1
|
Song W, Podicheti R, Rusch DB, Tracey WD. Transcriptome-wide analysis of pseudouridylation in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkac333. [PMID: 36534986 PMCID: PMC9997552 DOI: 10.1093/g3journal/jkac333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Pseudouridine (Psi) is one of the most frequent post-transcriptional modification of RNA. Enzymatic Psi modification occurs on rRNA, snRNA, snoRNA, tRNA, and non-coding RNA and has recently been discovered on mRNA. Transcriptome-wide detection of Psi (Psi-seq) has yet to be performed for the widely studied model organism Drosophila melanogaster. Here, we optimized Psi-seq analysis for this species and have identified thousands of Psi modifications throughout the female fly head transcriptome. We find that Psi is widespread on both cellular and mitochondrial rRNAs. In addition, more than a thousand Psi sites were found on mRNAs. When pseudouridylated, mRNAs frequently had many Psi sites. Many mRNA Psi sites are present in genes encoding for ribosomal proteins, and many are found in mitochondrial encoded RNAs, further implicating the importance of pseudouridylation for ribosome and mitochondrial function. The 7SLRNA of the signal recognition particle is the non-coding RNA most enriched for Psi. The 3 mRNAs most enriched for Psi encode highly expressed yolk proteins (Yp1, Yp2, and Yp3). By comparing the pseudouridine profiles in the RluA-2 mutant and the w1118 control genotype, we identified Psi sites that were missing in the mutant RNA as potential RluA-2 targets. Finally, differential gene expression analysis of the mutant transcriptome indicates a major impact of loss of RluA-2 on the ribosome and translational machinery.
Collapse
Affiliation(s)
- Wan Song
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - William Daniel Tracey
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Bortolin-Cavaillé ML, Quillien A, Thalalla Gamage S, Thomas J, Sas-Chen A, Sharma S, Plisson-Chastang C, Vandel L, Blader P, Lafontaine DLJ, Schwartz S, Meier J, Cavaillé J. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res 2022; 50:6284-6299. [PMID: 35648437 PMCID: PMC9226516 DOI: 10.1093/nar/gkac404] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 01/06/2023] Open
Abstract
NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | | | | | - Justin M Thomas
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Laurence Vandel
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jérôme Cavaillé
- To whom correspondence should be addressed. Tel: +33 561335927; Fax: +33 561335886;
| |
Collapse
|
3
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Molla-Herman A, Angelova MT, Ginestet M, Carré C, Antoniewski C, Huynh JR. tRNA Fragments Populations Analysis in Mutants Affecting tRNAs Processing and tRNA Methylation. Front Genet 2020; 11:518949. [PMID: 33193603 PMCID: PMC7586317 DOI: 10.3389/fgene.2020.518949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
tRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer cells, and are found in all domains of life. Beyond translation control, tRFs have several functions ranging from transposon silencing to cell proliferation control. However, the analysis of tRFs presents specific challenges and their biogenesis is not well understood. They are very heterogeneous and highly modified by numerous post-transcriptional modifications. Here we describe a bioinformatic pipeline (tRFs-Galaxy) to study tRFs populations and shed light onto tRNA fragments biogenesis in Drosophila melanogaster. Indeed, we used small RNAs Illumina sequencing datasets extracted from wild type and mutant ovaries affecting two different highly conserved steps of tRNA biogenesis: 5'pre-tRNA processing (RNase-P subunit Rpp30) and tRNA 2'-O-methylation (dTrm7_34 and dTrm7_32). Using our pipeline, we show how defects in tRNA biogenesis affect nuclear and mitochondrial tRFs populations and other small non-coding RNAs biogenesis, such as small nucleolar RNAs (snoRNAs). This tRF analysis workflow will advance the current understanding of tRFs biogenesis, which is crucial to better comprehend tRFs roles and their implication in human pathology.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Margarita T. Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Maud Ginestet
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Jean-René Huynh
- Collège de France, CIRB, CNRS Inserm UMR 7241, PSL Research University, Paris, France
| |
Collapse
|
5
|
Jouvence a small nucleolar RNA required in the gut extends lifespan in Drosophila. Nat Commun 2020; 11:987. [PMID: 32080190 PMCID: PMC7033134 DOI: 10.1038/s41467-020-14784-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Longevity is influenced by genetic and environmental factors, but the underlying mechanisms remain elusive. Here, we functionally characterise a Drosophila small nucleolar RNA (snoRNA), named jouvence whose loss of function reduces lifespan. The genomic region of jouvence rescues the longevity in mutant, while its overexpression in wild-type increases lifespan. Jouvence is required in enterocytes. In mutant, the epithelium of the gut presents more hyperplasia, while the overexpression of jouvence prevents it. Molecularly, the mutant lack pseudouridylation on 18S and 28S-rRNA, a function rescued by targeted expression of jouvence in the gut. A transcriptomic analysis performed from the gut reveals that several genes are either up- or down-regulated, while restoring the mRNA level of two genes (ninaD or CG6296) rescue the longevity. Since snoRNAs are structurally and functionally well conserved throughout evolution, we identified putative jouvence orthologue in mammals including humans, suggesting that its function in longevity could be conserved. Small non-coding RNAs contribute to the regulation of aging. Here the authors identify a small nucleolar RNA, the snoRNA jouvence, which extends the lifespan of fruit flies through its function in the gut, and is conserved in humans.
Collapse
|
6
|
Bell JC, Jukam D, Teran NA, Risca VI, Smith OK, Johnson WL, Skotheim JM, Greenleaf WJ, Straight AF. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. eLife 2018; 7:27024. [PMID: 29648534 PMCID: PMC5962340 DOI: 10.7554/elife.27024] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
RNA is a critical component of chromatin in eukaryotes, both as a product of transcription, and as an essential constituent of ribonucleoprotein complexes that regulate both local and global chromatin states. Here, we present a proximity ligation and sequencing method called Chromatin-Associated RNA sequencing (ChAR-seq) that maps all RNA-to-DNA contacts across the genome. Using Drosophila cells, we show that ChAR-seq provides unbiased, de novo identification of targets of chromatin-bound RNAs including nascent transcripts, chromosome-specific dosage compensation ncRNAs, and genome-wide trans-associated RNAs involved in co-transcriptional RNA processing.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Biochemistry, Stanford University, Stanford, United States
| | - David Jukam
- Department of Biology, Stanford University, Stanford, United States
| | - Nicole A Teran
- Department of Biochemistry, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Viviana I Risca
- Department of Genetics, Stanford University, Stanford, United States
| | - Owen K Smith
- Department of Biochemistry, Stanford University, Stanford, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Whitney L Johnson
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford, United States.,Department of Applied Physics, Stanford University, Stanford, United States
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| |
Collapse
|
7
|
Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Mat Isa MN, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Muhammad Noor Y, Law DSN, Abdul Rahman SH, Md-Illias R, Abu Bakar FD, Najimudin N, Abdul Murad AM, Mahadi NM. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One 2018; 13:e0189947. [PMID: 29385175 PMCID: PMC5791967 DOI: 10.1371/journal.pone.0189947] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail:
| | - Noor Haza Fazlin Hashim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Izwan Bharudin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faizal Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Kie Kyon Huang
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Bernard K. B. Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Shuhaila Mat-Sharani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Suhaila Sulaiman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Lih Jinq Tay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Radziah Zolkefli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Douglas Sie Nguong Law
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Siti Hamidah Abdul Rahman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli Md-Illias
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
8
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
9
|
de Araujo Oliveira JV, Costa F, Backofen R, Stadler PF, Machado Telles Walter ME, Hertel J. SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification. BMC Bioinformatics 2016; 17:464. [PMID: 28105919 PMCID: PMC5249026 DOI: 10.1186/s12859-016-1345-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background
