1
|
Herbert A, Hatfield A, Randazza A, Miyamoto V, Palmer K, Lackey L. Precursor RNA structural patterns at SF3B1 mutation sensitive cryptic 3' splice sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638873. [PMID: 40027643 PMCID: PMC11870503 DOI: 10.1101/2025.02.19.638873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
SF3B1 is a core component of the spliceosome involved in branch point recognition and 3' splice site selection. SF3B1 mutation is common in myelodysplastic syndrome and other blood disorders. The most common mutation in SF3B1 is K700E, a lysine to glutamic acid change within the pre-mRNA interacting heat repeat domain. A hallmark of SF3B1 mutation is an increased use of cryptic 3' splice sites; however, the properties distinguishing SF3B1-sensitive splice junctions from other alternatively spliced junctions are unknown. We identify a subset of 192 core splice junctions that are mis-spliced with SF3B1 K700E mutation. We use our core set to test whether SF3B1-sensitive splice sites are different from control cryptic 3' splice sites via RNA structural accessibility. As a comparison, we define a set of SF3B1-resistant splice junctions with cryptic splice site use that does not change with SF3B1 K700E mutation. We find sequence differences between SF3B1-sensitive and SF3B1-resistant junctions, particularly at the cryptic sites. SF3B1-sensitive cryptic 3' splice sites are within an extended polypyrimidine tract and have lower splice site strength scores. We develop experimental RNA structure data for 83 SF3B1-sensitive junctions and 39 SF3B1-resistant junctions. We find that the pattern of structural accessibility at the NAG splicing motif in cryptic and canonical 3' splice sites is similar. In addition, this pattern can be found in both SF3B1-resistant and SF3B1-sensitive junctions. However, SF3B1-sensitive junctions have cryptic splice sites that are less structurally distinct from the canonical splice sites. In addition, SF3B1-sensitive splice junctions are overall more flexible than SF3B1-resistant junctions. Our results suggest that the SF3B1-sensitive splice junctions have unique structure and sequence properties, containing poorly differentiated, weak splice sites that lead to altered 3' splice site recognition in the presence of SF3B1 mutation.
Collapse
Affiliation(s)
- Austin Herbert
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Abigail Hatfield
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Alexandra Randazza
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Valeria Miyamoto
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Katie Palmer
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| |
Collapse
|
2
|
von Löhneysen S, Mörl M, Stadler PF. Limits of experimental evidence in RNA secondary structure prediction. FRONTIERS IN BIOINFORMATICS 2024; 4:1346779. [PMID: 38456157 PMCID: PMC10918467 DOI: 10.3389/fbinf.2024.1346779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Sarah von Löhneysen
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Competence Center for Scalable Data Analytics and Artificial Intelligence, School of Embedded and Compositive Artificial Intelligence (SECAI), Leipzig University, Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
3
|
Monroy-Eklund A, Taylor C, Weidmann CA, Burch C, Laederach A. Structural analysis of MALAT1 long noncoding RNA in cells and in evolution. RNA (NEW YORK, N.Y.) 2023; 29:691-704. [PMID: 36792358 PMCID: PMC10159000 DOI: 10.1261/rna.079388.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Although not canonically polyadenylated, the long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is stabilized by a highly conserved 76-nt triple helix structure on its 3' end. The entire MALAT1 transcript is over 8000 nt long in humans. The strongest structural conservation signal in MALAT1 (as measured by covariation of base pairs) is in the triple helix structure. Primary sequence analysis of covariation alone does not reveal the degree of structural conservation of the entire full-length transcript, however. Furthermore, RNA structure is often context dependent; RNA binding proteins that are differentially expressed in different cell types may alter structure. We investigate here the in-cell and cell-free structures of the full-length human and green monkey (Chlorocebus sabaeus) MALAT1 transcripts in multiple tissue-derived cell lines using SHAPE chemical probing. Our data reveal levels of uniform structural conservation in different cell lines, in cells and cell-free, and even between species, despite significant differences in primary sequence. The uniformity of the structural conservation across the entire transcript suggests that, despite seeing covariation signals only in the triple helix junction of the lncRNA, the rest of the transcript's structure is remarkably conserved, at least in primates and across multiple cell types and conditions.
Collapse
Affiliation(s)
- Anais Monroy-Eklund
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Colin Taylor
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, University of Michigan Medical School, Center for RNA Biomedicine, Rogel Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Christina Burch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
4
|
Xiao L, Fang L, Kool ET. Acylation probing of "generic" RNA libraries reveals critical influence of loop constraints on reactivity. Cell Chem Biol 2022; 29:1341-1352.e8. [PMID: 35662395 PMCID: PMC9391288 DOI: 10.1016/j.chembiol.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 01/08/2023]
Abstract
The reactivity of RNA 2'-OH acylation is broadly useful both in probing structure and in preparing conjugates. To date, this reactivity has been analyzed in limited sets of biological RNA sequences, leaving open questions of how reactivity varies inherently without regard to sequence in structured contexts. We constructed and probed "generic" structured RNA libraries using homogeneous loop sequences, employing deep sequencing to carry out a systematic survey of reactivity. We find a wide range of RNA reactivities among single-stranded sequences, with nearest neighbors playing substantial roles. Remarkably, certain small loops are found to be far more reactive on average (up to 4,000-fold) than single-stranded RNAs, due to conformational constraints that enhance reactivity. Among loops, we observe large variations in reactivity based on size, type, and position. The results lend insights into RNA designs for achieving high-efficiency local conjugation and provide new opportunities to refine structure analysis.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
6
|
Gosavi D, Wower I, Beckmann IK, Hofacker IL, Wower J, Wolfinger MT, Sztuba-Solinska J. Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA Biol 2022; 19:496-506. [PMID: 35380920 PMCID: PMC8986297 DOI: 10.1080/15476286.2022.2058818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The internal ribosome entry site (IRES) RNA of bovine viral diarrhoea virus (BVDV), an economically significant Pestivirus, is required for the cap-independent translation of viral genomic RNA. Thus, it is essential for viral replication and pathogenesis. We applied a combination of high-throughput biochemical RNA structure probing (SHAPE-MaP) and in silico modelling approaches to gain insight into the secondary and tertiary structures of BVDV IRES RNA. Our study demonstrated that BVDV IRES RNA in solution forms a modular architecture composed of three distinct structural domains (I-III). Two regions within domain III are represented in tertiary interactions to form an H-type pseudoknot. Computational modelling of the pseudoknot motif provided a fine-grained picture of the tertiary structure and local arrangement of helices in the BVDV IRES. Furthermore, comparative genomics and consensus structure predictions revealed that the pseudoknot is evolutionarily conserved among many Pestivirus species. These studies provide detailed insight into the structural arrangement of BVDV IRES RNA H-type pseudoknot and encompassing motifs that likely contribute to the optimal functionality of viral cap-independent translation element.
