1
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
2
|
Li C, Wang Y, Li PF, Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 2023; 160:1-13. [PMID: 36764595 DOI: 10.1016/j.actbio.2023.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Nucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo. As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. RCA products with different functional parts can be customized by changing the sequence of the circular template, thereby generating complex multifunctional DNA nanostructures, such as DNA nanowire, nanoflower, origami, nanotube, nanoribbon, etc. More importantly, RCA products as nonnicked building blocks can enhance the biostability of DNA nanostructures, especially in vivo. These RCA products-based nucleic acid nanostructures can be used as scaffolds or nanocarriers to interact or load with metal nanoparticles, proteins, lipids, cationic polymers, therapeutic nucleic acids or drugs, etc. This paper reviews the assembly strategies of RCA based DNA nanostructures with different shape and their applications in biosensing, bioimaging and biomedicine. Finally, the development prospects of the nucleic acid nanomaterials in clinical diagnosis and treatment of diseases are described. STATEMENT OF SIGNIFICANCE: As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. This paper reviews the construction of various shapes of pure nucleic acid nanomaterials based on RCA products and their applications in biosensing, bioimaging and biomedicine. This will promote the development of biocompatible DNA nanovehicles and their further application in living systems, including bioimaging, molecular detection, disease diagnosis and drug delivery, finally producing a significant impact in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
3
|
Wang M, Liu H, Ren J, Huang Y, Deng Y, Liu Y, Chen Z, Chow FWN, Leung PHM, Li S. Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. BIOSENSORS 2023; 13:bios13020160. [PMID: 36831926 PMCID: PMC9953907 DOI: 10.3390/bios13020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Infectious diseases and tumors have become the biggest medical challenges in the 21st century. They are driven by multiple factors such as population growth, aging, climate change, genetic predispositions and more. Nucleic acid amplification technologies (NAATs) are used for rapid and accurate diagnostic testing, providing critical information in order to facilitate better follow-up treatment and prognosis. NAATs are widely used due their high sensitivity, specificity, rapid amplification and detection. It should be noted that different NAATs can be selected according to different environments and research fields; for example, isothermal amplification with a simple operation can be preferred in developing countries or resource-poor areas. In the field of translational medicine, CRISPR has shown great prospects. The core component of NAAT lies in the activity of different enzymes. As the most critical material of nucleic acid amplification, the key role of the enzyme is self-evident, playing the upmost important role in molecular diagnosis. In this review, several common enzymes used in NAATs are compared and described in detail. Furthermore, we summarize both the advances and common issues of NAATs in clinical application.
Collapse
Affiliation(s)
- Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuan Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
ClampFISH 2.0 enables rapid, scalable amplified RNA detection in situ. Nat Methods 2022; 19:1403-1410. [PMID: 36280724 PMCID: PMC9838136 DOI: 10.1038/s41592-022-01653-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
RNA labeling in situ has enormous potential to visualize transcripts and quantify their levels in single cells, but it remains challenging to produce high levels of signal while also enabling multiplexed detection of multiple RNA species simultaneously. Here, we describe clampFISH 2.0, a method that uses an inverted padlock design to efficiently detect many RNA species and exponentially amplify their signals at once, while also reducing the time and cost compared with the prior clampFISH method. We leverage the increased throughput afforded by multiplexed signal amplification and sequential detection to detect 10 different RNA species in more than 1 million cells. We also show that clampFISH 2.0 works in tissue sections. We expect that the advantages offered by clampFISH 2.0 will enable many applications in spatial transcriptomics.
Collapse
|
5
|
Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosens Bioelectron 2021; 192:113507. [PMID: 34330037 DOI: 10.1016/j.bios.2021.113507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle amplification (RCA) had the prospect of assisting clinic diagnosis with advantage in in situ mRNA detection at single cell level. However, for direct mRNA detection, RCA had relatively low detection specificity and efficiency. Here, we introduced 4-(10, 15, 20-Triphenylporphyrin-5-yl)phenylamine (TPP) modified Au nanoparticle (Au-TPP) to improve the specificity of in-situ RCA. Through photothermal effect, Au-TPP acted as the specific heat source upon irradiation of 635 nm laser. The photothermal mediated RCA would be initiated only when the Au-TPP as well as the padlock anchored adjacently on the same target mRNA. Furthermore, we introduced 'C' form target-specific oligonucleotide linker probes to make generic padlock and Au-TPP for different mRNA targets, so that for a new mRNA target one does not have to redesign the padlock and the Au-TPP probe. By these strategies, we successfully developed a specific and photothermal mediated hyperbranched rolling circle amplification for direct in situ mRNA detection, suitable for both formalin-fixed paraffin-embedded (FFPE) tissue section and frozen tissue section.