snoReport uses RNA secondary structure prediction combined with machine learning as the basis to identify the two main classes of small nucleolar RNAs, the box H/ACA snoRNAs and the box C/D snoRNAs. Here, we present snoReport 2.0, which substantially improves and extends in the original method by: extracting new features for both box C/D and H/ACA box snoRNAs; developing a more sophisticated technique in the SVM training phase with recent data from vertebrate organisms and a careful choice of the SVM parameters C and γ; and using updated versions of tools and databases used for the construction of the original version of snoReport. To validate the new version and to demonstrate its improved performance, we tested snoReport 2.0 in different organisms. Results Results of the training and test phases of boxes H/ACA and C/D snoRNAs, in both versions of snoReport, are discussed. Validation on real data was performed to evaluate the predictions of snoReport 2.0. Our program was applied to a set of previously annotated sequences, some of them experimentally confirmed, of humans, nematodes, drosophilids, platypus, chickens and leishmania. We significantly improved the predictions for vertebrates, since the training phase used information of these organisms, but H/ACA box snoRNAs identification was improved for the other ones. Conclusion We presented snoReport 2.0, to predict H/ACA box and C/D box snoRNAs, an efficient method to find true positives and avoid false positives in vertebrate organisms. H/ACA box snoRNA classifier showed an F-score of 93 % (an improvement of 10 % regarding the previous version), while C/D box snoRNA classifier, an F-Score of 94 % (improvement of 14 %). Besides, both classifiers exhibited performance measures above 90 %. These results show that snoReport 2.0 avoid false positives and false negatives, allowing to predict snoRNAs with high quality. In the validation phase, snoReport 2.0 predicted 67.43 % of vertebrate organisms for both classes. For Nematodes and Drosophilids, 69 % and 76.67 %, for H/ACA box snoRNAs were predicted, respectively, showing that snoReport 2.0 is good to identify snoRNAs in vertebrates and also H/ACA box snoRNAs in invertebrates organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1345-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Fabrizio Costa
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Peter Florian Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstraße 16-18, Leipzig, D-04107, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria.,Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg, DK-1870, Denmark.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103, Germany.,RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, D-04103, Germany.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501, USA.,Young Investigators Group Bioinformatics & Transcriptomics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | | | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstraße 16-18, Leipzig, D-04107, Germany
| |
Collapse
|
10
|
Etournay R, Merkel M, Popović M, Brandl H, Dye NA, Aigouy B, Salbreux G, Eaton S, Jülicher F. TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 2016; 5. [PMID: 27228153 PMCID: PMC4946903 DOI: 10.7554/elife.14334] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. DOI:http://dx.doi.org/10.7554/eLife.14334.001 Cells interact, divide, rearrange and change shape to build an organ during development. Modern microscopy and computer technology can follow each individual cell of an entire organ in a living organism. However, to understand how the complex choreography of cells leads to well-shaped organs, researchers need tools to help the store and analyze the large amounts of data generated. Tools are also needed to visualize and quantify the complex cell behaviors in an easy and flexible manner. During its development, a fruit fly’s wings become divided into distinct regions separated by tubular supports called veins. Early on in development, the vein cells are indistinguishable from their neighbors, but at late stages, vein cells become a different shape. Veins also become narrower, which is assumed to be due to the number of vein cells falling. However, the way in which cells behave to bring about these changes has not been studied in detail. Etournay, Merkel, Popović, Brandl et al. have now developed a toolkit called TissueMiner that enables users to store large amounts of data about cells and analyze how cells collectively shape an organ. TissueMiner was then used to identify vein cells at late stages of wing development and follow them backward in time to reveal their position at early stages. This showed that veins become narrower and more elongated because the cells that make up the veins shrink more than cells in other regions. TissueMiner was then used to show that vein cells specifically rearrange and elongate to produce thinner regions, while the number of cells increases slightly because the cells divide. These results suggest that the cell behaviors responsible for making veins elongate and narrow are likely to be different from what had previously been assumed. TissueMiner can be used in future studies to help understand the molecule signals that influence how cells behave in veins during wing development. The toolkit could also now be used to explore the changes involved in the development of other organs in other organisms. DOI:http://dx.doi.org/10.7554/eLife.14334.002
Collapse
Affiliation(s)
- Raphaël Etournay
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institut Pasteur, Paris, France
| | - Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Department of Physics, Syracuse University, Syracuse, United States
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Holger Brandl
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Natalie A Dye
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoît Aigouy
- Institut de Biologie du Développement de Marseille, Marseille, France
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Suzanne Eaton
- Division of Cell Polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
11
|
Agrisani A, Tafer H, Stadler PF, Furia M. Unusual Novel SnoRNA-Like RNAs in Drosophila melanogaster. Noncoding RNA 2015; 1:139-150. [PMID: 29861420 PMCID: PMC5932544 DOI: 10.3390/ncrna1020139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
A computational screen for novel small nucleolar RNAs in Drosophila melanogaster uncovered 15 novel snoRNAs and snoRNA-like long non-coding RNAs. In contrast to earlier surverys, the novel sequences are mostly poorly conserved and originate from unusual genomic locations. The majority derive from precurors antisense to well-known protein-coding genes, and four of the candidates are produced from exon-coding regions. Only a minority of the new sequences appears to have canonical target sites in ribosomal or small nuclear RNAs. Taken together, these evolutionary young, poorly conserved, and genomically atypical sequences point at a class of snoRNA-like transcripts with predominantly regulatory functions in the fruit fly genome.
Collapse
Affiliation(s)
- Alberto Agrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, I-80126 Napoli, Italy.
| | - Hakim Tafer
- Institut für Biotechnologie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | - Peter F Stadler
- Bioinformatics Group, Department Computer Science, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany.
- Department of Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
12
|
Angrisani A, Tafer H, Stadler PF, Furia M. Developmentally regulated expression and expression strategies of Drosophila snoRNAs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:69-78. [PMID: 25641266 DOI: 10.1016/j.ibmb.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Small nucleolar RNAs constitute a significant portion of the eukaryotic small ncRNA transcriptome and guide site-specific methylation or pseudouridylation of target RNAs. In addition, they can play diverse regulatory roles on gene expression, acting as precursors of smaller fragments able to modulate alternative splicing or operate as microRNAs. Defining their expression strategies and the full repertory of their biological functions is a critical, but still ongoing, process in most organisms. Considering that Drosophila melanogaster is one of the most advantageous model organism for genetic, functional and developmental studies, we analysed the whole genomic organization of its annotated snoRNAs - whose vast majority is known to be embedded in an intronic context - and show by GO term enrichment analysis that protein-coding genes involved in cell division and cytoskeleton organization are those mostly preferred as hosts. This finding was unexpected, and delineates an unpredicted link between snoRNA host genes and cell proliferation that might be of general relevance. We also defined by quantitative RT-PCR the expression of a representative subset of annotated specimens throughout the life cycle, providing a first overview on developmental profiling of the fly snoRNA transcriptome. We found that most of the tested specimens, rather than acting as housekeeping genes with uniform expression, exhibit dynamic developmental expression patterns; moreover, intronic snoRNAs harboured by the same host gene often exhibit distinct temporal profiles, indicating that they can be expressed uncoordinatedly. In addition to provide an updated outline of the fly snoRNA transcriptome, our data highlight that expression of these versatile ncRNAs can be finely regulated.