Collapse
Affiliation(s)
- Devadatta Gosavi
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL, United States
| | - Iwona Wower
- Department of Animal and Dairy Sciences, Auburn University, Auburn, AL, United States
| | - Irene K Beckmann
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Jacek Wower
- Department of Animal and Dairy Sciences, Auburn University, Auburn, AL, United States
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL, United States.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
7
|
Jash B, Kool ET. Conjugation of RNA via 2'-OH acylation: Mechanisms determining nucleotide reactivity. Chem Commun (Camb) 2022; 58:3693-3696. [PMID: 35226025 PMCID: PMC9211027 DOI: 10.1039/d2cc00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acylation reactivity of RNA 2'-OH groups has proven broadly useful for labeling and mapping RNA. Here we perform kinetics studies to test the mechanisms governing this reaction, and we find strong steric and inductive effects modulating reactivity. The results shed light on new strategies for improved conjugation and mapping.
Collapse
Affiliation(s)
- Biswarup Jash
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| | - Eric T Kool
- Department of Chemistry and ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
9
|
Cao J, Xue Y. Characteristic chemical probing patterns of loop motifs improve prediction accuracy of RNA secondary structures. Nucleic Acids Res 2021; 49:4294-4307. [PMID: 33849076 PMCID: PMC8096282 DOI: 10.1093/nar/gkab250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
RNA structures play a fundamental role in nearly every aspect of cellular physiology and pathology. Gaining insights into the functions of RNA molecules requires accurate predictions of RNA secondary structures. However, the existing thermodynamic folding models remain less accurate than desired, even when chemical probing data, such as selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reactivities, are used as restraints. Unlike most SHAPE-directed algorithms that only consider SHAPE restraints for base pairing, we extract two-dimensional structural features encoded in SHAPE data and establish robust relationships between characteristic SHAPE patterns and loop motifs of various types (hairpin, internal, and bulge) and lengths (2-11 nucleotides). Such characteristic SHAPE patterns are closely related to the sugar pucker conformations of loop residues. Based on these patterns, we propose a computational method, SHAPELoop, which refines the predicted results of the existing methods, thereby further improving their prediction accuracy. In addition, SHAPELoop can provide information about local or global structural rearrangements (including pseudoknots) and help researchers to easily test their hypothesized secondary structures.
Collapse
Affiliation(s)
- Jingyi Cao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yi Xue
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [PMID: 31480996 DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
Abstract
RNA performs and regulates a diverse range of cellular processes, with new functional roles being uncovered at a rapid pace. Interest is growing in how these functions are linked to RNA structures that form in the complex cellular environment. A growing suite of technologies that use advances in RNA structural probes, high-throughput sequencing and new computational approaches to interrogate RNA structure at unprecedented throughput are beginning to provide insights into RNA structures at new spatial, temporal and cellular scales.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Hennessy EJ. Cardiovascular Disease and Long Noncoding RNAs: Tools for Unraveling the Mystery Lnc-ing RNA and Phenotype. ACTA ACUST UNITED AC 2019; 10:e001556. [PMID: 28768752 DOI: 10.1161/circgenetics.117.001556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Adams RL, Huston NC, Tavares RCA, Pyle AM. Sensitive detection of structural features and rearrangements in long, structured RNA molecules. Methods Enzymol 2019; 623:249-289. [PMID: 31239050 DOI: 10.1016/bs.mie.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Technical innovations in structural probing have drastically advanced the field of RNA structure analysis. These advances have led to parallel approaches developed in separate labs for analyzing RNA structure and dynamics. With the wealth of methodologies available, it can be difficult to determine which is best suited for a given application. Here, using a long, highly structured viral RNA as an example (the positive strand genome of Hepatitis C Virus), we present a semi-comprehensive analysis and describe the major approaches for analyzing the architecture of RNA that is modified with structure-sensitive probes. Additionally, we present an updated method for generating in vitro transcribed and folded RNA that maintains native secondary structures in long RNA molecules. We anticipate that the methods described here will streamline the use of current approaches and help investigators who are unfamiliar with structure probing, obviating the need for time-consuming and expensive optimization.
Collapse
Affiliation(s)
- Rebecca L Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Nicholas C Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Rafael C A Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
14
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
15
|
Mlýnský V, Bussi G. Molecular Dynamics Simulations Reveal an Interplay between SHAPE Reagent Binding and RNA Flexibility. J Phys Chem Lett 2018; 9:313-318. [PMID: 29265824 PMCID: PMC5830694 DOI: 10.1021/acs.jpclett.7b02921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/21/2017] [Indexed: 05/10/2023]
Abstract
The function of RNA molecules usually depends on their overall fold and on the presence of specific structural motifs. Chemical probing methods are routinely used in combination with nearest-neighbor models to determine RNA secondary structure. Among the available methods, SHAPE is relevant due to its capability to probe all RNA nucleotides and the possibility to be used in vivo. However, the structural determinants for SHAPE reactivity and its mechanism of reaction are still unclear. Here molecular dynamics simulations and enhanced sampling techniques are used to predict the accessibility of nucleotide analogs and larger RNA structural motifs to SHAPE reagents. We show that local RNA reconformations are crucial in allowing reagents to reach the 2'-OH group of a particular nucleotide and that sugar pucker is a major structural factor influencing SHAPE reactivity.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di
Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di
Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
16
|
Filippova JA, Semenov DV, Juravlev ES, Komissarov AB, Richter VA, Stepanov GA. Modern Approaches for Identification of Modified Nucleotides in RNA. BIOCHEMISTRY (MOSCOW) 2018; 82:1217-1233. [PMID: 29223150 DOI: 10.1134/s0006297917110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review considers approaches for detection of modified monomers in the RNA structure of living organisms. Recently, some data on dynamic alterations in the pool of modifications of the key RNA species that depend on external factors affecting the cells and physiological conditions of the whole organism have been accumulated. The recent studies have presented experimental data on relationship between the mechanisms of formation of modified/minor nucleotides of RNA in mammalian cells and the development of various pathologies. The development of novel methods for detection of chemical modifications of RNA nucleotides in the cells of living organisms and accumulation of knowledge on the contribution of modified monomers to metabolism and functioning of individual RNA species establish the basis for creation of novel diagnostic and therapeutic approaches. This review includes a short description of routine methods for determination of modified nucleotides in RNA and considers in detail modern approaches that enable not only detection but also quantitative assessment of the modification level of various nucleotides in individual RNA species.
