This study unveils the molecular mechanism connecting mitochondrial stress with the shutdown of protein synthesis and broadens our understanding of cellular responses to nutrient scarcity and cell quiescence.
Collapse
Affiliation(s)
- Olivier Gemin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Maciej Gluc
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Higor Rosa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Moritz Niemann
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Yelena Peskova
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Simone Mattei
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany.
- European Molecular Biology Laboratory, Imaging Centre, Meyerhofstraße 1, Heidelberg, Germany.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, USA.
| |
Collapse
|
8
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
9
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
10
|
Gao Y, Wang H. Ribosome heterogeneity in development and disease. Front Cell Dev Biol 2024; 12:1414269. [PMID: 39086661 PMCID: PMC11288964 DOI: 10.3389/fcell.2024.1414269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Traditionally viewed as a fixed and homogeneous machinery for protein synthesis, the ribosome is increasingly recognized for its heterogeneity, as indicated by emerging studies highlighting the functional relevance of specialized ribosomes. However, whether ribosome heterogeneity is merely an outcome limited to specific conditions or a pervasive cellular phenomenon remains unclear, and existing evidence on the extensive existence of ribosome heterogeneity is scant. Here, we leveraged existing proteomic data and employed ribosome ratio-omics (RibosomeR), which comprehensively analyzes ribosome protein stoichiometry across various biological samples exhibiting distinct functions, developmental stages, and pathological states. Using the 80S monosome proteomic data, RibosomeR analysis unveils significant ribosome heterogeneity across different tissues, including fat, spleen, liver, kidney, heart, and skeletal muscles. Furthermore, examination of testes at various stages of spermatogenesis reveals distinct RibosomeR signatures during tissue development. Analysis of the whole cell proteomic data finds that RibosomeR undergoes dynamic changes during in vitro neuronal maturation, indicating functional associations with specific molecular aspects of neurodevelopment. In pathological contexts, RibosomeR signatures in gastric tumors demonstrate functional links to pathways associated with tumorigenesis. Additionally, dynamic alterations in RibosomeR are observed in macrophages following immune challenges. Collectively, our investigation across a diverse array of biological samples underscores the presence of ribosome heterogeneity, while previous studies observed functional aspects of ribosome specialization, in cellular function, development, and disease. The RibosomeR barcode serves as a valuable tool for elucidating these complexities.
Collapse
Affiliation(s)
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Grosely R, Alvarado C, Ivanov IP, Nicholson OB, Puglisi JD, Dever TE, Lapointe CP. eIF1 and eIF5 dynamically control translation start site fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602410. [PMID: 39026837 PMCID: PMC11257575 DOI: 10.1101/2024.07.10.602410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNAi Met on the 40S ribosomal subunit to coordinate start site selection. Here, using single-molecule analysis of in vitro reconstituted human initiation combined with translation assays in cells, we examine eIF1 and eIF5 function. During translation initiation on a panel of RNAs, we monitored both proteins directly and in real time using single-molecule fluorescence. As expected, eIF1 loaded onto mRNAs as a component of the 43S initiation complex. Rapid (~ 2 s) eIF1 departure required a translation start site and was delayed by alternative start sites and a longer 5' untranslated region (5'UTR). After its initial departure, eIF1 rapidly and transiently sampled initiation complexes, with more prolonged sampling events on alternative start sites. By contrast, eIF5 only transiently bound initiation complexes late in initiation immediately prior to association of eIF5B, which allowed joining of the 60S ribosomal subunit. eIF5 association required the presence of a translation start site and was inhibited and destabilized by alternative start sites. Using both knockdown and overexpression experiments in human cells, we validated that eIF1 and eIF5 have opposing roles during initiation. Collectively, our findings demonstrate how multiple eIF1 and eIF5 binding events control start-site selection fidelity throughout initiation, which is tuned in response to changes in the levels of both proteins.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Alvarado
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivaylo P. Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph D. Puglisi
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E. Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
12
|
Makhlouf L, Peter JJ, Magnussen HM, Thakur R, Millrine D, Minshull TC, Harrison G, Varghese J, Lamoliatte F, Foglizzo M, Macartney T, Calabrese AN, Zeqiraj E, Kulathu Y. The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Nature 2024; 627:437-444. [PMID: 38383789 PMCID: PMC10937380 DOI: 10.1038/s41586-024-07093-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.