Collapse
Affiliation(s)
- Alberto Angrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Hakim Tafer
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy.
| |
Collapse
|
13
|
Eliaz D, Doniger T, Tkacz ID, Biswas VK, Gupta SK, Kolev NG, Unger R, Ullu E, Tschudi C, Michaeli S. Genome-wide analysis of small nucleolar RNAs of Leishmania major reveals a rich repertoire of RNAs involved in modification and processing of rRNA. RNA Biol 2015; 12:1222-55. [PMID: 25970223 DOI: 10.1080/15476286.2015.1038019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Trypanosomatids are protozoan parasites and the causative agent of infamous infectious diseases. These organisms regulate their gene expression mainly at the post-transcriptional level and possess characteristic RNA processing mechanisms. In this study, we analyzed the complete repertoire of Leishmania major small nucleolar (snoRNA) RNAs by performing RNA-seq analysis on RNAs that were affinity-purified using the C/D snoRNA core protein, SNU13, and the H/ACA core protein, NHP2. This study revealed a large collection of C/D and H/ACA snoRNAs, organized in gene clusters generally containing both snoRNA types. Abundant snoRNAs were identified and predicted to guide trypanosome-specific rRNA cleavages. The repertoire of snoRNAs was compared to that of the closely related Trypanosoma brucei, and 80% of both C/D and H/ACA molecules were found to have functional homologues. The comparative analyses elucidated how snoRNAs evolved to generate molecules with analogous functions in both species. Interestingly, H/ACA RNAs have great flexibility in their ability to guide modifications, and several of the RNA species can guide more than one modification, compensating for the presence of single hairpin H/ACA snoRNA in these organisms. Placing the predicted modifications on the rRNA secondary structure revealed hypermodification regions mostly in domains which are modified in other eukaryotes, in addition to trypanosome-specific modifications.
Collapse
Affiliation(s)
- Dror Eliaz
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Tirza Doniger
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Itai Dov Tkacz
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Viplov Kumar Biswas
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Sachin Kumar Gupta
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Nikolay G Kolev
- b Department of Epidemiology of Microbial Diseases ; Yale University School of Public Health ; New Haven , CT USA
| | - Ron Unger
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| | - Elisabetta Ullu
- c Department of Internal Medicine and Cell Biology ; Yale University Medical School ; New Haven , CT USA.,d Cell Biology ; Yale University Medical School ; New Haven , CT USA
| | - Christian Tschudi
- b Department of Epidemiology of Microbial Diseases ; Yale University School of Public Health ; New Haven , CT USA
| | - Shulamit Michaeli
- a The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute ; Bar-Ilan University ; Ramat-Gan , Israel
| |
Collapse
|
14
|
Herter EK, Stauch M, Gallant M, Wolf E, Raabe T, Gallant P. snoRNAs are a novel class of biologically relevant Myc targets. BMC Biol 2015; 13:25. [PMID: 25888729 PMCID: PMC4430873 DOI: 10.1186/s12915-015-0132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. RESULTS We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. CONCLUSIONS This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.
Collapse
Affiliation(s)
- Eva K Herter
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Maria Stauch
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Maria Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Thomas Raabe
- Institute for Medical Radiation and Cell Research, Würzburg, Germany.
| | - Peter Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| |
Collapse
|
15
|
Stocks M, Dean R, Rogell B, Friberg U. Sex-specific trans-regulatory variation on the Drosophila melanogaster X chromosome. PLoS Genet 2015; 11:e1005015. [PMID: 25679222 PMCID: PMC4334168 DOI: 10.1371/journal.pgen.1005015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.
Collapse
Affiliation(s)
- Michael Stocks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Rebecca Dean
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail: (RD); (UF)
| | - Björn Rogell
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Urban Friberg
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- IFM Biology, AVIAN Behaviour and Genomics group, Linköping University, Linköping, Sweden
- * E-mail: (RD); (UF)
| |
Collapse
|
16
|
Deletion of Drosophila Nopp140 induces subcellular ribosomopathies. Chromosoma 2014; 124:191-208. [PMID: 25384888 DOI: 10.1007/s00412-014-0490-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/18/2023]
Abstract
The nucleolar and Cajal body phosphoprotein of 140 kDa (Nopp140) is considered a ribosome assembly factor, but its precise functions remain unknown. To approach this problem, we deleted the Nopp140 gene in Drosophila using FLP-FRT recombination. Genomic PCR, reverse transcriptase-PCR (RT-PCR), and immunofluorescence microscopy confirmed the loss of Nopp140, its messenger RNA (mRNA), and protein products from all tissues examined. Nopp140-/- larvae arrested in the second instar stage and most died within 8 days. While nucleoli appeared intact in Nopp140-/- cells, the C/D small nucleolar ribonucleoprotein (snoRNP) methyltransferase, fibrillarin, redistributed to the nucleoplasm in variable amounts depending on the cell type; RT-PCRs showed that 2'-O-methylation of ribosomal RNA (rRNA) in Nopp140-/- cells was reduced at select sites within both the 18S and 28S rRNAs. Ultrastructural analysis showed that Nopp140-/- cells were deficient in cytoplasmic ribosomes, but instead contained abnormal electron-dense cytoplasmic granules. Immunoblot analysis showed a loss of RpL34, and metabolic labeling showed a significant drop in protein translation, supporting the loss of functional ribosomes. Northern blots showed that pre-RNA cleavage pathways were generally unaffected by the loss of Nopp140, but that R2 retrotransposons that naturally reside within the 28S region of normally silent heterochromatic Drosophila ribosomal DNA (rDNA) genes were selectively expressed in Nopp140-/- larvae. Unlike copia elements and the related R1 retrotransposon, R2 expression appeared to be preferentially dependent on the loss of Nopp140 and not on environmental stresses. We believe the phenotypes described here define novel intracellular ribosomopathies resulting from the loss of Nopp140.
Collapse
|
17
|
Deschamps-Francoeur G, Garneau D, Dupuis-Sandoval F, Roy A, Frappier M, Catala M, Couture S, Barbe-Marcoux M, Abou-Elela S, Scott MS. Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency. Nucleic Acids Res 2014; 42:10073-85. [PMID: 25074380 PMCID: PMC4150776 DOI: 10.1093/nar/gku664] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are among the first discovered and most extensively studied group of small non-coding RNA. However, most studies focused on a small subset of snoRNAs that guide the modification of ribosomal RNA. In this study, we annotated the expression pattern of all box C/D snoRNAs in normal and cancer cell lines independent of their functions. The results indicate that C/D snoRNAs are expressed as two distinct forms differing in their ends with respect to boxes C and D and in their terminal stem length. Both forms are overexpressed in cancer cell lines but display a conserved end distribution. Surprisingly, the long forms are more dependent than the short forms on the expression of the core snoRNP protein NOP58, thought to be essential for C/D snoRNA production. In contrast, a subset of short forms are dependent on the splicing factor RBFOX2. Analysis of the potential secondary structure of both forms indicates that the k-turn motif required for binding of NOP58 is less stable in short forms which are thus less likely to mature into a canonical snoRNP. Taken together the data suggest that C/D snoRNAs are divided into at least two groups with distinct maturation and functional preferences.
Collapse
Affiliation(s)
- Gabrielle Deschamps-Francoeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Daniel Garneau
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Audrey Roy
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marie Frappier
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Catala
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sonia Couture
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mélissa Barbe-Marcoux
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou-Elela
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
18
|
Li DD, Liu ZC, Huang L, Jiang QL, Zhang K, Qiao HL, Jiao ZJ, Yao LG, Liu RY, Kan YC. The expression analysis of silk gland-enriched intermediate-size non-coding RNAs in silkworm Bombyx mori. INSECT SCIENCE 2014; 21:429-438. [PMID: 24124013 DOI: 10.1111/1744-7917.12063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. Silkworm is an important model for studies on insect genetics and control of Lepidopterous pests. We have previously identified 189 novel intermediate-size ncRNAs in silkworm Bombyx mori, including 40 ncRNAs that showed altered expression in different developmental stages. Here we characterized the functions of these 40 ncRNAs by measuring their expressions in six tissues of the fifth instar larvae using Northern blot and real-time polymerase chain reaction assays. We identified nine ncRNAs (four small nucleolar RNAs and five unclassified ncRNAs) that were enriched in silk gland, including four ncRNAs that showed silk gland-specific expression. We further showed that three of nine silk gland-enriched ncRNAs were predominantly expressed in the anterior silk gland, whereas another three ncRNAs were highly accumulated in the posterior silk gland, suggesting that they may play different roles in fibroin synthesis. Furthermore, an unclassified ncRNA, Bm-152, exhibited converse expression pattern with its antisense host gene gartenzwerg in diverse tissues, and might regulate the expression of gartenzwerg through RNA-protein complex. In addition, two silk gland-enriched ncRNAs Bm-102 and Bm-159 can be found in histone modification complex, which indicated that they might play roles through epigenetic modifications. Taken together, we provided the first expression and preliminary functional analysis of silk gland-enriched ncRNAs, which will help understand the molecular mechanism of silk gland-development and fibroin synthesis.
