1
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
2
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
3
|
Awuah-Mensah G, McDonald J, Steketee PC, Autheman D, Whipple S, D'Archivio S, Brandt C, Clare S, Harcourt K, Wright GJ, Morrison LJ, Gadelha C, Wickstead B. Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo. PLoS Pathog 2021; 17:e1009224. [PMID: 33481935 PMCID: PMC7870057 DOI: 10.1371/journal.ppat.1009224] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/08/2021] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Animal African trypanosomiasis (AAT) is a severe, wasting disease of domestic livestock and diverse wildlife species. The disease in cattle kills millions of animals each year and inflicts a major economic cost on agriculture in sub-Saharan Africa. Cattle AAT is caused predominantly by the protozoan parasites Trypanosoma congolense and T. vivax, but laboratory research on the pathogenic stages of these organisms is severely inhibited by difficulties in making even minor genetic modifications. As a result, many of the important basic questions about the biology of these parasites cannot be addressed. Here we demonstrate that an in vitro culture of the T. congolense genomic reference strain can be modified directly in the bloodstream form reliably and at high efficiency. We describe a parental single marker line that expresses T. congolense-optimized T7 RNA polymerase and Tet repressor and show that minichromosome loci can be used as sites for stable, regulatable transgene expression with low background in non-induced cells. Using these tools, we describe organism-specific constructs for inducible RNA-interference (RNAi) and demonstrate knockdown of multiple essential and non-essential genes. We also show that a minichromosomal site can be exploited to create a stable bloodstream-form line that robustly provides >40,000 independent stable clones per transfection-enabling the production of high-complexity libraries of genome-scale. Finally, we show that modified forms of T. congolense are still infectious, create stable high-bioluminescence lines that can be used in models of AAT, and follow the course of infections in mice by in vivo imaging. These experiments establish a base set of tools to change T. congolense from a technically challenging organism to a routine model for functional genetics and allow us to begin to address some of the fundamental questions about the biology of this important parasite.
Collapse
Affiliation(s)
| | - Jennifer McDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Delphine Autheman
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sarah Whipple
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Katherine Harcourt
- Pathogen Support Team, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Bråte J, Neumann RS, Fromm B, Haraldsen AAB, Tarver JE, Suga H, Donoghue PCJ, Peterson KJ, Ruiz-Trillo I, Grini PE, Shalchian-Tabrizi K. Unicellular Origin of the Animal MicroRNA Machinery. Curr Biol 2018; 28:3288-3295.e5. [PMID: 30318349 PMCID: PMC6206976 DOI: 10.1016/j.cub.2018.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/22/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The emergence of multicellular animals was associated with an increase in phenotypic complexity and with the acquisition of spatial cell differentiation and embryonic development. Paradoxically, this phenotypic transition was not paralleled by major changes in the underlying developmental toolkit and regulatory networks. In fact, most of these systems are ancient, established already in the unicellular ancestors of animals [1-5]. In contrast, the Microprocessor protein machinery, which is essential for microRNA (miRNA) biogenesis in animals, as well as the miRNA genes themselves produced by this Microprocessor, have not been identified outside of the animal kingdom [6]. Hence, the Microprocessor, with the key proteins Pasha and Drosha, is regarded as an animal innovation [7-9]. Here, we challenge this evolutionary scenario by investigating unicellular sister lineages of animals through genomic and transcriptomic analyses. We identify in Ichthyosporea both Drosha and Pasha (DGCR8 in vertebrates), indicating that the Microprocessor complex evolved long before the last common ancestor of animals, consistent with a pre-metazoan origin of most of the animal developmental gene elements. Through small RNA sequencing, we also discovered expressed bona fide miRNA genes in several species of the ichthyosporeans harboring the Microprocessor. A deep, pre-metazoan origin of the Microprocessor and miRNAs comply with a view that the origin of multicellular animals was not directly linked to the innovation of these key regulatory components.
Collapse
Affiliation(s)
- Jon Bråte
- Centre for Epigenetics, Development and Evolution (CEDE) and Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- Centre for Epigenetics, Development and Evolution (CEDE) and Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Arthur A B Haraldsen
- Centre for Epigenetics, Development and Evolution (CEDE) and Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - James E Tarver
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima 727-0023, Japan
| | | | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain
| | - Paul E Grini
- Centre for Epigenetics, Development and Evolution (CEDE) and Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Centre for Epigenetics, Development and Evolution (CEDE) and Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. J Mol Evol 2017; 84:104-115. [PMID: 28210761 DOI: 10.1007/s00239-017-9780-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
We screened the genomes of a broad panel of kinetoplastid protists for genes encoding proteins associated with the RNA interference (RNAi) system using probes from the Argonaute (AGO1), Dicer1 (DCL1), and Dicer2 (DCL2) genes of Leishmania brasiliensis and Crithidia fasciculata. We identified homologs for all the three of these genes in the genomes of a subset of these organisms. However, several of these organisms lacked evidence for any of these genes, while others lacked only DCL2. The open reading frames encoding these putative proteins were structurally analyzed in silico. The alignments indicated that the genes are homologous with a high degree of confidence, and three-dimensional structural models strongly supported a functional relationship to previously characterized AGO1, DCL1, and DCL2 proteins. Phylogenetic analysis of these putative proteins showed that these genes, when present, evolved in parallel with other nuclear genes, arguing that the RNAi system genes share a common progenitor, likely across all Kinetoplastea. In addition, the genome segments bearing these genes are highly conserved and syntenic, even among those taxa in which they are absent. However, taxa in which these genes are apparently absent represent several widely divergent branches of kinetoplastids, arguing that these genes were independently lost at least six times in the evolutionary history of these organisms. The mechanisms responsible for the apparent coordinate loss of these RNAi system genes independently in several lineages of kinetoplastids, while being maintained in other related lineages, are currently unknown.
