1
|
Story S, Arya DP. A Cell-Based Screening Assay for rRNA-Targeted Drug Discovery. ACS Infect Dis 2024; 10:4194-4207. [PMID: 39530678 DOI: 10.1021/acsinfecdis.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Worldwide, bacterial antibiotic resistance continues to outpace the level of drug development. One way to counteract this threat to society is to identify novel ways to rapidly screen and identify drug candidates in living cells. Developing fluorescent antibiotics that can enter microorganisms and be displaced by potential antimicrobial compounds is an important but challenging endeavor due to the difficulty in entering bacterial cells. We developed a cell-based assay using a fluorescent aminoglycoside molecule that allows for the rapid and direct characterization of aminoglycoside binding in a population of bacterial cells. The assay involves the accumulation and competitive displacement of a fluorescent aminoglycoside binding probe in Escherichia coli as a Gram-negative bacterial model. The assay was optimized for high signal-to-background ratios, ease of performance for reliable outcomes, and amenability to high-throughput screening. We demonstrate that the fluorescent binding probe shows a decrease in fluorescence with cellular uptake, consistent with RNA binding, and also shows a subsequent increase upon the addition of the positive control neomycin. Fluorescence intensity increase with aminoglycosides was indicative of their relative binding affinities for A-site rRNA, with neomycin having the highest affinity, followed by paromomycin, tobramycin, sisomicin, and netilmicin. Intermediate fluorescence was found with plazomicin, neamine, apramycin, ribostamicin, gentamicin, and amikacin. Weak fluorescence was observed with kanamycin, hygromycin, streptomycin, and spectinomycin. A high degree of sensitivity was observed with aminoglycosides known to be strong binders for the 16S rRNA A-site compared with antibiotics that target other biosynthetic pathways. The quality of the optimized assay was excellent for planktonic cells, with an average Z' factor value of 0.80. In contrast to planktonic cells, established biofilms yielded an average Z' factor of 0.61. The high sensitivity of this cell-based assay in a physiological context demonstrates significant potential for identifying potent new ribosomal binding antibiotics.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
2
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
3
|
An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. mBio 2021; 13:e0373221. [PMID: 35100868 PMCID: PMC8805024 DOI: 10.1128/mbio.03732-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Antibiotic resistance among bacterial pathogens continues to pose a serious global health threat. Multidrug-resistant (MDR) strains of the Gram-negative organism Acinetobacter baumannii utilize a number of resistance determinants to evade current antibiotics. One of the major resistance mechanisms employed by these pathogens is the use of multidrug efflux pumps. These pumps extrude xenobiotics directly out of bacterial cells, resulting in treatment failures when common antibiotics are administered. Here, the structure of the novel tetracycline antibiotic TP-6076, bound to both the Acinetobacter drug efflux pump AdeJ and the ribosome from Acinetobacter baumannii, using single-particle cryo-electron microscopy (cryo-EM), is elucidated. In this work, the structure of the AdeJ-TP-6076 complex is solved, and we show that AdeJ utilizes a network of hydrophobic interactions to recognize this fluorocycline. Concomitant with this, we elucidate three structures of TP-6076 bound to the A. baumannii ribosome and determine that its binding is stabilized largely by electrostatic interactions. We then compare the differences in binding modes between TP-6076 and the related tetracycline antibiotic eravacycline in both targets. These differences suggest that modifications to the tetracycline core may be able to alter AdeJ binding while maintaining interactions with the ribosome. Together, this work highlights how different mechanisms are used to stabilize the binding of tetracycline-based compounds to unique bacterial targets and provides guidance for the future clinical development of tetracycline antibiotics. IMPORTANCE Treatment of antibiotic-resistant organisms such as A. baumannii represents an ongoing issue for modern medicine. The multidrug efflux pump AdeJ serves as a major resistance determinant in A. baumannii through its action of extruding antibiotics from the cell. In this work, we use cryo-EM to show how AdeJ recognizes the experimental tetracycline antibiotic TP-6076 and prevents this drug from interacting with the A. baumannii ribosome. Since AdeJ and the ribosome use different binding modes to stabilize interactions with TP-6076, exploiting these differences may guide future drug development for combating antibiotic-resistant A. baumannii and potentially other strains of MDR bacteria.
