1
|
Zhang J, Zhang Y, Luo W, Wang Z, Lv P, Wang Z. A UHPLC-QE-MS-based metabolomics approach for the evaluation of fermented lipase by an engineered Escherichia coli. Prep Biochem Biotechnol 2025; 55:457-469. [PMID: 39648316 DOI: 10.1080/10826068.2024.2423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Using an engineered Escherichia coli to produce lipase and can easily achieve high-level expression. The investigation of biochemical processes during lipase fermentation, approached from a metabolomics perspective, will yield novel insights into the efficient secretion of recombinant proteins. In this study, the lipase batch fermentation was carried out first with enzyme activity of 36.83 U/mg cells. Then, differential metabolites and metabolic pathways were identified using an untargeted metabolomics approach through comparative analysis of various fermentation periods. In total, 574 metabolites were identified: 545 were up-regulated and 29 were down-regulated, mainly in 153 organic acids and derivatives, 160 organoheterocyclic compounds, 64 lipids and lipid-like molecules, and 58 organic oxygen compounds. Through metabolic pathways and network analysis, it could be found that tryptophan metabolism was of great significance to lipase production, which could affect the secretion and synthesis of recombinant protein. In addition, the promotion effects of cell growth by varying concentrations of indole acetic acid serve to validate the results obtained from tryptophan metabolism. This study offers valuable insights into metabolic regulation of engineered E. coli, indicating that its fermentation bioprocess can be systematically designed according to metabolomics findings to enhance recombinant protein production.
Collapse
Affiliation(s)
- Jun Zhang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ying Zhang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Wen Luo
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyuan Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Pengmei Lv
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongming Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
McElroy CA, Ihms EC, Kumar Yadav D, Holmquist ML, Wadhwa V, Wysocki VH, Gollnick P, Foster MP. Solution structure, dynamics and tetrahedral assembly of Anti-TRAP, a homo-trimeric triskelion-shaped regulator of tryptophan biosynthesis in Bacillus subtilis. J Struct Biol X 2024; 10:100103. [PMID: 39035014 PMCID: PMC11255114 DOI: 10.1016/j.yjsbx.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular production of tryptophan is metabolically expensive and tightly regulated. The small Bacillus subtilis zinc binding Anti-TRAP protein (AT), which is the product of the yczA/rtpA gene, is upregulated in response to accumulating levels of uncharged tRNATrp through a T-box antitermination mechanism. AT binds to the undecameric axially symmetric ring-shaped protein TRAP (trp RNA Binding Attenuation Protein), thereby preventing it from binding to the trp leader RNA. This reverses the inhibitory effect of TRAP on transcription and translation of the trp operon. AT principally adopts two symmetric oligomeric states, a trimer (AT3) featuring three-fold axial symmetry or a dodecamer (AT12) comprising a tetrahedral assembly of trimers, whereas only the trimeric form binds and inhibits TRAP. We apply native mass spectrometry (nMS) and small-angle x-ray scattering (SAXS), together with analytical ultracentrifugation (AUC) to monitor the pH and concentration-dependent equilibrium between the trimeric and dodecameric structural forms of AT. In addition, we use solution nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of AT3, while heteronuclear 15N relaxation measurements on both oligomeric forms of AT provide insights into the dynamic properties of binding-active AT3 and binding-inactive AT12, with implications for TRAP binding and inhibition.
Collapse
Affiliation(s)
- Craig A. McElroy
- Ohio State Biochemistry Program, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elihu C. Ihms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, USA
| | - Deepak Kumar Yadav
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Melody L. Holmquist
- Ohio State Biochemistry Program, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vibhuti Wadhwa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- National Resource for Native MS-Guided Structural Biology, USA
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Mark P. Foster
- Ohio State Biochemistry Program, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, USA
| |
Collapse
|
3
|
Mattick JSA, Bromley RE, Watson KJ, Adkins RS, Holt CI, Lebov JF, Sparklin BC, Tyson TS, Rasko DA, Dunning Hotopp JC. Deciphering transcript architectural complexity in bacteria and archaea. mBio 2024; 15:e0235924. [PMID: 39287442 PMCID: PMC11481537 DOI: 10.1128/mbio.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
Collapse
Affiliation(s)
- John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tyonna S. Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Sass TH, Lovett ST. The DNA damage response of Escherichia coli, revisited: Differential gene expression after replication inhibition. Proc Natl Acad Sci U S A 2024; 121:e2407832121. [PMID: 38935560 PMCID: PMC11228462 DOI: 10.1073/pnas.2407832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
In 1967, in this journal, Evelyn Witkin proposed the existence of a coordinated DNA damage response in Escherichia coli, which later came to be called the "SOS response." We revisited this response using the replication inhibitor azidothymidine (AZT) and RNA-Seq analysis and identified several features. We confirm the induction of classic Save our ship (SOS) loci and identify several genes, including many of the pyrimidine pathway, that have not been previously demonstrated to be DNA damage-inducible. Despite a strong dependence on LexA, these genes lack LexA boxes and their regulation by LexA is likely to be indirect via unknown factors. We show that the transcription factor "stringent starvation protein" SspA is as important as LexA in the regulation of AZT-induced genes and that the genes activated by SspA change dramatically after AZT exposure. Our experiments identify additional LexA-independent DNA damage inducible genes, including 22 small RNA genes, some of which appear to activated by SspA. Motility and chemotaxis genes are strongly down-regulated by AZT, possibly as a result of one of more of the small RNAs or other transcription factors such as AppY and GadE, whose expression is elevated by AZT. Genes controlling the iron siderophore, enterobactin, and iron homeostasis are also strongly induced, independent of LexA. We confirm that IraD antiadaptor protein is induced independent of LexA and that a second antiadaptor, IraM is likewise strongly AZT-inducible, independent of LexA, suggesting that RpoS stabilization via these antiadaptor proteins is an integral part of replication stress tolerance.
Collapse
Affiliation(s)
- Thalia H. Sass
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| |
Collapse
|
5
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
7
|
Pan Z, Zhou C, Bai X, Wang F, Hong J, Fang JY, Huang Y, Sheng C. Discovery of New Fusobacterium nucleatum Inhibitors to Attenuate Migratory Capability of Colon Cancer Cells by the Drug Repositioning Strategy. J Med Chem 2023; 66:15699-15714. [PMID: 37983010 DOI: 10.1021/acs.jmedchem.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 μg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.
Collapse
Affiliation(s)
- Zhizhi Pan
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Chenchen Zhou
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Xuexin Bai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fangfang Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yahui Huang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
8
|
Sun L, Li Z, Hu C, Ding J, Zhou Q, Pang G, Wu Z, Yang R, Li S, Li J, Cai J, Sun Y, Li R, Zhen H, Sun S, Zhang J, Fang M, Chen Z, Lv Y, Cao Q, Sun Y, Gong R, Huang Z, Duan Y, Liu H, Dong J, Li J, Ruan J, Lu H, He B, Li N, Li T, Xue W, Li Y, Shen J, Yang F, Zhao C, Liang Q, Zhang M, Chen C, Gong H, Hou Y, Wang J, Zhang Y, Yang H, Zhu S, Xiao L, Jin Z, Guo H, Zhao P, Brix S, Xu X, Jia H, Kristiansen K, Yang Z, Nie C. Age-dependent changes in the gut microbiota and serum metabolome correlate with renal function and human aging. Aging Cell 2023; 22:e14028. [PMID: 38015106 PMCID: PMC10726799 DOI: 10.1111/acel.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.
