1
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
Affiliation(s)
- Pinky Dutta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Andres Lõhmus
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Kristiina Mäkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| |
Collapse
|
2
|
Zhou X, Du Z, Huang X. A potential long-range RNA-RNA interaction in the HIV-1 RNA. J Biomol Struct Dyn 2023; 41:14968-14976. [PMID: 36863767 DOI: 10.1080/07391102.2023.2184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
It is well-established that viral and cellular mRNAs alike harbour functional long-range intra-molecular RNA-RNA interactions. Despite the biological importance of such interactions, their identification and characterization remain challenging. Here we present a computational method for the identification of certain kinds of long-range intra-molecular RNA-RNA interactions involving the loop nucleotides of a hairpin loop. Using the computational method, we analysed 4272 HIV-1 genomic mRNAs. A potential long-range intra-molecular RNA-RNA interaction within the HIV-1 genomic RNA was identified. The long-range interaction is mediated by a kissing loop structure between two stem-loops of the previously reported SHAPE-based secondary structure of the entire HIV-1 genome. Structural modelling studies were carried out to show that the kissing loop structure not only is sterically feasible, but also contains a conserved RNA structural motif often found in compact RNA pseudoknots. The computational method should be generally applicable to the identification of potential long-range intra-molecular RNA-RNA interactions in any viral or cellular mRNA sequence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xia Zhou
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, IL, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, IL, USA
| | - Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, Carbondale, IL, USA
| |
Collapse
|
3
|
Yan ZY, Fang L, Xu XJ, Cheng DJ, Yu CM, Wang DY, Tian YP, Yuan XF, Geng C, Li XD. A Predicted Stem Loop in Coat Protein-Coding Sequence of Tobacco Vein Banding Mosaic Virus Is Required for Efficient Replication. PHYTOPATHOLOGY 2022; 112:441-451. [PMID: 34191551 DOI: 10.1094/phyto-10-20-0463-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potyviral coat protein (CP) is involved in the replication and movement of potyviruses. However, little information is available on the roles of CP-coding sequence in potyviral infection. Here, we introduced synonymous substitutions to the codon C574G575C576 coding conserved residue arginine at position 192 (R192) of tobacco vein banding mosaic virus (TVBMV) CP. Substitution of the codon C574G575C576 to A574G575A576 or A574G575G576, but not C574G575A576, C574G575T576, or C574G575G576, reduced the replication, cell-to-cell movement, and accumulation of TVBMV in Nicotiana benthamiana plants, suggesting that C574 was critical for replication of TVBMV. Nucleotides 531 to 576 of the TVBMV CP-coding sequence were predicted to form a stem-loop structure, in which four consecutive C-G base pairs (C576-G531, C532-G575, C574-G533, and C534-G573) were located at the stem. Synonymous substitutions of R178-codon C532G533C534 to A532G533A534 and A532G533G534, but not C532G533A534, C532G533T534, or C532G533G534, reduced the replication levels, cell-to-cell, and systemic movement of TVBMV, suggesting that C532 was critical for TVBMV replication. Synonymous substitutions disrupting base pairs C576-G531 and C534-G573 did not affect viral accumulation. After three serial-passage inoculations, the accumulation of spontaneous mutant viruses was restored, and codons A532G533A534, A532G533G534, A574G575A576, or A574G575G576 of mutants were each separately changed to C532G533A534, C532G533G534, C574G575A576, or C574G575G576. Synonymous mutation of R178 and R192 also reduced viral accumulation in N. tabacum plants. Therefore, we concluded that the two consecutive C532-G575 and C574-G533 base pairs played critical roles in TVBMV replication via maintaining the stability of the stem-loop structures formed by nucleotides 531 to 576 of the CP-coding sequence.
Collapse
Affiliation(s)
- Zhi-Yong Yan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Le Fang
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiao-Jie Xu
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - De-Jie Cheng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Cheng-Ming Yu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - De-Ya Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xue-Feng Yuan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Chao Geng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xiang-Dong Li
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
4
|
Abrahamian P, Hammond J, Hammond RW. Development and optimization of a pepino mosaic virus-based vector for rapid expression of heterologous proteins in plants. Appl Microbiol Biotechnol 2021; 105:627-645. [PMID: 33394156 DOI: 10.1007/s00253-020-11066-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Plant-virus-derived vectors are versatile tools with multiple applications in agricultural and medical biotechnology. In this study, we developed pepino mosaic virus (PepMV) (family Alphaflexiviridae; genus Potexvirus) into a vector for heterologous protein expression in plants. PepMV was initially cloned in a step-wise manner, fully sequenced and the full-length infectious clone was tested for infectivity in Nicotiana benthamiana. Initial infectious clones resulted in poor replication of PepMV and lack of systemic movement. Mutations in the viral sequence affected systemic infection. Two suspected mutations were altered to restore systemic infectivity. PepMV infection was apparent as early as 4 days post agroinfiltration (dpa) inoculation in N. benthamiana. A multiple cloning site was inserted into the PepMV genome for introduction and expression of foreign genes. Several modifications to the wild-type vector were made, such as a replacing the native subgenomic promoter (SGP) with a heterologous SGP, and introduction of translational enhancers and terminators, to improve heterologous expression of the foreign gene-of-interest. GFP was used as a reporter for monitoring virus infection and protein production. Strong GFP expression was observed as early as 4 dpa with a translational enhancer. The PepMV-based vector produces rapid expression of the foreign gene in comparison to two other potexvirus-based vectors. GFP production was monitored over time and optimal protein production was recorded between 5 and 7 dpa. GFP protein levels reached up to 4% and decreased to 0.5% total soluble protein at 7 and 14 dpa, respectively. Future studies will evaluate this virus-based vector for large-scale production of pharmaceutical compounds. KEY POINTS: • A pepino mosaic virus isolate was developed into a plant-based expression vector. • Expression levels of the heterologous protein were comparable or exceeded previously developed viral vectors. • Protein levels in plants were highest between 5 and 7 days and decreased gradually.