Collapse
|
4
|
Cardenas G, Menger MFSJ, Ramos-Berdullas N, Sánchez-Murcia PA. Deciphering the Chemical Basis of Fluorescence of a Selenium-Labeled Uracil Probe when Bound at the Bacterial Ribosomal A-Site. Chemistry 2021; 27:4927-4931. [PMID: 33368691 DOI: 10.1002/chem.202004818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/23/2022]
Abstract
We unveil in this work the main factors that govern the turn-on/off fluorescence of a Se-modified uracil probe at the ribosomal RNA A-site. Whereas the constraint into an "in-plane" conformation of the two rings of the fluorophore is the main driver for the observed turn-on fluorescence emission in the presence of the antibiotic paromomycin, the electrostatics of the environment plays a minor role during the emission process. Our computational strategy clearly indicates that, in the absence of paromomycin, the probe prefers conformations that show a dark S1 electronic state with participation of nπ* electronic transition contributions between the selenium atom and the π-system of the uracil moiety.
Collapse
Affiliation(s)
- Gustavo Cardenas
- Chemistry Department, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas Marcosende s/n, 36310, Vigo, Spain
| | - Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria.,Present address: Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingstalstraße 6/III, 8010, Graz, Austria
| |
Collapse
|
5
|
Holbrook SY, Garneau-Tsodikova S. Evaluation of Aminoglycoside and Carbapenem Resistance in a Collection of Drug-Resistant Pseudomonas aeruginosa Clinical Isolates. Microb Drug Resist 2018; 24:1020-1030. [PMID: 29261405 PMCID: PMC6154764 DOI: 10.1089/mdr.2017.0101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is a member of the ESKAPE pathogens and one of the leading causes of healthcare-associated infections worldwide. Aminoglycosides (AGs) are recognized for their efficacy against P. aeruginosa. The most common resistance mechanism against AGs is the acquisition of AG-modifying enzymes (AMEs) by the bacteria, including AG N-acetyltransferases (AACs), AG O-phosphotransferases (APHs), and AG O-nucleotidyltransferases (ANTs). In this study, we obtained 122 multidrug-resistant P. aeruginosa clinical isolates and evaluated the antibacterial effects of six AGs and two carbapenems alone against all clinical isolates, and in combination against eight selected strains. We further probed for four representatives of the most common AME genes [aac(6')-Ib, aac(3)-IV, ant(2")-Ia, and aph(3')-Ia] by polymerase chain reaction (PCR) and compared the AME patterns of these 122 clinical isolates to their antibiotic resistance profile. Among the diverse antibiotics resistance profile displayed by these clinical isolates, we found correlations between the resistance to various AGs as well as between the resistance to one AG and the resistance to carbapenems. PCR results revealed that the presence of aac(6')-Ib renders these isolates more resistant to a variety of antibiotics. The correlation between resistance to various AGs and carbapenems partially reflects the complex resistance strategies adapted in these pathogens and encourages the development of strategic treatment for each P. aeruginosa infection by considering the genetic information of each isolated bacteria.
Collapse
Affiliation(s)
- Selina Y.L. Holbrook
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| | - Sylvie Garneau-Tsodikova
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0026-2017. [PMID: 30003866 PMCID: PMC11633601 DOI: 10.1128/microbiolspec.arba-0026-2017] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
Affiliation(s)
- Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Yves Madec
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Agnese Lupo
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Kieffer
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Guo L, Okamoto A. Fluorescence-switching RNA for detection of bacterial ribosomes. Chem Commun (Camb) 2018; 53:9406-9409. [PMID: 28765840 DOI: 10.1039/c7cc04818a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient chemical system that allows quantification of bacterial ribosomes by fluorescence-based analysis. The key component in the system is the exciton-controlled fluorescent RNA aptamer, which recognizes neomycin B. The intensity of fluorescence from such a ribosome-sensing system increased drastically in the presence of Escherichia coli.
Collapse
Affiliation(s)
- Lihao Guo
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | |
Collapse
|
8
|
Tereshchenkov AG, Shishkina AV, Karpenko VV, Chertkov VA, Konevega AL, Kasatsky PS, Bogdanov AA, Sumbatyan NV. New Fluorescent Macrolide Derivatives for Studying Interactions of Antibiotics and Their Analogs with the Ribosomal Exit Tunnel. BIOCHEMISTRY (MOSCOW) 2017; 81:1163-1172. [PMID: 27908240 DOI: 10.1134/s0006297916100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.