Collapse
Affiliation(s)
- Linda Makhlouf
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joshua J Peter
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Rohan Thakur
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - David Millrine
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Translational Immunology, Cancer Biomarker Centre, Manchester CRUK Institute, Manchester, UK
| | - Thomas C Minshull
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Grace Harrison
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
13
|
Ragunath M, Shen A, Wei L, Peng J, Thiruvengadam M. Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms. Curr Pharm Des 2024; 30:2911-2921. [PMID: 39143880 DOI: 10.2174/0113816128301870240730071910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 08/16/2024]
Abstract
Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies.
Collapse
Affiliation(s)
- Muthu Ragunath
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lin Wei
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Guo J, Wang Y, Tang L, Tang T, Li Z, Li M, Wang L, Zeng A, Ma Y, Huang S, Jiang X, Guo W. The regulation of Tfh cell differentiation by β-hydroxybutyrylation modification of transcription factor Bcl6. Chromosoma 2023; 132:257-268. [PMID: 37227491 PMCID: PMC10209948 DOI: 10.1007/s00412-023-00799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Transcriptional repressor B cell lymphoma 6 (Bcl6) is a major transcription factor involved in Tfh cell differentiation and germinal center response, which is regulated by a variety of biological processes. However, the functional impact of post-translational modifications, particularly lysine β-hydroxybutyrylation (Kbhb), on Bcl6 remains elusive. In this study, we revealed that Bcl6 is modified by Kbhb to affect Tfh cell differentiation, resulting in the decrease of cell population and cytokine IL-21. Furthermore, the modification sites are identified from enzymatic reactions to be lysine residues at positions 376, 377, and 379 by mass spectrometry, which is confirmed by site-directed mutagenesis and functional analyses. Collectively, our present study provides evidence on the Kbhb modification of Bcl6 and also generates new insights into the regulation of Tfh cell differentiation, which is a starting point for a thorough understanding of the functional involvement of Kbhb modification in the differentiations of Tfh and other T cells.
Collapse
Affiliation(s)
- Jingtian Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yimeng Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lei Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tiejun Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhuolan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Mengyuan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liming Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Aizhong Zeng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuxiao Ma
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shihao Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaomeng Jiang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
15
|
Schubert K, Karousis ED, Ban I, Lapointe CP, Leibundgut M, Bäumlin E, Kummerant E, Scaiola A, Schönhut T, Ziegelmüller J, Puglisi JD, Mühlemann O, Ban N. Universal features of Nsp1-mediated translational shutdown by coronaviruses. Mol Cell 2023; 83:3546-3557.e8. [PMID: 37802027 PMCID: PMC10575594 DOI: 10.1016/j.molcel.2023.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Nonstructural protein 1 (Nsp1) produced by coronaviruses inhibits host protein synthesis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp1 C-terminal domain was shown to bind the ribosomal mRNA channel to inhibit translation, but it is unclear whether this mechanism is broadly used by coronaviruses, whether the Nsp1 N-terminal domain binds the ribosome, or how Nsp1 allows viral RNAs to be translated. Here, we investigated Nsp1 from SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and Bat-Hp-CoV coronaviruses using structural, biophysical, and biochemical experiments, revealing a conserved role for the C-terminal domain. Additionally, the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A accommodation. Structure-based experiments demonstrated the importance of decoding center interactions in all three coronaviruses and showed that the same regions of Nsp1 are necessary for the selective translation of viral RNAs. Our results provide a mechanistic framework to understand how Nsp1 controls preferential translation of viral RNAs.