Collapse
|
6
|
Jain S, Dandy DS, Geiss BJ, Henry CS. Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection. Analyst 2021; 146:4340-4347. [PMID: 34106115 PMCID: PMC8294176 DOI: 10.1039/d1an00399b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs) such as PCR and isothermal amplification methods provide excellent analytical performance and significantly faster turnaround times than conventional culture-based methods. However, the inherent cost and complexity of NAATs limit their application in resource-limited settings and the developing world. To help address this urgent need, we have developed a sensitive method for nucleic acid analysis based on padlock probe rolling circle amplification (PLRCA), nuclease protection (NP) and lateral flow detection (LFA), referred to as PLAN-LFA, that can be used in resource-limited settings. The assay involves solution-phase hybridization of a padlock probe to target, sequence-specific ligation of the probe to form a circular template that undergoes isothermal rolling circle amplification in the presence of a polymerase and a labeled probe DNA. The RCA product is a long, linear concatenated single-stranded DNA that contains binding sites for the labeled probe. The sample is then exposed to a nuclease which selectively cleaves single-stranded DNA, the double-stranded labeled probe is protected from nuclease digestion and detected in a lateral flow immunoassay format to provide a visual, colorimetric readout of results. We have developed specific assays targeting beta-lactamase resistance gene for monitoring of antimicrobial resistance and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2, the novel coronavirus discovered in 2019) using the PLAN-LFA platform. The assay provides a limit of detection of 1.1 pM target DNA (or 1.3 × 106 copies per reaction). We also demonstrate the versatility and robustness of the method by performing analysis on DNA and RNA targets, and perform analysis in complex sample matrices like saliva, plant tissue extract and bacterial culture without any sample pretreatment steps.
Collapse
Affiliation(s)
- Sidhartha Jain
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - David S Dandy
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. and Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Brian J Geiss
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. and Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles S Henry
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. and Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Zhang K, Deng R, Gao H, Teng X, Li J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem Soc Rev 2020; 49:1932-1954. [PMID: 32108196 DOI: 10.1039/c9cs00438f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to 'see' genetic information directly in single cells can provide invaluable insights into complex biological systems. In this review, we discuss recent advances of in situ imaging technologies for visualizing the subtlest sequence alteration, single-nucleotide variation (SNV), at single-cell level. The mechanism of recently developed methods for SNV discrimination are summarized in detail. With recent developments, single-cell SNV imaging methods have opened a new door for studying the heterogenous and stochastic genetic information in individual cells. Furthermore, SNV imaging can be used on morphologically preserved tissue, which can provide information on histological context for gene expression profiling in basic research and genetic diagnosis. Moreover, the ability to visualize SNVs in situ can be further developed into in situ sequencing technology. We expect this review to inspire more research work into in situ SNV imaging technologies for investigating cellular phenotypes and gene regulation at single-nucleotide resolution, and developing new clinical and biomedical applications.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Hua Gao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and Department of Pathogeny Biology, Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Santovito E, Greco D, D'Ascanio V, Sanzani SM, Avantaggiato G. Development of a DNA-based biosensor for the fast and sensitive detection of ochratoxin A in urine. Anal Chim Acta 2020; 1133:20-29. [PMID: 32993870 DOI: 10.1016/j.aca.2020.07.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
In this paper, a novel DNA-based biosensor is proposed, which is based on paramagnetic microbeads carrying an ochratoxin A (OTA) capture aptamer. A sandwich-like detection complex is linked to the capture aptamer and is able to trigger, in presence of OTA, an isothermal rolling circle amplification (RCA) reaction. This latter generated autocatalytic units with a peroxidase activity (DNAzyme) that, in presence of a proper substrate, gave a blue-coloured product visible by the naked eye. The capture aptamer, blocked onto magnetic beads, allowed the specific capture of OTA in liquid samples. The modified detection aptamer, annealed to a circularized probe, was then used to detect the toxin capture event. Indeed, in the presence of OTA and an isothermal enzyme, the circular DNA was amplified, producing a single-stranded and tandem repeated long homologous copy of its sequence. In the DNA strand, a self-catalytic structure was formed with hemin as the catalytic core, inducing the development of blue colour in the presence of ABTS and hydrogen peroxide. The results showed that the biosensor has high sensitivity and selectivity for the detection of OTA, as low as 1.09 × 10-12 ng/mL. Moreover, the proposed biosensor was successfully used for the detection of OTA in naturally contaminated rat urine. Accuracy and repeatability data obtained in recovery experiments were satisfying, being recoveries >95% with relative standard deviations in the range 3.6-15%. For the first time, an aptasensor was successfully applied to detect OTA in biological fluids. It can be used for mycotoxin biomonitoring and assessment of individual exposure.