Collapse
Affiliation(s)
- A G Tereshchenkov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol 2016; 14:1364-1373. [PMID: 27892771 PMCID: PMC5711459 DOI: 10.1080/15476286.2016.1257470] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Posttranscriptional processing of RNA molecules is a common strategy to enlarge the structural and functional repertoire of RNomes observed in all 3 domains of life. Fragmentation of RNA molecules of basically all functional classes has been reported to yield smaller non-protein coding RNAs (ncRNAs) that typically possess different roles compared with their parental transcripts. Here we show that a valine tRNA-derived fragment (Val-tRF) that is produced under certain stress conditions in the halophilic archaeon Haloferax volcanii is capable of binding to the small ribosomal subunit. As a consequence of Val-tRF binding mRNA is displaced from the initiation complex which results in global translation attenuation in vivo and in vitro. The fact that the archaeal Val-tRF also inhibits eukaryal as well as bacterial protein biosynthesis implies a functionally conserved mode of action. While tRFs and tRNA halves have been amply identified in recent RNA-seq project, Val-tRF described herein represents one of the first functionally characterized tRNA processing products to date.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Leander Wyss
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland.,b Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern , Switzerland
| | - Anna M Mleczko
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Julia Reuther
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| | - Norbert Polacek
- a Department of Chemistry and Biochemistry , University of Bern , Freiestrasse, Bern , Switzerland
| |
Collapse
|
10
|
Osterman IA, Bogdanov AA, Dontsova OA, Sergiev PV. Techniques for Screening Translation Inhibitors. Antibiotics (Basel) 2016; 5:antibiotics5030022. [PMID: 27348012 PMCID: PMC5039519 DOI: 10.3390/antibiotics5030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 02/03/2023] Open
Abstract
The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge. Therefore, it is highly beneficial to combine primary screening with the identification of the mechanism of action. In this review, we describe a collection of methods for screening translation inhibitors, with a special emphasis on methods which can be performed in a high-throughput manner.
Collapse
Affiliation(s)
- Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Alexey A Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga A Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
11
|
Shebl B, Menke DE, Pennella M, Poudyal RR, Burke DH, Cornish PV. Preparation of ribosomes for smFRET studies: A simplified approach. Arch Biochem Biophys 2016; 603:118-30. [PMID: 27208427 DOI: 10.1016/j.abb.2016.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
During the past decade, single-molecule studies of the ribosome have significantly advanced our understanding of protein synthesis. The broadest application of these methods has been towards the investigation of ribosome conformational dynamics using single-molecule Förster resonance energy transfer (smFRET). The recent advances in fluorescently labeled ribosomes and translation components have resulted in success of smFRET experiments. Various methods have been employed to target fluorescent dyes to specific locations within the ribosome. Primarily, these methods have involved additional steps including subunit dissociation and/or full reconstitution, which could result in ribosomes of reduced activity and translation efficiency. In addition, substantial time and effort are required to produce limited quantities of material. To enable rapid and large-scale production of highly active, fluorescently labeled ribosomes, we have developed a procedure that combines partial reconstitution with His-tag purification. This allows for a homogeneous single-step purification of mutant ribosomes and subsequent integration of labeled proteins. Ribosomes produced with this method are shown to be as active as ribosomes purified using classical methods. While we have focused on two labeling sites in this report, the method is generalizable and can in principle be extended to any non-essential ribosomal protein.
Collapse
Affiliation(s)
- Bassem Shebl
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Drew E Menke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Min Pennella
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Raghav R Poudyal
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Peter V Cornish
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstädter J, Hinkley T, Magnus C, Waldor MK, Udekwu K, Cohen T. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci Transl Med 2016; 7:287ra73. [PMID: 25972005 DOI: 10.1126/scitranslmed.aaa8760] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Finding optimal dosing strategies for treating bacterial infections is extremely difficult, and improving therapy requires costly and time-intensive experiments. To date, an incomplete mechanistic understanding of drug effects has limited our ability to make accurate quantitative predictions of drug-mediated bacterial killing and impeded the rational design of antibiotic treatment strategies. Three poorly understood phenomena complicate predictions of antibiotic activity: post-antibiotic growth suppression, density-dependent antibiotic effects, and persister cell formation. We show that chemical binding kinetics alone are sufficient to explain these three phenomena, using single-cell data and time-kill curves of Escherichia coli and Vibrio cholerae exposed to a variety of antibiotics in combination with a theoretical model that links chemical reaction kinetics to bacterial population biology. Our model reproduces existing observations, has a high predictive power across different experimental setups (R(2) = 0.86), and makes several testable predictions, which we verified in new experiments and by analyzing published data from a clinical trial on tuberculosis therapy. Although a variety of biological mechanisms have previously been invoked to explain post-antibiotic growth suppression, density-dependent antibiotic effects, and especially persister cell formation, our findings reveal that a simple model that considers only binding kinetics provides a parsimonious and unifying explanation for these three complex, phenotypically distinct behaviours. Current antibiotic and other chemotherapeutic regimens are often based on trial and error or expert opinion. Our "chemical reaction kinetics"-based approach may inform new strategies, which are based on rational design.