Collapse
Affiliation(s)
- Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern 3012, Switzerland.
| | - Ivo Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Emilie Bäumlin
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern 3012, Switzerland
| | - Eric Kummerant
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland.
| |
Collapse
|
16
|
Gao Y, Wang H. Ribosome Heterogeneity in Development and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550527. [PMID: 37546733 PMCID: PMC10402066 DOI: 10.1101/2023.07.25.550527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The functional ribosome is composed of ∼80 ribosome proteins. With the intensity-based absolute quantification (iBAQ) value, we calculate the stoichiometry ratio of each ribosome protein. We analyze the ribosome ratio-omics (Ribosome R ), which reflects the holistic signature of ribosome composition, in various biological samples with distinct functions, developmental stages, and pathological outcomes. The Ribosome R reveals significant ribosome heterogeneity among different tissues of fat, spleen, liver, kidney, heart, and skeletal muscles. During tissue development, testes at various stages of spermatogenesis show distinct Ribosome R signatures. During in vitro neuronal maturation, the Ribosome R changes reveal functional association with certain molecular aspects of neurodevelopment. Regarding ribosome heterogeneity associated with pathological conditions, the Ribosome R signature of gastric tumors is functionally linked to pathways associated with tumorigenesis. Moreover, the Ribosome R undergoes dynamic changes in macrophages following immune challenges. Taken together, with the examination of a broad spectrum of biological samples, the Ribosome R barcode reveals ribosome heterogeneity and specialization in cell function, development, and disease. One-Sentence Summary Ratio-omics signature of ribosome deciphers functionally relevant heterogeneity in development and disease.
Collapse
|
17
|
Oudart M, Avila-Gutierrez K, Moch C, Dossi E, Milior G, Boulay AC, Gaudey M, Moulard J, Lombard B, Loew D, Bemelmans AP, Rouach N, Chapat C, Cohen-Salmon M. The ribosome-associated protein RACK1 represses Kir4.1 translation in astrocytes and influences neuronal activity. Cell Rep 2023; 42:112456. [PMID: 37126448 DOI: 10.1016/j.celrep.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/10/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.
Collapse
Affiliation(s)
- Marc Oudart
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clara Moch
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Mathis Gaudey
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Alexis-Pierre Bemelmans
- CEA, Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clément Chapat
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France.
| |
Collapse
|
18
|
Wu Z, Hu G, Gong T, Hu Q, Hong L, Zhang Y, Ao Z. RACK1 may participate in placental development at mid-gestation via regulating trophoblast cell proliferation and migration in pigs. Mol Reprod Dev 2023; 90:248-259. [PMID: 36916007 DOI: 10.1002/mrd.23680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023]
Abstract
Intrauterine growth restriction (IUGR) is a severe complication in swine production. Placental insufficiency is responsible for inadequate fetal growth, but the specific etiology of placental dysfunction-induced IUGR in pigs remains poorly understood. In this work, placenta samples supplying the lightest weight (LW) and mean weight (MW) pig fetuses in the litter at Day 65 (D65) of gestation were collected, and the relationship between fetal growth and placental morphologies and functions was investigated using histomorphological analysis, RNA sequencing, quantitative polymerase chain reaction, and in vitro experiment in LW and MW placentas. Results showed that the folded structure of the epithelial bilayer of LW placentas followed a poor and incomplete development compared with that of MW placentas. A total of 654 differentially expressed genes (DEGs) were screened out between the LW and MW placentas, and the gene encodes receptor for activated C kinase 1 (RACK1) was found to be downregulated in LW placentas. The DEGs were mainly enriched in translation, ribosome, protein synthesis, and mammalian target of rapamycin (mTOR) signaling pathway according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In vitro experiments indicated that the decreased RACK1 in LW placentas may be involved in abnormal development of placental folds (PFs) by inhibiting the proliferation and migration of porcine trophoblast cells. Taken together, these results revealed that RACK1 may be a vital regulator in the development of PFs via regulating trophoblast cell proliferation and migration in pigs.