Collapse
Affiliation(s)
- Peter Abrahamian
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - John Hammond
- United States National Arboretum, Floral and Nursery Plants Research Unit, USDA-ARS, Beltsville, MD, 20705, USA
| | - Rosemarie W Hammond
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
5
|
Zhai Y, Peng H, Neff MM, Pappu HR. Putative Auxin and Light Responsive Promoter Elements From the Tomato spotted wilt tospovirus Genome, When Expressed as cDNA, Are Functional in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:804. [PMID: 31316531 PMCID: PMC6611158 DOI: 10.3389/fpls.2019.00804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 05/31/2023]
Abstract
Members of the virus order Bunyavirales cause serious diseases in animals, humans and plants. Family Tospoviridae in this order contains only one genus Orthotospovirus, and members in this genus exclusively infect plants. Tomato spotted wilt tospovirus (TSWV) is considered one of the most economically important plants viruses. Little is known about the regulatory elements in the TSWV genome. Here we show that, when in the cDNA form, the 5'-upstream region of the TSWV-coded GN/GC gene (pGN/GC) possesses putative cis-regulatory elements, including an auxin responsive element (AuxRE) for binding of auxin response factors (ARFs), as well as a circadian clock-associated 1 (CCA1) protein binding site (CBS). Due to the lack of a reverse genetics system, we verified the functionality of these elements in Arabidopsis. pGN/GC showed light-suppressive promoter activity in transgenic Arabidopsis, and mutation in the CBS was sufficient to switch the activity to light inducible. Additionally, exogenous auxin treatments repressed the promoter activity of both wild type and CBS-mutated pGN/GC. Mutation in AuxRE in both promoters abolished their sensitivity to auxin. As transcriptional repressors, both CCA1 and ARF2 were able to bind to pGN/GC directly. To our knowledge, this is the first report that a 5'-terminal sequence of an RNA virus has light-and hormone-responsive promoter activities when expressed as cDNA in host plant's nuclear background. Our findings suggest new clues on the possible origin, evolution and function of the TSWV genomic sequence and its non-coding regions.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Chkuaseli T, White KA. Intragenomic Long-Distance RNA-RNA Interactions in Plus-Strand RNA Plant Viruses. Front Microbiol 2018; 9:529. [PMID: 29670583 PMCID: PMC5893793 DOI: 10.3389/fmicb.2018.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
Plant viruses that contain positive-strand RNA genomes represent an important class of pathogen. The genomes of these viruses harbor RNA sequences and higher-order RNA structures that are essential for the regulation of viral processes during infections. In recent years, it has become increasingly evident that, in addition to locally positioned RNA structures, long-distance intragenomic interactions, involving nucleotide base pairing over large distances, also contribute significantly to the control of various viral events. Viral processes that are modulated by such interactions include genome replication, translation initiation, translational recoding, and subgenomic mRNA transcription. Here, we review the structure and function of different types of long-distance RNA–RNA interactions, herein termed LDRIs, present in members of the family Tombusviridae and other plus-strand RNA plant viruses.
Collapse
Affiliation(s)
| | - K Andrew White
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Alvarez-Quinto RA, Cornejo-Franco JF, Quito-Avila DF. Characterization of a not so new potexvirus from babaco (Vasconcellea x heilbornii). PLoS One 2017; 12:e0189519. [PMID: 29244846 PMCID: PMC5731686 DOI: 10.1371/journal.pone.0189519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
A new member of the genus Potexvirus was fully sequenced and characterized. The virus was isolated from babaco (Vasconcellea x heilbornii), a natural hybrid native to Ecuador. The virus contains a 6,692 nt long genome organized in five open reading frames in an arrangement typical of other potexviruses. Sequence comparisons revealed close relatedness with Papaya mosaic virus (PapMV), Alternathera mosaic virus (AltMV) and Senna mosaic virus (SenMV), exhibiting nucleotide identities up to 67% for the polymerase (Pol) and 68% for the coat protein (CP), with deduced amino acid identities of 70% and 72% for the Pol and CP, respectively. The presence of an AlkB domain, in the polymerase region, was observed. Terminal nucleotide sequences were conserved across potexviruses with characteristic motifs and predicted secondary structures at the 3' UTR. Although serologically undistinguishable from PapMV and AltMV, the new virus showed differences in host range and symptom induction. The name babaco mosaic virus is proposed for this newly characterized Potexvirus. The complete genome sequence of the new virus has been deposited in NCBI GenBank under accession number MF978248.