Collapse
Affiliation(s)
- Pia Abel Zur Wiesch
- Division of Global Health Equity, Brigham and Women's Hospital and Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA. Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510, USA.
| | - Sören Abel
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA. Department of Pharmacy, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Spyridon Gkotzis
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| | - Paolo Ocampo
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland. Department of Environmental Microbiology, EAWAG, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trevor Hinkley
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA. Howard Hughes Medical Institute, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Klas Udekwu
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| | - Ted Cohen
- Division of Global Health Equity, Brigham and Women's Hospital and Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA. Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510, USA. Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
13
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
14
|
Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. JOURNAL OF BIOMOLECULAR NMR 2013; 56:85-93. [PMID: 23689811 DOI: 10.1007/s10858-013-9721-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear (13)C and (15)N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.
Collapse
Affiliation(s)
- Ioannis Gelis
- Buchmann Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Pulk A, Wasserman MR, Feldman MB, Altman RB, Cate JHD, Blanchard SC. Allosteric control of the ribosome by small-molecule antibiotics. Nat Struct Mol Biol 2012; 19:957-63. [PMID: 22902368 PMCID: PMC3645490 DOI: 10.1038/nsmb.2360] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022]
Abstract
Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl-transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.
Collapse
MESH Headings
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/drug effects
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Neomycin/chemistry
- Neomycin/pharmacology
- Protein Biosynthesis/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/drug effects
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Cherny I, Korolev M, Koehler AN, Hecht MH. Proteins from an unevolved library of de novo designed sequences bind a range of small molecules. ACS Synth Biol 2012; 1:130-8. [PMID: 23651114 PMCID: PMC4104770 DOI: 10.1021/sb200018e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The availability of large collections of de novo designed proteins presents new opportunities to harness novel macromolecules for synthetic biological functions. Many of these new functions will require binding to small molecules. Is the ability to bind small molecules a property that arises only in response to biological selection or computational design? Or alternatively, is small molecule binding a property of folded proteins that occurs readily amidst collections of unevolved sequences? These questions can be addressed by assessing the binding potential of de novo proteins that are designed to fold into stable structures, but are "naïve" in the sense that they (i) share no significant sequence similarity with natural proteins and (ii) were neither selected nor designed to bind small molecules. We chose three naïve proteins from a library of sequences designed to fold into 4-helix bundles and screened for binding to 10,000 compounds displayed on small molecule microarrays. Several binders were identified, and binding was characterized by a series of biophysical assays. Surprisingly, despite the similarity of the three de novo proteins to one another, they exhibit selective ligand binding. These findings demonstrate the potential of novel proteins for molecular recognition and have significant implications for a range of applications in synthetic biology.
Collapse
Affiliation(s)
- Izhack Cherny
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Maria Korolev
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Angela N. Koehler
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Michael H. Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
Szafraniec M, Stokowa-Sołtys K, Nagaj J, Kasprowicz A, Wrzesiński J, Jeżowska-Bojczuk M, Ciesiołka J. Capreomycin and hygromycin B modulate the catalytic activity of the delta ribozyme in a manner that depends on the protonation and complexation with Cu2+ ions of these antibiotics. Dalton Trans 2012; 41:9728-36. [DOI: 10.1039/c2dt30794d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Schormann N, Sommers CI, Prichard MN, Keith KA, Noah JW, Nuth M, Ricciardi RP, Chattopadhyay D. Identification of protein-protein interaction inhibitors targeting vaccinia virus processivity factor for development of antiviral agents. Antimicrob Agents Chemother 2011; 55:5054-62. [PMID: 21844323 PMCID: PMC3195037 DOI: 10.1128/aac.00278-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/05/2011] [Indexed: 01/11/2023] Open
Abstract
Poxvirus uracil DNA glycosylase D4 in association with A20 and the catalytic subunit of DNA polymerase forms the processive polymerase complex. The binding of D4 and A20 is essential for processive polymerase activity. Using an AlphaScreen assay, we identified compounds that inhibit protein-protein interactions between D4 and A20. Effective interaction inhibitors exhibited both antiviral activity and binding to D4. These results suggest that novel antiviral agents that target the protein-protein interactions between D4 and A20 can be developed for the treatment of infections with poxviruses, including smallpox.
