1
|
Ortigas-Vasquez A, Bowen CD, Renner DW, Baigent SJ, Zhang Y, Yao Y, Nair V, Kennedy DA, Szpara ML. High-Fidelity Long-Read Sequencing of an Avian Herpesvirus Reveals Extensive Intrapopulation Diversity in Tandem Repeat Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637388. [PMID: 39990410 PMCID: PMC11844383 DOI: 10.1101/2025.02.10.637388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Comparative genomic studies of Marek's disease virus (MDV) have suggested that attenuated and virulent strains share >98% sequence identity. However, these estimates fail to account for variation in regions of the MDV genome harboring tandem repeats. To resolve these loci and enable assessments of intrapopulation diversity, we used a PacBio Sequel II platform to sequence MDV strains CVI988/Rispens (attenuated), HPRS-B14 (virulent), Md5 (very virulent) and 675A (very virulent plus). This approach enabled us to identify patterns of variation in tandem repeat regions that are consistent with known phenotypic differences across these strains. We also found CVI988/Rispens variants showing a 4.3-kb deletion in the Unique Short (US) region, resulting in the loss of five genes. These findings support a potential link between MDV tandem repeats and phenotypic traits like virulence and attenuation, and demonstrate that DNA viruses can harbor high levels of intrapopulation diversity in tandem repeat regions.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Departments of Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christopher D. Bowen
- Departments of Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel W. Renner
- Departments of Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Susan J. Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Yaoyao Zhang
- Viral Oncogenesis Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - David A. Kennedy
- Departments of Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Sha Y, Yan W, Liu X, Chai H, Chen J, Li H, Wang M, Jiang S, Wang S, Ren Y, Li H, Liu Y, Stoeger T, Wajid A, Dodovski A, Gao C, Mingala CN, Andreychuk DB, Yin R. The first report and biological characterization of Avian Orthoavulavirus 16 in wild migratory waterfowl and domestic poultry in China reveal a potential threat to birds. Avian Pathol 2025; 54:40-49. [PMID: 38922304 DOI: 10.1080/03079457.2024.2373366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS First confirmation of AOAV-16 in domestic and wild birds in China.AOAV-16 are low virulent viruses for chickens.Co-circulation/co-infection of AOAV-16 and H9N2 subtype AIV enhanced pathogenicity.Different intergenic sequences and recombination events exist within AOAV-16.
Collapse
Affiliation(s)
- Yuxin Sha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Weiwen Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xinxin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Haoran Chai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, People's Republic of China
| | - Hongjin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Mengjun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Shanshan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Sijie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yongning Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hongli Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Yifei Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Aleksandar Dodovski
- Department for Avian Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Chao Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija, Philippines
| | - Dmitry B Andreychuk
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), Vladimir, Russia
| | - Renfu Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Teng M, Luo J, Zhang Y, Reddy VRAP, Samuel P, Yao Y, Nair V. Viral miRNA delivered by exosomes from Marek's disease virus-transformed lymphoma cell line exerts regulatory function in internalized primary chicken embryo fibroblast cells. Tumour Virus Res 2024; 18:200286. [PMID: 38914377 PMCID: PMC11260597 DOI: 10.1016/j.tvr.2024.200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
In the past decade, research has demonstrated that viral miRNAs encoded by a number of viral genomes, particularly by most of the herpesvirus including Marek's disease virus (MDV), play important regulatory roles in viral infection, replication, and regulation of tumorigenesis. As macrovesicles in cells, exosomes can deliver viral miRNAs and exert gene regulatory functions. Whether the exosomes play a role in the replication, pathogenesis/tumorigenesis of avian herpesviruses such as oncogenic Marek's disease virus (MDV) remains unclear. Herein we extracted and identified the exosomes from MDV-transformed T cell line MSB-1 and demonstrated high abundance of MDV-1 miRNA expression. Using dual luciferase-based reporter assay, we also demonstrated that the exosomes derived from MSB-1 can deliver functional miRNA successfully into primary chicken embryo fibroblasts. These findings provide new insights into the role of exosomes and the mechanisms of how virus-encoded miRNA function in MDV latency/activation switching, viral replication, pathogenesis and/or tumorigenesis.