Collapse
Affiliation(s)
- Robert A. Alvarez-Quinto
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Juan F. Cornejo-Franco
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Diego F. Quito-Avila
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
8
|
Odokonyero D, Mendoza MR, Moffett P, Scholthof HB. Tobacco rattle virus (TRV)-Mediated Silencing of Nicotiana benthamiana ARGONAUTES (NbAGOs) Reveals New Antiviral Candidates and Dominant Effects of TRV-NbAGO1. PHYTOPATHOLOGY 2017; 107:977-987. [PMID: 28636437 DOI: 10.1094/phyto-02-17-0049-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The objective of this study was to determine the contribution of different ARGONAUTE proteins in Nicotiana benthamiana (NbAGOs) to the defense against silencing sensitive GFP-expressing viral constructs based on Tomato bushy stunt virus (TBSV) (Tombusvirus), Sunn-hemp mosaic virus (Tobamovirus), and Foxtail mosaic virus (Potexvirus). Upon Tobacco rattle virus (TRV)-mediated down-regulation of NbAGO1, 4, 5, or 6, no effects were noted on susceptibility to any virus construct, whereas knockdown of NbAGO2 specifically prevented silencing of P19-defective TBSV (TGdP19). Down-regulation of a new gene referred to as NbAGO5L showed some reduced silencing for TGdP19 but not for the other two virus constructs, whereas silencing of NbAGO7 gave rise to a subtle increase in susceptibility to all three viruses. Co-infiltrating different TRV-NbAGO constructs simultaneously did not enhance virus susceptibility. However, an unexpected finding was that whenever the TRV-NbAGO1 construct was present, this compromised silencing of genes targeted by co-infiltrated constructs, as shown upon co-infiltration of TRV-NbAGO1 with either TRV-NbAGO2 or TRV-Sul (targeting Magnesium chelatase I). Only after a prolonged period (approximately 2 months) did TRV-Sul-mediated systemic bleaching occur in these co-infected plants, suggesting that TRV-NbAGO1 hinders the silencing ability of other TRV-NbAGO constructs. In conclusion, this study revealed new antiviral NbAGOs and dominant effects of silencing NbAGO1.
Collapse
Affiliation(s)
- Denis Odokonyero
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maria R Mendoza
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Peter Moffett
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Herman B Scholthof
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Guo S, Kierzek E, Chen G, Zhou YJ, Wong SM. TMV mutants with poly(A) tracts of different lengths demonstrate structural variations in 3'UTR affecting viral RNAs accumulation and symptom expression. Sci Rep 2015; 5:18412. [PMID: 26678425 PMCID: PMC4683447 DOI: 10.1038/srep18412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022] Open
Abstract
The upstream pseudoknots domain (UPD) of Tobacco mosaic virus (TMV) is located at the 3'-untranslated region (UTR). It plays an important role in virus replication and translation. To determine the importance of UPD and 3'-UTR, and the effects of introduced RNA elements in TMV 3'-UTR, a series of TMV mutants with internal poly(A) tract upstream of UPD was constructed for structural analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). TMV(24A+UPD) and TMV(42A+UPD) formed a similar structure as that of TMV 3'-UTR, but TMV(62A+UPD) structures altered by the introduced poly(A) tract. In addition, TMV(24A+UPD) had a higher viral RNAs accumulation than TMV in N. benthamiana protoplasts, and induced lethal symptoms in the infected plants. TMV(62A+UPD) showed a drastically reduced accumulation, its coat protein was undetectable in protoplasts, and the inoculated plants remained symptomless. This study analyzed the structures of 3'-UTR of TMV and found that the longer poly(A) tract introduced upstream of UPD reduced viral RNAs accumulation and induced milder symptoms in N. benthamiana. In conclusion, different lengths of the internal poly(A) tract introduced into the TMV 3'UTR lead to structural variations that affect virus accumulation and symptom expression.
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yi-Jun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, PRC
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
- Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
- National University of Singapore Research Institute in Suzhou, Jiangsu, PRC
| |
Collapse
|
10
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
11
|
Osman TAM, Olsthoorn RCL, Livieratos IC. Role of the Pepino mosaic virus 3'-untranslated region elements in negative-strand RNA synthesis in vitro. Virus Res 2014; 190:110-7. [PMID: 25051146 DOI: 10.1016/j.virusres.2014.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element.