Collapse
Affiliation(s)
| | | | - Mark N. Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kathy A. Keith
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James W. Noah
- Southern Research Institute, Birmingham, Alabama 35147
| | - Manunya Nuth
- Department of Microbiology, School of Dental Medicine
| | - Robert P. Ricciardi
- Department of Microbiology, School of Dental Medicine
- Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
19
|
Mikulík K, Bobek J, Ziková A, Smětáková M, Bezoušková S. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor. MOLECULAR BIOSYSTEMS 2010; 7:817-23. [PMID: 21152561 DOI: 10.1039/c0mb00174k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.
Collapse
Affiliation(s)
- Karel Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 4, Videnská 1083, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The emergence of drug-resistant pathogens has prompted the search for new antibacterials. In this issue of Chemistry & Biology, Starosta et al. identify specific thiopeptide-antibiotic precursor lead compounds using three complementary high-throughput translation machinery assays.
Collapse
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
21
|
Starosta AL, Qin H, Mikolajka A, Leung GYC, Schwinghammer K, Chen DYK, Cooperman BS, Wilson DN. Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. CHEMISTRY & BIOLOGY 2009; 16:1087-96. [PMID: 19875082 PMCID: PMC3117328 DOI: 10.1016/j.chembiol.2009.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/06/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022]
Abstract
Most thiopeptide antibiotics target the translational machinery: thiostrepton (ThS) and nosiheptide (NoS) target the ribosome and inhibit translation factor function, whereas GE2270A/T binds to the elongation factor EF-Tu and prevents ternary complex formation. We have used several in vitro translational machinery assays to screen a library of thiopeptide antibiotic precursor compounds and identified four families of precursor compounds that are either themselves inhibitory or are able to relieve the inhibitory effects of ThS, NoS, or GE2270T. Some of these precursors represent distinct compounds with respect to their ability to bind to ribosomes. The results not only provide insight into the mechanism of action of thiopeptide compounds but also demonstrate the potential of such assays for identifying lead compounds that might be missed using conventional inhibitory screening protocols.
Collapse
Affiliation(s)
- Agata L. Starosta
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Aleksandra Mikolajka
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Gulice Y. C. Leung
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Kathrin Schwinghammer
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - David Y.-K. Chen
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Daniel N. Wilson
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| |
Collapse
|
22
|
Llano-Sotelo B, Klepacki D, Mankin AS. Selection of small peptides, inhibitors of translation. J Mol Biol 2009; 391:813-9. [PMID: 19576904 PMCID: PMC2734330 DOI: 10.1016/j.jmb.2009.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022]
Abstract
Identification of small molecular weight compounds targeting specific sites in the ribosome can accelerate development of new antibiotics and provide new tools for ribosomal research. We demonstrate here that antibiotic-size short peptides capable of inhibiting protein synthesis can be selected by using specific elements of ribosomal RNA as a target. The 'h18' pseudoknot encompassing residues 500-545 of the small ribosomal subunit RNA was used as a target in screening a heptapeptide phage-display library. Two of the selected peptides could efficiently interfere with both bacterial and eukaryotic translation. One of these inhibitory peptides exhibited a high-affinity binding to the isolated small ribosomal subunit (K(d) of 1.1 microM). Identification of inhibitory peptides that likely target a specific rRNA structure may pave new ways for validating new antibiotic sites in the ribosome. The selected peptides can be used as a tool in search of novel site-specific inhibitors of translation.
Collapse
Affiliation(s)
- Beatriz Llano-Sotelo
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Dorota Klepacki
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Alexander S. Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| |
Collapse
|