Collapse
Affiliation(s)
- Liang Sun
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Zhiming Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan UniversityShanghaiChina
| | | | - Jiahong Ding
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Qi Zhou
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | | | - Zhu Wu
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Ruiyue Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Shenghui Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Jian Li
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Jianping Cai
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Yuzhe Sun
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Rui Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Hefu Zhen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Shuqin Sun
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Jianmin Zhang
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Mingyan Fang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Zhihua Chen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Yuan Lv
- Jiangbin HospitalNanningChina
| | - Qizhi Cao
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Yanan Sun
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Ranhui Gong
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Zezhi Huang
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Institute of Experimental DiagnosisKunmingChina
| | - Hengshuo Liu
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Jun Dong
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Junchun Li
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Jie Ruan
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Haorong Lu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | | | | | - Tao Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Wenbin Xue
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Yan Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Juan Shen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Fan Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Cheng Zhao
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | | | - Mingrong Zhang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Chen Chen
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Huan Gong
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Yong Hou
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Jian Wang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Ying Zhang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Huanming Yang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Shida Zhu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI ResearchShenzhenChina
| | - Liang Xiao
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI ResearchShenzhenChina
| | - Zhen Jin
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Institute of Experimental DiagnosisKunmingChina
| | - Haiyun Guo
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
| | - Peng Zhao
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
| | - Susanne Brix
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Xun Xu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | - Huijue Jia
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Karsten Kristiansen
- BGI ResearchShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Qingdao‐Europe Advanced Institute for Life SciencesQingdaoShandongChina
| | - Ze Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Chao Nie
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| |
Collapse
|
9
|
McElroy C, Ihms E, Yadav DK, Holmquist M, Wadwha V, Wysocki V, Gollnick P, Foster M. Solution structure, dynamics and tetrahedral assembly of Anti-TRAP, a homo-trimeric triskelion-shaped regulator of tryptophan biosynthesis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547145. [PMID: 37425951 PMCID: PMC10327191 DOI: 10.1101/2023.06.29.547145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cellular production of tryptophan is metabolically expensive and tightly regulated. The small Bacillus subtilis zinc binding Anti-TRAP protein (AT), which is the product of the yczA/rtpA gene, is upregulated in response to accumulating levels of uncharged tRNATrp through a T-box antitermination mechanism. AT binds to the undecameric ring-shaped protein TRAP (trp RNA Binding Attenuation Protein), thereby preventing it from binding to the trp leader RNA. This reverses the inhibitory effect of TRAP on transcription and translation of the trp operon. AT principally adopts two symmetric oligomeric states, a trimer (AT3) featuring a three-helix bundle, or a dodecamer (AT12) comprising a tetrahedral assembly of trimers, whereas only the trimeric form has been shown to bind and inhibit TRAP. We demonstrate the utility of native mass spectrometry (nMS) and small-angle x-ray scattering (SAXS), together with analytical ultracentrifugation (AUC) for monitoring the pH and concentration-dependent equilibrium between the trimeric and dodecameric structural forms of AT. In addition, we report the use of solution nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of AT3, while heteronuclear 15N relaxation measurements on both oligomeric forms of AT provide insights into the dynamic properties of binding-active AT3 and binding-inactive AT12, with implications for TRAP inhibition.
Collapse
Affiliation(s)
- Craig McElroy
- Ohio State Biochemistry Program
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Elihu Ihms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Biophysics Program
| | - Deepak Kumar Yadav
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Melody Holmquist
- Ohio State Biochemistry Program
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vibhuti Wadwha
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- National Resource for Native MS-Guided Structural Biology
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo NY 14260
| | - Mark Foster
- Ohio State Biochemistry Program
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Biophysics Program
| |
Collapse
|
10
|
Xu Z, Wu G, Wang B, Zhao Y, Liu F. TrpR-Like Protein PXO_00831, Regulated by the Sigma Factor RpoD, Is Involved in Motility, Oxidative Stress Tolerance, and Virulence in Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:170-182. [PMID: 36095334 DOI: 10.1094/phyto-05-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium that causes bacterial leaf blight in rice. In this study, we identified a putative TrpR-like protein, PXO_TrpR (PXO_00831), in Xoo. This protein contains a tryptophan (Trp) repressor domain and is highly conserved in Xanthomonas. Auxotrophic assays and RT-qPCR confirmed that PXO_TrpR acts as a Trp repressor, negatively regulating the expression of Trp biosynthesis genes. Pathogenicity tests showed that PXO_trpR knockout in Xoo significantly reduced lesion development and disease symptoms in the leaves of susceptible rice. RNA-seq analysis and phenotypic tests revealed that the PXO_trpR mutant exhibited impaired cell motility and was more sensitive to H2O2 oxidative stress than the wild-type strain. Furthermore, we found that the sigma 70 factor RpoD controlled the transcription of PXO_trpR by directly binding to its promoter region. This study demonstrates the biological function and transcriptional mechanism of PXO_TrpR as a Trp repressor in Xoo and evaluates its novel pathogenic roles by regulating flagellar motility and the oxidative stress response.
Collapse
Affiliation(s)
- Zhizhou Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| |
Collapse
|
11
|
Identification of Attenuators of Transcriptional Termination: Implications for RNA Regulation in Escherichia coli. mBio 2022; 13:e0237122. [PMID: 36226957 PMCID: PMC9765468 DOI: 10.1128/mbio.02371-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory function of many bacterial small RNAs (sRNAs) requires the binding of the RNA chaperone Hfq to the 3' portion of the sRNA intrinsic terminator, and therefore sRNA signaling might be regulated by modulating its terminator. Here, using a multicopy screen developed with the terminator of sRNA SgrS, we identified an sRNA gene (cyaR) and three protein-coding genes (cspD, ygjH, and rof) that attenuate SgrS termination in Escherichia coli. Analyses of CyaR and YgjH, a putative tRNA binding protein, suggested that the CyaR activity was indirect and the effect of YgjH was moderate. Overproduction of the protein attenuators CspD and Rof resulted in more frequent readthrough at terminators of SgrS and two other sRNAs, and regulation by SgrS of target mRNAs was reduced. The effect of Rof, a known inhibitor of Rho, was mimicked by bicyclomycin or by a rho mutant, suggesting an unexpected role for Rho in sRNA termination. CspD, a member of the cold shock protein family, bound both terminated and readthrough transcripts, stabilizing them and attenuating termination. By RNA sequencing analysis of the CspD overexpression strain, we found global effects of CspD on gene expression across some termination sites. We further demonstrated effects of endogenous CspD under slow growth conditions where cspD is highly expressed. These findings provided evidence of changes in the efficiency of intrinsic termination, confirming this as an additional layer of the regulation of sRNA signaling. IMPORTANCE Growing evidence suggests that the modulation of intrinsic termination and readthrough of transcription is more widespread than previously appreciated. For small RNAs, proper termination plays a critical role in their regulatory function. Here, we present a multicopy screen approach to identify factors that attenuate small RNA termination and therefore abrogate signaling dependent on the small RNA. This study highlights a new aspect of regulation of small RNA signaling as well as the modulation of intrinsic termination.
