1
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
2
|
Zhao Z, Ruan S, Li Y, Qi T, Qi Y, Huang Y, Liu Z, Ruan Q, Ma Y. The Influence of Extra-Ribosomal Functions of Eukaryotic Ribosomal Proteins on Viral Infection. Biomolecules 2024; 14:1565. [PMID: 39766272 PMCID: PMC11674327 DOI: 10.3390/biom14121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The eukaryotic ribosome is a large ribonucleoprotein complex consisting of four types of ribosomal RNA (rRNA) and approximately 80 ribosomal proteins (RPs), forming the 40S and 60S subunits. In all living cells, its primary function is to produce proteins by converting messenger RNA (mRNA) into polypeptides. In addition to their canonical role in protein synthesis, RPs are crucial in controlling vital cellular processes such as cell cycle progression, cellular proliferation, differentiation, DNA damage repair, genome structure maintenance, and the cellular stress response. Viruses, as obligate intracellular parasites, depend completely on the machinery of the host cell for their replication and survival. During viral infection, RPs have been demonstrated to perform a variety of extra-ribosomal activities, which are especially important in viral disease processes. These functions cover a wide range of activities, ranging from controlling inflammatory responses and antiviral immunity to promoting viral replication and increasing viral pathogenicity. Deciphering the regulatory mechanisms used by RPs in response to viral infections has greatly expanded our understanding of their functions outside of the ribosome. Furthermore, these findings highlight the promising role of RPs as targets for the advancement of antiviral therapies and the development of novel antiviral approaches. This review comprehensively examines the many functions of RPs outside of the ribosome during viral infections and provides a foundation for future research on the host-virus interaction.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
| | - Shan Ruan
- Department of Gerontology, and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Yang Li
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Te Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China; (Z.Z.); (T.Q.); (Y.Q.); (Y.H.); (Z.L.)
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
3
|
Ng AYE, Chan SN, Pek JW. Genetic compensation between ribosomal protein paralogs mediated by a cognate circular RNA. Cell Rep 2024; 43:114228. [PMID: 38735045 DOI: 10.1016/j.celrep.2024.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Inter-regulation between related genes, such as ribosomal protein (RP) paralogs, has been observed to be important for genetic compensation and paralog-specific functions. However, how paralogs communicate to modulate their expression levels is unknown. Here, we report a circular RNA involved in the inter-regulation between RP paralogs RpL22 and RpL22-like during Drosophila spermatogenesis. Both paralogs are mutually regulated by the circular stable intronic sequence RNA (sisRNA) circRpL22(NE,3S) produced from the RpL22 locus. RpL22 represses itself and RpL22-like. Interestingly, circRpL22 binds to RpL22 to repress RpL22-like, but not RpL22, suggesting that circRpL22 modulates RpL22's function. circRpL22 is in turn controlled by RpL22-like, which regulates RpL22 binding to circRpL22 to indirectly modulate RpL22. This circRpL22-centric inter-regulatory circuit enables the loss of RpL22-like to be genetically compensated by RpL22 upregulation to ensure robust male germline development. Thus, our study identifies sisRNA as a possible mechanism of genetic crosstalk between paralogous genes.
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive Singapore 117543, Singapore
| | - Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive Singapore 117543, Singapore.
| |
Collapse
|
4
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
6
|
The Impact of Deleting Stem-Loop 1 of Epstein-Barr Virus-Encoded RNA 1 on Cell Proliferation. Viruses 2022; 14:v14112538. [PMID: 36423146 PMCID: PMC9696203 DOI: 10.3390/v14112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBERs) are two small, noncoding, structurally conserved transcripts, constitutively expressed at >106 copies per EBV-infected cell. They have been shown to drive cell growth. However, the mechanism(s) involved in EBER-induced proliferation is not clear. In this study, we investigated the molecular mechanisms and structural impact of EBER1. Sequences of EBER1 stem-loops (SL) 1, 3, and 4 were deleted, creating three mutants: ∆SL1, ∆SL3, and ∆SL4. These mutants were cloned into pHebo plasmids and expressed in Jurkat cell lines. Cells transfected with wildtype EBER1 and pHebo were used as controls. Cell proliferation was monitored by microscopy and flow cytometry. Microarray, qPCR, and Western blotting were used to investigate the cell cycle markers. We found significantly higher cell proliferation in wildtype EBER1 cells compared to pHebo, ∆SL1, and ∆SL3, but not ∆SL4 mutants. There was also significant upregulation of S-phase and G2/M phase markers in wildtype EBER1 and ∆SL4 mutant. Furthermore, CDT1, a factor for DNA replication, was upregulated in wildtype EBER1 and ∆SL4 mutant. However, in ∆SL1 mutant, CDT1 was significantly downregulated and translocated to the cytoplasm. These data indicate that the structure of EBER1 is important in cell proliferation.