Collapse
Affiliation(s)
- Dan-Dan Li
- China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP. Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 2013; 41:2963-80. [PMID: 23358822 PMCID: PMC3597698 DOI: 10.1093/nar/gkt037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin insulators are functionally conserved DNA-protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3' to 5' RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs', which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome.
Collapse
Affiliation(s)
- Su Jun Lim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
21
|
Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res 2012; 22:1266-81. [PMID: 22472103 PMCID: PMC3396368 DOI: 10.1101/gr.128876.111] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic circadian clocks include transcriptional/translational feedback loops that drive 24-h rhythms of transcription. These transcriptional rhythms underlie oscillations of protein abundance, thereby mediating circadian rhythms of behavior, physiology, and metabolism. Numerous studies over the last decade have used microarrays to profile circadian transcriptional rhythms in various organisms and tissues. Here we use RNA sequencing (RNA-seq) to profile the circadian transcriptome of Drosophila melanogaster brain from wild-type and period-null clock-defective animals. We identify several hundred transcripts whose abundance oscillates with 24-h periods in either constant darkness or 12 h light/dark diurnal cycles, including several noncoding RNAs (ncRNAs) that were not identified in previous microarray studies. Of particular interest are U snoRNA host genes (Uhgs), a family of diurnal cycling noncoding RNAs that encode the precursors of more than 50 box-C/D small nucleolar RNAs, key regulators of ribosomal biogenesis. Transcriptional profiling at the level of individual exons reveals alternative splice isoforms for many genes whose relative abundances are regulated by either period or circadian time, although the effect of circadian time is muted in comparison to that of period. Interestingly, period loss of function significantly alters the frequency of RNA editing at several editing sites, suggesting an unexpected link between a key circadian gene and RNA editing. We also identify tens of thousands of novel splicing events beyond those previously annotated by the modENCODE Consortium, including several that affect key circadian genes. These studies demonstrate extensive circadian control of ncRNA expression, reveal the extent of clock control of alternative splicing and RNA editing, and provide a novel, genome-wide map of splicing in Drosophila brain.
Collapse
Affiliation(s)
- Michael E Hughes
- Department of Cellular and Molecular Physiology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
22
|
Mihailovich M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso FM, Roma G, Pavesi G, Gebauer F. Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA (NEW YORK, N.Y.) 2012; 18:53-64. [PMID: 22101243 PMCID: PMC3261744 DOI: 10.1261/rna.029603.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
Upstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the noncoding RNA roX is believed to play key roles in the control of X-chromosome dosage compensation in both sexes. To investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of noncoding RNAs in a sex-specific fashion. The analyses also reveal a strong correlation between sex-specific binding of UNR and sex-specific differential expression of UTRs in target genes. Validation experiments indicate that UNR indeed recognizes sex-specifically processed transcripts. These results suggest that UNR exploits the transcript diversity generated by alternative processing and alternative promoter usage to bind and regulate target genes in a sex-specific manner.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Laurence Wurth
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Federico Zambelli
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Irina Abaza
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Cristina Militti
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Francesco M. Mancuso
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Giulio Pavesi
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Fátima Gebauer
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| |
Collapse
|
23
|
Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR, Thompson ER, Lakhani SR, Vargas AC, Campbell IG, Brown MA, Dinger ME, Mattick JS. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA (NEW YORK, N.Y.) 2011; 17:878-891. [PMID: 21460236 PMCID: PMC3078737 DOI: 10.1261/rna.2528811] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly recognized to play major regulatory roles in development and disease. To identify novel regulators in breast biology, we identified differentially regulated lncRNAs during mouse mammary development. Among the highest and most differentially expressed was a transcript (Zfas1) antisense to the 5' end of the protein-coding gene Znfx1. In vivo, Zfas1 RNA is localized within the ducts and alveoli of the mammary gland. Zfas1 intronically hosts three previously undescribed C/D box snoRNAs (SNORDs): Snord12, Snord12b, and Snord12c. In contrast to the general assumption that noncoding SNORD-host transcripts function only as vehicles to generate snoRNAs, knockdown of Zfas1 in a mammary epithelial cell line resulted in increased cellular proliferation and differentiation, while not substantially altering the levels of the SNORDs. In support of an independent function, we also found that Zfas1 is extremely stable, with a half-life >16 h. Expression analysis of the SNORDs revealed these were expressed at different levels, likely a result of distinct structures conferring differential stability. While there is relatively low primary sequence conservation between Zfas1 and its syntenic human ortholog ZFAS1, their predicted secondary structures have similar features. Like Zfas1, ZFAS1 is highly expressed in the mammary gland and is down-regulated in breast tumors compared to normal tissue. We propose a functional role for Zfas1/ ZFAS1 in the regulation of alveolar development and epithelial cell differentiation in the mammary gland, which, together with its dysregulation in human breast cancer, suggests ZFAS1 as a putative tumor suppressor gene.
Collapse
|
24
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen F, Chen YPP. Exploring the ncRNA-ncRNA patterns based on bridging rules. J Biomed Inform 2010; 43:569-77. [PMID: 20152932 DOI: 10.1016/j.jbi.2010.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/11/2009] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
ncRNAs play an important role in the regulation of gene expression. However, many of their functions have not yet been fully discovered. There are complicated relationships between ncRNAs in different categories. Finding these relationships can contribute to identify ncRNAs' functions and properties. We extend the association rule to represent the relationship between two ncRNAs. Based on this rule, we can speculate the ncRNA's function when it interacts with other ncRNAs. We propose two measures to explore the relationships between ncRNAs in different categories. Entropy theory is to calculate how close two ncRNAs are. Association rule is to represent the interactions between ncRNAs. We use three datasets from miRBase and RNAdb. Two from miRBase are designed for finding relationships between miRNAs; the other from RNAdb is designed for relationships among miRNA, snoRNA and piRNA. We evaluate our measures from both biological significance and performance perspectives. All the cross-species patterns regarding miRNA that we found are proven correct using miRNAMap 2.0. In addition, we find novel cross-genomes patterns such as (hsa-mir-190b-->hsa-mir-153-2). According to the patterns we find, we can (1) explore one ncRNA's function from another with known function and (2) speculate the functions of both of them based on the relationship even we do no understand either of them. Our methods' merits also include: (1) they are suitable for any ncRNA datasets and (2) they are not sensitive to the parameters.
Collapse
Affiliation(s)
- Feng Chen
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora, Vic. 3086, Australia
| | | |
Collapse
|
26
|
Wang PPS, Ruvinsky I. Computational prediction of Caenorhabditis box H/ACA snoRNAs using genomic properties of their host genes. RNA (NEW YORK, N.Y.) 2010; 16:290-298. [PMID: 20038629 PMCID: PMC2811658 DOI: 10.1261/rna.1876210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover. Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.