Collapse
Affiliation(s)
- Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Vishwanatha R A P Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Priya Samuel
- Department of Biological and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Han S, Zhao S, Ren H, Jiao Q, Wu X, Hao X, Liu M, Han L, Han L. Novel lncRNA 803 related to Marek's disease inhibits apoptosis of DF-1 cells. Avian Pathol 2024; 53:229-241. [PMID: 38323582 DOI: 10.1080/03079457.2024.2316817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Marek's disease (MD) is a neoplastic disease that significantly affects the poultry industry. Long non-coding RNAs (lncRNAs) are crucial regulatory factors in various biological processes, including tumourigenesis. However, the involvement of novel lncRNAs in the course of MD virus (MDV) infection is still underexplored. Here, we present the first comprehensive characterization of differentially expressed lncRNAs in chicken spleen at different stages of MDV infection. A series of differentially expressed lncRNAs was identified at each stage of MDV infection through screening. Notably, our investigation revealed a novel lncRNA, lncRNA 803, which exhibited significant differential expression at different stages of MDV infection and was likely to be associated with the p53 pathway. Further analyses demonstrated that the overexpression of lncRNA 803 positively regulated the expression of p53 and TP53BP1 in DF-1 cells, leading to the inhibition of apoptosis. This is the first study to focus on the lncRNA expression profiles in chicken spleens during MDV pathogenesis. Our findings highlight the potential role of the p53-related novel lncRNA 803 in MD pathogenesis and provide valuable insights for decoding the molecular mechanism of MD pathogenesis involving non-coding RNA.RESEARCH HIGHLIGHTS Differentially expressed lncRNAs in spleens of chickens infected with Marek's disease virus at different stages were identified for the first time.The effects of novel lncRNA 803 on p53 pathway and apoptosis of DF-1 cells were reported for the first time.
Collapse
Affiliation(s)
- Shuo Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Haile Ren
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Qianqian Jiao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Xianjia Wu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Xinrui Hao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun, People's Republic of China
| | - Limei Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Abstract
Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek’s disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi’s Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek’s disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.
Collapse
|
7
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
8
|
Rasschaert P, Figueroa T, Dambrine G, Rasschaert D, Laurent S. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript. RNA Biol 2016; 13:1310-1322. [PMID: 27715458 DOI: 10.1080/15476286.2016.1244600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.
Collapse
Affiliation(s)
- Perrine Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Thomas Figueroa
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Ginette Dambrine
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Denis Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Sylvie Laurent
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France.,b Département de Santé Animale , INRA , Nouzilly , France
| |
Collapse
|
9
|
Strassheim S, Gennart I, Muylkens B, André M, Rasschaert D, Laurent S. Oncogenic Marek's disease herpesvirus encodes an isoform of the conserved regulatory immediate early protein ICP27 generated by alternative promoter usage. J Gen Virol 2016; 97:2399-2410. [PMID: 27411695 DOI: 10.1099/jgv.0.000547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesvirus gene expression is temporally regulated, with immediate early (IE), early (E) and late (L) genes. ICP27, which is involved in post-transcriptional regulation, is the only IE gene product conserved in all herpesviruses. We show here that the ICP27 transcript of the oncogenic Marek's disease virus shares the same polyadenylation signal as the bicistronic glycoprotein K-ICP27 transcript and is regulated by alternative promoter usage, with transcription from its own promoter (pICP27) or that of gK (pgK). The pgK can generate a spliced ICP27 transcript yielding an N-terminal-deleted ICP27 isoform (ICP27ΔN) that, like ICP27, co-localizes with the SR protein in infected cells, but with a diffuse nuclear distribution. The pICP27 includes functional responsive elements (REs) for SP1, AP1 and CREB, is essentially active during the lytic phase and leads to exclusive expression of the native form of ICP27. The alternative promoter, pgK, including active REs for GATA, P53 and CREB, preferentially generates the gK transcript during the lytic phase and the spliced ICP27 transcript (ICP27ΔN) during the latent phase. An analysis of the DNA methylation marks of each promoter showed that pgK was systematically demethylated, whereas pICP27 was methylated during latency and demethylated during the lytic stage. Thus, MDV ICP27 gene expression is dependent on alternative promoters, the usage of which is regulated by DNA methylation, which differs between viral stages.