Collapse
|
6
|
Catta-Preta CMC, Dos Santos Pascoalino B, de Souza W, Mottram JC, Motta MCM, Schenkman S. Reduction of Tubulin Expression in Angomonas deanei by RNAi Modifies the Ultrastructure of the Trypanosomatid Protozoan and Impairs Division of Its Endosymbiotic Bacterium. J Eukaryot Microbiol 2016; 63:794-803. [PMID: 27194398 DOI: 10.1111/jeu.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, YO10 5DD, United Kingdom
| | - Bruno Dos Santos Pascoalino
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669, L6A, 04039-032, São Paulo, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, YO10 5DD, United Kingdom
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil.
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669, L6A, 04039-032, São Paulo, Brazil.
| |
Collapse
|
7
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora. FRONTIERS IN PLANT SCIENCE 2016; 7:284. [PMID: 27014308 PMCID: PMC4791657 DOI: 10.3389/fpls.2016.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.
Collapse
Affiliation(s)
- Stephanie R. Bollmann
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Yufeng Fang
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA
| | - Caroline M. Press
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Brett M. Tyler
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Niklaus J. Grünwald
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Niklaus J. Grünwald
| |
Collapse
|
9
|
A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System. PLoS One 2015; 10:e0133740. [PMID: 26230096 PMCID: PMC4521922 DOI: 10.1371/journal.pone.0133740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022] Open
Abstract
Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.
Collapse
|
10
|
Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 2014; 21:743-53. [PMID: 25192263 DOI: 10.1038/nsmb.2879] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
Argonaute proteins are conserved throughout all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participate in host defense by DNA interference, whereas eukaryotic Argonaute proteins (eAgos) control a wide range of processes by RNA interference. Here we review molecular mechanisms of guide and target binding by Argonaute proteins, and describe how the conformational changes induced by target binding lead to target cleavage. On the basis of structural comparisons and phylogenetic analyses of pAgos and eAgos, we reconstruct the evolutionary journey of the Argonaute proteins through the three domains of life and discuss how different structural features of pAgos and eAgos relate to their distinct physiological roles.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Kira Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanli Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
11
|
Tschoeke DA, Nunes GL, Jardim R, Lima J, Dumaresq AS, Gomes MR, de Mattos Pereira L, Loureiro DR, Stoco PH, de Matos Guedes HL, de Miranda AB, Ruiz J, Pitaluga A, Silva FP, Probst CM, Dickens NJ, Mottram JC, Grisard EC, Dávila AM. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite. Evol Bioinform Online 2014; 10:131-53. [PMID: 25336895 PMCID: PMC4182287 DOI: 10.4137/ebo.s13759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the “Mexicana complex”, reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.
Collapse
Affiliation(s)
- Diogo A Tschoeke
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Gisele L Nunes
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Jardim
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Joana Lima
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aline Sr Dumaresq
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Monete R Gomes
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leandro de Mattos Pereira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Daniel R Loureiro
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil
| | - Patricia H Stoco
- Laboratório de Protozoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. ; Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Antonio Basilio de Miranda
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jeronimo Ruiz
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Instituto René Rachou (Fiocruz/IRR), Belo Horizonte, MG, Brazil
| | - André Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Floriano P Silva
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Christian M Probst
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Instituto Carlos Chagas (Fiocruz/ICC), Curitiba, PR, Brazil
| | - Nicholas J Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Immunity, Infection and Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Edmundo C Grisard
- Laboratório de Protozoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alberto Mr Dávila
- Pólo de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (Fiocruz/IOC), Rio de Janeiro, RJ, Brazil. ; Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
13
|
RNAi pathway genes are resistant to small RNA mediated gene silencing in the protozoan parasite Entamoeba histolytica. PLoS One 2014; 9:e106477. [PMID: 25198343 PMCID: PMC4157801 DOI: 10.1371/journal.pone.0106477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/08/2014] [Indexed: 01/19/2023] Open
Abstract
The RNA interference pathway in the protist Entamoeba histolytica plays important roles in permanent gene silencing as well as in the regulation of virulence determinants. Recently, a novel RNA interference (RNAi)-based silencing technique was developed in this parasite that uses a gene endogenously silenced by small RNAs as a “trigger” to induce silencing of other genes that are fused to it. Fusion to a trigger gene induces the production of gene-specific antisense small RNAs, resulting in robust and permanent silencing of the cognate gene. This approach has silenced multiple genes including those involved in virulence and transcriptional regulation. We now demonstrate that all tested genes of the amebic RNAi pathway are unable to be silenced using the trigger approach, including Argonaute genes (Ago2-1, Ago2-2, and Ago2-3), RNaseIII, and RNA-dependent RNA polymerase (RdRP). In all situations (except for RdRP), fusion to a trigger successfully induces production of gene-specific antisense small RNAs to the cognate gene. These small RNAs are capable of silencing a target gene in trans, indicating that they are functional; despite this, however, they cannot silence the RNAi pathway genes. Interestingly, when a trigger is fused to RdRP, small RNA induction to RdRP does not occur, a unique phenotype hinting that either RdRP is highly resistant to being a target of small RNAs or that small RNA generation may be controlled by RdRP. The inability of the small RNA pathway to silence RNAi genes in E. histolytica, despite the generation of functional small RNAs to these loci suggest that epigenetic factors may protect certain genomic loci and thus determine susceptibility to small RNA mediated silencing.