Collapse
Affiliation(s)
- Toba A M Osman
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece; Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - René C L Olsthoorn
- Department of Molecular Genetics, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Ioannis C Livieratos
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece.
| |
Collapse
|
12
|
Park MR, Seo JK, Kim KH. Viral and nonviral elements in potexvirus replication and movement and in antiviral responses. Adv Virus Res 2013; 87:75-112. [PMID: 23809921 DOI: 10.1016/b978-0-12-407698-3.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Potato virus X, a member of the genus Potexvirus, special sequences and structures at the 5' and 3' ends of the nontranslated region function as cis-acting elements for viral replication. These elements greatly affect interactions between viral RNAs and those between viral RNAs and host factors. The potexvirus genome encodes five open-reading frames. Viral replicase, which is required for the synthesis of viral RNA, binds viral RNA elements and host factors to form a viral replication complex at the host cellular membrane. The coat protein (CP) and three viral movement proteins (TGB1, TGB2, and TGB3) have critical roles in mediating cell-to-cell viral movement through plasmodesmata by virion formation or by nonvirion ribonucleoprotein (RNP) complex formation with viral movement proteins (TGBs). The RNP complex, like TGB1-CP-viral RNA, is associated with viral replicase and used for immediate reinitiation of viral replication in newly invaded cells. Higher plants have defense mechanisms against potexviruses such as Rx-mediated resistance and RNA silencing. The CP acts as an avirulence effector for plant defense mechanisms, while TGB1 functions as a viral suppressor of RNA silencing, which is the mechanism of innate immune resistance. Here, we describe recent findings concerning the involvement of viral and host factors in potexvirus replication and in antiviral responses to potexvirus infection.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
13
|
Komatsu K, Hirata H, Fukagawa T, Yamaji Y, Okano Y, Ishikawa K, Adachi T, Maejima K, Hashimoto M, Namba S. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Res 2012; 167:8-15. [DOI: 10.1016/j.virusres.2012.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 11/16/2022]
|
14
|
Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012; 37:125-33. [PMID: 22357210 DOI: 10.1007/s12038-011-9177-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
Abstract
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
Collapse
Affiliation(s)
- Noemi Cerovska
- Institute of Experimental Botany, v. v. i., Academy of Sciences of Czech Republic, Na Karlovce 1a, 16000 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A local, interactive network of 3' RNA elements supports translation and replication of Turnip crinkle virus. J Virol 2012; 86:4065-81. [PMID: 22345459 DOI: 10.1128/jvi.07019-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) was previously identified as forming a highly interactive structure with a ribosome-binding tRNA-shaped structure (TSS) acting as a scaffold and undergoing a widespread conformational shift upon binding to RNA-dependent RNA polymerase (RdRp). Tertiary interactions in the region were explored by identifying two highly detrimental mutations within and adjacent to a hairpin H4 upstream of the TSS that reduce translation in vivo and cause identical structural changes in the loop of the 3' terminal hairpin Pr. Second-site changes that compensate for defects in translation/accumulation and reverse the structural differences in the Pr loop were found in the Pr stem, as well as in a specific stem within the TSS and within the capsid protein (CP) coding region, suggesting that the second-site changes were correcting a conformational defect and not restoring specific base pairing. The RdRp-mediated conformational shift extended upstream through this CP open reading frame (ORF) region after bypassing much of an intervening, largely unstructured region, supporting a connection between 3' elements and coding region elements. These data suggest that the Pr loop, TSS, and H4 are central elements in the regulation of translation and replication in TCV and allow for development of an RNA interactome that maps the higher-order structure of a postulated RNA domain within the 3' region of a plus-strand RNA virus.
Collapse
|
16
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gene N proximal and distal RNA motifs regulate coronavirus nucleocapsid mRNA transcription. J Virol 2011; 85:8968-80. [PMID: 21715479 DOI: 10.1128/jvi.00869-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronavirus subgenomic mRNA (sgmRNA) transcription requires a discontinuous RNA synthesis mechanism driven by the transcription-regulating sequences (TRSs), located at the 3' end of the genomic leader (TRS-L) and also preceding each gene (TRS-B). In transmissible gastroenteritis virus (TGEV), the free energy of TRS-L and cTRS-B (complement of TRS-B) duplex formation is one of the factors regulating the transcription of sgmRNAs. In addition, N gene sgmRNA transcription is controlled by a transcription-regulating motif, including a long-distance RNA-RNA interaction between complementary proximal and distal elements. The extension of complementarity between these two sequences increased N gene transcription. An active domain, a novel essential component of the transcription-regulating motif, has been identified. The active domain primary sequence was necessary for its activity. Relocation of the active domain upstream of the N gene TRS core sequence in the absence of the proximal and distal elements also enhanced sgmRNA N transcription. According to the proposed working model for N gene transcriptional activation, the long-distance RNA-RNA interaction relocates the distant active domain in close proximity with the N gene TRS, which probably increases the frequency of template switching during the synthesis of negative RNA. The transcription-regulating motif has been optimized to a minimal sequence showing a 4-fold activity increase in relation to the native RNA motif. Full-length TGEV infectious viruses were generated with the optimized transcription-regulating motif, which enhanced by 5-fold the transcription of the 3a gene and can be used in expression vectors based in coronavirus genomes.