Collapse
|
12
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
13
|
Candeliere F, Simone M, Leonardi A, Rossi M, Amaretti A, Raimondi S. Indole and p-cresol in feces of healthy subjects: Concentration, kinetics, and correlation with microbiome. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:959189. [PMID: 39086966 PMCID: PMC11285674 DOI: 10.3389/fmmed.2022.959189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 08/02/2024]
Abstract
Indole and p-cresol are precursors of the most important uremic toxins, generated from the fermentation of amino acids tryptophan and tyrosine by the proteolytic community of intestinal bacteria. The present study focused on the relationship between the microbiome composition, the fecal levels of indole and p-cresol, and their kinetics of generation/degradation in fecal cultures. The concentration of indole and p-cresol, the volatilome, the dry weight, and the amount of ammonium and carbohydrates were analyzed in the feces of 10 healthy adults. Indole and p-cresol widely differed among samples, laying in the range of 1.0-19.5 μg/g and 1.2-173.4 μg/g, respectively. Higher fecal levels of indole and p-cresol were associated with lower carbohydrates and higher ammonium levels, that are markers of a more pronounced intestinal proteolytic metabolism. Positive relationship was observed also with the dry/wet weight ratio, indicator of prolonged intestinal retention of feces. p-cresol and indole presented a statistically significant negative correlation with OTUs of uncultured Bacteroidetes and Firmicutes, the former belonging to Bacteroides and the latter to the families Butyricicoccaceae (genus Butyricicoccus), Monoglobaceae (genus Monoglobus), Lachnospiraceae (genera Faecalibacterium, Roseburia, and Eubacterium ventriosum group). The kinetics of formation and/or degradation of indole and p-cresol was investigated in fecal slurries, supplemented with the precursor amino acids tryptophan and tyrosine in strict anaerobiosis. The presence of the precursors bursted indole production but had a lower effect on the rate of p-cresol formation. On the other hand, supplementation with indole reduced the net rate of formation. The taxa that positively correlated with fecal levels of uremic toxins presented a positive correlation also with p-cresol generation rate in biotransformation experiments. Moreover other bacterial groups were positively correlated with generation rate of p-cresol and indole, further expanding the range of taxa associated to production of p-cresol (Bacteroides, Alistipes, Eubacterium xylanophylum, and Barnesiella) and indole (e.g., Bacteroides, Ruminococcus torques, Balutia, Dialister, Butyricicoccus). The information herein presented contributes to disclose the relationships between microbiota composition and the production of uremic toxins, that could provide the basis for probiotic intervention on the gut microbiota, aimed to prevent the onset, hamper the progression, and alleviate the impact of nephropaties.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
14
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
15
|
Bai J, Withycombe J, Eldridge RC. Metabolic Pathways Associated With Psychoneurological Symptoms in Children With Cancer Receiving Chemotherapy. Biol Res Nurs 2022; 24:281-293. [PMID: 35285272 PMCID: PMC9343884 DOI: 10.1177/10998004211069619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
CONTEXT Children with cancer undergoing chemotherapy experience a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, and depressive symptoms. Metabolomics is promising to differentiate metabolic pathways associated with the PNS cluster. OBJECTIVES Identify metabolic pathways associated with the PNS cluster in children with cancer before and after chemotherapy. METHODS Pain, fatigue, anxiety, and depressive symptoms were assessed using the Pediatric PROMIS scales. T-scores were computed and divided dichotomously by a cutoff point of 50; the PNS cluster was a sum of the four symptoms ranging from 0 (all T-scores <50) to 4 (all T-scores ≥50). Serum metabolites were processed using liquid chromatography mass-spectrometry untargeted metabolomics approach. Linear regression models examined metabolites associated with the PNS cluster. Metabolic pathway enrichment analysis was performed. RESULTS Participant demographics (n = 40) were 55% female, 60% white, 62.5% aged 13-19 years, and 62.5% diagnoses of Hodgkin's lymphoma and B-cell acute lymphocytic leukemia. Among 9276 unique metabolic features, 454 were associated with pain, 281 with fatigue, 596 with anxiety, 551 with depressive symptoms, and 300 with the PNS cluster across one chemotherapy cycle. Fatty acids pathways were associated with pain: de novo fatty acid biosynthesis (p < .001), fatty acid metabolism (p = .001), fatty acid activation (p = .004), and omega-3 fatty acid metabolism (p = .009). Tryptophan amino acid pathway was associated with fatigue (p < .001), anxiety (p = .015), and the PNS cluster (p = .037). Carnitine shuttle was associated with the PNS cluster (p = .015). CONCLUSION Fatty acids and amino acids pathways were associated with PNS in children undergoing chemotherapy. These findings require further investigation in a larger sample.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. J Mol Biol 2022; 434:167689. [PMID: 35717997 DOI: 10.1016/j.jmb.2022.167689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023]
Abstract
RNA switches are versatile tools in synthetic biology for sensing and regulation applications. The discoveries of RNA-mediated translational and transcriptional control have facilitated the development of complexde novodesigns of RNA switches. Specifically, RNA toehold-mediated switches, in which binding to the toehold sensing domain controls the transition between switch states via strand displacement, have been extensively adapted for coupling systems responses to specifictrans-RNA inputs. This review highlights some of the challenges associated with applying these switches for native RNA detectionin vivo, including transferability between organisms. The applicability and design considerations of toehold-mediated switches are discussed by highlighting twelve recently developed switch designs. This review finishes with future perspectives to address current gaps in the field, particularly regarding the power of structural prediction algorithms for improved in vivo functionality of RNA switches.
Collapse
|
17
|
Abstract
Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotoxicity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhibited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced conversion of tilimycin to tilivalline, and activation of PXR. IMPORTANCE The human gut harbors a complex community of microbes, including several species and strains that could be commensals or pathogens depending on context. The specific environmental conditions under which a resident microbe changes its relationship with a host and adopts pathogenic behaviors, in many cases, remain poorly understood. Here, we describe a novel communication network involving the regulation of K. grimontii and K. oxytoca enterotoxicity. Bacterial indole was identified as a central modulator of these colitogenic microbes by suppressing bacterial toxin (tilimycin) synthesis and converting tilimycin to tilivalline while simultaneously activating a host receptor, PXR, as a means of mitigating tissue cytotoxicity. On the other hand, fermentable carbohydrates were found to inhibit indole biosynthesis and enhance toxin production. This integrated network involving microbial, host, and metabolic factors provides a contextual framework to better understand K. oxytoca complex pathogenicity.
Collapse
|
18
|
Zhang J, Luo W, Wang Z, Chen X, Lv P, Xu J. A novel strategy for D-psicose and lipase co-production using a co-culture system of engineered Bacillus subtilis and Escherichia coli and bioprocess analysis using metabolomics. BIORESOUR BIOPROCESS 2021; 8:77. [PMID: 38650263 PMCID: PMC10992840 DOI: 10.1186/s40643-021-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
To develop an economically feasible fermentation process, this study designed a novel bioprocess based on the co-culture of engineered Bacillus subtilis and Escherichia coli for the co-production of extracellular D-psicose and intracellular lipase. After optimizing the co-culture bioprocess, 11.70 g/L of D-psicose along with 16.03 U/mg of lipase was obtained; the glucose and fructose were completely utilized. Hence, the conversion rate of D-psicose reached 69.54%. Compared with mono-culture, lipase activity increased by 58.24%, and D-psicose production increased by 7.08%. In addition, the co-culture bioprocess was explored through metabolomics analysis, which included 168 carboxylic acids and derivatives, 70 organooxygen compounds, 34 diazines, 32 pyridines and derivatives, 30 benzene and substituted derivatives, and other compounds. It also could be found that the relative abundance of differential metabolites in the co-culture system was significantly higher than that in the mono-culture system. Pathway analysis revealed that, tryptophan metabolism and β-alanine metabolism had the highest correlation and played an important role in the co-culture system; among them, tryptophan metabolism regulates protein synthesis and β-alanine metabolism, which is related to the formation of metabolic by-products. These results confirm that the co-cultivation of B. subtilis and E. coli can provide a novel idea for D-psicose and lipase biorefinery, and are beneficial for the discovery of valuable secondary metabolites such as turanose and morusin.