Collapse
|
14
|
Lopez-Gomollon S, Beckers M, Rathjen T, Moxon S, Maumus F, Mohorianu I, Moulton V, Dalmay T, Mock T. Global discovery and characterization of small non-coding RNAs in marine microalgae. BMC Genomics 2014; 15:697. [PMID: 25142467 PMCID: PMC4156623 DOI: 10.1186/1471-2164-15-697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/09/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. RESULTS Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. CONCLUSIONS This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
15
|
Michaeli S. Non-coding RNA and the complex regulation of the trypanosome life cycle. Curr Opin Microbiol 2014; 20:146-52. [DOI: 10.1016/j.mib.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
16
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
17
|
Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. EUKARYOTIC CELL 2013; 13:77-86. [PMID: 24186950 DOI: 10.1128/ec.00233-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3' end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2'-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1(-/-) parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3' end. These findings support a model wherein TbHEN1 methylates siRNA 3' ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3' trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3' end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms.
Collapse
|
18
|
Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E. The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 2012; 87:580-93. [PMID: 23217017 DOI: 10.1111/mmi.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 12/01/2022]
Abstract
Among trypanosomatid protozoa the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser extent in Leishmania braziliensis. Although these two parasitic organisms belong to the same family, they are evolutionarily distantly related raising questions about the conservation of the RNAi pathway. Here we carried out an in-depth analysis of small interfering RNAs (siRNAs) associated with L. braziliensis Argonaute1 (LbrAGO1). In contrast to T. brucei, Leishmania siRNAs are sensitive to 3' end oxidation, indicating the absence of blocking groups, and the Leishmania genome does not code for a HEN1 RNA 2'-O-methyltransferase, which modifies small RNA 3' ends. Consistent with this observation, ~20% of siRNA 3' ends carry non-templated uridines. Thus siRNA biogenesis, and most likely their metabolism, is different in these organisms. Similarly to T. brucei, putative mobile elements and repeats constitute the major Leishmania siRNA-producing loci and AGO1 ablation leads to accumulation of long transcripts derived from putative mobile elements. However, contrary to T. brucei, no siRNAs were detected from other genomic regions with the potential to form double-stranded RNA, namely sites of convergent transcription and inverted repeats. Thus, our results indicate that organism-specific diversification has occurred in the RNAi pathway during evolution of the trypanosomatid lineage.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Departments of Internal Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
20
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
21
|
Tschudi C, Shi H, Franklin JB, Ullu E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics 2012; 13:427. [PMID: 22925482 PMCID: PMC3447711 DOI: 10.1186/1471-2164-13-427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/24/2012] [Indexed: 01/24/2023] Open
Abstract
Background At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering RNAs (siRNAs). Results To test whether such endogenous siRNAs are present in T. brucei and to probe the individual role of the two Dicer-like enzymes, we affinity purified TbAGO1 from wild-type procyclic trypanosomes, as well as from cells deficient in the cytoplasmic (TbDCL1) or nuclear (TbDCL2) Dicer, and subjected the bound RNAs to Illumina high-throughput sequencing. In wild-type cells the majority of reads originated from two classes of retroposons. We also considerably expanded the repertoire of trypanosome siRNAs to encompass a family of 147-bp satellite-like repeats, many of the regions where RNA polymerase II transcription converges, large inverted repeats and two pseudogenes. Production of these newly described siRNAs is strictly dependent on the nuclear DCL2. Notably, our data indicate that putative centromeric regions, excluding the CIR147 repeats, are not a significant source for endogenous siRNAs. Conclusions Our data suggest that endogenous RNAi targets may be as evolutionarily old as the mechanism itself.
Collapse
Affiliation(s)
- Christian Tschudi
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
22
|
Maumus F, Rabinowicz P, Bowler C, Rivarola M. Stemming epigenetics in marine stramenopiles. Curr Genomics 2012; 12:357-70. [PMID: 22294878 PMCID: PMC3145265 DOI: 10.2174/138920211796429727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/24/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022] Open
Abstract
Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses.