Collapse
|
18
|
Plchova H, Moravec T, Hoffmeisterova H, Folwarczna J, Cerovska N. Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expr Purif 2011; 77:146-52. [PMID: 21266198 DOI: 10.1016/j.pep.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
Abstract
The E7 oncoprotein from Human papillomavirus type 16 (HPV16) is an attractive candidate for anti-cancer therapeutical vaccine development. In this study, we engineered different fusions of mutagenized coding sequence of E7 oncoprotein (E7ggg) with coat protein of Potato virus X (PVX CP) both on 5'- and 3'-terminus of PVX CP and evaluated the influence of the length of linker (no linker, 4, 15aa) connecting PVX CP and E7ggg on their production. At first the expression in Escherichia coli was conducted to assess the characteristics of the recombinant protein prior to be further produced in plants, that is, resultant proteins were used for screening of their immunological reactivity with antibodies against PVX CP and E7. Fusion proteins successfully expressed in bacteria and plants were partially purified and their reactivity and ability to form virus-like particles were evaluated with anti-E7 antibodies.
Collapse
Affiliation(s)
- Helena Plchova
- Academy of Sciences of the Czech Republic, 160 00 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Sempere RN, Gómez P, Truniger V, Aranda MA. Development of expression vectors based on pepino mosaic virus. PLANT METHODS 2011; 7:6. [PMID: 21396092 PMCID: PMC3065447 DOI: 10.1186/1746-4811-7-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/11/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. RESULTS Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. CONCLUSIONS A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long-distance movement.
Collapse
Affiliation(s)
- Raquel N Sempere
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Bioprodin SL, Edificio CEEIM, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Department of Zoology, Oxford University, Oxford OX1 3PS, UK
| | - Verónica Truniger
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
20
|
Sola I, Mateos-Gomez PA, Almazan F, Zuñiga S, Enjuanes L. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biol 2011; 8:237-48. [PMID: 21378501 PMCID: PMC3230552 DOI: 10.4161/rna.8.2.14991] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins. By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD) it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region. Many cellular proteins interacting with regulatory CoV RNA sequences are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription. In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, CNB, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Villordo SM, Alvarez DE, Gamarnik AV. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA (NEW YORK, N.Y.) 2010; 16:2325-2335. [PMID: 20980673 PMCID: PMC2995394 DOI: 10.1261/rna.2120410] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.
Collapse
|
22
|
Yuan X, Shi K, Young MYL, Simon AE. The terminal loop of a 3' proximal hairpin plays a critical role in replication and the structure of the 3' region of Turnip crinkle virus. Virology 2010; 402:271-80. [PMID: 20403628 DOI: 10.1016/j.virol.2010.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 01/26/2023]
Abstract
Plus-strand RNA viruses serve as templates for translation and then transcription by newly synthesized RdRp. A ribosome-binding tRNA-shaped structure (TSS) and upstream hairpin H4 in the 3' UTR of Turnip crinkle virus (TCV) play key roles in translation and transcription. Second-site mutations generated to compensate for altering the critical asymmetric internal loop of H4 included a three- to two-base alteration in the terminal loop of a 3' proximal hairpin (Pr) located downstream of the TSS. Unlike the non-deleterious three-base alteration, single mutations in Pr loop were detrimental for RdRp transcription while enhancing translation and RdRp binding. One deleterious mutation in the Pr loop altered the structures of both the TSS and H4. These complex interactions in the 3' UTR support a compact structural arrangement likely permitting RdRp access to a number of residues within a 195-base region including the 3' end that are necessary for efficient transcription initiation.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
23
|