Collapse
Affiliation(s)
- Paul Po-Shen Wang
- Department of Ecology and Evolution , University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
27
|
Deryusheva S, Gall JG. Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies. Mol Biol Cell 2009; 20:5250-9. [PMID: 19846657 PMCID: PMC2793299 DOI: 10.1091/mbc.e09-09-0777] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 12/17/2022] Open
Abstract
During their biogenesis small nuclear RNAs (snRNAs) undergo multiple covalent modifications that require guide RNAs to direct methylase and pseudouridylase enzymes to the appropriate nucleotides. Because of their localization in the nuclear Cajal body (CB), these guide RNAs are known as small CB-specific RNAs (scaRNAs). Using a fluorescent primer extension technique, we mapped the modified nucleotides in Drosophila U1, U2, U4, and U5 snRNAs. By fluorescent in situ hybridization (FISH) we showed that seven Drosophila scaRNAs are concentrated in easily detectable CBs. We used two assays based on Xenopus oocyte nuclei to demonstrate that three of these Drosophila scaRNAs do, in fact, function as guide RNAs. In flies null for the CB marker protein coilin, CBs are absent and there are no localized FISH signals for the scaRNAs. Nevertheless, biochemical experiments show that scaRNAs are present at normal levels and snRNAs are properly modified. Our experiments demonstrate that several scaRNAs are concentrated as expected in the CBs of wild-type Drosophila, but they function equally well in the nucleoplasm of mutant flies that lack CBs. We propose that the snRNA modification machinery is not limited to CBs, but is dispersed throughout the nucleoplasm of cells in general.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
28
|
Liu N, Xiao ZD, Yu CH, Shao P, Liang YT, Guan DG, Yang JH, Chen CL, Qu LH, Zhou H. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights. BMC Genomics 2009; 10:515. [PMID: 19895704 PMCID: PMC2780460 DOI: 10.1186/1471-2164-10-515] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/08/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. RESULTS Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. CONCLUSION This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by box C/D snoRNAs in multicellular fungus than in unicellular yeasts was revealed, indicating the high diversity of post-transcriptional modification guided by snoRNAs in the fungus kingdom.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhen-Dong Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun-Hong Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peng Shao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yin-Tong Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dao-Gang Guan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun-Long Chen
- Centre National de la Recherche Scientifique (CNRS), UPR 2167, CGM, Gif sur Yvette, 91198, France
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
29
|
Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83-8. [PMID: 19446021 DOI: 10.1016/j.ygeno.2009.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|
30
|
Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 2009; 34:47-57. [PMID: 19285445 PMCID: PMC2700737 DOI: 10.1016/j.molcel.2009.02.020] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/13/2009] [Accepted: 02/25/2009] [Indexed: 12/12/2022]
Abstract
Small Cajal body (CB)-specific RNPs (scaRNPs) function in posttranscriptional modification of small nuclear (sn)RNAs. An RNA element, the CAB box, facilitates CB localization of H/ACA scaRNPs. Using a related element in Drosophila C/D scaRNAs, we purified a fly WD40 repeat protein that UV crosslinks to RNA in a C/D CAB box-dependent manner and associates with C/D and mixed domain C/D-H/ACA scaRNAs. Its human homolog, WDR79, associates with C/D, H/ACA, and mixed domain scaRNAs, as well as with telomerase RNA. WDR79's binding to human H/ACA and mixed domain scaRNAs is CAB box dependent, and its association with mixed domain RNAs also requires the ACA motif, arguing for additional interactions of WDR79 with H/ACA core proteins. We demonstrate a requirement for WDR79 binding in the CB localization of a scaRNA. This and other recent reports establish WDR79 as a central player in the localization and processing of nuclear RNPs.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
31
|
Chen CL, Zhou H, Liao JY, Qu LH, Amar L. Genome-wide evolutionary analysis of the noncoding RNA genes and noncoding DNA of Paramecium tetraurelia. RNA (NEW YORK, N.Y.) 2009; 15:503-14. [PMID: 19218550 PMCID: PMC2661823 DOI: 10.1261/rna.1306009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The compact genome of the unicellular eukaryote Paramecium tetraurelia contains noncoding DNA (ncDNA) distributed into >39,000 intergenic sequences and >90,000 introns of 390 base pairs (bp) and 25 bp on average, respectively. Here we analyzed the molecular features of the ncRNA genes, introns, and intergenic sequences of this genome. We mainly used computational programs and comparative genomics possible because the P. tetraurelia genome had formed throughout whole-genome duplications (WGDs). We characterized 417 5S rRNA, snRNA, snoRNA, SRP RNA, and tRNA putative genes, 415 of which map within intergenic sequences, and two, within introns. The evolution of these ncRNA genes appears to have mainly involved purifying selection and gene deletion. We then compared the introns that interrupt the protein-coding gene duplicates arisen from the recent WGD and identified a population of a few thousands of introns having evolved under most stringent constraints (>95% of identity). We also showed that low nucleotide substitution levels characterize the 50 and 80-115 base pairs flanking, respectively, the stop and start codons of the protein-coding genes. Lower substitution levels mark the base pairs flanking the highly transcribed genes, or the start codons of the genes of the sets with a high number of WGD-related sequences. Finally, adjacent to protein-coding genes, we characterized 32 DNA motifs able to encode stable and evolutionary conserved RNA secondary structures and defining putative expression controlling elements. Fourteen DNA motifs with similar properties map distant from protein-coding genes and may encode regulatory ncRNAs.
Collapse
Affiliation(s)
- Chun-Long Chen
- Institut de Biologie Animale Intégrative et Cellulaire, Université Paris Sud, Orsay, France
| | | | | | | | | |
Collapse
|
32
|
Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs. BMC Genomics 2009; 10:86. [PMID: 19232134 PMCID: PMC2653536 DOI: 10.1186/1471-2164-10-86] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 02/22/2009] [Indexed: 01/02/2023] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) represent one of the largest groups of functionally diverse trans-acting non-protein-coding (npc) RNAs currently known in eukaryotic cells. Chicken snoRNAs have been very poorly characterized when compared to other vertebrate snoRNAs. A genome-wide analysis of chicken snoRNAs is therefore of great importance to further understand the functional evolution of snoRNAs in vertebrates. Results Two hundred and one gene variants encoding 93 box C/D and 62 box H/ACA snoRNAs were identified in the chicken genome and are predicted to guide 86 2'-O-ribose methylations and 69 pseudouridylations of rRNAs and spliceosomal RNAs. Forty-four snoRNA clusters were grouped into four categories based on synteny characteristics of the clustered snoRNAs between chicken and human. Comparative analyses of chicken snoRNAs revealed extensive recombination and separation of guiding function, with cooperative evolution between the guiding duplexes and modification sites. The gas5-like snoRNA host gene appears to be a hotspot of snoRNA gene expansion in vertebrates. Our results suggest that the chicken is a good model for the prediction of functional snoRNAs, and that intragenic duplication and divergence might be the major driving forces responsible for expansion of novel snoRNA genes in the chicken genome. Conclusion We have provided a detailed catalog of chicken snoRNAs that aids in understanding snoRNA gene repertoire differences between avians and other vertebrates. Our genome-wide analysis of chicken snoRNAs improves annotation of the 'darkness matter' in the npcRNA world and provides a unique perspective into snoRNA evolution in vertebrates.