Collapse
Affiliation(s)
- Jun Zhang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088 , China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Luo
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Zhiyuan Wang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Xiaoyan Chen
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengmei Lv
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
| | - Jingliang Xu
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 , China.
| |
Collapse
|
19
|
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the microbiota–gut–brain axis in maintaining a healthy status is well recognized. In this bidirectional flux, the influence of host hormones on gut bacteria is crucial. However, data on commensal/probiotics are scarce since most reports analyzed the effects of human bioactive compounds on opportunistic strains, highlighting the risk of increased pathogenicity under stimulation. The present investigation examined the modifications induced by 5HT, a tryptophan-derived molecule abundant in the intestine, on the probiotic Enterococcus faecium NCIMB10415. Specific phenotypic modifications concerning the probiotic potential and possible effects of treated bacteria on dendritic cells were explored together with the comparative soluble proteome evaluation. Increased resistance to bile salts and ampicillin in 5HT-stimulated conditions relate with overexpression of specific proteins (among which Zn-beta-lactamases, a Zn-transport protein and a protein involved in fatty acid incorporation into the membrane). Better auto-aggregating properties and biofilm-forming aptitude are consistent with enhanced QS peptide transport. Concerning interaction with the host, E. faecium NCIMB10415 enhanced dendritic cell maturation, but no significant differences were observed between 5HT-treated and untreated bacteria; meanwhile, after 5HT exposure, some moonlight proteins possibly involved in tissue adhesion were found in higher abundance. Finally, the finding in stimulated conditions of a higher abundance of VicR, a protein involved in two-component signal transduction system (VicK/R), suggests the existence of a possible surface receptor (VicK) for 5HT sensing in the strain studied. These overall data indicate that E. faecium NCIMB10415 modifies its physiology in response to 5HT by improving bacterial interactions and resistance to stressors.
Collapse
|
20
|
Sherman MW, Sandeep S, Contreras LM. The Tryptophan-Induced tnaC Ribosome Stalling Sequence Exposes High Amino Acid Cross-Talk That Can Be Mitigated by Removal of NusB for Higher Orthogonality. ACS Synth Biol 2021; 10:1024-1038. [PMID: 33835775 DOI: 10.1021/acssynbio.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing number of engineered synthetic circuits have employed biological parts coupling transcription and translation in bacterial systems to control downstream gene expression. One such example, the leader sequence of the tryptophanase (tna) operon, is a transcription-translation system commonly employed as an l-tryptophan inducible circuit controlled by ribosome stalling. While induction of the tna operon has been well-characterized in response to l-tryptophan, cross-talk of this modular component with other metabolites in the cell, such as other naturally occurring amino acids, has been less explored. In this study, we investigated the impact of natural metabolites and E. coli host factors on induction of the tna leader sequence. To do so, we constructed and biochemically validated an experimental assay using the tna operon leader sequence to assess differential regulation of transcription elongation and translation in response to l-tryptophan. Operon induction was then assessed following addition of each of the 20 naturally occurring amino acids to discover that several additional amino acids (e.g., l-alanine, l-cysteine, l-glycine, l-methionine, and l-threonine) also induce expression of the tna leader sequence. Following characterization of dose-dependent induction by l-cysteine relative to l-tryptophan, the effect on induction by single gene knockouts of protein factors associated with transcription and/or translation were interrogated. Our results implicate the endogenous cellular protein, NusB, as an important factor associated with induction of the operon by the alternative amino acids. As such, removal of the nusB gene from strains intended for tryptophan-sensing utilizing the tna leader region reduces amino acid cross-talk, resulting in enhanced orthogonal control of this commonly used synthetic system.
Collapse
Affiliation(s)
- Mark W. Sherman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Sanjna Sandeep
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| |
Collapse
|
21
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
22
|
Scarsella E, Segato J, Zuccaccia D, Swanson KS, Stefanon B. An application of nuclear magnetic resonance spectroscopy to study faecal canine metabolome. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1925602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elisa Scarsella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Jacopo Segato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| |
Collapse
|
23
|
Bai J, Bruner DW, Fedirko V, Beitler JJ, Zhou C, Gu J, Zhao H, Lin IH, Chico CE, Higgins KA, Shin DM, Saba NF, Miller AH, Xiao C. Gut Microbiome Associated with the Psychoneurological Symptom Cluster in Patients with Head and Neck Cancers. Cancers (Basel) 2020; 12:cancers12092531. [PMID: 32899975 PMCID: PMC7563252 DOI: 10.3390/cancers12092531] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Cancer patients experience a cluster of co-occurring psychoneurological symptoms (PNS) related to cancer treatments. The gut microbiome may affect severity of the PNS via neural, immune, and endocrine signaling pathways. However, the link between the gut microbiome and PNS has not been well investigated in cancer patients, including those with head and neck cancers (HNCs). This pilot study enrolled 13 patients with HNCs, who reported PNS using the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (CTCAEs). Stool specimens were collected to analyze patients' gut microbiome. All data were collected pre- and post-radiation therapy (RT). Associations between the bacterial abundances and the PNS clusters were analyzed using the linear discriminant analysis effect size; functional pathway analyses of 16S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The high PNS cluster had a greater decrease in microbial evenness than the low PNS cluster from pre- to post-RT. The high and low PNS clusters showed significant differences using weighted UniFrac distance. Those individuals with the high PNS cluster were more likely to have higher abundances in phylum Bacteroidetes, order Bacteroidales, class Bacteroidia, and four genera (Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena, and DTU089), while the low PNS cluster had higher abundances in family Acidaminococcaceae and three genera (Lactococcus, Phascolarctobacterium, and Desulfovibrio). Both glycan metabolism (Lipopolysaccharide biosynthesis) and vitamin metabolism (folate biosynthesis and lipoic acid metabolism) were significantly different between the high and low PNS clusters pre- and post-RT. Our preliminary data suggest that the diversity and abundance of the gut microbiome play a potential role in developing PNS among cancer patients.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA;
- Correspondence: ; Tel.: +1-404-727-2466
| | | | - Veronika Fedirko
- Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jonathan J. Beitler
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (J.J.B.); (K.A.H.)
| | - Chao Zhou
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - Jianlei Gu
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - Hongyu Zhao
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - I-Hsin Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10017, USA;
| | - Cynthia E. Chico
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.E.C.); (A.H.M.)
| | - Kristin A. Higgins
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (J.J.B.); (K.A.H.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (D.M.S.); (N.F.S.)
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (D.M.S.); (N.F.S.)
| | - Andrew H. Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.E.C.); (A.H.M.)
| | - Canhua Xiao
- School of Nursing, Yale University, New Haven, CT 06477, USA;
| |
Collapse
|
24
|
Araújo CL, Blanco I, Souza L, Tiwari S, Pereira LC, Ghosh P, Azevedo V, Silva A, Folador A. In silico functional prediction of hypothetical proteins from the core genome of Corynebacterium pseudotuberculosis biovar ovis. PeerJ 2020; 8:e9643. [PMID: 32913672 PMCID: PMC7456259 DOI: 10.7717/peerj.9643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a pathogen of veterinary relevance diseases, being divided into two biovars: equi and ovis; causing ulcerative lymphangitis and caseous lymphadenitis, respectively. The isolation and sequencing of C. pseudotuberculosis biovar ovis strains in the Northern and Northeastern regions of Brazil exhibited the emergence of this pathogen, which causes economic losses to small ruminant producers, and condemnation of carcasses and skins of animals. Through the pan-genomic approach, it is possible to determine and analyze genes that are shared by all strains of a species—the core genome. However, many of these genes do not have any predicted function, being characterized as hypothetical proteins (HP). In this study, we considered 32 C. pseudotuberculosis biovar ovis genomes for the pan-genomic analysis, where were identified 172 HP present in a core genome composed by 1255 genes. We are able to functionally annotate 80 sequences previously characterized as HP through the identification of structural features as conserved domains and families. Furthermore, we analyzed the physicochemical properties, subcellular localization and molecular function. Additionally, through RNA-seq data, we investigated the differential gene expression of the annotated HP. Genes inserted in pathogenicity islands had their virulence potential evaluated. Also, we have analyzed the existence of functional associations for their products based on protein–protein interaction networks, and perform the structural prediction of three targets. Due to the integration of different strategies, this study can underlie deeper in vitro researches in the characterization of these HP and the search for new solutions for combat this pathogen.