Collapse
|
7
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
8
|
Sim EUH, Lee CW, Narayanan K. The roles of ribosomal proteins in nasopharyngeal cancer: culprits, sentinels or both. Biomark Res 2021; 9:51. [PMID: 34193301 PMCID: PMC8247250 DOI: 10.1186/s40364-021-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosomal protein genes encode products that are essential for cellular protein biosynthesis and are major components of ribosomes. Canonically, they are involved in the complex system of ribosome biogenesis pivotal to the catalysis of protein translation. Amid this tightly organised process, some ribosomal proteins have unique spatial and temporal physiological activity giving rise to their extra-ribosomal functions. Many of these extra-ribosomal roles pertain to cellular growth and differentiation, thus implicating the involvement of some ribosomal proteins in organogenesis. Consequently, dysregulated functions of these ribosomal proteins could be linked to oncogenesis or neoplastic transformation of human cells. Their suspected roles in carcinogenesis have been reported but not specifically explained for malignancy of the nasopharynx. This is despite the fact that literature since one and half decade ago have documented the association of ribosomal proteins to nasopharyngeal cancer. In this review, we explain the association and contribution of dysregulated expression among a subset of ribosomal proteins to nasopharyngeal oncogenesis. The relationship of these ribosomal proteins with the cancer are explained. We provide information to indicate that the dysfunctional extra-ribosomal activities of specific ribosomal proteins are tightly involved with the molecular pathogenesis of nasopharyngeal cancer albeit mechanisms yet to be precisely defined. The complete knowledge of this will impact future applications in the effective management of nasopharyngeal cancer.
Collapse
Affiliation(s)
- Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Choon-Weng Lee
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kumaran Narayanan
- School of Science, Monash University, 46150, Bandar Sunway, Selangor, Malaysia.,Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, NY, 10029, USA
| |
Collapse
|
9
|
Tonoyan L, Chevalier M, Vincent-Bugnas S, Marsault R, Doglio A. Detection of Epstein-Barr Virus in Periodontitis: A Review of Methodological Approaches. Microorganisms 2020; 9:microorganisms9010072. [PMID: 33383930 PMCID: PMC7823867 DOI: 10.3390/microorganisms9010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022] Open
Abstract
Periodontitis, an inflammatory condition that affects the structures surrounding the tooth eventually leading to tooth loss, is one of the two biggest threats to oral health. Beyond oral health, it is associated with systemic diseases and even with cancer risk. Obviously, periodontitis represents a major global health problem with significant social and economic impact. Recently, a new paradigm was proposed in the etiopathogenesis of periodontitis involving a herpesviral–bacterial combination to promote long-term chronic inflammatory disease. Periodontitis as a risk factor for other systemic diseases can also be better explained based on viral–bacterial etiology. Significant efforts have brought numerous advances in revealing the links between periodontitis and Epstein–Barr virus (EBV), a gamma herpesvirus ubiquitous in the adult human population. The strong evidence from these studies may contribute to the advancement of periodontitis research and the ultimate control of the disease. Advancing the periodontitis research will require implementing suitable methods to establish EBV involvement in periodontitis. This review evaluates and summarizes the existing methods that allow the detection and diagnosis of EBV in periodontitis (also applicable in a more general way to other EBV-related diseases), and discusses the feasibility of the application of innovative emerging technologies.
Collapse
Affiliation(s)
- Lilit Tonoyan
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Correspondence: or
| | - Marlène Chevalier
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Séverine Vincent-Bugnas
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Robert Marsault
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Alain Doglio
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06101 Nice, France
| |
Collapse
|
10
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
11
|
Das AS, Basu A, Kumar R, Borah PK, Bakshi S, Sharma M, Duary RK, Ray PS, Mukhopadhyay R. Post-transcriptional regulation of C-C motif chemokine ligand 2 expression by ribosomal protein L22 during LPS-mediated inflammation. FEBS J 2020; 287:3794-3813. [PMID: 32383535 DOI: 10.1111/febs.15362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Ravi Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Pallab Kumar Borah
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Subhojit Bakshi
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
12
|
Yin Q, Strong MJ, Zhuang Y, Flemington EK, Kaminski N, de Andrade JA, Lasky JA. Assessment of viral RNA in idiopathic pulmonary fibrosis using RNA-seq. BMC Pulm Med 2020; 20:81. [PMID: 32245461 PMCID: PMC7119082 DOI: 10.1186/s12890-020-1114-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Background Numerous publications suggest an association between herpes virus infection and idiopathic pulmonary fibrosis (IPF). These reports have employed immunohistochemistry, in situ hybridization and/or PCR, which are susceptible to specificity artifacts. Methods We investigated the possible association between IPF and viral RNA expression using next-generation sequencing, which has the potential to provide a high degree of both sensitivity and specificity. We quantified viral RNA expression for 740 viruses in 28 IPF patient lung biopsy samples and 20 controls. Key RNA-seq results were confirmed using Real-time RT-PCR for select viruses (EBV, HCV, herpesvirus saimiri and HERV-K). Results We identified sporadic low-level evidence of viral infections in our lung tissue specimens, but did not find a statistical difference for expression of any virus, including EBV, herpesvirus saimiri and HERV-K, between IPF and control lungs. Conclusions To the best of our knowledge, this is the first publication that employs RNA-seq to assess whether viral infections are linked to the pathogenesis of IPF. Our results do not address the role of viral infection in acute exacerbations of IPF, however, this analysis patently did not support an association between herpes virus detection and IPF.