Collapse
Affiliation(s)
- J A Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Choi EK, Ulanowicz KA, Nguyen YAH, Frandsen JK, Mitton-Fry RM. SHAPE analysis of the htrA RNA thermometer from Salmonella enterica. RNA (NEW YORK, N.Y.) 2017; 23:1569-1581. [PMID: 28739676 PMCID: PMC5602114 DOI: 10.1261/rna.062299.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
RNA thermometers regulate expression of some genes involved in virulence of pathogenic bacteria such as Yersinia, Neisseria, and Salmonella They often function through temperature-dependent conformational changes that alter accessibility of the ribosome-binding site. The 5'-untranslated region (UTR) of the htrA mRNA from Salmonella enterica contains a very short RNA thermometer. We have systematically characterized the structure and dynamics of this thermometer at single-nucleotide resolution using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays. Our results confirm that the htrA thermometer adopts the predicted hairpin conformation at low temperatures, with conformational change occurring over a physiological temperature regime. Detailed SHAPE melting curves for individual nucleotides suggest that the thermometer unfolds in a cooperative fashion, with nucleotides from both upper and lower portions of the stem gaining flexibility at a common transition temperature. Intriguingly, analysis of an extended htrA 5' UTR sequence revealed not only the presence of the RNA thermometer, but also an additional, stable upstream structure. We generated and analyzed point mutants of the htrA thermometer, revealing elements that modulate its stability, allowing the hairpin to melt under the slightly elevated temperatures experienced during the infection of a warm-blooded host. This work sheds light on structure-function relationships in htrA and related thermometers, and it also illustrates the utility of SHAPE assays for detailed study of RNA thermometer systems.
Collapse
Affiliation(s)
- Edric K Choi
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Kelsey A Ulanowicz
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Yen Anh H Nguyen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Jane K Frandsen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Rachel M Mitton-Fry
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| |
Collapse
|
18
|
Dussault AM, Dubé A, Jacques F, Grondin JP, Lafontaine DA. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. RNA (NEW YORK, N.Y.) 2017; 23:1539-1551. [PMID: 28701520 PMCID: PMC5602112 DOI: 10.1261/rna.061796.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Riboswitches are noncoding mRNA elements that control gene expression by altering their structure upon metabolite binding. Although riboswitch crystal structures provide detailed information about RNA-ligand interactions, little knowledge has been gathered to understand how riboswitches modulate gene expression. Here, we study the molecular recognition mechanism of the S-adenosylmethionine SAM-I riboswitch by characterizing the formation of a helical stacking interaction involving the ligand-binding process. We show that ligand binding is intimately linked to the formation of the helical stacking, which is dependent on the presence of three conserved purine residues that are flanked by stacked helices. We also find that these residues are important for the formation of a crucial long-range base pair formed upon SAM binding. Together, our results lend strong support to a critical role for helical stacking in the folding pathway and suggest a particularly important function in the formation of the long-range base pair.
Collapse
Affiliation(s)
- Anne-Marie Dussault
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Audrey Dubé
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Frédéric Jacques
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jonathan P Grondin
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
19
|
Gómez Ramos LM, Degtyareva NN, Kovacs NA, Holguin SY, Jiang L, Petrov AS, Biesiada M, Hu MY, Purzycka KJ, Arya DP, Williams LD. Eukaryotic Ribosomal Expansion Segments as Antimicrobial Targets. Biochemistry 2017; 56:5288-5299. [PMID: 28895721 DOI: 10.1021/acs.biochem.7b00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diversity in eukaryotic rRNA structure and function offers possibilities of therapeutic targets. Unlike ribosomes of prokaryotes, eukaryotic ribosomes contain species-specific rRNA expansion segments (ESs) with idiosyncratic structures and functions that are essential and specific to some organisms. Here we investigate expansion segment 7 (ES7), one of the largest and most variable expansions of the eukaryotic ribosome. We hypothesize that ES7 of the pathogenic fungi Candida albicans (ES7CA) could be a prototypic drug target. We show that isolated ES7CA folds reversibly to a native-like state. We developed a fluorescence displacement assay using an RNA binding fluorescent probe, F-neo. F-neo binds tightly to ES7CA with a Kd of 2.5 × 10-9 M but binds weakly to ES7 of humans (ES7HS) with a Kd estimated to be greater than 7 μM. The fluorescence displacement assay was used to investigate the affinities of a library of peptidic aminosugar conjugates (PAs) for ES7CA. For conjugates with highest affinities for ES7CA (NeoRH, NeoFH, and NeoYH), the lowest dose needed to induce mortality in C. albicans (minimum inhibitory concentration, MIC) was determined. PAs with the lowest MIC values were tested for cytotoxicity in HEK293T cells. Molecules with high affinity for ES7CA in vitro induce mortality in C. albicans but not in HEK293T cells. The results are consistent with the hypothesis that ESs represent useful targets for chemotherapeutics directed against eukaryotic pathogens.