Draghici HK, Varrelmann M. Evidence for similarity-assisted recombination and predicted stem-loop structure determinant in potato virus X RNA recombination. J Gen Virol 2010; 91:552-62. [PMID: 19864501 DOI: 10.1099/vir.0.014712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Virus RNA recombination, one of the main factors for genetic variability and evolution, is thought to be based on different mechanisms. Here, the recently described in vivo potato virus X (PVX) recombination assay [Draghici, H.-K. & Varrelmann, M. (2009). J Virol 83, 7761-7769] was applied to characterize structural parameters of recombination. The assay uses an Agrobacterium-mediated expression system incorporating a PVX green fluorescent protein (GFP)-labelled full-length clone. The clone contains a partial coat protein (CP) deletion that causes defectiveness in cell-to-cell movement, together with a functional CP+3' non-translated region (ntr) transcript, in Nicotiana benthamiana leaf tissue. The structural parameters assessed were the length of sequence overlap, the distance between mutations and the degree of sequence similarity. The effects on the observed frequency of reconstitution and the composition of the recombination products were characterized. Application of four different type X intact PVX CP genes with variable composition allowed the estimation of the junction sites of precise homologous recombination. Although one template switch would have been sufficient for functional reconstitution, between one and seven template switches were observed. Use of PVX-GFP mutants with CP deletions of variable length resulted in a linear decrease of the reconstitution frequency. The critical length observed for homologous recombination was 20-50 nt. Reduction of the reconstitution frequency was obtained when a phylogenetically distant PVX type Bi CP gene was used. Finally, the prediction of CP and 3'-ntr RNA secondary structure demonstrated that recombination-junction sites were located mainly in regions of stem-loop structures, allowing the recombination observed to be categorized as similarity-assisted.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
24
|
Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MAT, Payton M, Verchot-Lubicz J. Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 2009; 393:272-85. [PMID: 19729179 DOI: 10.1016/j.virol.2009.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/09/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Department of Entomology and Plant Pathology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tzanetakis IE, Tsai CH, Martin RR, Dreher TW. A tymovirus with an atypical 3'-UTR illuminates the possibilities for 3'-UTR evolution. Virology 2009; 392:238-45. [PMID: 19664793 DOI: 10.1016/j.virol.2009.06.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 02/02/2023]
Abstract
We report the complete genome sequence of Dulcamara mottle virus (DuMV), confirming its membership within the Tymovirus genus, which was previously based on physical and pathology evidence. The 5'-untranslated region (UTR) and coding region of DuMV RNA have the typical characteristics of tymoviral RNAs. In contrast, the 3'-UTR is the longest and most unusual yet reported for a tymovirus, possessing an internal poly(A) tract, lacking a 3'-tRNA-like structure (TLS) and terminating at the 3'-end with -UUC instead of the typical -CC(A). An expressible cDNA clone was constructed and shown to be capable of producing infectious DuMV genomic RNAs with -UUC 3'-termini. A chimeric Turnip yellow mosaic virus (TYMV) genome bearing the DuMV 3'-UTR in place of the normal TLS was constructed in order to investigate the ability of the TYMV replication proteins to amplify RNAs with -UUC instead of -CC(A) 3'-termini. The chimeric genome was shown to be capable of replication and systemic spread in plants, although amplification was very limited. These experiments suggest the way in which DuMV may have evolved from a typical tymovirus, and illuminate the ways in which viral 3'-UTRs in general can evolve.
Collapse
|
26
|
Park MR, Park SH, Cho SY, Kim KH. Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 2009; 386:257-69. [PMID: 19215953 DOI: 10.1016/j.virol.2008.12.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/01/2008] [Accepted: 12/31/2008] [Indexed: 11/24/2022]
Abstract
The interactions of viral coat protein (CP) and host factors play an important role in viral replication and/or host defense mechanism. In this study, we constructed Nicotiana benthamiana cDNA library to find host factors interacting with Potato virus X (PVX) CP. Using yeast two-hybrid assay, we screened 3.3 x 10(6) independent yeast transformants from N. benthamiana cDNA library and identified six positive clones. One positive clone, named PVX CP-interacting protein 1 (NbPCIP1), is a plant-specific protein with homologue in N. tabacum (GenBank accession no. AB04049). We confirmed the PVX CP-NbPCIP1 interaction using yeast-two hybrid assay in yeast, protein-protein binding assay in vitro, and bimolecular fluorescent complementation assay in planta. Quantitative real-time RT-PCR analysis showed that the mRNA level of NbPCIP1 increased in PVX-infected N. benthamiana plants as compared to that of healthy plants. The green fluorescent protein (sGFP)-fused NbPCIP1 (NbPCIP1-sGFP) was localized in ER or ER-associated granular-like structure of cells. When we co-express NbPCIP1-sGFP and red fluorescent protein (RFP)-fused PVX CP (PVX CP-RFP), which were introduced by transiently expressing these proteins in N. benthamiana protoplasts and epidermal cells, however, we observed the co-localization of these proteins in the inclusion body-like complex in areas surrounding nucleus. Transient over-expression and transgene silencing of NbPCIP1 assay analysis indicated that NbPCIP1 plays a critical role in viral replication during PVX infection in host plant.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Huang YW, Hu CC, Lin CA, Liu YP, Tsai CH, Lin NS, Hsu YH. Structural and functional analyses of the 3' untranslated region of Bamboo mosaic virus satellite RNA. Virology 2009; 386:139-53. [PMID: 19201437 DOI: 10.1016/j.virol.2009.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/16/2008] [Accepted: 01/10/2009] [Indexed: 12/29/2022]