Collapse
Affiliation(s)
- Qinyan Yin
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Michael J Strong
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Yan Zhuang
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University, 300 Cedar Street, Ste S441D, New Haven, CT, 06519, USA
| | - Joao A de Andrade
- Division of Allergy, Pulmonary, Critical Care Medicine, Department of Medicine, Vanderbilt University, 1161 21st Avenue South, B1317 MCN, Nashville, TN, 37232-2650, USA
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
14
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
López-Valencia D, Medina-Ortega Á, Hoyos-Samboní DF, Saavedra-Torres JS, Salguero C. Epstein-Barr virus infection as a predisposing factor for multiple sclerosis. An update from molecular biology, immunology and epidemiology. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n3.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Epstein-Barr virus is an infectious agent used to immortalize and induce polyclonal activation of B cells. It has been widely described that this virus produces changes in the cells it infects and in the immune response, and stimulates the development of autoimmune diseases.Objective: To characterize the association between Epstein-Barr virus and multiple sclerosis described in current scientific literature.Materials and methods: A 59-years range literature search was conducted in the PubMed, ScienceDirect, Redalyc and SciELO databases using the following MeSH terms: “Epstein-Barr virus, multiple sclerosis autoimmune diseases, autoimmune diseases of the nervous system”.Results: Many studies describe the association between Epstein-Barr virus and multiple sclerosis. It is believed that acute infection and viral reactivation promote the development of multiple sclerosis.Conclusions: It is necessary to conduct further research on the pathogenesis and morphophysiological and neuroimmunological changes –at the ecological, molecular, cellular, tissue, organic and systemic level– induced by the immune response and that favor the development of multiple sclerosis.
Collapse
|
16
|
Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019; 93:JVI.00238-19. [PMID: 30971472 PMCID: PMC6580952 DOI: 10.1128/jvi.00238-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Collapse
|
17
|
Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. Curr Top Microbiol Immunol 2019; 419:243-280. [PMID: 28674945 DOI: 10.1007/82_2017_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
18
|
Li S. Regulation of Ribosomal Proteins on Viral Infection. Cells 2019; 8:E508. [PMID: 31137833 PMCID: PMC6562653 DOI: 10.3390/cells8050508] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins (RPs), in conjunction with rRNA, are major components of ribosomes involved in the cellular process of protein biosynthesis, known as "translation". The viruses, as the small infectious pathogens with limited genomes, must recruit a variety of host factors to survive and propagate, including RPs. At present, more and more information is available on the functional relationship between RPs and virus infection. This review focuses on advancements in my own understanding of critical roles of RPs in the life cycle of viruses. Various RPs interact with viral mRNA and proteins to participate in viral protein biosynthesis and regulate the replication and infection of virus in host cells. Most interactions are essential for viral translation and replication, which promote viral infection and accumulation, whereas the minority represents the defense signaling of host cells by activating immune pathway against virus. RPs provide a new platform for antiviral therapy development, however, at present, antiviral therapeutics with RPs involving in virus infection as targets is limited, and exploring antiviral strategy based on RPs will be the guides for further study.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
19
|
Chudinova EM, Brodsky IB, Nadezhdina ES. On the interaction of ribosomal protein RPL22e with microtubules. Cell Biol Int 2019; 43:749-759. [PMID: 30958636 DOI: 10.1002/cbin.11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/23/2019] [Indexed: 11/10/2022]
Abstract
Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e-GFP-6His did co-sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT-associated proteins. Distinct in vitro interaction of RPL22e-GFP with MTs was also observed by TIRF microscopy. In real-time assay, RPL22e-GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random-walk along MTs with diffusion coefficient 0.03 µ2 /s. Deletion of basic areas of RPL22e did not have an impact on KD , and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT-dependent transport and could ameliorate its transport to the nucleus.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str., 6, 117198 Moscow, Russia
| | - Ilya B Brodsky
- M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| |
Collapse
|
20
|
Chavez-Calvillo G, Martin S, Hamm C, Sztuba-Solinska J. The Structure-To-Function Relationships of Gammaherpesvirus-Encoded Long Non-Coding RNAs and Their Contributions to Viral Pathogenesis. Noncoding RNA 2018; 4:ncrna4040024. [PMID: 30261651 PMCID: PMC6315926 DOI: 10.3390/ncrna4040024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
Advances in next-generation sequencing have facilitated the discovery of a multitude of long non-coding RNAs (lncRNAs) with pleiotropic functions in cellular processes, disease, and viral pathogenesis. It came as no surprise when viruses were also revealed to transcribe their own lncRNAs. Among them, gammaherpesviruses, one of the three subfamilies of the Herpesviridae, code their largest number. These structurally and functionally intricate non-coding (nc) transcripts modulate cellular and viral gene expression to maintain viral latency or prompt lytic reactivation. These lncRNAs allow for the virus to escape cytosolic surveillance, sequester, and re-localize essential cellular factors and modulate the cell cycle and proliferation. Some viral lncRNAs act as “messenger molecules”, transferring information about viral infection to neighboring cells. This broad range of lncRNA functions is achieved through lncRNA structure-mediated interactions with effector molecules of viral and host origin, including other RNAs, proteins and DNAs. In this review, we discuss examples of gammaherpesvirus-encoded lncRNAs, emphasize their unique structural attributes, and link them to viral life cycle, pathogenesis, and disease progression. We will address their potential as novel targets for drug discovery and propose future directions to explore lncRNA structure and function relationship.