Collapse
Affiliation(s)
- Elisa Santovito
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy.
| | - Donato Greco
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - Vito D'Ascanio
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | | | - Giuseppina Avantaggiato
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
9
|
Tavakoli S, Liu Y, Potts JL, Rouhanifard SH. Click chemistry-based amplification and detection of endogenous RNA and DNA molecules in situ using clampFISH probes. Methods Enzymol 2020; 641:459-476. [PMID: 32713535 DOI: 10.1016/bs.mie.2020.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Direct labeling and measurement of gene expression in single cells show the tremendous variability otherwise hidden in bulk measurements. Single-molecule RNA fluorescence in situ hybridization (FISH) has become a mainstay in laboratories worldwide for measuring gene expression with precision. However, this method remains relatively low throughput because the total fluorescent signal produced is weak and requires long exposure times and high magnification microscopy, which limits the total number of cells sampled in each image. As such, it is experimentally difficult and time-consuming to sample a large enough population of cells to visualize and quantify specific gene expression of rare cells directly. Several FISH-based tools were recently developed that retain single-molecule sensitivity and specificity while greatly amplifying the fluorescent signal, thus making FISH-based analysis possible using standard microscopes with low magnification objectives. These tools have also enabled the detection of smaller and more specific targets like splice junctions or single nucleotide polymorphisms. Here we will describe one such tool, clampFISH, an oligonucleotide-based fluorescence amplification strategy for visualizing genomic loci and individual RNA transcripts in fixed cells. ClampFISH maintains specificity while amplifying fluorescent signals, making it amenable to high throughput assays such as low magnification microscopy, spatial transcriptomics, and flow sorting. The clampFISH technique involves probing the target RNA or DNA using a series of C-shaped oligonucleotide probes, each with a 3' azide and a 5' alkyne. Hybridization of the probe with the target nucleic acid brings the azide and the alkyne in close proximity, allowing for ligation via bioorthogonal click chemistry (CuAAC). As a result, the probe forms a closed loop around the target sequence, thus enabling stringent washes to remove nonspecific binding in further rounds of amplification and retention of signal throughout liquid handling steps. Iterative rounds of hybridization with C-shaped, fluorescently labeled probes exponentially amplify the fluorescent signal. ClampFISH is simple to implement and expands the utility of in situ hybridization for multiple high throughput techniques such as low magnification microscopy, flow cytometry, and sorting based on RNA expression levels.
Collapse
Affiliation(s)
- Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Yifang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Jacob L Potts
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Sara H Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
10
|
Cao X, Yu H, Xue J, Bai M, Zhao Y, Li Y, Zhao Y, Chen F. RNA-Primed Amplification for Noise-Suppressed Visualization of Single-Cell Splice Variants. Anal Chem 2020; 92:9356-9361. [PMID: 32456418 DOI: 10.1021/acs.analchem.0c01734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Splice variants visualization is pivotal for a deeper understanding of cell growth and development. However, it remains technically challenging due to short lengths, similar sequences, and low abundance. The existing single-cell imaging strategies suffer from nonspecific amplification that causes considerable noise during visualization of the splice variants. Herein we develop a new RNA-primed amplification strategy for noise-suppressed visualization of single-cell splice variants. Block probes were designed to specifically identify the conjugated region of exons in mRNA, which was then digested by endonuclease and provided a hydroxyl group at the 3' terminal. The RNA target can act as primer to trigger rolling circle amplification, achieving visualization of splice variants with noise suppressed to nearly zero. We further explored the expression and distribution of BRCA1 splice variants in three breast cell lines, revealing cell-type specific mapping of this cancer suppressor gene.