Collapse
Affiliation(s)
- Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
Biswas A, Peng YF, Kaushik V, Origanti S. Site-specific labeling of SBDS to monitor interactions with the 60S ribosomal subunit. Methods 2023; 211:68-72. [PMID: 36781034 PMCID: PMC11827446 DOI: 10.1016/j.ymeth.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
The Shwachman-Diamond syndrome (SDS) is a rare inherited ribosomopathy that is predominantly caused by mutations in the Shwachman-Bodian-Diamond Syndrome gene (SBDS). SBDS is a ribosomal maturation factor that is essential for the release of eukaryotic translation initiation factor 6 (eIF6) from 60S ribosomal subunits during the late stages of 60S maturation. Release of eIF6 is critical to permit inter-subunit interactions between the 60S and 40S subunits and to form translationally competent 80S monosomes. SBDS has three key domains that are highly flexible and adopt varied conformations in solution. To better understand the domain dynamics of SBDS upon binding to 60S and to assess the effects of SDS-disease specific mutations, we aimed to site-specifically label individual domains of SBDS. Here we detail the generation of a fluorescently labeled SBDS to monitor the dynamics of select domains upon binding to 60S. We describe the incorporation of 4-azido-l-phenylalanine (4AZP), a noncanonical amino acid in human SBDS. Site-specific labeling of SBDS using fluorophore and assessment of 60S binding activity are also described. Such labeling approaches to capture the interactions of individual domains of SBDS with 60S are also applicable to study the dynamics of other multi-domain proteins that interact with the ribosomal subunits.
Collapse
Affiliation(s)
- Aparna Biswas
- Department of Biology, Saint Louis University, St. Louis, MO 63103, United States
| | - Yu-Fong Peng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, United States
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, United States.
| |
Collapse
|
20
|
Elliff J, Biswas A, Roshan P, Kuppa S, Patterson A, Mattice J, Chinnaraj M, Burd R, Walker SE, Pozzi N, Antony E, Bothner B, Origanti S. Dynamic states of eIF6 and SDS variants modulate interactions with uL14 of the 60S ribosomal subunit. Nucleic Acids Res 2023; 51:1803-1822. [PMID: 36651285 PMCID: PMC9976893 DOI: 10.1093/nar/gkac1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.
Collapse
Affiliation(s)
- Jonah Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
- Department of Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Aparna Biswas
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Poonam Roshan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Ryan Burd
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Sarah E Walker
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
21
|
Wang H, Xie Y, Wang X, Geng X, Gao L. Characterization of the RACK1 gene of Aips cerana cerana and its role in adverse environmental stresses. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110796. [PMID: 35973656 DOI: 10.1016/j.cbpb.2022.110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Receptors for Activated C Kinase 1 (RACK1s) are a kind of multifunction scaffold protein that plays an important role in cell signal transductions and animal development. However, the function of RACK1 in the Chinese honeybee Apis cerana cerana is little known. Here, we isolated and identified a RACK1 gene from Apis cerana cerana, named AccRACK1. By bioinformatic analysis, we revealed a high nucleic acid homology between AccRACK1 and RACK1 of Apis cerana. RT-qPCR analyses demonstrated AccRACK1 was mostly expressed in 3rd instar larvae, darked-eyed pupae and adults (one and thirty days post-emergence), suggesting it might participate in the development of A. cerana cerana. Moreover, the expression of AccRACK1 was highest in the thorax, followed by the venom gland. Compared to the blank control group, AccRACK1 was induced by 24 and 44 °C, HgCl2 and pesticides (paraquat, pyridaben and methomyl) but inhibited by 14 °C, H2O2, UV light and cyhalothrin. Additionally, 0.05, 0.1, 1, 5 and 10 mg/ml PPN (juvenile hormone analogue pyriproxyfen) could promote the expression of AccRACK1, with 1 mg/ml showing the highest upregulation, suggesting it was regulated by hormones. Further study found that after knockdown of AccRACK1 by RNAi, the expression of the eukaryotic initiation factor 6 of A. cerana cerana (AcceIF6), an initiation factor regulating the initiation of translation, was inhibited, indicating AccRACK1 might affect cellular responses by translation. These findings, taken together, suggest AccRACK1 is involved in the development and responses to abiotic stresses of A. cerana cerana, and therefore, it may be of critical importance to the survival of A. cerana cerana.