Collapse
Affiliation(s)
- Carlos Leonardo Araújo
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Iago Blanco
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luciana Souza
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lino César Pereira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Adriana Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
25
|
Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutr Rev 2020; 78:394-411. [PMID: 31750916 DOI: 10.1093/nutrit/nuz072] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dietary fiber is a crucial component of a healthy diet, with benefits that can be attributed to processes in the gut microbiota and the resulting by-products. Observational studies support associations between dietary fiber intake and depression and inflammation, but the potential mechanisms are poorly understood. This review examines evidence of the effects of dietary fiber on depression and inflammation and considers plausible mechanisms linking dietary fiber and depression, including microbiota-driven modification of gene expression and increased production of neurotransmitters. Additionally, inflammation may mediate the relationship between dietary fiber intake and depression. A high-fiber diet potentially lowers inflammation by modifying both the pH and the permeability of the gut. The resultant reduction in inflammatory compounds may alter neurotransmitter concentrations to reduce symptoms of depression. Further research into the link between dietary fiber intake and inflammation and depression is essential, as findings could potentially provide guidance for improvement in or prevention of inflammatory and depressive disorders.
Collapse
Affiliation(s)
- Olivia G Swann
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle Kilpatrick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Posttranscriptional Regulation of tnaA by Protein-RNA Interaction Mediated by Ribosomal Protein L4 in Escherichia coli. J Bacteriol 2020; 202:JB.00799-19. [PMID: 32123036 PMCID: PMC7186457 DOI: 10.1128/jb.00799-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022] Open
Abstract
Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions. Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5′ or 3′ half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon. IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions.
Collapse
|
27
|
Fucose Ameliorates Tryptophan Metabolism and Behavioral Abnormalities in a Mouse Model of Chronic Colitis. Nutrients 2020; 12:nu12020445. [PMID: 32053891 PMCID: PMC7071335 DOI: 10.3390/nu12020445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence suggests that intestinal mucosa homeostasis impacts immunity, metabolism, the Central Nervous System (CNS), and behavior. Here, we investigated the effect of the monosaccharide fucose on inflammation, metabolism, intestinal microbiota, and social behavior in the Dextran Sulfate Sodium (DSS)-induced chronic colitis mouse model. Our data show that chronic colitis is accompanied by the decrease of the serum tryptophan level and the depletion of the intestinal microbiota, specifically tryptophan-producing E. coli and Bifidobacterium. These changes are associated with defects in the male mouse social behavior such as a lack of preference towards female bedding in an odor preference test. The addition of fucose to the test animals' diet altered the bacterial community, increased the abundance of tryptophan-producing E. coli, normalized blood tryptophan levels, and ameliorated social behavior deficits. At the same time, we observed no ameliorating effect of fucose on colon morphology and colitis. Our results suggest a possible mechanism by which intestinal inflammation affects social behavior in male mice. We propose fucose as a promising prebiotic, since it creates a favorable environment for the beneficial bacteria that promote normalization of serum tryptophan level and amelioration of the behavioral abnormalities in the odor preference test.
Collapse
|
28
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
29
|
Anwar MN, Li ZF, Gong Y, Singh RP, Li YZ. Omics Studies Revealed the Factors Involved in the Formation of Colony Boundary in Myxococcus xanthus. Cells 2019; 8:E530. [PMID: 31163575 PMCID: PMC6627406 DOI: 10.3390/cells8060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Two unrecognizable strains of the same bacterial species form a distinct colony boundary. During growth as colonies, Myxococcus xanthus uses multiple factors to establish cooperation between recognized strains and prevent interactions with unrecognized strains of the same species. Here, ΔMXAN_0049 is a mutant strain deficient in immunity for the paired nuclease gene, MXAN_0050, that has a function in the colony-merger incompatibility of Myxococcus xanthus DK1622. With the aim to investigate the factors involved in boundary formation, a proteome and metabolome study was employed. Visualization of the boundary between DK1622 and ΔMXAN_0049 was done scanning electron microscope (SEM), which displayed the presence of many damaged cells in the boundary. Proteome analysis of the DK1622- boundary disclosed many possible proteins, such as cold shock proteins, cell shape-determining protein MreC, along with a few pathways, such as RNA degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and Type VI secretion system (T6SS), which may play major roles in the boundary formation. Metabolomics studies revealed various secondary metabolites that were significantly produced during boundary formation. Overall, the results concluded that multiple factors participated in the boundary formation in M. xanthus, leading to cellular damage that is helpful in solving the mystery of the boundary formation mechanism.
Collapse
Affiliation(s)
- Mian Nabeel Anwar
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhi Feng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
- Department of Research and Development, Uttaranchal University, Dehradun 248007, India.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
30
|
Li Y, Liu B, Guo J, Cong H, He S, Zhou H, Zhu F, Wang Q, Zhang L. L-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorption. Future Microbiol 2019; 14:757-771. [DOI: 10.2217/fmb-2019-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The bacterial persisters have emerged as a huge threat to human health. Here, we investigated the role of L-tryptophan in bacterial persister killing by aminoglycoside antibiotics (AGs). Materials & methods: The relevance to the antibiotic susceptibility of Escherichia coli including transcriptional sequencing, gene expression, intracellular ATP, Nicotinamide adenine dinucleotide (NAD/NADH), reactive oxygen species and membrane depolarization were determined. Results & conclusion: We found that exogenous L-tryptophan efficiently inhibited AGs-enabled persisters. The flagellar genes were almost significantly downregulated. Besides, the AGs uptake was obviously increased as the result of elevation in proton motive force (PMF) in response to L-tryptophan-mediated NADH production. Taken together, these data supported a novel role of L-tryptophan in eradicating AGs persisters against E. coli.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Bo Liu
- Shanghai Pudong New Area Center for Disease Control & Prevention, Shanghai, China
| | - Jingjing Guo
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Shenyi He
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
31
|
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019; 7:diseases7010021. [PMID: 30781823 PMCID: PMC6473882 DOI: 10.3390/diseases7010021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus⁻pituitary⁻adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.
Collapse
Affiliation(s)
- Nima H Jazani
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Javad Savoj
- Department of Internal Medicine, Riverside Community Hospital, University of California-Riverside School of Medicine, Riverside, CA 92501, USA.
| | - Michael Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Abstract
The microbiome in the gut is a diverse environment, housing the majority of our bacterial microbes. This microecosystem has a symbiotic relationship with the surrounding multicellular organism, and a balance and diversity of specific phyla of bacteria support general health. When gut bacteria diversity diminishes, there are systemic consequences, such as gastrointestinal and psychological distress. This pathway of communication is known as the microbiome-gut-brain axis. Interventions such as probiotic supplementation that influence microbiome also improve both gut and brain disorders. Recent evidence suggests that aerobic exercise improves the diversity and abundance of genera from the Firmcutes phylum, which may be the link between the positive effects of exercise on the gut and brain. The purpose of this review is to explain the complex communication pathway of the microbiome-gut-brain axis and further examine the role of exercise on influencing this communication highway.