Collapse
Affiliation(s)
- Gabriela Chavez-Calvillo
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Sarah Martin
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Chad Hamm
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| |
Collapse
|
21
|
Wang Y, Zirbel CL, Leontis NB, Ding B. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog 2018; 14:e1006801. [PMID: 29470541 PMCID: PMC5823408 DOI: 10.1371/journal.ppat.1006801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Neocles B. Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Biao Ding
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 2017; 17. [PMID: 28556443 DOI: 10.1002/pmic.201600383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.
Collapse
Affiliation(s)
- Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Haijian Yan
- Chun'an Country Cocoon & Silk Company, Hangzhou, P. R. China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zhirong Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Xingmeng Lu
- College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
23
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
24
|
Smethurst DGJ, Cooper KF. ER fatalities-The role of ER-mitochondrial contact sites in yeast life and death decisions. Mech Ageing Dev 2016; 161:225-233. [PMID: 27507669 DOI: 10.1016/j.mad.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Following extracellular stress signals, all eukaryotic cells choose whether to elicit a pro-survival or pro-death response. The decision over which path to take is governed by the severity and duration of the damage. In response to mild stress, pro-survival programs are initiated (unfolded protein response, autophagy, mitophagy) whereas severe or chronic stress forces the cell to abandon these adaptive programs and shift towards regulated cell death to remove irreversibly damaged cells. Both pro-survival and pro-death programs involve regulated communication between the endoplasmic reticulum (ER) and mitochondria. In yeast, recent data suggest this inter-organelle contact is facilitated by the endoplasmic reticulum mitochondria encounter structure (ERMES). These membrane contacts are not only important for the exchange of cellular signals, but also play a role in mitochondrial tethering during mitophagy, mitochondrial fission and mitochondrial inheritance. This review focuses on recent findings in yeast that shed light on how ER-mitochondrial communication mediates critical cell fate decisions.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA.
| |
Collapse
|
25
|
Consideration of Epstein-Barr Virus-Encoded Noncoding RNAs EBER1 and EBER2 as a Functional Backup of Viral Oncoprotein Latent Membrane Protein 1. mBio 2016; 7:e01926-15. [PMID: 26787829 PMCID: PMC4725009 DOI: 10.1128/mbio.01926-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0) and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1)-an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation. Our proposed model may explain the lack of effect on viral latency establishment in EBER-minus EBV infection.
Collapse
|
26
|
Abstract
EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.
Collapse
|
27
|
Ribosomal protein L4 interacts with viral protein VP3 and regulates the replication of infectious bursal disease virus. Virus Res 2015; 211:73-8. [PMID: 26415754 DOI: 10.1016/j.virusres.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022]
Abstract
VP3 protein is a structural protein which plays important roles in the virus assembly and the inhibition of antiviral innate immunity of infectious bursal disease virus (IBDV). To explore the potential roles of VP3 in the interplay of IBDV with the host cell, an immunoprecipitation (IP)-coupled mass spectra (MS) screening was performed and the host cellular ribosomal protein L4 (RPL4) was identified as a putative interacting partner of VP3 protein. The interaction of RPL4 with VP3 was further confirmed by co-immunoprecipitation (co-IP) and their colocalization in DF1 cells were observed by confocal microscopy. In addition, knockdown of RPL4 in DF1 cells resulted in reductions of the viral protein pVP2 expression and the virus titers, which reveals a significant role of RPL4 in IBDV replication. Taken together, we indicated for the first time that ribosomal protein L4 (RPL4) was an interacting partner of VP3 and involved in the modulation of IBDV replication. The present study contributes to further understanding the pathogenic mechanism of IBDV.
Collapse
|
28
|
Samra N, Atir-Lande A, Pnueli L, Arava Y. The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 2015; 16:17. [PMID: 26404137 PMCID: PMC4582935 DOI: 10.1186/s12867-015-0045-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/17/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND mRNA binding proteins (RBPs) constitute 10-15% of the eukaryotic proteome and play important part in post-transcriptional regulation of gene expression. Due to the instability of RNA and the transient nature its interaction with RBPs, identification of novel RBPs is a significant challenge. Recently, a novel methodology for RBP purification and identification (termed RaPID) was presented, which allows high affinity purification of RBPs while associated with mRNA in vivo. RESULTS We performed a RaPID screen for proteins that interact with PMP1 mRNA in order to identify novel mRNA binding proteins. PMP1 mRNA was tagged in its 3' UTR with multiple MS2 loops and co-expressed with MS2-binding protein fused to streptavidin binding protein (SBP). RNA-protein complexes were cross-linked in vivo and isolated through streptavidin beads. The eluted proteins were subjected to mass spectroscopy analysis. The screen identified many proteins, about half of them were previously shown to bind RNA. We focused on eEF3 (YEF3), an essential translation elongation factor that interacts with ribosomes. Purification of TAP-tagged Yef3 with its associated RNAs confirmed that the native PMP1 transcript is associated with it. Intriguingly, high association with Yef3-TAP was observed when purification was performed in the presence of EDTA, and with PMP1 that contains stop codons immediately downstream to the initiation codon. Furthermore, high association was observed with a transcript containing only the 3' UTR of PMP1. Complementary, RaPID isolation of MS2-tagged 3' UTRs with their associated proteins revealed that Yef3 can efficiently interact with these regions. CONCLUSIONS This study identifies many novel proteins that interact with PMP1 mRNA. Importantly, the elongation factor Yef3 was found to interact with mRNA in non-coding regions and in a translation independent manner. These results suggest an additional, non-elongation function for this factor.