Collapse
|
33
|
Tortoriello G, Accardo MC, Scialò F, Angrisani A, Turano M, Furia M. A novel Drosophila antisense scaRNA with a predicted guide function. Gene 2009; 436:56-65. [PMID: 19230845 DOI: 10.1016/j.gene.2009.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 02/02/2023]
Abstract
A significant portion of eukaryotic small ncRNA transcriptome is composed by small nucleolar RNAs. From archaeal to mammalian cells, these molecules act as guides in the site-specific pseudouridylation or methylation of target RNAs. We used a bioinformatics search program to detect Drosophila putative orthologues of U79, one out of ten snoRNAs produced by GAS5, a human ncRNA involved in apoptosis, susceptibility to cancer and autoimmune diseases. This search led to the definition of a list of U79-related fly snoRNAs whose genomic organization, evolution and expression strategy are discussed here. We report that an intriguing novel specimen, named Dm46E3, is transcribed as a longer, unspliced precursor from the reverse strand of eiger, a fly regulatory gene that plays a key role in cell differentiation, apoptosis and immune response. Expression of Dm46E3 was found significantly up-regulated in a mutant strain in which eiger transcription is greatly reduced, suggesting that these two sense-antisense genes may be mutually regulated. Relevant to its function, Dm46E3 concentrated specifically in the Cajal bodies, followed a dynamic spatial expression profile during embryogenesis and displayed a degenerate antisense element that enables it to target U1b, a developmentally regulated isoform of the U1 spliceosomal snRNA that is particularly abundant in embryos.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cell Line
- Chromosome Mapping
- Computational Biology/methods
- Drosophila Proteins/genetics
- Drosophila melanogaster/cytology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- In Situ Hybridization, Fluorescence
- Membrane Proteins/genetics
- Molecular Sequence Data
- Mutation
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/physiology
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Giuseppe Tortoriello
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Mishra PC, Kumar A, Sharma A. Analysis of small nucleolar RNAs reveals unique genetic features in malaria parasites. BMC Genomics 2009; 10:68. [PMID: 19200392 PMCID: PMC2656528 DOI: 10.1186/1471-2164-10-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 02/07/2009] [Indexed: 01/07/2023] Open
Abstract
Background Ribosome biogenesis is an energy consuming and stringently controlled process that involves hundreds of trans-acting factors. Small nucleolar RNAs (snoRNAs), important components of ribosome biogenesis are non-coding guide RNAs involved in rRNA processing, nucleotide modifications like 2'-O-ribose methylation, pseudouridylation and possibly gene regulation. snoRNAs are ubiquitous and are diverse in their genomic organization, mechanism of transcription and process of maturation. In vertebrates, most snoRNAs are present in introns of protein coding genes and are processed by exonucleolytic cleavage, while in plants they are transcribed as polycistronic transcripts. Results This is a comprehensive analysis of malaria parasite snoRNA genes and proteins that have a role in ribosomal biogenesis. Computational and experimental approaches have been used to identify several box C/D snoRNAs from different species of Plasmodium and confirm their expression. Our analyses reveal that the gene for endoribonuclease Rnt1 is absent from Plasmodium falciparum genome, which indicates the existence of alternative pre-rRNA processing pathways. The structural features of box C/D snoRNAs are highly conserved in Plasmodium genus; however, unlike other organisms most parasite snoRNAs are present in single copy. The genomic localization of parasite snoRNAs shows mixed patterns of those observed in plants, yeast and vertebrates. We have localized parasite snoRNAs in untranslated regions (UTR) of mRNAs, and this is an unprecedented and novel genetic feature. Akin to mammalian snoRNAs, those in Plasmodium may also behave as mobile genetic elements. Conclusion This study provides a comprehensive overview on trans-acting genes involved in ribosome biogenesis and also a genetic insight into malaria parasite snoRNA genes.
Collapse
Affiliation(s)
- Prakash Chandra Mishra
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Road, New Delhi, 110067, India.
| | | | | |
Collapse
|
35
|
Genomewide analysis of box C/D and box H/ACA snoRNAs in Chlamydomonas reinhardtii reveals an extensive organization into intronic gene clusters. Genetics 2008; 179:21-30. [PMID: 18493037 DOI: 10.1534/genetics.107.086025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chlamydomonas reinhardtii is a unicellular green alga, the lineage of which diverged from that of land plants >1 billion years ago. Using the powerful small nucleolar RNA (snoRNA) mining platform to screen the C. reinhardtii genome, we identified 322 snoRNA genes grouped into 118 families. The 74 box C/D families can potentially guide methylation at 96 sites of ribosomal RNAs (rRNAs) and snRNAs, and the 44 box H/ACA families can potentially guide pseudouridylation at 62 sites. Remarkably, 242 of the snoRNA genes are arranged into 76 clusters, of which 77% consist of homologous genes produced by small local tandem duplications. At least 70 snoRNA gene clusters are found within introns of protein-coding genes. Although not exhaustive, this analysis reveals that C. reinhardtii has the highest number of intronic snoRNA gene clusters among eukaryotes. The prevalence of intronic snoRNA gene clusters in C. reinhardtii is similar to that of rice but in contrast with the one-snoRNA-per-intron organization of vertebrates and fungi and with that of Arabidopsis thaliana in which only a few intronic snoRNA gene clusters were identified. This analysis of C. reinhardtii snoRNA gene organization shows the functional importance of introns in a single-celled organism and provides evolutionary insight into the origin of intron-encoded RNAs in the plant lineage.
Collapse
|
36
|
Brown JWS, Marshall DF, Echeverria M. Intronic noncoding RNAs and splicing. TRENDS IN PLANT SCIENCE 2008; 13:335-42. [PMID: 18555733 DOI: 10.1016/j.tplants.2008.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 05/23/2023]
Abstract
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.
Collapse
Affiliation(s)
- John W S Brown
- Plant Sciences Division, University of Dundee at the Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, DD2 5DA, UK.
| | | | | |
Collapse
|
37
|
Gruber AR, Kilgus C, Mosig A, Hofacker IL, Hennig W, Stadler PF. Arthropod 7SK RNA. Mol Biol Evol 2008; 25:1923-30. [PMID: 18566019 DOI: 10.1093/molbev/msn140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 7SK small nuclear RNA (snRNA) is a key player in the regulation of polymerase (pol) II transcription. The 7SK RNA was long believed to be specific to vertebrates where it is highly conserved. Homologs in basal deuterostomes and a few lophotrochozoan species were only recently reported. On longer timescales, 7SK evolves rapidly with only few conserved sequence and structure motifs. Previous attempts to identify the Drosophila homolog thus have remained unsuccessful despite considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using a novel search strategy based on pol III promoters, as well as the subsequent verification of its expression. Our results demonstrate that a 7SK snRNA featuring 2 highly structured conserved domains was present already in the bilaterian ancestor.
Collapse
Affiliation(s)
- Andreas R Gruber
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
38
|
Jöchl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, Haas H, Hüttenhofer A. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 2008; 36:2677-89. [PMID: 18346967 PMCID: PMC2377427 DOI: 10.1093/nar/gkn123] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/04/2008] [Accepted: 03/04/2008] [Indexed: 01/28/2023] Open
Abstract
Small non-protein-coding RNAs (ncRNAs) have systematically been studied in various model organisms from Escherichia coli to Homo sapiens. Here, we analyse the small ncRNA transcriptome from the pathogenic filamentous fungus Aspergillus fumigatus. To that aim, we experimentally screened for ncRNAs, expressed under various growth conditions or during specific developmental stages, by generating a specialized cDNA library from size-selected small RNA species. Our screen revealed 30 novel ncRNA candidates from known ncRNA classes such as small nuclear RNAs (snRNAs) and C/D box-type small nucleolar RNAs (C/D box snoRNAs). Additionally, several candidates for H/ACA box snoRNAs could be predicted by a bioinformatical screen. We also identified 15 candidates for ncRNAs, which could not be assigned to any known ncRNA class. Some of these ncRNA species are developmentally regulated implying a possible novel function in A. fumigatus development. Surprisingly, in addition to full-length tRNAs, we also identified 5'- or 3'-halves of tRNAs, only, which are likely generated by tRNA cleavage within the anti-codon loop. We show that conidiation induces tRNA cleavage resulting in tRNA depletion within conidia. Since conidia represent the resting state of A. fumigatus we propose that conidial tRNA depletion might be a novel mechanism to down-regulate protein synthesis in a filamentous fungus.