Collapse
Affiliation(s)
- Lizzette M Gómez Ramos
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Natalya N Degtyareva
- NUBAD, LLC , 900 B West Farris Road, Greenville, South Carolina 29605, United States
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Stefany Y Holguin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Liuwei Jiang
- Department of Chemistry, Clemson University , 436 Hunter Laboratories, Clemson, South Carolina 29634-0973, United States
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Marcin Biesiada
- RNA Structure and Function Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan 61-704, Poland
| | - Michael Y Hu
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| | - Katarzyna J Purzycka
- RNA Structure and Function Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan 61-704, Poland
| | - Dev P Arya
- NUBAD, LLC , 900 B West Farris Road, Greenville, South Carolina 29605, United States.,Department of Chemistry, Clemson University , 436 Hunter Laboratories, Clemson, South Carolina 29634-0973, United States
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 315 Ferst Drive NW, Atlanta, Georgia 30332-0363, United States
| |
Collapse
|
20
|
Gulay SP, Bista S, Varshney A, Kirmizialtin S, Sanbonmatsu KY, Dinman JD. Tracking fluctuation hotspots on the yeast ribosome through the elongation cycle. Nucleic Acids Res 2017; 45:4958-4971. [PMID: 28334755 PMCID: PMC5416885 DOI: 10.1093/nar/gkx112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/06/2017] [Indexed: 11/15/2022] Open
Abstract
Chemical modification was used to quantitatively determine the flexibility of nearly the entire rRNA component of the yeast ribosome through 8 discrete stages of translational elongation, revealing novel observations at the gross and fine-scales. These include (i) the bulk transfer of energy through the intersubunit bridges from the large to the small subunit after peptidyltransfer, (ii) differences in the interaction of the sarcin ricin loop with the two elongation factors and (iii) networked information exchange pathways that may functionally facilitate intra- and intersubunit coordination, including the 5.8S rRNA. These analyses reveal hot spots of fluctuations that set the stage for large-scale conformational changes essential for translocation and enable the first molecular dynamics simulation of an 80S complex. Comprehensive datasets of rRNA base flexibilities provide a unique resource to the structural biology community that can be computationally mined to complement ongoing research toward the goal of understanding the dynamic ribosome.
Collapse
Affiliation(s)
- Suna P Gulay
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sujal Bista
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Amitabh Varshney
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi, Abu Dhabi, UAE.,The New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Karissa Y Sanbonmatsu
- The New Mexico Consortium, Los Alamos, NM 87544, USA.,Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Woods CT, Lackey L, Williams B, Dokholyan NV, Gotz D, Laederach A. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo. Biophys J 2017. [PMID: 28625696 PMCID: PMC5529173 DOI: 10.1016/j.bpj.2017.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular molecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs. We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles to converge on a stable 2D map of conformational space. We then compute the selective 2′ hydroxyl acylation by primer extension (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and in vivo SHAPE-MaP for human β-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indicative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to the stop codon.
Collapse
Affiliation(s)
- Chanin T Woods
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Lin C, Poyer S, Zargarian L, Salpin JY, Fossé P, Mauffret O, Xie J. Identification of acylation products in SHAPE chemistry. Bioorg Med Chem Lett 2017; 27:2506-2509. [PMID: 28400233 DOI: 10.1016/j.bmcl.2017.03.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature for RNA secondary structure determination. However, to the best of our knowledge, the structure of 2'-O-acylation products has never been confirmed by NMR or X-ray data. We have realized the acylation reactions between cNMP and NMIA under SHAPE chemistry conditions and identified the acylation products using standard NMR spectroscopy and LC-MS/MS experiments. For cAMP and cGMP, the major acylation product is the 2'-O-acylated compound (>99%). A trace amount of N-acylated cAMP has also been identified by LC-UV-MS2. While for cCMP, the isolated acylation products are composed of 96% of 2'-O-acylated, 4% of N,O-diacylated, and trace amount of N-acylated compounds. In addition, the characterization of the major 2'-O-acylated compound by NMR showed slight differences in the conformation of the acylated sugar between the three cyclic nucleotides. This interesting result should be useful to explain some unexpected reactivity of the SHAPE chemistry.
Collapse
Affiliation(s)
- Chaoqi Lin
- PPSM, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Salomé Poyer
- LAMBE, CNRS, Université d'Evry Val d'Essonne, CEA, Université Paris-Saclay, F-91025 Evry, France
| | - Loussiné Zargarian
- LBPA, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Jean-Yves Salpin
- LAMBE, CNRS, Université d'Evry Val d'Essonne, CEA, Université Paris-Saclay, F-91025 Evry, France
| | - Philippe Fossé
- LBPA, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Olivier Mauffret
- LBPA, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Juan Xie
- PPSM, CNRS, Institut d'Alembert, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du P(t) Wilson, F-94235 Cachan, France.
| |
Collapse
|
23
|
Gómez Ramos LM, Smeekens JM, Kovacs NA, Bowman JC, Wartell RM, Wu R, Williams LD. Yeast rRNA Expansion Segments: Folding and Function. J Mol Biol 2016; 428:4048-4059. [PMID: 27521697 DOI: 10.1016/j.jmb.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Divergence between prokaryotic and eukaryotic ribosomal RNA (rRNA) and among eukaryotic ribosomal RNAs is focused in expansion segments (ESs). Eukaryotic ribosomes are significantly larger than prokaryotic ribosomes partly because of their ESs. We hypothesize that larger rRNAs of complex organisms could confer increased functionality to the ribosome. Here, we characterize the binding partners of Saccharomyces cerevisiae expansion segment 7 (ES7), which is the largest and most variable ES of the eukaryotic large ribosomal subunit and is located at the surface of the ribosome. In vitro RNA-protein pull-down experiments using ES7 as a bait indicate that ES7 is a binding hub for a variety of non-ribosomal proteins essential to ribosomal function in eukaryotes. ES7-associated proteins observed here cluster into four groups based on biological process, (i) response to abiotic stimulus (e.g., response to external changes in temperature, pH, oxygen level, etc.), (ii) ribosomal large subunit biogenesis, (iii) protein transport and localization, and (iv) transcription elongation. Seven synthetases, Ala-, Arg-, Asp-, Asn-, Leu-, Lys- and TyrRS, appear to associate with ES7. Affinities of AspRS, TyrRS and LysRS for ES7 were confirmed by in vitro binding assays. The results suggest that ES7 in S. cerevisiae could play a role analogous to the multi-synthetase complex present in higher order organisms and could be important for the appropriate function of the ribosome. Thermal denaturation studies and footprinting experiments confirm that isolated ES7 is stable and maintains a near-native secondary and tertiary structure.