Collapse
Affiliation(s)
- Florian Maumus
- Unité de Recherche en Génomique-Info, UR 1164, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | | |
Collapse
|
23
|
Gargantini PR, Lujan HD, Pereira CA. In silicoanalysis of trypanosomatids' helicases. FEMS Microbiol Lett 2012; 335:123-9. [DOI: 10.1111/j.1574-6968.2012.02644.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pablo R. Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina; Universidad Católica de Córdoba; Córdoba; Argentina
| | - Hugo D. Lujan
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina; Universidad Católica de Córdoba; Córdoba; Argentina
| | - Claudio A. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas ‘Alfredo Lanari’; Universidad de Buenos Aires and CONICET; Buenos Aires; Argentina
| |
Collapse
|
24
|
Gannavaram S, Debrabant A. Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity. Front Cell Infect Microbiol 2012; 2:95. [PMID: 22919685 PMCID: PMC3417670 DOI: 10.3389/fcimb.2012.00095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
Demonstration of features of a programmed cell death (PCD) pathway in protozoan parasites initiated a great deal of interest and debate in the field of molecular parasitology. Several of the markers typical of mammalian apoptosis have been shown in Leishmania which suggested the existence of an apoptosis like death in these organisms. However, studies to elucidate the downstream events associated with phosphotidyl serine exposure, loss of mitochondrial membrane potential, cytochrome c release, and caspase-like activities in cells undergoing such cell death remain an ongoing challenge. Recent advances in genome sequencing, chemical biology should help to solve some of these challenges. Leishmania genetic mutants that lack putative regulators/effectors of PCD pathway should not only help to demonstrate the mechanisms of PCD but also provide tools to better understand the putative role for this pathway in population control and in the establishment of a successful infection of the host.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
25
|
Barnes RL, Shi H, Kolev NG, Tschudi C, Ullu E. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog 2012; 8:e1002678. [PMID: 22654659 PMCID: PMC3359990 DOI: 10.1371/journal.ppat.1002678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/16/2012] [Indexed: 11/23/2022] Open
Abstract
The introduction ten years ago of RNA interference (RNAi) as a tool for molecular exploration in Trypanosoma brucei has led to a surge in our understanding of the pathogenesis and biology of this human parasite. In particular, a genome-wide RNAi screen has recently been combined with next-generation Illumina sequencing to expose catalogues of genes associated with loss of fitness in distinct developmental stages. At present, this technology is restricted to RNAi-positive protozoan parasites, which excludes T. cruzi, Leishmania major, and Plasmodium falciparum. Therefore, elucidating the mechanism of RNAi and identifying the essential components of the pathway is fundamental for improving RNAi efficiency in T. brucei and for transferring the RNAi tool to RNAi-deficient pathogens. Here we used comparative genomics of RNAi-positive and -negative trypanosomatid protozoans to identify the repertoire of factors in T. brucei. In addition to the previously characterized Argonaute 1 (AGO1) protein and the cytoplasmic and nuclear Dicers, TbDCL1 and TbDCL2, respectively, we identified the RNA Interference Factors 4 and 5 (TbRIF4 and TbRIF5). TbRIF4 is a 3′-5′ exonuclease of the DnaQ superfamily and plays a critical role in the conversion of duplex siRNAs to the single-stranded form, thus generating a TbAGO1-siRNA complex required for target-specific cleavage. TbRIF5 is essential for cytoplasmic RNAi and appears to act as a TbDCL1 cofactor. The availability of the core RNAi machinery in T. brucei provides a platform to gain mechanistic insights in this ancient eukaryote and to identify the minimal set of components required to reconstitute RNAi in RNAi-deficient parasites. RNA interference (RNAi), a naturally-occurring pathway whereby the presence of double-stranded RNA in a cell triggers the degradation of homologous mRNA, has been harnessed in many organisms as an invaluable molecular biology tool to interrogate gene function. Although this technology is widely used in the protozoan parasite Trypanosoma brucei, other parasites of considerable public health significance, such as Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum do not perform RNAi. Since RNAi has recently been introduced into budding yeast, this opens up the possibility that RNAi can be reconstituted in these pathogens. The key to this is getting a handle on the essential RNAi factors in T. brucei. By applying comparative genomics we identified five genes that are present in the RNAi-proficient species, but not in RNAi-deficient species: three previously identified RNAi factors, and two novel ones, which are described here. This insight into the core T. brucei RNAi machinery represents a major step towards transferring this pathway to RNAi-deficient parasites.
Collapse
Affiliation(s)
- Rebecca L. Barnes
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Huafang Shi
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Nikolay G. Kolev
- Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Christian Tschudi
- Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
26
|
Dicer Proteins and Their Role in Gene Silencing Pathways. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-404741-9.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
27
|
Madina BR, Kuppan G, Vashisht AA, Liang YH, Downey KM, Wohlschlegel JA, Ji X, Sze SH, Sacchettini JC, Read LK, Cruz-Reyes J. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2011; 17:1821-30. [PMID: 21810935 PMCID: PMC3185915 DOI: 10.1261/rna.2815911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 05/29/2023]
Abstract
The mitochondrial genome of kinetoplastids, including species of Trypanosoma and Leishmania, is an unprecedented DNA structure of catenated maxicircles and minicircles. Maxicircles represent the typical mitochondrial genome encoding components of the respiratory complexes and ribosomes. However, most mRNA sequences are cryptic, and their maturation requires a unique U insertion/deletion RNA editing. Minicircles encode hundreds of small guide RNAs (gRNAs) that partially anneal with unedited mRNAs and direct the extensive editing. Trypanosoma brucei gRNAs and mRNAs are transcribed as polycistronic precursors, which undergo processing preceding editing; however, the relevant nucleases are unknown. We report the identification and functional characterization of a close homolog of editing endonucleases, mRPN1 (mitochondrial RNA precursor-processing endonuclease 1), which is involved in gRNA biogenesis. Recombinant mRPN1 is a dimeric dsRNA-dependent endonuclease that requires Mg(2+), a critical catalytic carboxylate, and generates 2-nucleotide 3' overhangs. The cleavage specificity of mRPN1 is reminiscent of bacterial RNase III and thus is fundamentally distinct from editing endonucleases, which target a single scissile bond just 5' of short duplexes. An inducible knockdown of mRPN1 in T. brucei results in loss of gRNA and accumulation of precursor transcripts (pre-gRNAs), consistent with a role of mRPN1 in processing. mRPN1 stably associates with three proteins previously identified in relatively large complexes that do not contain mRPN1, and have been linked with multiple aspects of mitochondrial RNA metabolism. One protein, TbRGG2, directly binds mRPN1 and is thought to modulate gRNA utilization by editing complexes. The proposed participation of mRPN1 in processing of polycistronic RNA and its specific protein interactions in gRNA expression are discussed.