Abstract
The 3'-untranslated region (UTR) of RNA genomes of viruses and satellite RNAs plays essential roles in viral replication and transcription. The structural features of the 3'-UTR of the satellite RNA of Bamboo mosaic virus (satBaMV) involved in its replication were analyzed in this study. By the use of enzymatic probing, the secondary structure of satBaMV 3'-UTR was confirmed to comprise two small stem-loops (SLA and SLB), one large stem-loop (SLC), and a poly(A) tail of mainly 75-200 adenylate residues, which is similar to those on the genomic RNA of the helper virus, BaMV. Five sets of mutants of satBaMV were constructed to analyze the biological functions of the structural elements of the 3'-UTR. The data revealed that both the polyadenylation signal and poly(A) tail are required for satBaMV RNA replication. The structural conservation of SLA, SLB, and SLC is also important for efficient satBaMV accumulation, whereas the nucleotides in these regions may also possess sequence-specific functions. In contrast to the requirement for the accumulation of BaMV genomic RNA, mutations in the conserved hexanucleotide (ACCUAA) in the loop region of SLC had limited effect on the accumulation of satBaMV RNA. In addition, replacing the 5'-, 3'-UTR, or both regions of satBaMV by those of BaMV greatly decreased the accumulation of satBaMV RNA. Taken together, these data indicate that satBaMV might have adopted a 3'-UTR structure similar to that of BaMV but may have evolved distinct features for its efficient replication.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
28
|
Cellular proteins mediate 5'-3' end contacts of Norwalk virus genomic RNA. Virology 2009; 387:322-30. [PMID: 19324388 DOI: 10.1016/j.virol.2009.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/30/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022]
Abstract
Long-range RNA-RNA interactions between the 5' and 3' ends are a common feature involved in the regulation of both the initiation of translation and the synthesis of the viral genomic RNAs. These interactions either take place by direct RNA-RNA contacts or can be mediated by proteins. By in silico analysis, we found three possible complementary sequences (CS) between the 5' and the 3' ends of the Norwalk virus genomic RNA. Co-precipitation assays demonstrated that physical contacts between the 5' and the 3' ends of the NV genomic RNA were stabilized by cellular proteins. Mutations and deletions within these regions, that altered the formation of the CS-1 motif disrupted the 5'-3' end contacts, while mutations that restore complementarity of the CS-1 motif, recover the ability to form these contacts. These results suggest that the NV genomic 5'-3' end contacts initially occur by RNA-RNA interactions but are further stabilized by cellular proteins.
Collapse
|
29
|
Wu B, Pogany J, Na H, Nicholson BL, Nagy PD, White KA. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes. PLoS Pathog 2009; 5:e1000323. [PMID: 19266082 PMCID: PMC2648310 DOI: 10.1371/journal.ppat.1000323] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023] Open
Abstract
Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA–RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA–RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA–based interaction spanning ∼3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes. Plus-strand (i.e. messenger-sensed) RNA viruses are responsible for significant diseases in plants and animals. The single-stranded RNA genomes of these viruses serve as templates for translation of viral proteins and perform other essential functions that generally involve local RNA structures, such as RNA hairpins. Interestingly, plant tombusviruses utilize a number of long-range intra-genomic RNA–RNA interactions to regulate important events during infection of their hosts, i.e. viral translation and transcription. Here, we report that an additional essential tombusvirus process, viral RNA replication, also requires a long-range RNA–RNA interaction. Our analyses indicate a role for this RNA–based interaction in the assembly of the viral replicase, which is responsible for executing viral RNA synthesis. This information was used to generate a comprehensive higher-order RNA structural model for functional long-range interactions in the genome of this eukaryotic RNA virus. The model highlights a critical role for global RNA structure in multiple viral processes that are necessary for successful infection of hosts.