Collapse
Affiliation(s)
- Nitzan Samra
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Avigail Atir-Lande
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Lilach Pnueli
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Yoav Arava
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
29
|
Iwakiri D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res 2015; 212:30-8. [PMID: 26292159 DOI: 10.1016/j.virusres.2015.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Epstein-Barr Virus (EBV) is known as an oncogenic herpesvirus implicated in the pathogenesis of various malignancies. It has been reported that EBV non-coding RNAs (ncRNAs) including EBV-encoded small RNAs (EBERs) and EBV-miRNAs contribute to viral pathogenesis. EBERs that are expressed abundantly in latently EBV-infected cells have been reported to play significant roles in tumorigenesis by EBV. Furthermore, it was demonstrated that the modulation of host innate immune signals by EBERs contributes to EBV-mediated pathogenesis including oncogenesis. Recently it was demonstrated that EBERs are secreted via exosomes by EBV-infected cells. It was also demonstrated that exosomes contain a number of EBV-encoded miRNAs. Various mRNAs have been identified as targets for regulation by EBV-miRNAs in host cells, therefore, EBERs and EBV-miRNAs might function through the transfer of exosomes.
Collapse
Affiliation(s)
- Dai Iwakiri
- Institute for Genetic Medicine, Hokkaido University, N15 W7 Kita-Ku, Sapporo 060-0815, Japan.
| |
Collapse
|
30
|
Pimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLoS One 2015; 10:e0124638. [PMID: 26121143 PMCID: PMC4487896 DOI: 10.1371/journal.pone.0124638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/17/2015] [Indexed: 01/06/2023] Open
Abstract
In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~106 copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt’s lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~106 copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the maintenance of latency, through higher levels of zeb1.
Collapse
MESH Headings
- Cell Line, Tumor
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Gene Expression Profiling
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, B-Cell/virology
- Oncogenes
- Proteomics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency/genetics
Collapse
Affiliation(s)
- Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (GP); (JAS)
| | - Victor Fok
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Haslip
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Nagy
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Seyedtaghi Takyar
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (GP); (JAS)
| |
Collapse
|
31
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
32
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Tavanez JP, Quina AS, Cunha C. Virus and noncoding RNAs: stars in the host–virus interaction game. Future Virol 2014. [DOI: 10.2217/fvl.14.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT: In the past few years, noncoding RNAs (ncRNAs) have emerged as key modulators of the transcriptional and post-transcriptional control of a variety of cellular processes such as development, signaling, homeostasis and oncogenesis. Like their host cells, many viruses produce ncRNAs. During viral infection, and in order to establish persistent life-long infection of the host, viruses express both protein-coding and noncoding genes, modulating the cellular environment to favor infection. Given their limited genomic capacity, viruses evolved or acquired ncRNAs only if advantageous, either by enhancing the viral life cycle or assisting the virus in immune evasion of the host's response to infection. With variable length, structure, number, abundance and protein-binding partners, viral ncRNAs show specificity and diversity with respect to time of expression during the different stages of the virus life cycle and viral infection. Here, we review our current knowledge on the RNA-based mechanisms that regulate host–virus interaction focusing on viral ncRNAs and cellular ncRNAs modulated by viruses upon infection.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Quina
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Centro de Estudos do Ambiente e do Mar, Aveiro, Portugal
| | - Celso Cunha
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis. Cancers (Basel) 2014; 6:1615-30. [PMID: 25101570 PMCID: PMC4190559 DOI: 10.3390/cancers6031615] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-mediated pathogenesis. Previous studies have demonstrated that EBERs are responsible for malignant phenotypes in lymphoid cells, and can induce several cytokines that can promote the growth of various EBV-infected cancer cells. EBERs were also found to bind retinoic acid-inducible gene I (RIG-I) and thus activate its downstream signaling. Furthermore, EBERs induce interleukin-10, an autocrine growth factor for Burkitt’s lymphoma cells, by activating RIG-I/interferon regulatory factor 3 pathway, suggesting that EBER-mediated innate immune signaling modulation contributes to EBV-mediated oncogenesis. Recently, EBV-infected cells were reported to secret EBERs, which were then recognized by toll-like receptor 3 (TLR3), leading to the induction of type I interferon and inflammatory cytokines, and subsequent immune activation. Furthermore, EBER1 was detected in the sera of patients with active EBV-infectious diseases, suggesting that EBER1-meidated TLR3 signaling activation could account for the pathogenesis of active EBV-infectious diseases.