Collapse
Affiliation(s)
- Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youjun Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
11
|
Libicher K, Hornberger R, Heymann M, Mutschler H. In vitro self-replication and multicistronic expression of large synthetic genomes. Nat Commun 2020; 11:904. [PMID: 32060271 PMCID: PMC7021806 DOI: 10.1038/s41467-020-14694-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
The generation of a chemical system capable of replication and evolution is a key objective of synthetic biology. This could be achieved by in vitro reconstitution of a minimal self-sustaining central dogma consisting of DNA replication, transcription and translation. Here, we present an in vitro translation system, which enables self-encoded replication and expression of large DNA genomes under well-defined, cell-free conditions. In particular, we demonstrate self-replication of a multipartite genome of more than 116 kb encompassing the full set of Escherichia coli translation factors, all three ribosomal RNAs, an energy regeneration system, as well as RNA and DNA polymerases. Parallel to DNA replication, our system enables synthesis of at least 30 encoded translation factors, half of which are expressed in amounts equal to or greater than their respective input levels. Our optimized cell-free expression platform could provide a chassis for the generation of a partially self-replicating in vitro translation system.
Collapse
Affiliation(s)
- K Libicher
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - R Hornberger
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - M Heymann
- Intelligent Biointegrative Systems Group, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - H Mutschler
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
12
|
Gao H, Zhang K, Teng X, Li J. Rolling circle amplification for single cell analysis and in situ sequencing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115700] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Krzywkowski T, Kühnemund M, Wu D, Nilsson M. Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res 2019; 46:3625-3632. [PMID: 29554297 PMCID: PMC5909454 DOI: 10.1093/nar/gky190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Phi29 (Φ29) DNA polymerase is an enzyme commonly used in DNA amplification methods such as rolling circle amplification (RCA) and multiple strand displacement amplification (MDA), as well as in DNA sequencing methods such as single molecule real time (SMRT) sequencing. Here, we report the ability of phi29 DNA polymerase to amplify RNA-containing circular substrates during RCA. We found that circular substrates with single RNA substitutions are amplified at a similar amplification rate as non-chimeric DNA substrates, and that consecutive RNA pyrimidines were generally preferred over purines. We observed RCA suppression with higher number of ribonucleotide substitutions, which was partially restored by interspacing RNA bases with DNA. We show that supplementing manganese ions as cofactor supports replication of RNAs during RCA. Sequencing of the RCA products demonstrated accurate base incorporation at the RNA base with both Mn2+ and Mg2+ as cofactors during replication, proving reverse transcriptase activity of the phi29 DNA polymerase. In summary, the ability of phi29 DNA polymerase to accept RNA-containing substrates broadens the spectrum of applications for phi29 DNA polymerase-mediated RCA. These include amplification of chimeric circular probes, such as padlock probes and molecular inversion probes.
Collapse
Affiliation(s)
- Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Malte Kühnemund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Di Wu
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-171 65, Sweden
| |
Collapse
|
14
|
Krzywkowski T, Kühnemund M, Nilsson M. Chimeric padlock and iLock probes for increased efficiency of targeted RNA detection. RNA (NEW YORK, N.Y.) 2019; 25:82-89. [PMID: 30309880 PMCID: PMC6298565 DOI: 10.1261/rna.066753.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
Many approaches exist to detect RNA using complementary oligonucleotides. DNA ligation-based techniques can improve discrimination of subtle sequence variations, but they have been difficult to implement for direct RNA analysis due to the infidelity and inefficiency of most DNA ligases on RNA. In this report, we have systematically studied if ribonucleotide substitutions in padlock probes can provide higher catalytic efficiencies for Chlorella virus DNA ligase (PBCV-1 DNA ligase) and T4 RNA ligase 2 (T4Rnl2) on RNA. We provide broad characterization of end-joining fidelity for both enzymes in RNA-templated 3'-OH RNA/5'-pDNA chimeric probe ligation. Both ligases showed increased ligation efficiency toward chimeric substrates on RNA. However, end-joining fidelity of PBCV-1 DNA ligase remained poor, while T4Rnl2 showed a somewhat better end-joining fidelity compared to PBCV-1 DNA ligase. The recently presented invader padlock (iLock) probes overcome the poor end-joining fidelity of PBCV-1 DNA ligase by the requirement of target-dependent 5' flap removal prior to ligation. Here we show that two particular ribonucleotide substitutions greatly improve the activation and ligation rate of chimeric iLock probes on RNA. We characterized the end-joining efficiency and fidelity of PBCV-1 DNA ligase and T4Rnl2 with chimeric iLock probes on RNA and found that both enzymes exhibit high ligation fidelities for single nucleotide polymorphisms on RNA. Finally, we applied the chimeric probe concept to directly differentiate between human and mouse ACTB mRNA in situ, demonstrating chimeric padlock and iLock probes as superior to their DNA equivalents.