Collapse
Affiliation(s)
- Swantje Strassheim
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Benoït Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Marjolaine André
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Denis Rasschaert
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Sylvie Laurent
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,INRA, Département de Santé Animale, Centre de Recherches de Tours, 37380 Nouzilly, France
| |
Collapse
|
10
|
Sorel O, Tuddenham L, Myster F, Palmeira L, Kerkhofs P, Pfeffer S, Vanderplasschen A, Dewals BG. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1. J Gen Virol 2016; 96:3360-3372. [PMID: 26329753 DOI: 10.1099/jgv.0.000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction.
Collapse
Affiliation(s)
- Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Lee Tuddenham
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Leonor Palmeira
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Pierre Kerkhofs
- Veterinary and Agrochemical Research Center (CODA-CERVA), Brussels, Belgium
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
11
|
Gennart I, Coupeau D, Pejaković S, Laurent S, Rasschaert D, Muylkens B. Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency. Vet J 2015; 205:339-48. [PMID: 26067852 DOI: 10.1016/j.tvjl.2015.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Gallid herpesvirus-2 (GaHV-2) is an oncogenic α-herpesvirus that causes Marek's disease (MD), a T cell lymphosarcoma (lymphoma) of domestic fowl (chickens). The GaHV-2 genome integrates by homologous recombination into the host genome and, by modulating expression of viral and cellular genes, induces transformation of latently infected cells. MD is a unique model of viral oncogenesis. Mechanisms implicated in the regulation of viral and cellular genes during GaHV-2 infection operate at transcriptional, post-transcriptional and post-translational levels, with involvement of viral and cellular transcription factors, along with epigenetic modifications, alternative splicing, microRNAs and post-translational modifications of viral proteins. Meq, the major oncogenic protein of GaHV-2, is a viral transcription factor that modulates expression of viral genes, for example by binding to the viral bidirectional promoter of the pp38-pp24/1.8 kb mRNA, and also modulates expression of cellular genes, such as Bcl-2 and matrix metalloproteinase 3. GaHV-2 expresses viral telomerase RNA subunit (vTR), which forms a complex with the cellular telomerase reverse transcriptase (TERT), thus contributing to tumorigenesis, while vTR independent of telomerase activity is implicated in metastasis. Expression of a viral interleukin 8 homologue may contribute to lymphomagenesis. Inhibition of expression of the pro-apoptotic factors JARID2 and SMAD2 by viral microRNAs may promote the survival and proliferation of GaHV-2 latently infected cells, thus enhancing tumorigenesis, while inhibition of interleukin 18 by viral microRNAs may be involved in evasion of immune surveillance. Viral envelope glycoproteins derived from glycoprotein B (gp60 and gp49), as well as glycoprotein C, may also play a role in immune evasion.
Collapse
Affiliation(s)
- Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejaković
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sylvie Laurent
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Denis Rasschaert
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Benoit Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
12
|
Zhao P, Li XJ, Teng M, Dang L, Yu ZH, Chi JQ, Su JW, Zhang GP, Luo J. In vivo expression patterns of microRNAs of Gallid herpesvirus 2 (GaHV-2) during the virus life cycle and development of Marek's disease lymphomas. Virus Genes 2015; 50:245-52. [PMID: 25666057 PMCID: PMC4381040 DOI: 10.1007/s11262-015-1167-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
In the past decade, a large number of microRNAs (miRNAs) have been identified in the viral genome of Gallid herpesvirus 2 (GaHV-2), which is historically known as Marek’s disease virus type 1. The biological role of most GaHV-2 miRNAs remains unclear. In the present study, we have performed an overall gene expression profile of GaHV-2 miRNAs during the virus life cycle at each phase of the developing disease, a highly contagious, lymphoproliferative disorder, and neoplastic immunosuppressive disease of poultry known as the Marek’s disease. According to their distinct in vivo expression patterns, the GaHV-2 miRNAs can be divided into three groups: 12 miRNAs in group I, including miR-M4-5p, displayed a typical expression pattern potentially correlated to the latent, late cytolytic, and/or the proliferative phases in the cycle of GaHV-2 pathogenesis; group II consisting of another 12 miRNAs with expression correlated to the early cytolytic and/or latent phases in GaHV-2’s life cycle; while the other two miRNAs in group III showed no identical expression features. Our findings may provide meaningful clues in the search for further potential functions of viral miRNAs in GaHV-2 biology.