Collapse
|
35
|
Yang M, Sun H, He J, Wang H, Yu X, Ma L, Zhu C. Interaction of ribosomal protein L22 with casein kinase 2α: a novel mechanism for understanding the biology of non-small cell lung cancer. Oncol Rep 2014; 32:139-44. [PMID: 24840952 DOI: 10.3892/or.2014.3187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/15/2014] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of ribosomal proteins (RPs) may play an important role in molecular tumorigenesis, such as lung cancer, acting in extraribosomal functions. Many protein-protein interaction studies and genetic screens have confirmed the extraribosomal capacity of RPs. As reported, ribosomal protein L22 (RPL22) dysfunction could increase cancer risk. In the present study, we examined RPL22-protein complexes in lung cancer cells. Tandem affinity purification (TAP) was used to screen the RPL22-protein complexes, and GST pull-down experiments and confocal microscopy were used to assess the protein-protein interaction. The experiment of kinase assay was used to study the function of the RPL22-protein complexes. The results showed that several differentially expressed proteins were isolated and identified by LC-MS/MS, which revealed that one of the protein complexes included casein kinase 2α (CK2α). RPL22 and CK2α interact in vitro. RPL22 also inhibited CK2α substrate phosphorylation in vitro. This is the first report of the RPL22-CK2α relationship in lung cancer. Dysregulated CK2 may impact cell proliferation and apoptosis, key features of cancer cell biology. Our results indicate that RPL22 may be a candidate anticancer agent due to its CK2α-binding and -inhibitory functions in human lung cancer.
Collapse
Affiliation(s)
- Mingxia Yang
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haibo Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ji He
- State Key Laboratory of Monitoring and Detection for Medical Vectors, Xiamen Entry-Exit Inspection and Quarantine Bureau, Xiamen, Fujian 361012, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaowei Yu
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
36
|
The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 2014; 19:486-94. [PMID: 23628989 DOI: 10.1038/mp.2013.45] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/08/2013] [Accepted: 03/18/2013] [Indexed: 02/08/2023]
Abstract
Schizophrenia (SZ) is a complex disease characterized by impaired neuronal functioning. Although defective alternative splicing has been linked to SZ, the molecular mechanisms responsible are unknown. Additionally, there is limited understanding of the early transcriptomic responses to neuronal activation. Here, we profile these transcriptomic responses and show that long non-coding RNAs (lncRNAs) are dynamically regulated by neuronal activation, including acute downregulation of the lncRNA Gomafu, previously implicated in brain and retinal development. Moreover, we demonstrate that Gomafu binds directly to the splicing factors QKI and SRSF1 (serine/arginine-rich splicing factor 1) and dysregulation of Gomafu leads to alternative splicing patterns that resemble those observed in SZ for the archetypal SZ-associated genes DISC1 and ERBB4. Finally, we show that Gomafu is downregulated in post-mortem cortical gray matter from the superior temporal gyrus in SZ. These results functionally link activity-regulated lncRNAs and alternative splicing in neuronal function and suggest that their dysregulation may contribute to neurological disorders.
Collapse
|
37
|
Yuan J, Muljo SA. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253:290-303. [PMID: 23550653 DOI: 10.1111/imr.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of microRNAs has renewed interest in posttranscriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map posttranscriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel posttranscriptional networks. Here, we review RBP-mediated posttranscriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis.
Collapse
Affiliation(s)
- Joan Yuan
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
38
|
Ahmed W, Khan G. The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 2013; 24:3-14. [PMID: 24105992 DOI: 10.1002/rmv.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Epstein-Barr Virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of a number of human malignancies. However, the mechanism by which EBV leads to malignant transformation is not clear. A number of viral latent gene products, including non-protein coding small RNAs, are believed to be involved. Epstein-Barr virus-encoded RNA 1 (EBER1) and EBER2 are two such RNA molecules that are abundantly expressed (up to 10(7) copies) in all EBV-infected cells, but their function remains poorly understood. These polymerase III transcripts have extensive secondary structure and exist as ribonucleoproteins. An accumulating body of evidence suggests that EBERs play an important role, directly or indirectly, in EBV-induced oncogenesis. Here, we summarize the current understanding of the complex interactions of EBERs with various cellular factors and the potential pathways by which these small RNAs are able to influence EBV-infected cells to proliferate and to induce tumorigenesis. The exosome pathway is probably involved in the cellular excretion of EBERs and facilitating some of their biological effects.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
39
|
Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013; 14:17378-409. [PMID: 23979421 PMCID: PMC3794732 DOI: 10.3390/ijms140917378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is an etiological factor in the progression of several human epithelial malignancies such as nasopharyngeal carcinoma (NPC) and a subset of gastric carcinoma. Reports have shown that EBV produces several viral oncoproteins, yet their pathological roles in carcinogenesis are not fully elucidated. Studies on the recently discovered of EBV-encoded microRNAs (ebv-miRNAs) showed that these small molecules function as post-transcriptional gene regulators and may play a role in the carcinogenesis process. In NPC and EBV positive gastric carcinoma (EBVaGC), 22 viral miRNAs which are located in the long alternative splicing EBV transcripts, named BamH1 A rightward transcripts (BARTs), are abundantly expressed. The importance of several miR-BARTs in carcinogenesis has recently been demonstrated. These novel findings enhance our understanding of the oncogenic properties of EBV and may lead to a more effective design of therapeutic regimens to combat EBV-associated malignancies. This article will review the pathological roles of miR-BARTs in modulating the expression of cancer-related genes in both host and viral genomes. The expression of other small non-coding RNAs in NPC and the expression pattern of miR-BARTs in rare EBV-associated epithelial cancers will also be discussed.