Collapse
Affiliation(s)
- Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 65, Solna, Sweden
| | - Malte Kühnemund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 65, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 65, Solna, Sweden
| |
Collapse
|
15
|
Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B, Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat Biotechnol 2018; 37:nbt.4286. [PMID: 30418432 PMCID: PMC6511493 DOI: 10.1038/nbt.4286] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
Abstract
Methods for detecting single nucleic acids in cell and tissues, such as fluorescence in situ hybridization (FISH), are limited by relatively low signal intensity and nonspecific probe binding. Here we present click-amplifying FISH (clampFISH), a method for fluorescence detection of nucleic acids that achieves high specificity and high-gain (>400-fold) signal amplification. ClampFISH probes form a 'C' configuration upon hybridization to the sequence of interest in a double helical manner. The ends of the probes are ligated together using bio-orthogonal click chemistry, effectively locking the probes around the target. Iterative rounds of hybridization and click amplify the fluorescence intensity. We show that clampFISH enables the detection of RNA species with low-magnification microscopy and in RNA-based flow cytometry. Additionally, we show that the modular design of clampFISH probes allows multiplexing of RNA and DNA detection, that the locking mechanism prevents probe detachment in expansion microscopy, and that clampFISH can be applied in tissue samples.
Collapse
Affiliation(s)
- Sara H Rouhanifard
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Ian A Mellis
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Genomics and Computational Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margaret Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Sareh Bayatpour
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Connie L Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Cell and Molecular Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Benjamin Emert
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Genomics and Computational Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eduardo Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison Cote
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | | | | | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia Pennsylvania, USA
- Genomics and Computational Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
17
|
Lee CY, Kang KS, Park KS, Park HG. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification. Mikrochim Acta 2017; 185:53. [DOI: 10.1007/s00604-017-2610-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
|
18
|
Li XY, Du YC, Zhang YP, Kong DM. Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci Rep 2017; 7:6263. [PMID: 28740223 PMCID: PMC5524717 DOI: 10.1038/s41598-017-06594-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
An exonucleolytic digestion-assisted exponential rolling circle amplification (RCA) strategy was developed for sensitive and sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Herein, Phi29 DNA polymerase plays two important roles as exonuclease and polymerase. Long-stranded genomic DNAs can be broken into small DNA fragments after ultrasonication. The fragments that contain target DNA, hybridize with a linear padlock probe to trigger the formation of a circular RCA template. The tails protruding from the 3'-end of the target DNA sequences are then digested by the 3' → 5' exonuclease activity of Phi29 DNA polymerase even if they fold into a double-stranded structure. The digested DNA fragments can then initiate subsequent RCA reaction. RCA products, which are designed to fold into G-quadruplex structures, exponentially accumulate when appropriate nicking endonuclease recognition sites are introduced rationally into the RCA template. This method is demonstrated to work well for real genomic DNA detection using human pathogen Cryptococcus neoformans as a model. In addition, this work has two other important discoveries: First, the presence of a 3'-tail can protect the RCA primer from degradation by Phi29 DNA polymerase. Second, 3' → 5' exonucleolytic activity of Phi29 DNA polymerase can work for both single- and double-stranded DNA.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P.R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Yi-Chen Du
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Peng Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P.R. China.
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, P.R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, P.R. China.
| |
Collapse
|
19
|
Template-dependent multiple displacement amplification for profiling human circulating RNA. Biotechniques 2017; 63:21-27. [PMID: 28701144 DOI: 10.2144/000114566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
Multiple displacement amplification (MDA) is widely used in whole-genome/transcriptome amplification. However, template-independent amplification (TIA) in MDA is a commonly observed phenomenon, particularly when using high concentrations of random hexamer primers and extended incubation times. Here, we demonstrate that the use of random pentamer primers with 5´ ends blocked by a C18 spacer results in MDA solely in a template-dependent manner, a technique we have named tdMDA. Together with an optimized procedure for the removal of residual genomic DNA during RNA extraction, tdMDA was used to profile circulating RNA from 0.2 mL of patient sera. In comparison to regular MDA, tdMDA demonstrated a lack of quantifiable DNA amplification in the negative control, a remarkable reduction of unmapped reads from Illumina sequencing (7 ± 10.9% versus 58.6 ± 39%, P = 0.006), and increased mapping rates of the serum transcriptome (26.9 ± 7.9% versus 5.8 ± 8.2%, P = 3.8 × 10-4). Transcriptome profiles could be used to separate patients with chronic hepatitis C virus (HCV) infection from those with HCV-associated hepatocellular carcinoma (HCC). We conclude that tdMDA should facilitate RNA-based liquid biopsy, as well as other genome studies with biological specimens having ultralow amounts of genetic material.