Collapse
Affiliation(s)
- Bhaskara Reddy Madina
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Gokulan Kuppan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Yu-He Liang
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Kurtis M. Downey
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1737, USA
| | - Xinhua Ji
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
28
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
29
|
Atayde VD, Tschudi C, Ullu E. The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 2011; 27:321-7. [PMID: 21497553 PMCID: PMC3124596 DOI: 10.1016/j.pt.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
A new RNA world has emerged in the past 10 years with the discovery of a plethora of 20- to 30-nucleotide long small RNAs that are involved in various gene silencing mechanisms. These small RNAs have considerably changed our view of the regulation of gene expression in eukaryotic organisms, with a major shift towards epigenetic and post-transcriptional mechanisms. In this article, we focus on the striking diversity of small silencing RNAs that have been identified in several protozoan parasites and their potential biological role.
Collapse
Affiliation(s)
- Vanessa D. Atayde
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06536, USA
| | - Christian Tschudi
- Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06536, USA
| | - Elisabetta Ullu
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06536, USA
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06536, USA
| |
Collapse
|
30
|
Zhang H, Pompey JM, Singh U. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 2011; 6:103-17. [PMID: 21162639 DOI: 10.2217/fmb.10.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Entamoeba histolytica is a major health threat to people in developing countries, where it causes invasive diarrhea and liver abscesses. The study of this important human pathogen has been hindered by a lack of tools for genetic manipulation. Recently, a number of genetic approaches based on variations of the RNAi method have been successfully developed and cloning of endogenous small-interfering RNAs from E. histolytica revealed an abundant population of small RNAs with an unusual 5´-polyphosphate structure. However, little is known about the implications of these findings to amebic biology or the mechanisms of gene silencing in this organism. In this article we review the literature relevant to RNAi in E. histolytica, discuss its implications for advances in gene silencing in this organism and outline potential future directions towards understanding the repertoire of RNAi and its impact on the biology of this deep-branching eukaryotic parasite.
Collapse
Affiliation(s)
- Hanbang Zhang
- Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
31
|
Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proc Natl Acad Sci U S A 2011; 108:8345-50. [PMID: 21531904 DOI: 10.1073/pnas.1103894108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudogenes have been shown to acquire unique regulatory roles from more and more organisms. We report the observation of a cluster of siRNAs derived from pseudogenes of African Trypanosoma brucei using high through-put analysis. We show that these pseudogene-derived siRNAs suppress gene expression through RNA interference. The discovery that siRNAs may originate from pseudogenes and regulate gene expression in a unicellular eukaryote provides insights into the functional roles of pseudogenes and into the origin of noncoding small RNAs.
Collapse
|
32
|
Listovsky T, Brandeis M, Zilberstein D. Leishmania express a functional Cdc20 homologue. Biochem Biophys Res Commun 2011; 408:71-7. [PMID: 21458414 DOI: 10.1016/j.bbrc.2011.03.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 11/15/2022]
Abstract
Our knowledge concerning the mechanisms of cell cycle regulation in organisms belonging to the Trypanosometidae family is limited. Leishmania donovani are parasitic protozoa that cause kala azar, a fatal form of visceral leishmaniasis in humans. Here we provide evidence that the L. donovani genome contains a Cdc20 homologue. Cdc20 is a regulator of the Anaphase Promoting Complex/Cyclosome (APC/C) that mediates ubiquitin-dependent proteasomal degradation of key cell cycle regulators in eukaryotes. We show that L. donovani Cdc20 protein (LdCdc20p) can complement a lack of yeast Cdc20 protein in Saccharomyces cerevisiae cells, validating the functionality of LdCdc20p. Furthermore, we demonstrate cyclic expression of LdCdc20p and that it contains an active RXXL destruction motif, a distinctive feature of proteins targeted for proteasomal degradation by APC/C. Finally, in line with the proteasome mediating LdCdc20p degradation, promastigotes exposed to proteasome inhibitor display elevated LdCdc20p levels. Taken together our data indicate that Leishmania regulate their cell cycle by ubiquitin-dependent proteasomal degradation mediated by the APC/C.
Collapse
Affiliation(s)
- Tamar Listovsky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
33
|
Abstract
It is almost 20 years since genetic manipulation of Trypanosoma cruzi was first reported. In this time, there have been steady improvements in the available vector systems, and the applications of the technology have been extended into new areas. Episomal vectors have been modified to enhance the level of expression of transfected genes and to facilitate the sub-cellular location of their products. Integrative vectors have been adapted to allow the development of inducible expression systems and the construction of vectors which enable genome modification through telomere-associated chromosome fragmentation. The uses of reverse genetic approaches to dissect peroxide metabolism and the mechanisms of drug activity and resistance in T. cruzi are illustrated in this chapter as examples of how the technology has been used to investigate biological function. Although there remains scope to improve the flexibility of these systems, they have made valuable contributions towards exploiting the genome sequence data and providing a greater understanding of parasite biology and the mechanisms of infection.