Collapse
Affiliation(s)
- Lizzette M Gómez Ramos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Jessica C Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Roger M Wartell
- School of Biology, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
24
|
Kutchko KM, Laederach A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27396578 PMCID: PMC5179297 DOI: 10.1002/wrna.1374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Selective 2′‐hydroxyl acylation analyzed by primer extension (SHAPE) provides information on RNA structure at single‐nucleotide resolution. It is most often used in conjunction with RNA secondary structure prediction algorithms as a probabilistic or thermodynamic restraint. With the recent advent of ultra‐high‐throughput approaches for collecting SHAPE data, the applications of this technology are extending beyond structure prediction. In this review, we discuss recent applications of SHAPE data in the transcriptomic context and how this new experimental paradigm is changing our understanding of these experiments and RNA folding in general. SHAPE experiments probe both the secondary and tertiary structure of an RNA, suggesting that model‐free approaches for within and comparative RNA structure analysis can provide significant structural insight without the need for a full structural model. New methods incorporating SHAPE at different nucleotide resolutions are required to parse these transcriptomic data sets to transcend secondary structure modeling with global structural metrics. These ‘multiscale’ approaches provide deeper insights into RNA global structure, evolution, and function in the cell. WIREs RNA 2017, 8:e1374. doi: 10.1002/wrna.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Lacroix-Labonté J, Girard N, Dagenais P, Legault P. Rational engineering of the Neurospora VS ribozyme to allow substrate recognition via different kissing-loop interactions. Nucleic Acids Res 2016; 44:6924-34. [PMID: 27166370 PMCID: PMC5001590 DOI: 10.1093/nar/gkw401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/30/2016] [Indexed: 12/24/2022] Open
Abstract
The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates.
Collapse
Affiliation(s)
- Julie Lacroix-Labonté
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
26
|
Characterizing 3D RNA structure by single molecule FRET. Methods 2016; 103:57-67. [PMID: 26853327 DOI: 10.1016/j.ymeth.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.
Collapse
|
27
|
Fechter P, Parmentier D, Wu Z, Fuchsbauer O, Romby P, Marzi S. Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo. Methods Mol Biol 2016; 1490:83-103. [PMID: 27665595 DOI: 10.1007/978-1-4939-6433-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical probing is often used to gain knowledge on the secondary and tertiary structures of RNA molecules either free or engaged in complexes with ligands. The method monitors the reactivity of each nucleotide towards chemicals of various specificities reflecting the hydrogen bonding environment of each nucleotide within the RNA molecule. In addition, information can be obtained on the binding site of a ligand (noncoding RNAs, protein, metabolites), and on RNA conformational changes that accompanied ligand binding or perturbation of the environmental cues. The detection of the modifications can be obtained either by using end-labeled RNA molecules or by primer extension using reverse transcriptase. The goal of this chapter is to provide the reader with an experimental guide to probe the structure of RNA in vitro and in vivo with the most suitable chemical probes.
Collapse
Affiliation(s)
- Pierre Fechter
- Biotechnologie et Signalisation Cellulaire, CNRS-INSERM, ESBS, Université de Strasbourg, 300 boulevard Sebastien Brant, Illkirch, 67412, France
| | - Delphine Parmentier
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| | - ZongFu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Olivier Fuchsbauer
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France
| |
Collapse
|
28
|
Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K, Sharma K, Singh PK, Chaurasia M, Surendar Reddy B, Chourasia MK. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release 2015; 220:368-387. [PMID: 26528900 DOI: 10.1016/j.jconrel.2015.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023]
Abstract
The scope of RNAi based therapeutics is unquestionable. However, if we dissect the current trend of clinical trials for afore mentioned drug class, some stark trends appear: 1) naked siRNA only exerts influence in topical mode whilst systemic delivery requires a carrier and 2) even after two decades of extensive efforts, not even a single siRNA containing product is commercially available. It was therefore felt that a perspective simplifying the unique intricacies of working with a merger of siRNA and liposomes from a pharmaceutical viewpoint could draw the attention of a wider array of interested researchers. We begin from the beginning and attempt to conduit the gap between theoretical logic and experimental/actual constraints. This, in turn could stimulate the next generation of investigators, gearing them to tackle the conundrum, which is siRNA delivery.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Tomar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shariq Khan
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj K Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohini Chaurasia
- Amity Institute of Pharmacy, Amity University, Lucknow, UP 226028, India
| | - B Surendar Reddy
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
29
|
Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 2015; 10:1643-69. [PMID: 26426499 DOI: 10.1038/nprot.2015.103] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2'-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs. This protocol describes the experimental steps, implemented over 3 d, that are required to perform SHAPE probing and to construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots and provides useful troubleshooting information. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures and visualize probable and alternative helices, often in under 1 d. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles and entire transcriptomes.
Collapse
|
30
|
Kutchko KM, Sanders W, Ziehr B, Phillips G, Solem A, Halvorsen M, Weeks KM, Moorman N, Laederach A. Multiple conformations are a conserved and regulatory feature of the RB1 5' UTR. RNA (NEW YORK, N.Y.) 2015; 21:1274-85. [PMID: 25999316 PMCID: PMC4478346 DOI: 10.1261/rna.049221.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/27/2015] [Indexed: 05/22/2023]
Abstract
Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood. High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5' UTR yields three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1 5' UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens (human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and manatee RB1 5' UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5' UTR mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA. For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5' UTR, the absence of multiple structures is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in eukaryotic UTRs to regulate expression.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Wes Sanders
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Ben Ziehr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Gabriela Phillips
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Amanda Solem
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
31
|
Kim YM, Choi WY, Oh CM, Han GH, Kim YJ. Secondary structure of the Irf7 5'-UTR, analyzed using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). BMB Rep 2015; 47:558-62. [PMID: 24393529 PMCID: PMC4261513 DOI: 10.5483/bmbrep.2014.47.10.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 01/09/2023] Open
Abstract
OASL1 is a member of the 2’-5’-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5’-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5’-UTR of the Irf7 transcript using “selective 2’-hydroxyl acylation analyzed by primer extension” (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5’-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5’-UTR in the regulation of Irf7 translation, mediated by OASL1. [BMB Reports 2014; 47(10): 558-562]
Collapse
Affiliation(s)
- Yun-Mi Kim
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Chang-Mok Oh
- Departments of Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Gyoon-Hee Han
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Young-Joon Kim
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
32
|
Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA. PLoS Comput Biol 2015; 11:e1004126. [PMID: 25992778 PMCID: PMC4438973 DOI: 10.1371/journal.pcbi.1004126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms--the eubacteria E. coli and C. difficile and the archeon H. volcanii--could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery.