Collapse
Affiliation(s)
- Christoph Jöchl
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Mathieu Rederstorff
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Jana Hertel
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Peter F. Stadler
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Ivo L. Hofacker
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Markus Schrettl
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Hubertus Haas
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Innsbruck Biocenter, Division of Genomics and RNomics – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Wien, Austria, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Hartelstraße 16-18, D-04107 Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA, Fraunhofer Institut fuer Zelltherapie und Immunologie,Deutscher Platz 5e, 04103 Leipzig, Germany and Innsbruck Biocenter, Division of Molecular Biology – Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Piekna-Przybylska D, Decatur WA, Fournier MJ. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res 2007; 36:D178-83. [PMID: 17947322 PMCID: PMC2238946 DOI: 10.1093/nar/gkm855] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3D rRNA modification maps database is the first general resource of information about the locations of modified nucleotides within the 3D structure of the full ribosome, with mRNA and tRNAs in the A-, P- and E-sites. The database supports analyses for several model organisms, including higher eukaryotes, and enables users to construct 3D maps for other organisms. Data are provided for human and plant (Arabidopsis) ribosomes, and for other representative organisms from eubacteria, archaea and eukarya. Additionally, the database integrates information about positions of modifications within rRNA sequences and secondary structures, as well as links to other databases and resources about modifications and their biosynthesis. Displaying positions of modified nucleotides is fully manageable. Views of each modified nucleotide are controlled by individual buttons and buttons also control the visibility of different ribosomal molecular components. A section called 'Paint Your Own' enables the user to create a 3D modification map for rRNA from any organism where sites of modification are known. This section also provides capabilities for visualizing nucleotides of interest in rRNA or tRNA, as well as particular amino acids in ribosomal proteins. The database can be accessed at http://people.biochem.umass.edu/fournierlab/3dmodmap/
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
40
|
Horesh Y, Doniger T, Michaeli S, Unger R. RNAspa: a shortest path approach for comparative prediction of the secondary structure of ncRNA molecules. BMC Bioinformatics 2007; 8:366. [PMID: 17908318 PMCID: PMC2147038 DOI: 10.1186/1471-2105-8-366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/01/2007] [Indexed: 12/27/2022] Open
Abstract
Background In recent years, RNA molecules that are not translated into proteins (ncRNAs) have drawn a great deal of attention, as they were shown to be involved in many cellular functions. One of the most important computational problems regarding ncRNA is to predict the secondary structure of a molecule from its sequence. In particular, we attempted to predict the secondary structure for a set of unaligned ncRNA molecules that are taken from the same family, and thus presumably have a similar structure. Results We developed the RNAspa program, which comparatively predicts the secondary structure for a set of ncRNA molecules in linear time in the number of molecules. We observed that in a list of several hundred suboptimal minimal free energy (MFE) predictions, as provided by the RNAsubopt program of the Vienna package, it is likely that at least one suggested structure would be similar to the true, correct one. The suboptimal solutions of each molecule are represented as a layer of vertices in a graph. The shortest path in this graph is the basis for structural predictions for the molecule. We also show that RNA secondary structures can be compared very rapidly by a simple string Edit-Distance algorithm with a minimal loss of accuracy. We show that this approach allows us to more deeply explore the suboptimal structure space. Conclusion The algorithm was tested on three datasets which include several ncRNA families taken from the Rfam database. These datasets allowed for comparison of the algorithm with other methods. In these tests, RNAspa performed better than four other programs.
Collapse
Affiliation(s)
- Yair Horesh
- Department of Computer Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
41
|
Hertel J, Hofacker IL, Stadler PF. SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 2007; 24:158-64. [PMID: 17895272 DOI: 10.1093/bioinformatics/btm464] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Unlike tRNAs and microRNAs, both classes of snoRNAs, which direct two distinct types of chemical modifications of uracil residues, have proved to be surprisingly difficult to find in genomic sequences. Most computational approaches so far have explicitly used the fact that snoRNAs predominantly target ribosomal RNAs and spliceosomal RNAs. The target is specified by a short stretch of sequence complementarity between the snoRNA and its target. This sequence complementarity to known targets crucially contributes to sensitivity and specificity of snoRNA gene finding algorithms. The discovery of 'orphan' snoRNAs, which either have no known target, or which target ordinary protein-coding mRNAs, however, begs the question whether this class of 'housekeeping' non-coding RNAs is much more widespread and might have a diverse set of regulatory functions. In order to approach this question, we present here a combination of RNA secondary structure prediction and machine learning that is designed to recognize the two major classes of snoRNAs, box C/D and box H/ACA snoRNAs, among ncRNA candidate sequences. The snoReport approach deliberately avoids any usage of target information. We find that the combination of the conserved sequence boxes and secondary structure constraints as a pre-filter with SVM classifiers based on a small set of structural descriptors are sufficient for a reliable identification of snoRNAs. Tests of snoReport on data from several recent experimental surveys show that the approach is feasible; the application to a dataset from a large-scale comparative genomics survey for ncRNAs suggests that there are likely hundreds of previously undescribed 'orphan' snoRNAs still hidden in the human genome. AVAILABILITY The snoReport software is implemented in ANSI C. The source code is available under the GNU Public License at http://www.bioinf.uni-leipzig.de/Software/snoReport.
Collapse
Affiliation(s)
- Jana Hertel
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria.
| | | | | |
Collapse
|
42
|
Muller S, Charpentier B, Branlant C, Leclerc F. A dedicated computational approach for the identification of archaeal H/ACA sRNAs. Methods Enzymol 2007; 425:355-87. [PMID: 17673091 DOI: 10.1016/s0076-6879(07)25015-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Whereas dedicated computational approaches have been developed for the search of C/D sRNAs and snoRNAs, as yet no dedicated computational approach has been developed for the search of archaeal H/ACA sRNAs. Here we describe a computational approach allowing a fast and selective identification of H/ACA sRNAs in archaeal genomes. It is easy to use, even for biologists having no special expertise in computational biology. This approach is a stepwise knowledge-based approach, combining the search for common structural features of H/ACA motifs and the search for their putative target sequences. The first step is based on the ERPIN software. It depends on the establishment of a secondary structure-based "profile." We explain how this profile is built and how to use ERPIN to optimize the search for H/ACA motifs. Several examples of applications are given to illustrate how powerful the method is, its limits, and how the results can be evaluated. Then, the possible target rRNA sequences corresponding to the identified H/ACA motifs are searched by use of a descriptor-based method (RNAMOT). The principles and the practical aspects of this method are also explained, and several examples are given here as well to help users in the interpretation of the results.
Collapse
Affiliation(s)
- Sébastien Muller
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Nancy Université, Faculté des Sciences et Techniques, Vandoeuvre-les-Nancy, France
| | | | | | | |
Collapse
|
43
|
Hinas A, Söderbom F. Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum. Curr Genet 2007; 51:141-59. [PMID: 17171561 DOI: 10.1007/s00294-006-0112-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 12/20/2022]
Abstract
The traditional view of RNA being merely an intermediate in the transfer of genetic information, as mRNA, spliceosomal RNA, tRNA, and rRNA, has become outdated. The recent discovery of numerous regulatory RNAs with a plethora of functions in biological processes has truly revolutionized our understanding of gene regulation. Tiny RNAs such as microRNAs and small interfering RNAs play vital roles at different levels of gene control. Small nucleolar RNAs are much more abundant than previously recognized, and new functions beyond processing and modification of rRNA have recently emerged. Longer non-coding RNAs (ncRNAs) can also have important regulatory roles in the cell, e.g., antisense RNAs that control their target mRNAs. The majority of these important findings arose from analyses in various model organisms. In this review, we focus on ncRNAs in the social amoeba Dictyostelium discoideum. This important genetically tractable model organism has recently received renewed attention in terms of discovery, regulation and functional studies of ncRNAs. Old and recent findings are discussed and put in context of what we today know about ncRNAs in other organisms.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, 75124 Uppsala, Sweden
| | | |
Collapse
|
44
|
Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007; 8:413-23. [PMID: 17486121 DOI: 10.1038/nrg2083] [Citation(s) in RCA: 547] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent evidence of genome-wide transcription in several species indicates that the amount of transcription that occurs cannot be entirely accounted for by current sets of genome-wide annotations. Evidence indicates that most of both strands of the human genome might be transcribed, implying extensive overlap of transcriptional units and regulatory elements. These observations suggest that genomic architecture is not colinear, but is instead interleaved and modular, and that the same genomic sequences are multifunctional: that is, used for multiple independently regulated transcripts and as regulatory regions. What are the implications and consequences of such an interleaved genomic architecture in terms of increased information content, transcriptional complexity, evolution and disease states?