Collapse
Affiliation(s)
- Alyssa Dalton
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA,CONTACT Micah Zuhl Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
33
|
Ihekweazu FD, Versalovic J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am J Med Sci 2018; 356:413-423. [PMID: 30384950 PMCID: PMC6268214 DOI: 10.1016/j.amjms.2018.08.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota are important in human growth and development. Microbial composition may yield insights into the temporal development of microbial communities and vulnerabilities to disorders of microbial ecology such as recurrent Clostridium difficile infection. Discoveries of key microbiome features of carbohydrate and amino acid metabolism are lending new insights into possible therapies or preventative strategies for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). In this review, we summarize the current understanding of the development of the pediatric gastrointestinal microbiome, the influence of the microbiome on the developing brain through the gut-brain axis, and the impact of dysbiosis on disease development. Dysbiosis is explored in the context of pediatric allergy and asthma, recurrent C. difficile infection, IBD, IBS, and metabolic disorders. The central premise is that the human intestinal microbiome plays a vital role in health and disease, beginning in the prenatal period and extending throughout childhood.
Collapse
Affiliation(s)
- Faith D. Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children’s Hospital, 1102 Bates St., Houston, TX, 77030, USA.
| | - James Versalovic
- Pediatric Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital 1102 Bates St., Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Tröndle J, Trachtmann N, Sprenger GA, Weuster-Botz D. Fed-batch production ofl-tryptophan from glycerol using recombinantEscherichia coli. Biotechnol Bioeng 2018; 115:2881-2892. [DOI: 10.1002/bit.26834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Julia Tröndle
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| | - Natalia Trachtmann
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Georg A. Sprenger
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| |
Collapse
|
35
|
Kumar S, Mahajan S, Jain S. Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis. PLoS One 2018; 13:e0203311. [PMID: 30286091 PMCID: PMC6171850 DOI: 10.1371/journal.pone.0203311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022] Open
Abstract
The genetic regulatory network (GRN) plays a key role in controlling the response of the cell to changes in the environment. Although the structure of GRNs has been the subject of many studies, their large scale structure in the light of feedbacks from the metabolic network (MN) has received relatively little attention. Here we study the causal structure of the GRNs, namely the chain of influence of one component on the other, taking into account feedback from the MN. First we consider the GRNs of E. coli and B. subtilis without feedback from MN and illustrate their causal structure. Next we augment the GRNs with feedback from their respective MNs by including (a) links from genes coding for enzymes to metabolites produced or consumed in reactions catalyzed by those enzymes and (b) links from metabolites to genes coding for transcription factors whose transcriptional activity the metabolites alter by binding to them. We find that the inclusion of feedback from MN into GRN significantly affects its causal structure, in particular the number of levels and relative positions of nodes in the hierarchy, and the number and size of the strongly connected components (SCCs). We then study the functional significance of the SCCs. For this we identify condition specific feedbacks from the MN into the GRN by retaining only those enzymes that are essential for growth in specific environmental conditions simulated via the technique of flux balance analysis (FBA). We find that the SCCs of the GRN augmented by these feedbacks can be ascribed specific functional roles in the organism. Our algorithmic approach thus reveals relatively autonomous subsystems with specific functionality, or regulatory modules in the organism. This automated approach could be useful in identifying biologically relevant modules in other organisms for which network data is available, but whose biology is less well studied.
Collapse
Affiliation(s)
- Santhust Kumar
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Saurabh Mahajan
- National Centre for Biological Sciences, Bangalore, Karnataka 560065, India
| | - Sanjay Jain
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States of America
- * E-mail:
| |
Collapse
|
36
|
Evaluation of a Culture-Dependent Algorithm and a Molecular Algorithm for Identification of Shigella spp., Escherichia coli, and Enteroinvasive E. coli. J Clin Microbiol 2018; 56:JCM.00510-18. [PMID: 30021824 PMCID: PMC6156305 DOI: 10.1128/jcm.00510-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli (EIEC) is challenging because of their close relatedness. Distinction is vital, as infections with Shigella spp. are under surveillance of health authorities, in contrast to EIEC infections. In this study, a culture-dependent identification algorithm and a molecular identification algorithm were evaluated. Discrepancies between the two algorithms and original identification were assessed using whole-genome sequencing (WGS). After discrepancy analysis with the molecular algorithm, 100% of the evaluated isolates were identified in concordance with the original identification. However, the resolution for certain serotypes was lower than that of previously described methods and lower than that of the culture-dependent algorithm. Although the resolution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shigella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of Shigella flexneri isolates were identified in concordance with the original identification. Discrepancy analysis using WGS was able to confirm one of the used algorithms in four discrepant results. However, it failed to clarify three other discrepant results, as it added yet another identification. Both proposed algorithms performed well for the identification of Shigella spp. and EIEC isolates and are applicable in low-resource settings, in contrast to previously described methods that require WGS for daily diagnostics. Evaluation of the algorithms showed that both algorithms are capable of identifying Shigella species and EIEC isolates. The molecular algorithm is more applicable in clinical diagnostics for fast and accurate screening, while the culture-dependent algorithm is more suitable for reference laboratories to identify Shigella spp. and EIEC up to the serotype level.
Collapse
|
37
|
In silico optimization of a bioreactor with an E. coli culture for tryptophan production by using a structured model coupling the oscillating glycolysis and tryptophan synthesis. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Bastet L, Turcotte P, Wade JT, Lafontaine DA. Maestro of regulation: Riboswitches orchestrate gene expression at the levels of translation, transcription and mRNA decay. RNA Biol 2018. [PMID: 29537923 DOI: 10.1080/15476286.2018.1451721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Riboswitches are RNA regulators that control gene expression by modulating their structure in response to metabolite binding. The study of mechanisms by which riboswitches modulate gene expression is crucial to understand how riboswitches are involved in maintaining cellular homeostasis. Previous reports indicate that riboswitches can control gene expression at the level of translation, transcription or mRNA decay. However, there are very few described examples where riboswitches regulate multiple steps in gene expression. Recent studies of a translation-regulating, TPP-dependent riboswitch have revealed that ligand binding is also involved in the control of mRNA levels. In this model, TPP binding to the riboswitch leads to the inhibition of translation, which in turn allows for Rho-dependent transcription termination. Thus, mRNA levels are indirectly controlled through ribosome occupancy. This is in contrast to other riboswitches that directly control mRNA levels by modulating the access of regulatory sequences involved in either Rho-dependent transcription termination or RNase E cleavage activity. Together, these findings indicate that riboswitches modulate both translation initiation and mRNA levels using multiple strategies that direct the outcome of gene expression.