Collapse
Affiliation(s)
- Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
34
|
Vilchez Larrea SC, Alonso GD, Schlesinger M, Torres HN, Flawiá MM, Fernández Villamil SH. Poly(ADP-ribose) polymerase plays a differential role in DNA damage-response and cell death pathways in Trypanosoma cruzi. Int J Parasitol 2010; 41:405-16. [PMID: 21185298 DOI: 10.1016/j.ijpara.2010.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are the enzymes responsible for poly(ADP-ribose) (PAR) polymer metabolism and are present in most higher eukaryotes. The best understood role of PARP is the maintenance of genomic integrity either via promotion of DNA repair at low levels of genotoxic stress or via promotion of cell death at higher levels of damage. The unicellular eukaryote Trypanosoma cruzi, as opposed to humans and other organisms, has only one PARP (TcPARP) and one PARG (TcPARG). In the present study we show that under different DNA-damaging agents (H(2)O(2) or UV-C radiation) TcPARP is activated and translocated from the cytosol to the nucleus, while TcPARG always shows a nuclear localisation. Parasites in the presence of PARP or PARG inhibitors, as well as parasites over-expressing either TcPARP or TcPARG, suggested that PAR metabolism could be involved in different phases of cell growth, even in the absence of DNA damage. We also believe that we provide the first reported evidence that different proteins could be poly(ADP-ribosyl)ated in response to different stimuli, leading to different cell death pathways.
Collapse
Affiliation(s)
- Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Lye LF, Owens K, Shi H, Murta SMF, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 2010; 6:e1001161. [PMID: 21060810 PMCID: PMC2965760 DOI: 10.1371/journal.ppat.1001161] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/23/2010] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance), and/or alterations in parasite virulence. RNAi interference pathways play fundamental roles in eukaryotes and provide important methods for the analysis of gene function. Occasionally RNAi has been lost, precluding its use as a tool, as well as raising the question of what forces could lead to loss of such a key pathway. Genomic and functional studies previously showed that within trypanosomatids protozoans RNAi was absent in both Leishmania major and Trypanosoma cruzi. The genome of L. braziliensis, a member of the early diverging Leishmania subgenus Viannia, retained key genes required for RNAi such as an Argonaute. We demonstrated that in fact L. braziliensis shows strong RNAi activity with reporter and endogenous genes affecting flagellar function. These data suggest that RNAi may be productively applied for functional genomic studies in L. braziliensis. We mapped the evolutionary point at which RNAi was lost in lineage leading to Leishmania and Crithidia, and establish that RNAi must have been lost at least twice in the trypanosomatids, once on the lineage leading to T. cruzi and independently following the divergence of the Viannia subgenus from other Leishmania species. Lastly, we discuss hypotheses concerning the forces leading to the loss of RNAi in Leishmania evolution, including viral invasion, increased genome plasticity, and altered virulence.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Owens
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Silvane M. F. Murta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ana Carolina Vieira
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Christian Tschudi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Epidemiology & Public Health, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010; 42:1334-47. [PMID: 20227517 PMCID: PMC2902580 DOI: 10.1016/j.biocel.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
37
|
Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S. Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 2010; 38:7236-47. [PMID: 20601683 PMCID: PMC2978370 DOI: 10.1093/nar/gkq599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that snoRNA dicing and slicing takes place in the nucleus, and further suggesting that AGO1 is active in nuclear silencing. snoRNAi was next utilized to elucidate the function of an abundant snoRNA, TB11Cs2C2 (92 nt), present in a cluster together with the spliced leader associated RNA (SLA1) and snR30, which are both H/ACA RNAs with special nuclear functions. Using AMT-UV cross-linking and RNaseH cleavage, we provide evidence for the interaction of TB11Cs2C2 with the small rRNAs, srRNA-2 and srRNA-6, which are part of the large subunit (LSU) rRNA. snoRNAi of TB11Cs2C2 resulted in defects in generating srRNA-2 and LSUβ rRNA. This is the first snoRNA described so far to engage in trypanosome-specific processing events.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | | | | | | | | | | |
Collapse
|
38
|
Muljo SA, Kanellopoulou C, Aravind L. MicroRNA targeting in mammalian genomes: genes and mechanisms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:148-161. [PMID: 20836019 PMCID: PMC3427708 DOI: 10.1002/wsbm.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We briefly review the history of microRNA (miRNA) research and some of the lessons learnt. To provide some insights as to how and why miRNAs came into existence, we consider the evolution of the RNA interference machinery, miRNA genes, and their targets. We highlight the importance of systems biology approaches to integrate miRNAs as an essential subnetwork for modulating gene expression programs. Building accurate computational models that can simulate highly complex cell-specific gene expression patterns in mammals will lead to a better understanding of miRNAs and their targets in physiological and pathological situations. The impact of miRNAs on medicine, either as potential disease predisposing factors, biomarkers, or therapeutics, is highly anticipated and has started to reveal itself.
Collapse
Affiliation(s)
- S A Muljo
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C Kanellopoulou
- Dana-Farber Cancer Institute, Department of Cancer Biology, Harvard Medical School, Boston, MA, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Abstract
African trypanosomes are evolutionary-divergent eukaryotes responsible for sleeping sickness. They duplicate their single flagellum while maintaining the old one, providing a unique model to examine mature and elongating flagella in the same cell. Like in most eukaryotes, the trypanosome flagellum is constructed by addition of novel subunits at its distal end via the action of intraflagellar transport (IFT). Almost all genes encoding IFT proteins and motors are conserved in trypanosomes and related species, with only a few exceptions. A dozen of IFT genes have been functionally investigated in this organism, thanks to the potent reverse genetic tools available. Several alternative techniques to trigger RNAi are accessible, either transient RNAi by transfection of long double-stranded RNA or by generation of clonal cell lines able to express long double-stranded RNA under the control of tetracycline-inducible promoters. In addition, we provide a series of techniques to investigate cellular phenotypes in trypanosomes where expression of IFT genes has been silenced. In this chapter, we describe different methods for tagging and expression of IFT proteins in trypanosomes and for visualizing IFT in live cells.