Collapse
|
40
|
O'Leary MN, Schreiber KH, Zhang Y, Duc ACE, Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, Martin DB, Kaeberlein M, Ladiges WC, Fink PJ, MacKay VL, Wiest DL, Kennedy BK. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet 2013; 9:e1003708. [PMID: 23990801 PMCID: PMC3750023 DOI: 10.1371/journal.pgen.1003708] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022] Open
Abstract
Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22−/− mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22−/− mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog. Translation is the process by which proteins are made within a cell. Ribosomes are the main macromolecular complexes involved in this process. Ribosomes are composed of ribosomal RNA and ribosomal proteins. Ribosomal proteins are generally thought to be structural components of the ribosome but recent findings have suggested that they might have a regulatory function as well. A growing number of human diseases have been linked to mutations in genes encoding factors involved in ribosome biogenesis and translation. These include developmental malformations, inherited bone marrow failure syndromes and cancer in a variety of organisms. Here, we describe the role of one ribosomal protein regulating another. We provide evidence that ribosomal proteins can influence the composition of the ribosome, which we hypothesize, may impact the function of the ribosome.
Collapse
Affiliation(s)
- Monique N. O'Leary
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Katherine H. Schreiber
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Anne-Cécile E. Duc
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shuyun Rao
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - J. Scott Hale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Emmeline C. Academia
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Shreya R. Shah
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John F. Morton
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Carly A. Holstein
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Dan B. Martin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David L. Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
42
|
Yang M, Sun H, Wang H, Zhang S, Yu X, Zhang L. Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol 2013; 30:646. [DOI: 10.1007/s12032-013-0646-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
43
|
Banerjee AS, Pal AD, Banerjee S. Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration. Virology 2013; 443:294-305. [PMID: 23791019 DOI: 10.1016/j.virol.2013.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/01/2013] [Accepted: 05/12/2013] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) encoded small, non-coding, non-polyadenylated RNAs, known as EBERs are the most abundantly expressed viral transcripts in latently EBV infected cells. We found the specific role of EBERs in cell cycle progression, resistance against chemotherapeutic drug and cellular invasion in gastric cancer cells in vitro. Ectopic expression of EBERs upregulates the expression of IL-6 and activate its downstream STAT3, which is significantly involved in downregulating the expression of cell cycle inhibitor genes p21 and p27. Stable expression of EBERs regulates the activation of pFAK and pPAK1 and the expression of anti-metastatic genes RhoGDI and KAI-1 in gastric cancer cells. In addition, administration of neu-IL-6 antibody and dominant negative STAT3β reduces chemoresistance and inhibits invasion of EBERs-expressing gastric cancer cells. Our results thus revealed a novel role of EBERs in the coordination of IL-6-STAT3 signaling pathway to chemoresistance and cellular migration.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/virology
- Cell Line, Tumor
- Cell Movement/drug effects
- Drug Resistance/drug effects
- Epithelial Cells/virology
- Female
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/pathogenicity
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Small Untranslated/pharmacology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Aditi Sengupta Banerjee
- Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | | | | |
Collapse
|
44
|
Nucleolar trafficking of the mouse mammary tumor virus gag protein induced by interaction with ribosomal protein L9. J Virol 2012; 87:1069-82. [PMID: 23135726 DOI: 10.1128/jvi.02463-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Gag protein directs the assembly in the cytoplasm of immature viral capsids, which subsequently bud from the plasma membranes of infected cells. MMTV Gag localizes to discrete cytoplasmic foci in mouse mammary epithelial cells, consistent with the formation of cytosolic capsids. Unexpectedly, we also observed an accumulation of Gag in the nucleoli of infected cells derived from mammary gland tumors. To detect Gag-interacting proteins that might influence its subcellular localization, a yeast two-hybrid screen was performed. Ribosomal protein L9 (RPL9 or L9), an essential component of the large ribosomal subunit and a putative tumor suppressor, was identified as a Gag binding partner. Overexpression of L9 in cells expressing the MMTV(C3H) provirus resulted in specific, robust accumulation of Gag in nucleoli. Förster resonance energy transfer (FRET) and coimmunoprecipitation analyses demonstrated that Gag and L9 interact within the nucleolus, and the CA domain was the major site of interaction. In addition, the isolated NC domain of Gag localized to the nucleolus, suggesting that it contains a nucleolar localization signal (NoLS). To determine whether L9 plays a role in virus assembly, small interfering RNA (siRNA)-mediated knockdown was performed. Although Gag expression was not reduced with L9 knockdown, virus production was significantly impaired. Thus, our data support the hypothesis that efficient MMTV particle assembly is dependent upon the interaction of Gag and L9 in the nucleoli of infected cells.