Collapse
Affiliation(s)
- Laurène Bastet
- a Laboratorio de Regulación Génica Bacteriana. Instituto de Agrobiotecnología , CSIC- UPNA. Avda. Pamplona 123 , Mutilva , Navarra
| | - Pierre Turcotte
- b Department of Biology , Faculty of Science, RNA Group, Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Joseph T Wade
- c Wadsworth Center , New York State Department of Health , Albany , NY , USA.,d Department of Biomedical Sciences , University at Albany , Albany , NY , USA
| | - Daniel A Lafontaine
- b Department of Biology , Faculty of Science, RNA Group, Université de Sherbrooke , Sherbrooke , Québec , Canada
| |
Collapse
|
39
|
Maria G, Gijiu CL, Maria C, Tociu C. Interference of the oscillating glycolysis with the oscillating tryptophan synthesis in the E. coli cells. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Nieß A, Löffler M, Simen JD, Takors R. Repetitive Short-Term Stimuli Imposed in Poor Mixing Zones Induce Long-Term Adaptation of E. coli Cultures in Large-Scale Bioreactors: Experimental Evidence and Mathematical Model. Front Microbiol 2017; 8:1195. [PMID: 28702020 PMCID: PMC5487534 DOI: 10.3389/fmicb.2017.01195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Rapidly changing concentrations of substrates frequently occur during large-scale microbial cultivations. These changing conditions, caused by large mixing times, result in a heterogeneous population distribution. Here, we present a powerful and efficient modeling approach to predict the influence of varying substrate levels on the transcriptional and translational response of the cell. This approach consists of two parts, a single-cell model to describe transcription and translation for an exemplary operon (trp operon) and a second part to characterize cell distribution during the experimental setup. Combination of both models enables prediction of transcriptional patterns for the whole population. In summary, the resulting model is not only able to anticipate the experimentally observed short-term and long-term transcriptional response, it further allows envision of altered protein levels. Our model shows that locally induced stress responses propagate throughout the bioreactor, resulting in temporal, and spatial population heterogeneity. Stress induced transcriptional response leads to a new population steady-state shortly after imposing fluctuating substrate conditions. In contrast, the protein levels take more than 10 h to achieve steady-state conditions.
Collapse
Affiliation(s)
- Alexander Nieß
- Institute of Biochemical Engineering, University of StuttgartStuttgart, Germany
| | - Michael Löffler
- Institute of Biochemical Engineering, University of StuttgartStuttgart, Germany
| | - Joana D Simen
- Institute of Biochemical Engineering, University of StuttgartStuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of StuttgartStuttgart, Germany
| |
Collapse
|
41
|
Heddle JG, Chakraborti S, Iwasaki K. Natural and artificial protein cages: design, structure and therapeutic applications. Curr Opin Struct Biol 2017; 43:148-155. [DOI: 10.1016/j.sbi.2017.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
|
42
|
Maes A, Gracia C, Innocenti N, Zhang K, Aurell E, Hajnsdorf E. Landscape of RNA polyadenylation in E. coli. Nucleic Acids Res 2017; 45:2746-2756. [PMID: 28426097 PMCID: PMC5389530 DOI: 10.1093/nar/gkw894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022] Open
Abstract
Polyadenylation is thought to be involved in the degradation and quality control of bacterial RNAs but relatively few examples have been investigated. We used a combination of 5΄-tagRACE and RNA-seq to analyze the total RNA content from a wild-type strain and from a poly(A)polymerase deleted mutant. A total of 178 transcripts were either up- or down-regulated in the mutant when compared to the wild-type strain. Poly(A)polymerase up-regulates the expression of all genes related to the FliA regulon and several previously unknown transcripts, including numerous transporters. Notable down-regulation of genes in the expression of antigen 43 and components of the type 1 fimbriae was detected. The major consequence of the absence of poly(A)polymerase was the accumulation of numerous sRNAs, antisense transcripts, REP sequences and RNA fragments resulting from the processing of entire transcripts. A new algorithm to analyze the position and composition of post-transcriptional modifications based on the sequence of unencoded 3΄-ends, was developed to identify polyadenylated molecules. Overall our results shed new light on the broad spectrum of action of polyadenylation on gene expression and demonstrate the importance of poly(A) dependent degradation to remove structured RNA fragments.
Collapse
Affiliation(s)
- Alexandre Maes
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Céline Gracia
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Nicolas Innocenti
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 17, SE-10691 Stockholm, Sweden
- Combient AB, Nettovägen 6, SE-175 41 Järfälla, Sweden
| | - Kaiyang Zhang
- Systems Biology Laboratory, Research Programs Unit,Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finlandepts of Computer Science and Applied Physics, Aalto University, Konemiehentie 2, FI-02150 Espoo, Finland
| | - Erik Aurell
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 17, SE-10691 Stockholm, Sweden
- Departments of Computer Science and Applied Physics, AaltoUniversity, Konemiehentie 2, FI-02150 Espoo, Finlandombient AB, Nettovägen 6, SE-175 41 Järfälla, Sweden
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
43
|
Lin X, Yu ACS, Chan TF. Efforts and Challenges in Engineering the Genetic Code. Life (Basel) 2017; 7:life7010012. [PMID: 28335420 PMCID: PMC5370412 DOI: 10.3390/life7010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.
Collapse
Affiliation(s)
- Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Allen Chi Shing Yu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| |
Collapse
|
44
|
Kumar A, Borgen M, Aluwihare LI, Fenical W. Ozone-Activated Halogenation of Mono- and Dimethylbipyrrole in Seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:589-595. [PMID: 27983826 PMCID: PMC6301015 DOI: 10.1021/acs.est.6b03601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polyhalogenated N-methylbipyrroles of two different structure classes have been detected worldwide in over 100 environmental samples including seawater, bird eggs, fish, dolphin blubber, and in the breast milk of humans that consume seafood. These molecules are concentrated in the fatty tissues in comparable abundance to some of the most important anthropogenic contaminants, such as the halogenated flame-retardants and pesticides. Although the origin of these compounds is still unknown, we present evidence that the production of these materials can involve the direct ozone activated seawater halogenation of N-methylbipyrrole precursors. This observation shows that environmental polyhalogenated bipyrroles can be produced via an abiotic process, and implies that the ozone activated halogenation of a variety of natural and anthropogenic seawater organics may be a significant process occurring in surface ocean waters.
Collapse
Affiliation(s)
- Abdhesh Kumar
- Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
| | - Miles Borgen
- Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Geoscience Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
| | - Lihini I. Aluwihare
- Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Geoscience Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
45
|
Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112:399-412. [DOI: 10.1016/j.neuropharm.2016.07.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
46
|
Lai Y, Xu Z, Yan A. A novel regulatory circuit to control indole biosynthesis protectsEscherichia colifrom nitrosative damages during the anaerobic respiration of nitrate. Environ Microbiol 2016; 19:598-610. [DOI: 10.1111/1462-2920.13527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Lai
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Zeling Xu
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| |
Collapse
|
47
|
Palazzotto E, Gallo G, Renzone G, Giardina A, Sutera A, Silva J, Vocat C, Botta L, Scaloni A, Puglia AM. TrpM, a Small Protein Modulating Tryptophan Biosynthesis and Morpho-Physiological Differentiation in Streptomyces coelicolor A3(2). PLoS One 2016; 11:e0163422. [PMID: 27669158 PMCID: PMC5036795 DOI: 10.1371/journal.pone.0163422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
In the model actinomycete Streptomyces coelicolor A3(2), small open reading frames encoding proteins with unknown functions were identified in several amino acid biosynthetic gene operons, such as SCO2038 (trpX) in the tryptophan trpCXBA locus. In this study, the role of the corresponding protein in tryptophan biosynthesis was investigated by combining phenotypic and molecular analyses. The 2038KO mutant strain was characterized by delayed growth, smaller aerial hyphae and reduced production of spores and actinorhodin antibiotic, with respect to the WT strain. The capability of this mutant to grow on minimal medium was rescued by tryptophan and tryptophan precursor (serine and/or indole) supplementation on minimal medium and by gene complementation, revealing the essential role of this protein, here named TrpM, as modulator of tryptophan biosynthesis. His-tag pull-down and bacterial adenylate cyclase-based two hybrid assays revealed TrpM interaction with a putative leucyl-aminopeptidase (PepA), highly conserved component among various Streptomyces spp. In silico analyses showed that PepA is involved in the metabolism of serine, glycine and cysteine through a network including GlyA, CysK and CysM enzymes. Proteomic experiments suggested a TrpM-dependent regulation of metabolic pathways and cellular processes that includes enzymes such as GlyA, which is required for the biosynthesis of tryptophan precursors and key proteins participating in the morpho-physiological differentiation program. Altogether, these findings reveal that TrpM controls tryptophan biosynthesis at the level of direct precursor availability and, therefore, it is able to exert a crucial effect on the morpho-physiological differentiation program in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Emilia Palazzotto