Collapse
Affiliation(s)
- Hongfei Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yucai Xie
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoqing Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoshan Geng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijun Gao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| |
Collapse
|
22
|
Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR, Kulathu Y. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J 2022; 41:e111015. [PMID: 36121123 PMCID: PMC9627666 DOI: 10.15252/embj.2022111015] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold-type E3 ligase mechanism that activates the UFM1-conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex.
Collapse
Affiliation(s)
- Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Paul A DaRosa
- Department of BiologyStanford UniversityStanfordCAUSA
| | - David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Ron R Kopito
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
23
|
RACK1 Regulates Poxvirus Protein Synthesis Independently of Its Role in Ribosome-Based Stress Signaling. J Virol 2022; 96:e0109322. [PMID: 36098514 PMCID: PMC9517738 DOI: 10.1128/jvi.01093-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Receptor for activated C kinase 1 (RACK1) is a small ribosomal subunit protein that is phosphorylated by vaccinia virus (VacV) to maximize translation of postreplicative (PR) mRNAs that harbor 5' polyA leaders. However, RACK1 is a multifunctional protein that both controls translation directly and acts as a scaffold for signaling to and from the ribosome. This includes stress signaling that is activated by ribosome-associated quality control (RQC) and ribotoxic stress response (RSR) pathways. As VacV infection activates RQC and stress signaling, whether RACK1 influences viral protein synthesis through its effects on translation, signaling, or both remains unclear. Examining the effects of genetic knockout of RACK1 on the phosphorylation of key mitogenic and stress-related kinases, we reveal that loss of RACK1 specifically blunts the activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at late stages of infection. However, RACK1 was not required for JNK recruitment to ribosomes, and unlike RACK1 knockout, JNK inhibitors had no effect on viral protein synthesis. Moreover, reduced JNK activity during infection in RACK1 knockout cells contrasted with the absolute requirement for RACK1 in RSR-induced JNK phosphorylation. Comparing the effects of RACK1 knockout alongside inhibitors of late stage replication, our data suggest that JNK activation is only indirectly affected by the absence of RACK1 due to reduced viral protein accumulation. Cumulatively, our findings in the context of infection add further support for a model whereby RACK1 plays a specific and direct role in controlling translation of PR viral mRNAs that is independent of its role in ribosome-based stress signaling. IMPORTANCE Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal protein that regulates translation directly and mediates signaling to and from the ribosome. While recent work has shown that RACK1 is phosphorylated by vaccinia virus (VacV) to stimulate translation of postreplicative viral mRNAs, whether RACK1 also contributes to VacV replication through its roles in ribosome-based stress signaling remains unclear. Here, we characterize the role of RACK1 in infected cells. In doing so, we find that RACK1 is essential for stress signal activation by ribotoxic stress responses but not by VacV infection. Moreover, although the loss of RACK1 reduces the level of stress-associated JNK activation in infected cells, this is an indirect consequence of RACK1's specific requirement for the synthesis of postreplicative viral proteins, the accumulation of which determines the level of cellular stress. Our findings reveal both the specific role of RACK1 and the complex downstream effects of its control of viral protein synthesis in the context of infection.