Collapse
|
33
|
Abstract
The range of roles played by structured RNAs in biological systems is vast. At the same time as we are learning more about the importance of RNA structure, recent advances in reagents, methods and technology mean that RNA secondary structural probing has become faster and more accurate. As a result, the capabilities of laboratories that already perform this type of structural analysis have increased greatly, and it has also become more widely accessible. The present review summarizes established and recently developed techniques. The information we can derive from secondary structural analysis is assessed, together with the areas in which we are likely to see exciting developments in the near future.
Collapse
|
34
|
Poulsen LD, Kielpinski LJ, Salama SR, Krogh A, Vinther J. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA (NEW YORK, N.Y.) 2015; 21:1042-52. [PMID: 25805860 PMCID: PMC4408784 DOI: 10.1261/rna.047068.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 02/04/2015] [Indexed: 05/24/2023]
Abstract
Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA-RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing.
Collapse
Affiliation(s)
- Line Dahl Poulsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Sofie R Salama
- Center for Biomolecular Science and Engineering, and Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Anders Krogh
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jeppe Vinther
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
36
|
Yang D, Liu P, Wudeck EV, Giedroc DP, Leibowitz JL. SHAPE analysis of the RNA secondary structure of the Mouse Hepatitis Virus 5' untranslated region and N-terminal nsp1 coding sequences. Virology 2014; 475:15-27. [PMID: 25462342 PMCID: PMC4280293 DOI: 10.1016/j.virol.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/21/2013] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
Abstract
SHAPE technology was used to analyze RNA secondary structure of the 5' most 474 nts of the MHV-A59 genome encompassing the minimal 5' cis-acting region required for defective interfering RNA replication. The structures generated were in agreement with previous characterizations of SL1 through SL4 and two recently predicted secondary structure elements, S5 and SL5A. SHAPE provided biochemical support for four additional stem-loops not previously functionally investigated in MHV. Secondary structure predictions for 5' regions of MHV-A59, BCoV and SARS-CoV were similar despite high sequence divergence. The pattern of SHAPE reactivity of in virio genomic RNA, ex virio genomic RNA, and in vitro synthesized RNA was similar, suggesting that binding of N protein or other proteins to virion RNA fails to protect the RNA from reaction with lipid permeable SHAPE reagent. Reverse genetic experiments suggested that SL5C and SL6 within the nsp1 coding sequence are not required for viral replication.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - Pinghua Liu
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - Elyse V Wudeck
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA.
| |
Collapse
|
37
|
Pilkington GR, Purzycka KJ, Bear J, Le Grice SFJ, Felber BK. Gammaretrovirus mRNA expression is mediated by a novel, bipartite post-transcriptional regulatory element. Nucleic Acids Res 2014; 42:11092-106. [PMID: 25190459 PMCID: PMC4176177 DOI: 10.1093/nar/gku798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-transcriptional regulatory mechanisms of several complex and simple retroviruses and retroelements have been elucidated, with the exception of the gammaretrovirus family. We found that, similar to the other retroviruses, gag gene expression of MuLV and XMRV depends on post-transcriptional regulation mediated via an RNA sequence overlapping the pro-pol open reading frame, termed the Post-Transcriptional Element (PTE). PTE function can be replaced by heterologous RNA export elements, e.g. CTE of simian type D retroviruses. Alternatively, Gag particle production is achieved using an RNA/codon optimized gag gene. PTE function is transferable and can replace HIV Rev-RRE-regulated expression of HIV gag. Analysis of PTE by SHAPE revealed a highly structured RNA comprising seven stem-loop structures, with the 5′ and 3′ stem-loops forming an essential bipartite signal. MuLV and XMRV PTE share 98% identity and have highly similar RNA structures, with changes mostly located to single-stranded regions. PTE identification strongly suggests that all retroviruses and retroelements share common strategies of post-transcriptional gene regulation to produce Gag. Expression depends on complex RNA structures embedded within retroviral mRNA, in coding regions or the 3′ untranslated region. These specific structures serve as recognition signals for either cellular or viral proteins.
Collapse
Affiliation(s)
- Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Katarzyna J Purzycka
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Soulière MF, Micura R. Use of SHAPE to select 2AP substitution sites for RNA-ligand interactions and dynamics studies. Methods Mol Biol 2014; 1103:227-39. [PMID: 24318898 DOI: 10.1007/978-1-62703-730-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Most regulatory RNA molecules must adopt a precise secondary fold and tertiary structure to allow their function in cells. A number of experimental approaches, such as the 2-Aminopurine-Based RNA Folding Analysis (2ApFold), have therefore been developed to offer insights into the folding and folding dynamics of RNA. A crucial requirement for this method is the selection of proper 2AP labeling positions. In that regard, we recently discovered that Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) offers a reliable path to identify appropriate nucleotides for 2AP substitution on a target RNA. This chapter describes the straightforward procedure to select 2AP substitution sites in RNA molecules using SHAPE probing. The protocols detail the preparation of the target RNA by transcription, and the SHAPE steps including (1) probing of the RNA, (2) reverse transcription with a radiolabeled primer, (3) sequencing gel, and (4) analysis of the obtained band pattern.
Collapse
Affiliation(s)
- Marie F Soulière
- Institute of Organic Chemistry, Center for Chemistry and Biomedicine, Leopold Franzens University, Innsbruck, Austria
| | | |
Collapse
|
39
|
Turner R, Shefer K, Ares M. Safer one-pot synthesis of the 'SHAPE' reagent 1-methyl-7-nitroisatoic anhydride (1m7). RNA (NEW YORK, N.Y.) 2013; 19:1857-63. [PMID: 24141619 PMCID: PMC3884660 DOI: 10.1261/rna.042374.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Estimating the reactivity of 2'-hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2'-hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro.
Collapse
Affiliation(s)
- Rushia Turner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Kinneret Shefer
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding authorE-mail
| |
Collapse
|
40
|
Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ. The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 2013; 52:8777-85. [PMID: 24215455 DOI: 10.1021/bi401207q] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute time scale using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg(2+), the approximate Mg(2+) concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg(2+) concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg(2+) alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations.