Collapse
Affiliation(s)
- Pu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Department of Animal Science and Technology, He’nan Institute of Science and Technology, Xinxiang, 453003 People’s Republic of China
| | - Xiu-Jie Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Lu Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Zu-Hua Yu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Present Address: College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003 People’s Republic of China
| | - Jia-Qi Chi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Jing-Wei Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People’s Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
13
|
Chi JQ, Teng M, Yu ZH, Xu H, Su JW, Zhao P, Xing GX, Liang HD, Deng RG, Qu LH, Zhang GP, Luo J. Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway. Virology 2014; 476:72-84. [PMID: 25528440 DOI: 10.1016/j.virol.2014.11.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/10/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Marek's disease virus (MDV) is a representative alpha herpes virus able to induce rapid-onset T-cell lymphoma in its natural host and regarded as an ideal model for the study of virus-induced tumorigenesis. Recent studies have shown that the mdv1-miR-M4-5p, a viral analog of cellular miR-155, is critical for MDV׳s oncogenicity. However, the precise mechanism whereby it was involved in MD lymphomagenesis remained unknown. We have presently identified the host mRNA targets of mdv1-miR-M4-5 and identified the latent TGF-β binding protein 1 (LTBP1) as a critical target for it. We found that during MDV infection, down-regulation of LTBP1 expression by mdv1-miR-M4-5p led to a significant decrease of the secretion and activation of TGF-β1, with suppression of TGF-β signaling and a significant activation of expression of c-Myc, a well-known oncogene which is critical for virus-induced tumorigenesis. Our findings reveal a novel and important mechanism of how mdv1-miR-M4-5p potentially contributes to MDV-induced tumorigenesis.
Collapse
Affiliation(s)
- Jia-Qi Chi
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People׳s Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Zu-Hua Yu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People׳s Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People׳s Republic of China
| | - Jing-Wei Su
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Guang-Xu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Hong-De Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Rui-Guang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People׳s Republic of China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People׳s Republic of China.
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China.
| |
Collapse
|
14
|
Labaille J, Lion A, Boissel E, Trapp S, Nair V, Rasschaert D, Dambrine G. Vaccine and oncogenic strains of gallid herpesvirus 2 contain specific subtype variations in the 5' region of the latency-associated transcript that evolve in vitro and in vivo. Arch Virol 2014; 160:161-71. [PMID: 25298182 DOI: 10.1007/s00705-014-2248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/27/2014] [Indexed: 12/01/2022]
Abstract
Gallid herpesvirus 2 (GaHV-2) is the alphaherpesvirus responsible for Marek's disease (MD), a T-cell lymphoma of chickens. The virulence of the GaHV-2 field strain is steadily increasing, but MD is still controlled by the CVI988/Rispens vaccine. We tried to determine distinguishing traits of the CVI988/Rispens vaccine by focusing on the 5' end region of the latency-associated transcript (5'LAT). It includes a variable number of 60-bp tandem repeats depending on the GaHV-2 strain. By analyzing six batches of vaccine, we showed that CVI988/Rispens consisted of a population of 5'LAT molecular subtypes, all with deletions and lacking 60-bp tandem repeat motifs, with two major subtypes that probably constitute CVI988/Rispens markers. Serial passages in cell culture led to a substantial change in the frequency of CVI988/Rispens 5'LAT subtypes, with non-deleted subtypes harboring up to four 60-bp repeats emerging during the last few passages. Dynamic changes in the distribution of 5'LAT-deleted subtypes were also detected after infection of chickens. By contrast, the 5'LAT region of the oncogenic clonal RB-1B strain, which was investigated at every step from the isolation of the clonal bacmid RB-1B DNA to the isolation of the ovarian lymphoma cell line, consisted of non-deleted 5'LAT subtypes harboring at least two 60-bp repeats. Thus, vaccine and oncogenic GaHV-2 strains consist of specific populations of viral genomes that are constantly evolving in vivo and in vitro and providing potential markers for epidemiological surveys.