Collapse
|
24
|
Lapointe CP, Grosely R, Sokabe M, Alvarado C, Wang J, Montabana E, Villa N, Shin BS, Dever TE, Fraser CS, Fernández IS, Puglisi JD. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature 2022; 607:185-190. [PMID: 35732735 PMCID: PMC9728550 DOI: 10.1038/s41586-022-04858-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Carlos Alvarado
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Montabana
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Villa
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Byung-Sik Shin
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Thomas E Dever
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology College of Biological Sciences, University of California, Davis, CA, USA
| | - Israel S Fernández
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Erath J, Djuranovic S. Association of the receptor for activated C-kinase 1 with ribosomes in Plasmodium falciparum. J Biol Chem 2022; 298:101954. [PMID: 35452681 PMCID: PMC9120242 DOI: 10.1016/j.jbc.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor for activated C-kinase 1 (RACK1), a highly conserved eukaryotic protein, is known to have many varying biological roles and functions. Previous work has established RACK1 as a ribosomal protein, with defined regions important for ribosome binding in eukaryotic cells. In Plasmodium falciparum, RACK1 has been shown to be required for parasite growth, however, conflicting evidence has been presented about RACK1 ribosome binding and its role in mRNA translation. Given the importance of RACK1 as a regulatory component of mRNA translation and ribosome quality control, the case could be made in parasites that RACK1 either binds or does not bind the ribosome. Here, we used bioinformatics and transcription analyses to further characterize the P. falciparum RACK1 protein. Based on homology modeling and structural analyses, we generated a model of P. falciparum RACK1. We then explored mutant and chimeric human and P. falciparum RACK1 protein binding properties to the human and P. falciparum ribosome. We found that WT, chimeric, and mutant RACK1 exhibit distinct ribosome interactions suggesting different binding characteristics for P. falciparum and human RACK1 proteins. The ribosomal binding of RACK1 variants in human and parasite cells shown here demonstrates that although RACK1 proteins have highly conserved sequences and structures across species, ribosomal binding is affected by species-specific alterations to this protein. In conclusion, we show that in the case of P. falciparum, contrary to the structural data, RACK1 is found to bind ribosomes and actively translating polysomes in parasite cells.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
26
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
27
|
Waltz F, Salinas-Giegé T, Englmeier R, Meichel H, Soufari H, Kuhn L, Pfeffer S, Förster F, Engel BD, Giegé P, Drouard L, Hashem Y. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat Commun 2021; 12:7176. [PMID: 34887394 PMCID: PMC8660880 DOI: 10.1038/s41467-021-27200-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering.
Collapse
Affiliation(s)
- Florent Waltz
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
| | - Robert Englmeier
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Herrade Meichel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France
| | - Heddy Soufari
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Benjamin D Engel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France.
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, 67084, Strasbourg, France.
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, 33600, Pessac, France.
| |
Collapse
|
28
|
Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A, Chan ICW, Vail E, Villeri V, Langer JD, Schuman EM. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat Commun 2021; 12:6127. [PMID: 34675203 PMCID: PMC8531293 DOI: 10.1038/s41467-021-26365-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Collapse
Affiliation(s)
- Claudia M. Fusco
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kristina Desch
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Aline R. Dörrbaum
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,Present Address: MOS, Center for Mass Spectrometry and Optical Spectroscopy, Mannheim, Germany
| | - Mantian Wang
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.508836.0Present Address: Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anja Staab
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivy C. W. Chan
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.424247.30000 0004 0438 0426Present Address: German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eleanor Vail
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Veronica Villeri
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.412041.20000 0001 2106 639XPresent Address: Department of Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julian D. Langer
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.419494.50000 0001 1018 9466Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M. Schuman
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
29
|
Rollins MG, Shasmal M, Meade N, Astar H, Shen PS, Walsh D. Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Cell Rep 2021; 36:109663. [PMID: 34496247 PMCID: PMC8451006 DOI: 10.1016/j.celrep.2021.109663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Although the roles of initiation factors, RNA binding proteins, and RNA elements in regulating translation are well defined, how the ribosome functionally diversifies remains poorly understood. In their human hosts, poxviruses phosphorylate serine 278 (S278) at the tip of a loop domain in the small subunit ribosomal protein RACK1, thereby mimicking negatively charged residues in the RACK1 loops of dicot plants and protists to stimulate translation of transcripts with 5′ poly(A) leaders. However, how a negatively charged RACK1 loop affects ribosome structure and its broader translational output is not known. Here, we show that although ribotoxin-induced stress signaling and stalling on poly(A) sequences are unaffected, negative charge in the RACK1 loop alters the swivel motion of the 40S head domain in a manner similar to several internal ribosome entry sites (IRESs), confers resistance to various protein synthesis inhibitors, and broadly supports noncanonical modes of translation. How ribosomes functionally diversify to selectively control translation is only beginning to be understood. Rollins et al. show that negative charge in a loop domain of the small subunit ribosomal protein RACK1 increases the swiveling motion of the 40S head and broadens the translational capacity of the human ribosome.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manidip Shasmal
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Lawson MR, Lessen LN, Wang J, Prabhakar A, Corsepius NC, Green R, Puglisi JD. Mechanisms that ensure speed and fidelity in eukaryotic translation termination. Science 2021; 373:876-882. [PMID: 34413231 PMCID: PMC9017434 DOI: 10.1126/science.abi7801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 11/02/2022]
Abstract
Translation termination, which liberates a nascent polypeptide from the ribosome specifically at stop codons, must occur accurately and rapidly. We established single-molecule fluorescence assays to track the dynamics of ribosomes and two requisite release factors (eRF1 and eRF3) throughout termination using an in vitro-reconstituted yeast translation system. We found that the two eukaryotic release factors bound together to recognize stop codons rapidly and elicit termination through a tightly regulated, multistep process that resembles transfer RNA selection during translation elongation. Because the release factors are conserved from yeast to humans, the molecular events that underlie yeast translation termination are likely broadly fundamental to eukaryotic protein synthesis.