Collapse
Affiliation(s)
- Philipp Kapranov
- Affymetrix, Inc., 3420 Central Expressway, Santa Clara, California 95051, USA
| | | | | |
Collapse
|
45
|
Huang ZP, Chen CJ, Zhou H, Li BB, Qu LH. A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes. Genomics 2007; 89:490-501. [PMID: 17222528 DOI: 10.1016/j.ygeno.2006.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/09/2006] [Accepted: 12/02/2006] [Indexed: 12/28/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the posttranscriptional modifications of rRNAs in eukaryotes. Prior to this study, only 28 snoRNA genes had been identified from Caenorhabditis elegans, indicating that most snoRNA genes are hidden in the worm genome, which represents a simple multicellular metazoan. In this study, a genome-wide analysis of the two major families of snoRNA genes in C. elegans was performed using the snoscan and snoGPS programs incorporating comparative genome analyses. Seventy gene variants, including 36 box C/D and 34 box H/ACA snoRNA genes, were identified, of which 50 are novel. Two families of snoRNAs showed a characteristic genomic organization. Notably, 6 box C/D snoRNA genes were located in the antisense orientation of introns. In contrast to insect and mammal, the distances between many intronic snoRNAs and 3' splice sites of introns were less than 50 nt in the worm, an unexpected finding as intron-encoded snoRNAs in C. elegans are supposed to be expressed in a splicing-dependent pathway. Interestingly, a canonical H/ACA snoRNA, PsiCeU5-48, was revealed to be partially homologous to small Cajal body-specific RNA (scaRNA) U85 and U89 in fly and human, indicating a possible evolutionary relationship between snoRNAs and scaRNAs.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
46
|
Bi YZ, Qu LH, Zhou H. Characterization and functional analysis of a novel double-guide C/D box snoRNA in the fission yeast. Biochem Biophys Res Commun 2007; 354:302-8. [PMID: 17222800 DOI: 10.1016/j.bbrc.2006.12.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 12/31/2006] [Indexed: 10/23/2022]
Abstract
Ribose methylation of eukaryotic rRNA is directed by box C/D small nucleolar RNAs (snoRNAs), which pinpoint the nucleotide to be methylated in specific position within the rRNA sequence. Here, we report the identification of a novel double-guide C/D box snoRNA termed snR88 that directs methylation of two previously undetermined sites in 25S rRNA from the fission yeast. Knockout of the predicted TATA box of the snR88 gene resulted in the complete blocking of its expression, showing that snR88 is an independently transcribed gene and dispensable for yeast viability. The depletion of snR88 abolished 25S rRNA methylation at U2304 and U2497 simultaneously. Interestingly, an unusual pause of reverse transcription at U2495 was observed, which implies an unknown structure of 25S rRNA related to ribose methylation at U2497 in the fission yeast.
Collapse
Affiliation(s)
- Yan-Zhen Bi
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, PR China
| | | | | |
Collapse
|
47
|
Riccardo S, Tortoriello G, Giordano E, Turano M, Furia M. The coding/non-coding overlapping architecture of the gene encoding the Drosophila pseudouridine synthase. BMC Mol Biol 2007; 8:15. [PMID: 17328797 PMCID: PMC1821038 DOI: 10.1186/1471-2199-8-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 02/28/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotic cells, each molecule of H/ACA small nucleolar RNA (snoRNA) assembles with four evolutionarily conserved core proteins to compose a specific ribonucleoprotein particle. One of the four core components has pseudouridine synthase activity and catalyzes the conversion of a selected uridine to pseudouridine. Members of the pseudouridine synthase family are highly conserved. In addition to catalyzing pseudouridylation of target RNAs, they carry out a variety of essential functions related to ribosome biogenesis and, in mammals, to telomere maintenance. To investigate further the molecular mechanisms underlying the expression of pseudouridine synthase genes, we analyzed the transcriptional activity of the Drosophila member of this family in great detail. RESULTS The Drosophila gene for pseudouridine synthase, minifly/Nop60b (mfl), encodes two novel mRNAs ending at a downstream poly(A) site. One species is characterized only by an extended 3'-untranslated region (3'UTR), while a minor mRNA encodes a variant protein that represents the first example of an alternative subform described for any member of the family to date. The rare spliced variant is detected mainly in females and is predicted to have distinct functional properties. We also report that a cluster comprising four isoforms of a C/D box snoRNA and two highly related copies of a small ncRNA gene of unknown function is intron-encoded at the gene-variable 3'UTRs. Because this arrangement, the alternative 3' ends allow mfl not only to produce two distinct protein subforms, but also to release different ncRNAs. Intriguingly, accumulation of all these intron-encoded RNAs was found to be sex-biased and quantitatively modulated throughout development and, within the ovaries, the ncRNAs of unknown function were found not ubiquitously expressed. CONCLUSION Our results expand the repertoire of coding/non-coding transcripts derived from the gene encoding Drosophila pseudouridine synthase. This gene exhibits a complex and interlaced organization, and its genetic information may be expressed as different protein subforms and/or ncRNAs that may potentially contribute to its biological functions.
Collapse
Affiliation(s)
- Sara Riccardo
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Giuseppe Tortoriello
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Ennio Giordano
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Mimmo Turano
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| | - Maria Furia
- Department of Structural and Functional Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
48
|
Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, Harrison PM, Yu Z, Kenmochi N, Kaufman TC, Leevers SJ, Cook KR. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 2007; 8:R216. [PMID: 17927810 PMCID: PMC2246290 DOI: 10.1186/gb-2007-8-10-r216] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. RESULTS We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. CONCLUSION This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.
Collapse
Affiliation(s)
- Steven J Marygold
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - John Roote
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Gunter Reuter
- Institute of Genetics, Biologicum, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle D-06108, Germany
| | - Andrew Lambertsson
- Institute of Molecular Biosciences, University of Oslo, Blindern, Olso N-0316, Norway
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Gillian H Millburn
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Paul M Harrison
- Department of Biology, McGill University, Dr Penfield Ave, Montreal, Quebec H3A 1B1, Canada
| | - Zhan Yu
- Department of Biology, McGill University, Dr Penfield Ave, Montreal, Quebec H3A 1B1, Canada
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Thomas C Kaufman
- Department of Biology, Indiana University, E. Third Street, Bloomington, IN 47405-7005, USA
| | - Sally J Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Kevin R Cook
- Department of Biology, Indiana University, E. Third Street, Bloomington, IN 47405-7005, USA
| |
Collapse
|
49
|
Abstract
For a long time, molecular evolutionary biologists have been focused on DNA and proteins, whereas RNA has lived in the shadow of its famous chemical cousins as a mere intermediary. Although this perspective has begun to change since genome-wide transcriptional profiling was successfully extended to evolutionary biology, it still echoes in evolutionary literature. In this mini-review, new developments of RNA biochemistry and transcriptomics are brought to the attention of evolutionary biologists. In particular, the unexpected abundance and functional significance of noncoding RNAs is briefly reviewed. Noncoding RNAs control a remarkable range of biological pathways and processes, all with obvious fitness consequences, such as initiation of translation, mRNA abundance, transposon jumping, chromosome architecture, stem cell maintenance, development of brain and muscles, insulin secretion, cancerogenesis and plant resistance to viral infections.
Collapse
Affiliation(s)
- P Michalak
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76010, USA.
| |
Collapse
|
50
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|