Collapse
Affiliation(s)
- Jennifer Labaille
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures. J Biotechnol 2014; 181:35-44. [PMID: 24746587 DOI: 10.1016/j.jbiotec.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 01/04/2023]
Abstract
The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied prior addressing functional studies.
Collapse
|
16
|
Role of virus-encoded microRNAs in Avian viral diseases. Viruses 2014; 6:1379-94. [PMID: 24662606 PMCID: PMC3970156 DOI: 10.3390/v6031379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA) pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs), avirulent Marek’s disease virus-2 (36 miRNAs), herpesvirus of turkeys (28 miRNAs), infectious laryngotracheitis virus (10 miRNAs), duck enteritis virus (33 miRNAs) and avian leukosis virus (2 miRNAs). Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR) miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.
Collapse
|
17
|
Yu ZH, Teng M, Sun AJ, Yu LL, Hu B, Qu LH, Ding K, Cheng XC, Liu JX, Cui ZZ, Zhang GP, Luo J. Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek's disease virus. Virology 2013; 448:55-64. [PMID: 24314636 DOI: 10.1016/j.virol.2013.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
The microRNA (miRNA) mdv1-miR-M4, a functional miR-155 ortholog encoded by oncogenic Marek's disease virus (MDV), has previously been suggested to be involved in MDV pathogenesis. Using the technique of bacterial artificial chromosome mutagenesis, we have presently evaluated the potential role of mdv1-miR-M4 in the oncogenesis of the very virulent (vv) MDV strain GX0101. Unexpectedly, deletions of the Meq-cluster or mdv1-miR-M4 alone from the viral genome strongly decreased rather than abolished its oncogenicity. Compared to GX0101, mortalities of mutants GXΔmiR-M4 and GXΔMeq-miRs were reduced from 100% to 18% and 4%, coupled with the gross tumor incidence reduction from 28% to 22% and 8%, respectively. Our data suggests that the mdv1-miR-M4 is possibly an important regulator in the development of Marek's disease (MD) lymphomas but is not essential for the oncogenicity of vvMDV. In addition, some of the other Meq-clustered miRNAs may also play potentially critical roles in vvMDV induction of lymphomas.
Collapse
Affiliation(s)
- Zu-Hua Yu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No.116 Huayuan Road, Zhengzhou 450002, People's Republic of China; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kofman AV, Letson C, Dupart E, Bao Y, Newcomb WW, Schiff D, Brown J, Abounader R. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Med Hypotheses 2013; 81:62-7. [PMID: 23643704 DOI: 10.1016/j.mehy.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The oncogenic microRNA OncomiR-21 overexpressed during Marek's disease lymphomagenesis is transactivated by the viral oncoprotein Meq. J Virol 2012; 87:80-93. [PMID: 23055556 DOI: 10.1128/jvi.02449-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gallid herpesvirus 2 (GaHV-2) is an oncogenic herpesvirus that causes T lymphoma in chicken. GaHV-2 encodes a basic leucine zipper (bZIP) protein of the AP-1 family, Meq. Upon formation of homo- or heterodimers with c-Jun, Meq may modulate the expression of viral and cellular genes involved in lymphomagenesis. GaHV-2 also encodes viral microRNAs (miRNAs) involved in latency and apoptosis escape. However, little is known about cellular miRNA deregulation during the development of GaHV-2-associated lymphoma. We determined the cellular miRNA expression profiles of chickens infected with a very virulent strain (RB-1B) or a vaccine strain (CVI988) or noninfected. Among the most deregulated cellular miRNAs, we focused our efforts on gga-miR-21, which is upregulated during GaHV-2 infection. We mapped the gga-miR-21 promoter to the 10th intron of the TMEM49 gene and found it to be driven by AP-1- and Ets-responsive elements. We show here that the viral oncoprotein Meq binds to this promoter, thereby transactivating gga-miR-21 expression. We confirmed that this miRNA targets chicken programmed death cell 4 (PDCD4) and promotes tumor cell growth and apoptosis escape. Finally, gga-miR-21 was overexpressed only during infection with a very virulent strain (RB-1B) and not during infection with a nononcogenic strain (CVI988), providing further evidence for its role in GaHV-2 lymphomagenesis. Our data therefore suggest an additional role for Meq in GaHV-2-mediated lymphomagenesis through the induction of miR-21 expression.