Collapse
Affiliation(s)
- Michael R Lawson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura N Lessen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Arjun Prabhakar
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas C Corsepius
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Girardi E, Pfeffer S, Baumert TF, Majzoub K. Roadblocks and fast tracks: How RNA binding proteins affect the viral RNA journey in the cell. Semin Cell Dev Biol 2021; 111:86-100. [PMID: 32847707 PMCID: PMC7443355 DOI: 10.1016/j.semcdb.2020.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
As obligate intracellular parasites with limited coding capacity, RNA viruses rely on host cells to complete their multiplication cycle. Viral RNAs (vRNAs) are central to infection. They carry all the necessary information for a virus to synthesize its proteins, replicate and spread and could also play essential non-coding roles. Regardless of its origin or tropism, vRNA has by definition evolved in the presence of host RNA Binding Proteins (RBPs), which resulted in intricate and complicated interactions with these factors. While on one hand some host RBPs recognize vRNA as non-self and mobilize host antiviral defenses, vRNA must also co-opt other host RBPs to promote viral infection. Focusing on pathogenic RNA viruses, we will review important scenarios of RBP-vRNA interactions during which host RBPs recognize, modify or degrade vRNAs. We will then focus on how vRNA hijacks the largest ribonucleoprotein complex (RNP) in the cell, the ribosome, to selectively promote the synthesis of its proteins. We will finally reflect on how novel technologies are helping in deepening our understanding of vRNA-host RBPs interactions, which can be ultimately leveraged to combat everlasting viral threats.
Collapse
Affiliation(s)
- Erika Girardi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sebastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000, Strasbourg, France; Pole Hépatodigestif, Institut Hopitalo-universitaire, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
32
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021; 118:e2017715118. [PMID: 33479166 PMCID: PMC8017934 DOI: 10.1073/pnas.2017715118] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
33
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021. [PMID: 33479166 DOI: 10.1101/2020.08.20.259770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
34
|
Johnson AG, Flynn RA, Lapointe CP, Ooi YS, Zhao ML, Richards CM, Qiao W, Yamada SB, Couthouis J, Gitler AD, Carette JE, Puglisi JD. A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Res 2020; 48:7279-7297. [PMID: 32463448 PMCID: PMC7367175 DOI: 10.1093/nar/gkaa444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Yaw Shin Ooi
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Shizuka B Yamada
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Petelski AA, Slavov N. Analyzing Ribosome Remodeling in Health and Disease. Proteomics 2020; 20:e2000039. [PMID: 32820594 PMCID: PMC7501214 DOI: 10.1002/pmic.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that ribosomes actively regulate protein synthesis. However, much of this evidence is indirect, leaving this layer of gene regulation largely unexplored, in part due to methodological limitations. Indeed, evidence is reviewed demonstrating that commonly used methods, such as transcriptomics, are inadequate because the variability in mRNAs coding for ribosomal proteins (RP) does not necessarily correspond to RP variability. Thus protein remodeling of ribosomes should be investigated by methods that allow direct quantification of RPs, ideally of isolated ribosomes. Such methods are reviewed, focusing on mass spectrometry and emphasizing method-specific biases and approaches to control these biases. It is argued that using multiple complementary methods can help reduce the danger of interpreting reproducible systematic biases as evidence for ribosome remodeling.