Collapse
|
40
|
Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:17933-8. [PMID: 19815526 DOI: 10.1073/pnas.0907766106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei is one of the most ancient eukaryotes where RNA interference (RNAi) is operational and is the only single-cell pathogen where RNAi has been extensively studied and used as a tool for functional analyses. Here, we report that the T. brucei RNAi pathway, although relying on a single Argonaute protein (AGO1), is initiated by the activities of two distinct Dicer-like enzymes. Both TbDCL1, a mostly cytoplasmic protein, and the previously undescribed nuclear enzyme TbDCL2 contribute to the biogenesis of siRNAs from retroposons. However, TbDCL2 has a predominant role in generating siRNAs from chromosomal internal repeat transcripts that accumulate at the nucleolus in RNAi-deficient cells and in initiating the endogenous RNAi response against retroposons and repeats alike. Moreover, siRNAs generated by both TbDCL1 and TbDCL2 carry a 5'-monophosphate and a blocked 3' terminus, suggesting that 3' end modification is an ancient trait of siRNAs. We thus propose a model whereby TbDCL2 fuels the T. brucei nuclear RNAi pathway and TbDCL1 patrols the cytoplasm, posttranscriptionally silencing potentially harmful nucleic acid parasites that may access the cytoplasm. Nevertheless, we also provide evidence for cross-talk between the two Dicer-like enzymes, because TbDCL2 is implicated in the generation of 35- to 65-nucleotide intermediate transcripts that appear to be substrates for TbDCL1. Our finding that dcl2KO cells are more sensitive to RNAi triggers than wild-type cells has significant implications for reverse genetic analyses in this important human pathogen.
Collapse
|
41
|
De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009; 37:e96. [PMID: 19487243 PMCID: PMC2724275 DOI: 10.1093/nar/gkp448] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diatoms are a major but poorly understood phytoplankton group. The recent completion of two whole genome sequences has revealed that they contain unique combinations of genes, likely recruited during their history as secondary endosymbionts, as well as by horizontal gene transfer from bacteria. A major limitation for the study of diatom biology and gene function is the lack of tools to generate targeted gene knockout or knockdown mutants. In this work, we have assessed the possibility of triggering gene silencing in Phaeodactylum tricornutum using constructs containing either anti-sense or inverted repeat sequences of selected target genes. We report the successful silencing of a GUS reporter gene expressed in transgenic lines, as well as the knockdown of endogenous phytochrome (DPH1) and cryptochrome (CPF1) genes. To highlight the utility of the approach we also report the first phenotypic characterization of a diatom mutant (cpf1). Our data open the way for reverse genetics in diatoms and represent a major advance for understanding their biology and ecology. Initial molecular analyses reveal that targeted downregulation likely occurs through transcriptional and post-transcriptional gene silencing mechanisms. Interestingly, molecular players involved in RNA silencing in other eukaryotes are only poorly conserved in diatoms.
Collapse
Affiliation(s)
- Valentina De Riso
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 2008; 23:578-87. [PMID: 18715673 PMCID: PMC2695246 DOI: 10.1016/j.tree.2008.06.005] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 01/13/2023]
Abstract
Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into the origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have an RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral archaeal, bacterial and phage proteins that are involved in DNA repair and RNA processing.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
43
|
Kang S, Hong YS. RNA interference in infectious tropical diseases. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:1-15. [PMID: 18344671 DOI: 10.3347/kjp.2008.46.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.
Collapse
Affiliation(s)
- Seokyoung Kang
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | | |
Collapse
|
44
|
Abstract
Dicer, an RNase III type endonuclease, is the key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also plays an important role in an effector step of RNA silencing, the RNA-induced silencing complex (RISC) assembly. In this article we describe different functions of Dicer in posttranscriptional regulation. We review the current knowledge about Dicers in different organisms and the functions of individual domains of the enzyme. We also discuss information about Dicer-associated proteins and their role in the biogenesis of small RNAs and assembly of RISC.