Collapse
|
20
|
Strassheim S, Stik G, Rasschaert D, Laurent S. mdv1-miR-M7-5p, located in the newly identified first intron of the latency-associated transcript of Marek’s disease virus, targets the immediate-early genes ICP4 and ICP27. J Gen Virol 2012; 93:1731-1742. [DOI: 10.1099/vir.0.043109-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Marek’s disease virus serotype 1 (MDV-1) is an oncogenic alphaherpesvirus causing fatal T-cell lymphoma in chickens. MDV latency is characterized by the production of latency-associated transcripts (LATs), a family of non-protein-coding spliced RNAs. A cluster of four microRNAs (cluster mdv1-miR-M8-M10) was identified, but not formally mapped, at the predicted LAT 5′ end. We established a LAT cDNA library from latently MDV-infected cell line MSB-1. We identified 22 highly variable LATs, which were due to the extensive alternative splicing of a total of 14 introns. RACE PCR confirmed the predicted 3′ end and allowed identification of the 5′ end, 400 nt upstream of the previously predicted LAT end. The LATs share their transcription start site with the microRNA-expressing transcript described previously, localizing the microRNAs to the first LAT intron and identifying the LATs as the primary transcripts of the microRNAs. We identified MDV immediate-early (IE) genes ICP4 and ICP27 as putative targets of mdv1-miR-M7-5p, the third microRNA of the cluster mdv1-miR-M8-M10. Endogenously expressed mdv1-miR-M7-5p in MSB-1 cells reduced luciferase activity significantly when microRNA-responsive elements from ICP4 or ICP27 were cloned in the 3′ UTR of the firefly luciferase gene. ICP27 protein levels were decreased by 70 % when the mdv1-miR-M7-5p precursor was co-expressed with an ICP27 expression plasmid. Additionally, we showed a negative correlation between the decreased expression of mdv1-miR-M7-5p and an increase in ICP27 expression during virus reactivation. Our results suggest that, by targeting two IE genes, MDV microRNAs produced from LAT transcripts may contribute to establish and/or maintain latency.
Collapse
Affiliation(s)
- S. Strassheim
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - G. Stik
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - D. Rasschaert
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - S. Laurent
- INRA, Département de Santé Animale, Centre de recherches de Tours, 37380 Nouzilly, France
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
21
|
Amor S, Strassheim S, Dambrine G, Remy S, Rasschaert D, Laurent S. ICP27 protein of Marek's disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase chTERT and viral vIL8 transcripts. J Gen Virol 2011; 92:1273-1278. [PMID: 21325479 DOI: 10.1099/vir.0.028969-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All herpesviruses have a post-transcriptional regulatory protein that prevents precursor mRNA splicing and leads to the shutting off of host protein synthesis. The ICP27 protein of herpes simplex virus 1 (HSV-1) is the prototype of these proteins. Marek's disease virus (MDV-1), an alphaherpesvirus that induces lymphoma in birds, also has an ICP27 protein that is produced in lytic MDV-1-infected cells. We characterized this protein. We demonstrated ICP27 production in latently infected MSB-1 cells, but only on MDV-1 reactivation. ICP27 was found predominantly in specific structures within the nucleus. The ICP27 of MDV-1 colocalized and interacted with SR proteins. We demonstrated inhibitory effects of MDV-1 ICP27 on the splicing of both the viral vIL8 and cellular chTERT (telomerase reverse transcriptase) genes. Thus, the ICP27 of MDV-1 plays a similar role to the ICP27 of HSV-1 and may be involved in MDV-1 replication and the development of Marek's disease.
Collapse
Affiliation(s)
- S Amor
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - S Strassheim
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - G Dambrine
- INRA, Département de Santé Animale, Centre de recherches de Tours, 37380 Nouzilly, France.,Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - S Remy
- INRA, Département de Santé Animale, Centre de recherches de Tours, 37380 Nouzilly, France
| | - D Rasschaert
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - S Laurent
- INRA, Département de Santé Animale, Centre de recherches de Tours, 37380 Nouzilly, France.,Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|