Collapse
Affiliation(s)
- Aleksandra A Petelski
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
36
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
37
|
DiGiuseppe S, Rollins MG, Astar H, Khalatyan N, Savas JN, Walsh D. Proteomic and mechanistic dissection of the poxvirus-customized ribosome. J Cell Sci 2020; 134:jcs246603. [PMID: 32467327 PMCID: PMC7358139 DOI: 10.1242/jcs.246603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are often viewed as protein synthesis machines that lack intrinsic regulatory capacity. However, studies have established that ribosomes can functionally diversify through changes in the composition of, or post-translational modifications to ribosomal subunit proteins (RPs). We recently found that poxviruses phosphorylate unique sites in the RP, receptor for activated C kinase 1 (RACK1) to enhance viral protein synthesis. Here, we developed approaches for large-scale proteomic analysis of ribosomes isolated from cells infected with different viruses. Beyond RACK1, we identified additional phosphorylation events within RPS2 and RPS28 that arise during poxvirus infection, but not other viruses tested. The modified sites lie within unstructured loop domains that position around the mRNA entry and exit channel, respectively, and site-substitution mutants revealed that each modified residue contributed differently to poxvirus replication. Our findings reveal the broader extent to which poxviruses customize host ribosomes and provide new insights into how ribosomes can functionally diversify.
Collapse
Affiliation(s)
- Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
38
|
LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 2020; 545:53-62. [PMID: 32308198 DOI: 10.1016/j.virol.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/09/2023]
Abstract
Viruses have evolved strategies to ensure efficient translation using host cell ribosomes and translation factors. In addition to cleaving translation initiation factors required for host cell translation, poliovirus (PV) uses an internal ribosome entry site (IRES). Recent studies suggest that viruses exploit specific ribosomal proteins to enhance translation of their viral proteins. The ribosomal protein receptor for activated C kinase 1 (RACK1), a protein of the 40S ribosomal subunit, was previously shown to mediate translation from the 5' cricket paralysis virus and hepatitis C virus IRESs. Here we found that translation of a PV dual-luciferase reporter shows a moderate dependence on RACK1. However, in the context of a viral infection we observed significantly reduced poliovirus plaque size and titers and delayed host cell translational shut-off. Our findings further illustrate the involvement of the cellular translational machinery during PV infection and how viruses usurp the function of specific ribosomal proteins.
Collapse
Affiliation(s)
- Ethan LaFontaine
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Natasha Permaul
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Elliot T Martin
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA; The RNA Institute, University at Albany, NY, 12222, USA.
| |
Collapse
|
39
|
Rollins MG, Jha S, Bartom ET, Walsh D. RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity within a loop domain. J Cell Sci 2019; 132:jcs.228908. [PMID: 31118235 DOI: 10.1242/jcs.228908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Receptor of activated protein C kinase 1 (RACK1) is a highly conserved eukaryotic protein that regulates several aspects of mRNA translation; yet, how it does so, remains poorly understood. Here we show that, although RACK1 consists largely of conserved β-propeller domains that mediate binding to several other proteins, a short interconnecting loop between two of these blades varies across species to control distinct RACK1 functions during translation. Mutants and chimeras revealed that the amino acid composition of the loop is optimized to regulate interactions with eIF6, a eukaryotic initiation factor that controls 60S biogenesis and 80S ribosome assembly. Separately, phylogenetics revealed that, despite broad sequence divergence of the loop, there is striking conservation of negatively charged residues amongst protists and dicot plants, which is reintroduced to mammalian RACK1 by poxviruses through phosphorylation. Although both charged and uncharged loop mutants affect eIF6 interactions, only a negatively charged plant - but not uncharged yeast or human loop - enhances translation of mRNAs with adenosine-rich 5' untranslated regions (UTRs). Our findings reveal how sequence plasticity within the RACK1 loop confers multifunctionality in translational control across species.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sujata Jha
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|