Collapse
Affiliation(s)
- Jillian Tyrrell
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | |
Collapse
|
41
|
Burrill CP, Westesson O, Schulte MB, Strings VR, Segal M, Andino R. Global RNA structure analysis of poliovirus identifies a conserved RNA structure involved in viral replication and infectivity. J Virol 2013; 87:11670-83. [PMID: 23966409 PMCID: PMC3807356 DOI: 10.1128/jvi.01560-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
The genomes of RNA viruses often contain RNA structures that are crucial for translation and RNA replication and may play additional, uncharacterized roles during the viral replication cycle. For the picornavirus family member poliovirus, a number of functional RNA structures have been identified, but much of its genome, especially the open reading frame, has remained uncharacterized. We have now generated a global RNA structure map of the poliovirus genome using a chemical probing approach that interrogates RNA structure with single-nucleotide resolution. In combination with orthogonal evolutionary analyses, we uncover several conserved RNA structures in the open reading frame of the viral genome. To validate the ability of our global analyses to identify functionally important RNA structures, we further characterized one of the newly identified structures, located in the region encoding the RNA-dependent RNA polymerase, 3D(pol), by site-directed mutagenesis. Our results reveal that the structure is required for viral replication and infectivity, since synonymous mutants are defective in these processes. Furthermore, these defects can be partially suppressed by mutations in the viral protein 3C(pro), which suggests the existence of a novel functional interaction between an RNA structure in the 3D(pol)-coding region and the viral protein(s) 3C(pro) and/or its precursor 3CD(pro).
Collapse
Affiliation(s)
- Cecily P. Burrill
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Oscar Westesson
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Michael B. Schulte
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Vanessa R. Strings
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Mark Segal
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA
| | - Raul Andino
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Abstract
Selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) provides a means to investigate RNA structure with better resolution and higher throughput than has been possible with traditional methods. We present several protocols, which are based on a variety of previously published methods and were adapted and optimized for the analysis of poliovirus RNA in the Andino laboratory. These include methods for nondenaturing RNA extraction, RNA modification and primer extension, and data processing in ShapeFinder.
Collapse
Affiliation(s)
- Cecily P Burrill
- Department of Microbiology and Immunology, University of California, San Francisco, California
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California
| |
Collapse
|
43
|
Singh NN, Lawler MN, Ottesen EW, Upreti D, Kaczynski JR, Singh RN. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res 2013; 41:8144-65. [PMID: 23861442 PMCID: PMC3783185 DOI: 10.1093/nar/gkt609] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/16/2023] Open
Abstract
Here, we report a long-distance interaction (LDI) as a critical regulator of alternative splicing of Survival Motor Neuron 2 (SMN2) exon 7, skipping of which is linked to spinal muscular atrophy (SMA), a leading genetic disease of children and infants. We show that this LDI is linked to a unique intra-intronic structure that we term internal stem through LDI-1 (ISTL1). We used site-specific mutations and Selective 2'-Hydroxyl Acylation analyzed by Primer Extension to confirm the formation and functional significance of ISTL1. We demonstrate that the inhibitory effect of ISTL1 is independent of hnRNP A1/A2B1 and PTB1 previously implicated in SMN2 exon 7 splicing. We show that an antisense oligonucleotide-mediated sequestration of the 3' strand of ISTL1 fully corrects SMN2 exon 7 splicing and restores high levels of SMN and Gemin2, a SMN-interacting protein, in SMA patient cells. Our results also reveal that the 3' strand of ISTL1 and upstream sequences constitute an inhibitory region that we term intronic splicing silencer N2 (ISS-N2). This is the first report to demonstrate a critical role of a structure-associated LDI in splicing regulation of an essential gene linked to a genetic disease. Our findings expand the repertoire of potential targets for an antisense oligonucleotide-mediated therapy of SMA.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Mariah N. Lawler
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Daya Upreti
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Jennifer R. Kaczynski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA, Department of Biochemistry, Iowa State University, Ames, IA 50011, USA, Molecular Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA and Biology Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
44
|
Todd GC, Walter NG. Secondary structure of bacteriophage T4 gene 60 mRNA: implications for translational bypassing. RNA (NEW YORK, N.Y.) 2013; 19:685-700. [PMID: 23492219 PMCID: PMC3677283 DOI: 10.1261/rna.037291.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Translational bypassing is a unique phenomenon of bacteriophage T4 gene 60 mRNA wherein the bacterial ribosome produces a single polypeptide chain from a discontinuous open reading frame (ORF). Upon reaching the 50-nucleotide untranslated region, or coding gap, the ribosome either dissociates or bypasses the interruption to continue translating the remainder of the ORF, generating a subunit of a type II DNA topoisomerase. Mutational and computational analyses have suggested that a compact structure, including a stable hairpin, forms in the coding gap to induce bypassing, yet direct evidence is lacking. Here we have probed the secondary structure of gene 60 mRNA with both Tb³⁺ ions and the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent 1M7 under conditions where bypassing is observed. The resulting experimentally informed secondary structure models strongly support the presence of the predicted coding gap hairpin and highlight the benefits of using Tb³⁺ as a second, complementary probing reagent. Contrary to several previously proposed models, however, the rest of the coding gap is highly reactive with both probing reagents, suggesting that it forms only a short stem-loop. Mutational analyses coupled with functional assays reveal that two possible base-pairings of the coding gap with other regions of the mRNA are not required for bypassing. Such structural autonomy of the coding gap is consistent with its recently discovered role as a mobile genetic element inserted into gene 60 mRNA to inhibit cleavage by homing endonuclease MobA.