Collapse
Affiliation(s)
- Baodong Wu
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Huang YW, Hu CC, Lin NS, Tsai CH, Hsu YH. In vitro replication of Bamboo mosaic virus satellite RNA. Virus Res 2008; 136:98-106. [PMID: 18538884 DOI: 10.1016/j.virusres.2008.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 04/13/2008] [Accepted: 04/28/2008] [Indexed: 01/17/2023]
Abstract
An in vitro system was applied to analyze the replication of a satellite RNA of Bamboo mosaic virus (BaMV), designated satBaMV RNA, using solubilized membrane-bound RNA-dependent RNA polymerase (RdRp) complexes isolated from BaMV-infected Nicotiana benthamiana. After removal of endogenous templates, the RdRp complexes of BaMV catalyzed RNA synthesis upon the addition of the full-length positive (+)- or negative (-)-strand satBaMV RNA transcripts used as templates. Both (+)- and (-)-satBaMV RNA products were detected when only the (+)-satBaMV RNA was used as a template in the in vitro RdRp assays, which further demonstrated the capability of the RdRp preparation to complete the replication cycles of satBaMV RNAs. In addition, use of 5' rapid amplification of cDNA ends and DNA sequencing showed that the BaMV RdRp preparation could specifically recognize the promoter sequences in the (-)-satBaMV RNA for accurate initiation of (+)-satBaMV RNA synthesis. The results suggested that the same enzyme complexes could be used for the replication of both BaMV genomic and satBaMV RNAs. The soluble and template-dependent RdRp could be further used in mechanistic studies, such as those analyzing the cis-elements and candidate host factors required for satBaMV RNA replication in vitro.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Park MR, Kwon SJ, Choi HS, Hemenway CL, Kim KH. Mutations that alter a repeated ACCA element located at the 5' end of the Potato virus X genome affect RNA accumulation. Virology 2008; 378:133-41. [PMID: 18589472 DOI: 10.1016/j.virol.2008.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/08/2008] [Accepted: 05/08/2008] [Indexed: 11/19/2022]
Abstract
The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
32
|
Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 2008; 374:170-85. [PMID: 18234265 DOI: 10.1016/j.virol.2007.12.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/13/2007] [Accepted: 12/16/2007] [Indexed: 01/12/2023]
Abstract
We initially studied requirements for 5' and 3' terminal regions (TRs) in flavivirus negative strand synthesis in vitro. Purified West Nile (WNV) and dengue-2 (DV2) RNA polymerases were both active with all-WNV or all-DV2 subgenomic RNAs containing the 5'- and 3'TRs of the respective genomes. However, subgenomic RNAs in which the 5'-noncoding region (5'NCR) or the 5'ORF (nts 100-230) in the 5'TR were substituted by analogous sequences derived from the heterologous genome were modestly to severely defective as templates for either polymerase. We also evaluated the infectivity of substitution mutant WNV genome-length RNAs. All WNV RNAs containing the DV2 3'SL were unable to replicate. However, WNV RNAs containing substitutions of the 5'NCR, the capsid gene, and/or 3'NCR nt sequences upstream from the WNV 3'SL, by the analogous DV2 nt sequences, were infectious. Combined results suggested that replication was not dependent upon species homology between the 3'SL and NS5.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Vector-Borne Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review, CBER, FDA, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
33
|
Nickens DG, Hardy RW. Structural and functional analyses of stem-loop 1 of the Sindbis virus genome. Virology 2007; 370:158-72. [PMID: 17900652 DOI: 10.1016/j.virol.2007.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/27/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Alphavirus genome function is controlled by elements at both the 5' and 3' ends. The 5' 220 nt of the Sindbis virus genome is predicted to consist of four stem-loop structures the first of which has been demonstrated to be required for efficient minus-strand RNA synthesis. To understand the role of the structure of the first stem-loop (SL1) in regulating genome function, we performed enzymatic and chemical probing analyses. There were significant differences between the computer-predicted structures and our experimental data. In the 5' terminus, two loop regions appear to be interacting in a complex and interdependent fashion with non-Watson-Crick interactions involving multiple adenosine residues playing a critical role in determining the overall structure. Some of the mutations that disrupted these interactions had significant affects, both positive and negative, on minus-strand synthesis, and translational efficiency was generally increased. In the context of full-length virus, these structural changes resulted in reduced virus growth kinetics particularly in mosquito cells suggesting host-specific effects of mutations in this region of the viral genome. Possible SL1 structures based on our experimental data are discussed.
Collapse
Affiliation(s)
- David G Nickens
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
34
|
Verchot-Lubicz J, Ye CM, Bamunusinghe D. Molecular biology of potexviruses: recent advances. J Gen Virol 2007; 88:1643-1655. [PMID: 17485523 DOI: 10.1099/vir.0.82667-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, R gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5′ non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport. The 3′ NTR regulates both plus- and minus-strand RNA synthesis. How the triple gene-block proteins interact for virus movement is still elusive. As the potato virus X (PVX) TGBp1 protein gates plasmodesmata, regulates virus translation and is a suppressor of RNA silencing, further research is needed to determine how these properties contribute to propelling virus through the plasmodesmata. Specifically, TGBp1 suppressor activity is required for virus movement, but how the silencing machinery relates to plasmodesmata is not known. The TGBp2 and TGBp3 proteins are endoplasmic reticulum (ER)-associated proteins required for virus movement. TGBp2 associates with ER-derived vesicles that traffic along the actin network. Future research will determine whether the virus-induced vesicles are cytopathic structures regulating events along the ER or are vehicles carrying virus to the plasmodesmata for transfer into neighbouring cells. Efforts to assemble virions in vitro identified a single-tailed particle (STP) comprising RNA, coat protein (CP) and TGBp1. It has been proposed that TGBp1 aids in transport of virions or STP between cells and ensures translation of RNA in the receiving cells. PVX is also a tool for studying Avr–R gene interactions and gene silencing in plants. The PVX CP is the elicitor for the Rx gene. Recent reports of the PVX CP reveal how CP interacts with the Rx gene product.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Chang-Ming Ye
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Devinka Bamunusinghe
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|