Collapse
|
20
|
Simultaneous Single-Cell In Situ Analysis of Human Adenovirus Type 5 DNA and mRNA Expression Patterns in Lytic and Persistent Infection. J Virol 2017; 91:JVI.00166-17. [PMID: 28298601 DOI: 10.1128/jvi.00166-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
An efficient adenovirus infection results in high-level accumulation of viral DNA and mRNAs in the infected cell population. However, the average viral DNA and mRNA content in a heterogeneous cell population does not necessarily reflect the same abundance in individual cells. Here, we describe a novel padlock probe-based rolling-circle amplification technique that enables simultaneous detection and analysis of human adenovirus type 5 (HAdV-5) genomic DNA and virus-encoded mRNAs in individual infected cells. We demonstrate that the method is applicable for detection and quantification of HAdV-5 DNA and mRNAs in short-term infections in human epithelial cells and in long-term infections in human B lymphocytes. Single-cell evaluation of these infections revealed high heterogeneity and unique cell subpopulations defined by differential viral DNA content and mRNA expression. Further, our single-cell analysis shows that the specific expression pattern of viral E1A 13S and 12S mRNA splice variants is linked to HAdV-5 DNA content in the individual cells. Furthermore, we show that expression of a mature form of the HAdV-5 histone-like protein VII affects virus genome detection in HAdV-5-infected cells. Collectively, padlock probes combined with rolling-circle amplification should be a welcome addition to the method repertoire for the characterization of the molecular details of the HAdV life cycle in individual infected cells.IMPORTANCE Human adenoviruses (HAdVs) have been extensively used as model systems to study various aspects of eukaryotic gene expression and genome organization. The vast majority of the HAdV studies are based on standard experimental procedures carried out using heterogeneous cell populations, where data averaging often masks biological differences. As every cell is unique, characteristics and efficiency of an HAdV infection can vary from cell to cell. Therefore, the analysis of HAdV gene expression and genome organization would benefit from a method that permits analysis of individual infected cells in the heterogeneous cell population. Here, we show that the padlock probe-based rolling-circle amplification method can be used to study concurrent viral DNA accumulation and mRNA expression patterns in individual HAdV-5-infected cells. Hence, this versatile method can be applied to detect the extent of infection and virus gene expression changes in different HAdV-5 infections.
Collapse
|
21
|
Veigas B, Pinto J, Vinhas R, Calmeiro T, Martins R, Fortunato E, Baptista PV. Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform. Biosens Bioelectron 2017; 91:788-795. [DOI: 10.1016/j.bios.2017.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
|
22
|
Deng R, Zhang K, Sun Y, Ren X, Li J. Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification. Chem Sci 2017; 8:3668-3675. [PMID: 28580104 PMCID: PMC5437493 DOI: 10.1039/c7sc00292k] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Detection of single-cell gene expression with high spatial and sequence resolution is a key challenge in single cell biology. Herein, we propose a robust method for the direct detection of mRNA, termed target RNA-initiated rolling circle amplification, which enables imaging of mRNA with single-nucleotide and near-single-molecule resolution in single cells. By utilizing a Splint R ligase capable of efficiently catalyzing the ligation of a padlock probe by the target RNA, the method can enable the efficient detection of mRNA without reverse transcription (detection efficiency over 20%). Meanwhile, attributed to the ligation-based recognition process, the method confers specificity sufficient to genotype mRNAs with one-nucleotide variations. The method has enabled the spatial mapping and correlation analysis of gene expression in single cells which could help us to elucidate the gene functions and regulatory mechanisms. This method offers an mRNA profiling ability with high spatial resolution and sequence specificity, thus is expected to be a single-cell analysis platform for not only investigating gene expression, but also potentially for analyzing single-nucleotide variants or mRNA alternative splicing at single-cell level.