Collapse
Affiliation(s)
- Gabrielle C. Todd
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Corresponding authorE-mail
| |
Collapse
|
45
|
Stoddard CD, Widmann J, Trausch JJ, Marcano-Velázquez JG, Knight R, Batey RT. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 2013; 425:1596-611. [PMID: 23485418 DOI: 10.1016/j.jmb.2013.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | | | | | | | | | | |
Collapse
|
46
|
Leonard CW, Hajdin CE, Karabiber F, Mathews DH, Favorov O, Dokholyan NV, Weeks KM. Principles for understanding the accuracy of SHAPE-directed RNA structure modeling. Biochemistry 2013; 52:588-95. [PMID: 23316814 PMCID: PMC3578230 DOI: 10.1021/bi300755u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accurate RNA structure modeling is an important, incompletely solved, challenge. Single-nucleotide resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) yields an experimental measurement of local nucleotide flexibility that can be incorporated as pseudo-free energy change constraints to direct secondary structure predictions. Prior work from our laboratory has emphasized both the overall accuracy of this approach and the need for nuanced interpretation of modeled structures. Recent studies by Das and colleagues [Kladwang, W., et al. (2011) Biochemistry 50, 8049; Nat. Chem. 3, 954], focused on analyzing six small RNAs, yielded poorer RNA secondary structure predictions than expected on the basis of prior benchmarking efforts. To understand the features that led to these divergent results, we re-examined four RNAs yielding the poorest results in this recent work: tRNA(Phe), the adenine and cyclic-di-GMP riboswitches, and 5S rRNA. Most of the errors reported by Das and colleagues reflected nonstandard experiment and data processing choices, and selective scoring rules. For two RNAs, tRNA(Phe) and the adenine riboswitch, secondary structure predictions are nearly perfect if no experimental information is included but were rendered inaccurate by the SHAPE data of Das and colleagues. When best practices were used, single-sequence SHAPE-directed secondary structure modeling recovered ~93% of individual base pairs and >90% of helices in the four RNAs, essentially indistinguishable from the results of the mutate-and-map approach with the exception of a single helix in the 5S rRNA. The field of experimentally directed RNA secondary structure prediction is entering a phase focused on the most difficult prediction challenges. We outline five constructive principles for guiding this field forward.
Collapse
Affiliation(s)
| | - Christine E. Hajdin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Fethullah Karabiber
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - David H. Mathews
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
47
|
Athavale SS, Gossett JJ, Bowman JC, Hud NV, Williams LD, Harvey SC. In vitro secondary structure of the genomic RNA of satellite tobacco mosaic virus. PLoS One 2013; 8:e54384. [PMID: 23349871 PMCID: PMC3551766 DOI: 10.1371/journal.pone.0054384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022] Open
Abstract
Satellite tobacco mosaic virus (STMV) is a T = 1 icosahedral virus with a single-stranded RNA genome. It is widely accepted that the RNA genome plays an important structural role during assembly of the STMV virion. While the encapsidated form of the RNA has been extensively studied, less is known about the structure of the free RNA, aside from a purported tRNA-like structure at the 3' end. Here we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis to examine the secondary structure of in vitro transcribed STMV RNA. The predicted secondary structure is unusual in the sense that it is highly extended, which could be significant for protecting the RNA from degradation. The SHAPE data are also consistent with the previously predicted tRNA-like fold at the 3' end of the molecule, which is also known to hinder degradation. Our data are not consistent with the secondary structure proposed for the encapsidated RNA by Schroeder et al., suggesting that, if the Schroeder structure is correct, either the RNA is packaged as it emerges from the replication complex, or the RNA undergoes extensive refolding upon encapsidation. We also consider the alternative, i.e., that the structure of the encapsidated STMV RNA might be the same as the in vitro structure presented here, and we examine how this structure might be organized in the virus. This possibility is not rigorously ruled out by the available data, so it remains open to examination by experiment.
Collapse
Affiliation(s)
- Shreyas S. Athavale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - J. Jared Gossett
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Stephen C. Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
48
|
Sükösd Z, Swenson MS, Kjems J, Heitsch CE. Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res 2013; 41:2807-16. [PMID: 23325843 PMCID: PMC3597644 DOI: 10.1093/nar/gks1283] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent advances in RNA structure determination include using data from high-throughput probing experiments to improve thermodynamic prediction accuracy. We evaluate the extent and nature of improvements in data-directed predictions for a diverse set of 16S/18S ribosomal sequences using a stochastic model of experimental SHAPE data. The average accuracy for 1000 data-directed predictions always improves over the original minimum free energy (MFE) structure. However, the amount of improvement varies with the sequence, exhibiting a correlation with MFE accuracy. Further analysis of this correlation shows that accurate MFE base pairs are typically preserved in a data-directed prediction, whereas inaccurate ones are not. Thus, the positive predictive value of common base pairs is consistently higher than the directed prediction accuracy. Finally, we confirm sequence dependencies in the directability of thermodynamic predictions and investigate the potential for greater accuracy improvements in the worst performing test sequence.
Collapse
Affiliation(s)
- Zsuzsanna Sükösd
- Interdisciplinary Nanoscience Center, Aarhus University, Ny Munkegade 120, Aarhus C DK-8000, Denmark
| | | | | | | |
Collapse
|
49
|
Karabiber F, McGinnis JL, Favorov OV, Weeks KM. QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA (NEW YORK, N.Y.) 2013; 19. [PMID: 23188808 PMCID: PMC3527727 DOI: 10.1261/rna.036327.112] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical probing of RNA and DNA structure is a widely used and highly informative approach for examining nucleic acid structure and for evaluating interactions with protein and small-molecule ligands. Use of capillary electrophoresis to analyze chemical probing experiments yields hundreds of nucleotides of information per experiment and can be performed on automated instruments. Extraction of the information from capillary electrophoresis electropherograms is a computationally intensive multistep analytical process, and no current software provides rapid, automated, and accurate data analysis. To overcome this bottleneck, we developed a platform-independent, user-friendly software package, QuShape, that yields quantitatively accurate nucleotide reactivity information with minimal user supervision. QuShape incorporates newly developed algorithms for signal decay correction, alignment of time-varying signals within and across capillaries and relative to the RNA nucleotide sequence, and signal scaling across channels or experiments. An analysis-by-reference option enables multiple, related experiments to be fully analyzed in minutes. We illustrate the usefulness and robustness of QuShape by analysis of RNA SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experiments.
Collapse
Affiliation(s)
- Fethullah Karabiber
- Department of Computer Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Jennifer L. McGinnis
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Oleg V. Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-7575, USA
- Corresponding authorsE-mail E-mail
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
50
|
Romero-López C, Barroso-delJesus A, García-Sacristán A, Briones C, Berzal-Herranz A. The folding of the hepatitis C virus internal ribosome entry site depends on the 3'-end of the viral genome. Nucleic Acids Res 2012; 40:11697-11713. [PMID: 23066110 PMCID: PMC3526292 DOI: 10.1093/nar/gks927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3'-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3'-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3'-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest. Our results suggest that a complex, direct and long-distance RNA-RNA interaction network plays an important role in the regulation of HCV translation and replication, as well as in the switching between different steps of the viral cycle.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alicia Barroso-delJesus
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Ana García-Sacristán
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Briones
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alfredo Berzal-Herranz
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|