Collapse
|
45
|
Anantharaman V, Iyer LM, Aravind L. Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Annu Rev Microbiol 2007; 61:453-75. [PMID: 17506670 DOI: 10.1146/annurev.micro.61.080706.093309] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Data from protist genomes suggest that eukaryotes show enormous variability in their gene complements, especially of genes coding regulatory proteins. Overall counts of eukaryotic signaling proteins show weak nonlinear scaling with proteome size, but individual superfamilies of signaling domains might show vast expansions in certain protists. Alteration of domain architectural complexity of signaling proteins and repeated lineage-specific reshaping of architectures might have played a major role in the emergence of new signaling interactions in different eukaryotes. Lateral transfer of various signaling domains from bacteria or from hosts, in parasites such as apicomplexans, appears to also have played a major role in the origin of new functional networks. Lineage-specific expansion of regulatory proteins, particularly of transcription factors, has played a critical role in the adaptive radiation of different protist lineages. Comparative genomics allows objective reconstruction of the ancestral conditions and subsequent diversification of several regulatory systems involved in phosphorylation, cyclic nucleotide signaling, Ubiquitin conjugation, chromatin remodeling, and posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
46
|
Durand-Dubief M, Absalon S, Menzer L, Ngwabyt S, Ersfeld K, Bastin P. The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts. Mol Biochem Parasitol 2007; 156:144-53. [PMID: 17822785 DOI: 10.1016/j.molbiopara.2007.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/15/2007] [Accepted: 07/24/2007] [Indexed: 12/11/2022]
Abstract
The protist Trypanosoma brucei possesses a single Argonaute gene called TbAGO1 that is necessary for RNAi silencing. We previously showed that in strain 427, TbAGO1 knock-out leads to a slow growth phenotype and to chromosome segregation defects. Here we report that the slow growth phenotype is linked to defects in segregation of both large and mini-chromosome populations, with large chromosomes being the most affected. These phenotypes are completely reversed upon inducible re-expression of TbAGO1 fused to GFP, demonstrating their link with TbAGO1. Trypanosomes that do not express TbAGO1 show a general increase in the abundance of transcripts derived from the short retroposon RIME (Ribosomal Interspersed Mobile Element). Supplementary large RIME transcripts emerge in the absence of RNAi, a phenomenon coupled to the disappearance of short transcripts. These fluctuations are reversed by inducible expression of GFP::TbAGO1. Furthermore, we use a combination of Northern blots, RT-PCR and sequencing to reveal that RNAi controls expression of transcripts derived from RHS (Retrotransposon Hot Spot) pseudogenes (RHS genes with retro-element(s) integrated within their coding sequence). Absence of RNAi also leads to an increase of steady-state transcripts from regular RHS genes (those without retro-element), indicating a role for pseudogene in control of gene expression. However, analysis of retroposon abundance and arrangement in the genome of multiple clonal cell lines of TbAGO1-/- failed to reveal movement of mobile elements despite the increased amounts of retroposon transcripts.
Collapse
Affiliation(s)
- Mickaël Durand-Dubief
- Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, INSERM & CNRS, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Militello KT, Refour P, Comeaux CA, Duraisingh MT. Antisense RNA and RNAi in protozoan parasites: working hard or hardly working? Mol Biochem Parasitol 2007; 157:117-26. [PMID: 18053590 DOI: 10.1016/j.molbiopara.2007.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
The complex life cycles of many protozoan parasites require the ability to respond to environmental and developmental cues through regulated gene expression. Traditionally, parasitologists have investigated these mechanisms by identifying and characterizing proteins that are necessary for the regulated expression of the genetic material. Although often successful, it is clear that protein-mediated gene regulation is only part of a complex story in which RNA itself is endowed with regulatory functions. Herein, we review both the known and potential regulatory roles of two types of RNA pathways within protozoan parasites: the RNA interference pathway and natural antisense transcripts. A better understanding of the native role of these pathways will not only enhance our understanding of the biology of these organisms but also aid in the development of more robust tools for reverse genetic analysis in this post-genomic era.
Collapse
Affiliation(s)
- Kevin T Militello
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | | | | | | |
Collapse
|
48
|
Hinas A, Reimegård J, Wagner EGH, Nellen W, Ambros VR, Söderbom F. The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res 2007; 35:6714-26. [PMID: 17916577 PMCID: PMC2175303 DOI: 10.1093/nar/gkm707] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small RNAs play crucial roles in regulation of gene expression in many eukaryotes. Here, we report the cloning and characterization of 18–26 nt RNAs in the social amoeba Dictyostelium discoideum. This survey uncovered developmentally regulated microRNA candidates whose biogenesis, at least in one case, is dependent on a Dicer homolog, DrnB. Furthermore, we identified a large number of 21 nt RNAs originating from the DIRS-1 retrotransposon, clusters of which have been suggested to constitute centromeres. Small RNAs from another retrotransposon, Skipper, were significantly up-regulated in strains depleted of the second Dicer-like protein, DrnA, and a putative RNA-dependent RNA polymerase, RrpC. In contrast, the expression of DIRS-1 small RNAs was not altered in any of the analyzed strains. This suggests the presence of multiple RNAi pathways in D. discoideum. In addition, we isolated several small RNAs with antisense complementarity to mRNAs. Three of these mRNAs are developmentally regulated. Interestingly, all three corresponding genes express longer antisense RNAs from which the small RNAs may originate. In at least one case, the longer antisense RNA is complementary to the spliced but not the unspliced pre-mRNA, indicating synthesis by an RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 2007; 37:1173-86. [PMID: 17645880 PMCID: PMC2696322 DOI: 10.1016/j.ijpara.2007.05.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.
Collapse
Affiliation(s)
- Deborah F Smith
- Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
50
|
Balaña-Fouce R, Reguera RM. RNA interference in Trypanosoma brucei: a high-throughput engine for functional genomics in trypanosomatids? Trends Parasitol 2007; 23:348-51. [PMID: 17604223 DOI: 10.1016/j.pt.2007.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/26/2007] [Accepted: 06/15/2007] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) is the technique of choice for down-regulating the gene function of suitable genes in African trypanosomes. A recent report by Subramanian and co-workers describes a high-throughput method for gene function discovery using RNAi in Trypanosoma brucei. The phenotype of most of the Open Reading Frames from chromosome 1 of T. brucei was analysed using a battery test of standard protocols. The authors propose that this technique could be used to mine the full genome of T. brucei and to reveal the core proteomic map of the other two major trypanosomatids, Trypanosoma cruzi and Leishmania major, despite the lack of a homologous mechanism of genetic silencing.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Department of Pharmacology and Toxicology (INTOXCAL), University of León, Campus de Vegazaza s/n, 24071 León, Spain.
| | | |
Collapse
|