Collapse
|
45
|
Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA (NEW YORK, N.Y.) 2012; 18:2073-82. [PMID: 23012480 PMCID: PMC3479396 DOI: 10.1261/rna.034900.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epstein-Barr virus (EBV)-infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 10(6) copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3' untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Corresponding authorE-mail
| |
Collapse
|
46
|
Colpitts TM, Cox J, Nguyen A, Feitosa F, Krishnan MN, Fikrig E. Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virology 2011; 417:179-87. [PMID: 21700306 PMCID: PMC3166580 DOI: 10.1016/j.virol.2011.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 12/23/2022]
Abstract
West Nile and dengue viruses are (re)emerging mosquito-borne flaviviruses that cause significant morbidity and mortality in man. The identification of mosquito proteins that associate with flaviviruses may provide novel targets to inhibit infection of the vector or block transmission to humans. Here, a tandem affinity purification (TAP) assay was used to identify 18 mosquito proteins that interact with dengue and West Nile capsid, envelope, NS2A or NS2B proteins. We further analyzed the interaction of mosquito cadherin with dengue and West Nile virus envelope protein using co-immunoprecipitation and immunofluorescence. Blocking the function of select mosquito factors, including actin, myosin, PI3-kinase and myosin light chain kinase, reduced both dengue and West Nile virus infection in mosquito cells. We show that the TAP method may be used in insect cells to accurately identify flaviviral-host protein interactions. Our data also provides several targets for interrupting flavivirus infection in mosquito vectors.
Collapse
Affiliation(s)
- Tonya M. Colpitts
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jonathan Cox
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Annie Nguyen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Fabiana Feitosa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Manoj N. Krishnan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
47
|
Yang EJ, Seo JW, Choi IH. Ribosomal Protein L19 and L22 Modulate TLR3 Signaling. Immune Netw 2011; 11:155-62. [PMID: 21860608 PMCID: PMC3153667 DOI: 10.4110/in.2011.11.3.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/30/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023] Open
Abstract
Background Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-kB, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Microbiology, Instititute for Immunology and Immunological Diseases, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
48
|
Steitz J, Borah S, Cazalla D, Fok V, Lytle R, Mitton-Fry R, Riley K, Samji T. Noncoding RNPs of viral origin. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005165. [PMID: 20719877 DOI: 10.1101/cshperspect.a005165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs.
Collapse
Affiliation(s)
- Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Owen TJ, O'Neil JD, Dawson CW, Hu C, Chen X, Yao Y, Wood VHJ, Mitchell LE, White RJ, Young LS, Arrand JR. Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors. Mol Cancer 2010; 9:241. [PMID: 20843307 PMCID: PMC2945964 DOI: 10.1186/1476-4598-9-241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/15/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epstein-Barr Virus (EBV)-encoded RNAs (EBERs) are non-polyadenylated RNA molecules transcribed from the EBV genome by RNA polymerase III (pol III). EBERs are the most abundant viral latent gene products, although the precise mechanisms by which EBV is able to achieve such high levels of EBER expression are not fully understood. Previously EBV has been demonstrated to induce transcription factors associated with EBER expression, including pol III transcription factors and ATF-2. We have recently demonstrated that EBV-encoded nuclear antigen-1 (EBNA1) induces cellular transcription factors, and given these findings, we investigated the role of EBNA1 in induction of EBER-associated transcription factors. RESULTS Our data confirm that in epithelial cells EBNA1 can enhance cellular pol III transcription. Transient expression of EBNA1 in Ad/AH cells stably expressing the EBERs led to induction of both EBER1 and EBER2 and conversely, expression of a dominant negative EBNA1 led to reduced EBER expression in EBV-infected Ad/AH cells. EBNA1 can induce transcription factors used by EBER genes, including TFIIIC, ATF-2 and c-Myc. A variant chromatin precipitation procedure showed that EBNA1 is associated with the promoters of these genes but not with the promoters of pol III-transcribed genes, including the EBERs themselves. Using shRNA knock-down, we confirm the significance of both ATF-2 and c-Myc in EBER expression. Further, functional induction of a c-Myc fusion protein led to increased EBER expression, providing c-Myc binding sites upstream of EBER1 were intact. In vivo studies confirm elevated levels of the 102 kD subunit of TFIIIC in the tumour cells of EBV-positive nasopharyngeal carcinoma biopsies. CONCLUSIONS Our findings reveal that EBNA1 is able to enhance EBER expression through induction of cellular transcription factors and add to the repertoire of EBNA1's transcription-regulatory properties.
Collapse
Affiliation(s)
- Thomas J Owen
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John D O'Neil
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Chunfang Hu
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoyi Chen
- Dept. of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yunhong Yao
- Dept. of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Victoria HJ Wood
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | - Robert J White
- Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | - Lawrence S Young
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John R Arrand
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
50
|
Herpesvirus telomerase RNA(vTR)-dependent lymphoma formation does not require interaction of vTR with telomerase reverse transcriptase (TERT). PLoS Pathog 2010; 6:e1001073. [PMID: 20865127 PMCID: PMC2929889 DOI: 10.1371/journal.ppat.1001073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/27/2010] [Indexed: 12/31/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG)(n). Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity.
Collapse
|