Collapse
Affiliation(s)
- Ruijie Deng
- Department of Chemistry , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Kaixiang Zhang
- Department of Chemistry , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Yupeng Sun
- Department of Chemistry , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Xiaojun Ren
- Department of Chemistry , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| | - Jinghong Li
- Department of Chemistry , Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
23
|
Schneider N, Meier M. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation. RNA (NEW YORK, N.Y.) 2017; 23:250-256. [PMID: 27879431 PMCID: PMC5238799 DOI: 10.1261/rna.057836.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/18/2016] [Indexed: 05/22/2023]
Abstract
Padlock probes are single-stranded DNA molecules that are circularized upon hybridization to their target sequence by a DNA ligase. In the following, the circulated padlock probes are amplified and detected with fluorescently labeled probes complementary to the amplification product. The hallmark of padlock probe assays is a high detection specificity gained by the ligation reaction. Concomitantly, the ligation reaction is the largest drawback for a quantitative in situ detection of mRNAs due to the low affinities of common DNA or RNA ligases to RNA-DNA duplex strands. Therefore, current protocols require that mRNAs be reverse transcribed to DNA before detection with padlock probes. Recently, it was found that the DNA ligase from Paramecium bursaria Chlorella virus 1 (PBCV-1) is able to efficiently ligate RNA-splinted DNA. Hence, we designed a padlock probe assay for direct in situ detection of mRNAs using the PBCV-1 DNA ligase. Experimental single-cell data were used to optimize and characterize the efficiency of mRNA detection with padlock probes. Our results demonstrate that the PBCV-1 DNA ligase overcomes the efficiency limitation of current protocols for direct in situ mRNA detection, making the PBCV-1 DNA ligase an attractive tool to simplify in situ ligation sequencing applications.
Collapse
Affiliation(s)
- Nils Schneider
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Highly specific quantification of microRNA by coupling probe–rolling circle amplification and Förster resonance energy transfer. Anal Biochem 2016; 502:16-23. [DOI: 10.1016/j.ab.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022]
|
25
|
Abstract
MicroRNA (miRNA) detection is of considerable significance in both disease diagnosis and in the study of miRNA function. The importance of miRNA itself is due to the complicated regulatory functions it plays in various life processes and its close relationship with some diseases. Traditional methods for miRNA detection do not meet the current demands, so various novel methods have been developed with a special focus on sensitivity and specificity. Herein, we summarize and discuss the newly developed miRNA detection methods.
Collapse
Affiliation(s)
- Tian Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072, P. R. of China.
| | | | | |
Collapse
|
26
|
Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 2015; 10:442-58. [PMID: 25675209 DOI: 10.1038/nprot.2014.191] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA-sequencing (RNA-seq) measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. In contrast, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq, our method enriches for context-specific transcripts over housekeeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d.
Collapse
|
27
|
A novel ultrasensitive ECL sensor for DNA detection based on nicking endonuclease-assisted target recycling amplification, rolling circle amplification and hemin/G-quadruplex. SENSORS 2015; 15:2629-43. [PMID: 25629701 PMCID: PMC4367324 DOI: 10.3390/s150202629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 12/28/2022]
Abstract
In this study, we describe a novel universal and highly sensitive strategy for the electrochemiluminescent (ECL) detection of sequence specific DNA at the aM level based on Nt.BbvCI (a nicking endonuclease)-assisted target recycling amplification (TRA), rolling circle amplification (RCA) and hemin/G-quadruplex. The target DNAs can hybridize with self-assembled capture probes and assistant probes to form “Y” junction structures on the electrode surface, thus triggering the execution of a TRA reaction with the aid of Nt.BbvCI. Then, the RCA reaction and the addition of hemin result in the production of numerous hemin/G-quadruplex, which consume the dissolved oxygen in the detection buffer and result in a significant ECL quenching effect toward the O2/S2O82− system. The proposed strategy combines the amplification ability of TRA, RCA and the inherent high sensitivity of the ECL technique, thus enabling low aM (3.8 aM) detection for sequence-specific DNA and a wide linear range from 10.0 aM to 1.0 pM. At the same time, this novel strategy shows high selectivity against single-base mismatch sequences, which makes our novel universal and highly sensitive method a powerful addition to specific DNA sequence detection.
Collapse
|
28
|
Zhang H, Liu Y, Gao J, Zhen J. A sensitive SERS detection of miRNA using a label-free multifunctional probe. Chem Commun (Camb) 2015; 51:16836-9. [DOI: 10.1039/c5cc06225j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel surface enhanced Raman scattering (SERS) detection method is fabricated for miRNA based on a smart multifunctional probe for dual cyclical nucleic acid strand-displacement polymerization (CNDP).
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry
- Qilu University of Technology
- Jinan 250353
- China
| | - Yu Liu
- Department of Chemistry
- Qilu University of Technology
- Jinan 250353
- China
| | - Jian Gao
- Department of Chemistry
- Qilu University of Technology
- Jinan 250353
- China
| | - Junhui Zhen
- School of Medicine
- Shandong University
- Jinan 250012
- China
| |
Collapse
|
29
|
Zhang Q, Chen F, Xu F, Zhao Y, Fan C. Target-Triggered Three-Way Junction Structure and Polymerase/Nicking Enzyme Synergetic Isothermal Quadratic DNA Machine for Highly Specific, One-Step, and Rapid MicroRNA Detection at Attomolar Level. Anal Chem 2014; 86:8098-105. [PMID: 25072308 DOI: 10.1021/ac501038r] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qing Zhang
- Key
Laboratory of Biomedical Information Engineering of Education Ministry,
School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Key
Laboratory of Biomedical Information Engineering of Education Ministry,
School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Feng Xu
- Key
Laboratory of Biomedical Information Engineering of Education Ministry,
School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Key
Laboratory of Biomedical Information Engineering of Education Ministry,
School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Chunhai Fan
- Division of Physical
Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Yuquan Road, Shanghai 201800, P. R. China
| |
Collapse
|
30
|
KOBORI T, TAKAHASHI H. Expanding Possibilities of Rolling Circle Amplification as a Biosensing Platform. ANAL SCI 2014; 30:59-64. [DOI: 10.2116/analsci.30.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshiro KOBORI
- National Food Research Institute, National Agriculture and Food Research Organization
| | - Hirokazu TAKAHASHI
- National Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
31
|
Cleavage-based signal amplification of RNA. Nat Commun 2013; 4:1493. [PMID: 23422661 DOI: 10.1038/ncomms2492] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/15/2013] [Indexed: 01/04/2023] Open
|
32
|
Jang K, Tanaka Y, Wakabayashi J, Ishii R, Sato K, Mawatari K, Nilsson M, Kitamori T. Selective cell capture and analysis using shallow antibody-coated microchannels. BIOMICROFLUIDICS 2012; 6:44117. [PMID: 24339850 PMCID: PMC3555508 DOI: 10.1063/1.4771968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/28/2012] [Indexed: 06/03/2023]
Abstract
Demand for analysis of rare cells such as circulating tumor cells in blood at the single molecule level has recently grown. For this purpose, several cell separation methods based on antibody-coated micropillars have been developed (e.g., Nagrath et al., Nature 450, 1235-1239 (2007)). However, it is difficult to ensure capture of targeted cells by these methods because capture depends on the probability of cell-micropillar collisions. We developed a new structure that actively exploits cellular flexibility for more efficient capture of a small number of cells in a target area. The depth of the sandwiching channel was slightly smaller than the diameter of the cells to ensure contact with the channel wall. For cell selection, we used anti-epithelial cell adhesion molecule antibodies, which specifically bind epithelial cells. First, we demonstrated cell capture with human promyelocytic leukemia (HL-60) cells, which are relatively homogeneous in size; in situ single molecule analysis was verified by our rolling circle amplification (RCA) method. Then, we used breast cancer cells (SK-BR-3) in blood, and demonstrated selective capture and cancer marker (HER2) detection by RCA. Cell capture by antibody-coated microchannels was greater than with negative control cells (RPMI-1788 lymphocytes) and non-coated microchannels. This system can be used to analyze small numbers of target cells in large quantities of mixed samples.
Collapse
Affiliation(s)
- Kihoon Jang
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011; 21:1160-7. [PMID: 21543516 DOI: 10.1101/gr.110882.110] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally distinct subpopulations it contains, and the single cells themselves-all without need for known markers to classify cell types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during development, adult physiology, and disease.
Collapse
Affiliation(s)
- Saiful Islam
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Stougaard M, Juul S, Andersen FF, Knudsen BR. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors. Integr Biol (Camb) 2011; 3:982-92. [DOI: 10.1039/c1ib00049g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Merkiene E, Gaidamaviciute E, Riauba L, Janulaitis A, Lagunavicius A. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3'-end. RNA (NEW YORK, N.Y.) 2010; 16:1508-1515. [PMID: 20584897 PMCID: PMC2905751 DOI: 10.1261/rna.2068510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.
Collapse
Affiliation(s)
- Egle Merkiene
- Fermentas UAB, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | | | |
Collapse
|
36
|
Larsson C, Grundberg I, Söderberg O, Nilsson M. In situ detection and genotyping of individual mRNA molecules. Nat Methods 2010; 7:395-7. [PMID: 20383134 DOI: 10.1038/nmeth.1448] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/09/2010] [Indexed: 11/09/2022]
Abstract
Increasing knowledge about the heterogeneity of mRNA expression within cell populations highlights the need to study transcripts at the level of single cells. We present a method for detection and genotyping of individual transcripts based on padlock probes and in situ target-primed rolling-circle amplification. We detect a somatic point mutation, differentiate between members of a gene family and perform multiplex detection of transcripts in human and mouse cells and tissue.
Collapse
|