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
- * E-mail:
| | - Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Giardina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Alberto Sutera
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Joohee Silva
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Celinè Vocat
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, University of Palermo, 90128 Palermo, Italy
| | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
48
|
Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, Fedoseeva M, Ohnmacht C, Dehmel S, Nathan P, Bartel S, Eickelberg O, Schloter M, Hartmann A, Schmitt-Kopplin P, Krauss-Etschmann S. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 2016; 139:1525-1535. [PMID: 27670239 DOI: 10.1016/j.jaci.2016.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic immune diseases, such as asthma, are highly prevalent. Currently available pharmaceuticals improve symptoms but cannot cure the disease. This prompted demands for alternatives to pharmaceuticals, such as probiotics, for the prevention of allergic disease. However, clinical trials have produced inconsistent results. This is at least partly explained by the highly complex crosstalk among probiotic bacteria, the host's microbiota, and immune cells. The identification of a bioactive substance from probiotic bacteria could circumvent this difficulty. OBJECTIVE We sought to identify and characterize a bioactive probiotic metabolite for potential prevention of allergic airway disease. METHODS Probiotic supernatants were screened for their ability to concordantly decrease the constitutive CCL17 secretion of a human Hodgkin lymphoma cell line and prevent upregulation of costimulatory molecules of LPS-stimulated human dendritic cells. RESULTS Supernatants from 13 of 37 tested probiotic strains showed immunoactivity. Bioassay-guided chromatographic fractionation of 2 supernatants according to polarity, followed by total ion chromatography and mass spectrometry, yielded C11H12N2O2 as the molecular formula of a bioactive substance. Proton nuclear magnetic resonance and enantiomeric separation identified D-tryptophan. In contrast, L-tryptophan and 11 other D-amino acids were inactive. Feeding D-tryptophan to mice before experimental asthma induction increased numbers of lung and gut regulatory T cells, decreased lung TH2 responses, and ameliorated allergic airway inflammation and hyperresponsiveness. Allergic airway inflammation reduced gut microbial diversity, which was increased by D-tryptophan. CONCLUSIONS D-tryptophan is a newly identified product from probiotic bacteria. Our findings support the concept that defined bacterial products can be exploited in novel preventative strategies for chronic immune diseases.
Collapse
Affiliation(s)
- Inge Kepert
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany
| | - Juliano Fonseca
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Constanze Müller
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Katrin Milger
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany
| | - Kerstin Hochwind
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Matea Kostric
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Maria Fedoseeva
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung research (DZL), Oberschleissheim, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung research (DZL), Oberschleissheim, Germany
| | - Stefan Dehmel
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany
| | - Petra Nathan
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany
| | - Sabine Bartel
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany; Division of Experimental Asthma Research, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Oberschleissheim, Germany; Analytical Food Chemistry, Technische Universität Muenchen, Freising, Germany
| | - Susanne Krauss-Etschmann
- Comprehensive Pneumology Center, Ludwig Maximilians University Hospital, Member of the German Center for Lung Research (DZL), and Helmholtz Zentrum München, Munich, Germany; Division of Experimental Asthma Research, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Member of the German Center for Lung Research (DZL), Borstel, Germany; Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany.
| |
Collapse
|
49
|
Bortolotti P, Hennart B, Thieffry C, Jausions G, Faure E, Grandjean T, Thepaut M, Dessein R, Allorge D, Guery BP, Faure K, Kipnis E, Toussaint B, Le Gouellec A. Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship. BMC Microbiol 2016; 16:137. [PMID: 27392067 PMCID: PMC4938989 DOI: 10.1186/s12866-016-0756-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome. To face the announced post-antibiotic era due to increasing resistance and lack of new antibiotics, new treatment strategies have to be developed. Immunomodulation of the host response involved in outcome could be an alternative therapeutic target in Pa-induced lung infection. Kynurenines are metabolites resulting from tryptophan catabolism and are known for their immunomodulatory properties. Pa catabolizes tryptophan through the kynurenine pathway. Interestingly, many host cells also possess the kynurenine pathway, whose metabolites are known to control immune system homeostasis. Thus, bacterial metabolites may interfere with the host's immune response. However, the kynurenine pathway in Pa, including functional enzymes, types and amounts of secreted metabolites remains poorly known. Using liquid chromatography coupled to mass spectrometry and different strains of Pa, we determined types and levels of metabolites produced by Pa ex vivo in growth medium, and the relevance of this production in vivo in a murine model of acute lung injury. RESULTS Ex vivo, Pa secretes clinically relevant kynurenine levels (μM to mM). Pa also secretes kynurenic acid and 3-OH-kynurenine, suggesting that the bacteria possess both a functional kynurenine aminotransferase and kynurenine monooxygenase. The bacterial kynurenine pathway is the major pathway leading to anthranilate production both ex vivo and in vivo. In the absence of the anthranilate pathway, the kynurenine pathway leads to kynurenic acid production. CONCLUSION Pa produces and secretes several metabolites of the kynurenine pathway. Here, we demonstrate the existence of new metabolic pathways leading to synthesis of bioactive molecules, kynurenic acid and 3-OH-kynurenine in Pa. The kynurenine pathway in Pa is critical to produce anthranilate, a crucial precursor of some Pa virulence factors. Metabolites (anthranilate, kynurenine, kynurenic acid) are produced at sustained levels both ex vivo and in vivo leading to a possible immunomodulatory interplay between bacteria and host. These data may imply that pulmonary infection with bacteria highly expressing the kynurenine pathway enzymes could influence the equilibrium of the host's tryptophan metabolic pathway, known to be involved in the immune response to infection. Further studies are needed to explore the effects of these metabolic changes on the pathophysiology of Pa infection.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Benjamin Hennart
- Laboratoire de Toxicologie - Pôle de Biologie-Pathologie-Génétique - CHRU de Lille - France, EA4483 - IMPECS, Université Lille Nord de France, Lille, France
| | - Camille Thieffry
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Guillaume Jausions
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Emmanuel Faure
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Teddy Grandjean
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Marion Thepaut
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Rodrigue Dessein
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Delphine Allorge
- Laboratoire de Toxicologie - Pôle de Biologie-Pathologie-Génétique - CHRU de Lille - France, EA4483 - IMPECS, Université Lille Nord de France, Lille, France
| | - Benoit P Guery
- Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Karine Faure
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Eric Kipnis
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Bertrand Toussaint
- Laboratoire TIMC-TheREx (UMR5525 CNRS-UGA) Université Grenoble Alpes, Faculté de médecine, La Tronche, France.,Unité médicale de Biochimie des enzymes et des protéines, CHUGA de Grenoble , CS10207, Grenoble, 38043, Rhone alpes, France
| | - Audrey Le Gouellec
- Laboratoire TIMC-TheREx (UMR5525 CNRS-UGA) Université Grenoble Alpes, Faculté de médecine, La Tronche, France. .,Unité médicale de Biochimie des enzymes et des protéines, CHUGA de Grenoble , CS10207, Grenoble, 38043, Rhone alpes, France.
| |
Collapse
|
50
|
Iyer S, Park BR, Kim M. Absolute quantitative measurement of transcriptional kinetic parameters in vivo. Nucleic Acids Res 2016; 44:e142. [PMID: 27378780 PMCID: PMC5062976 DOI: 10.1093/nar/gkw596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
mRNA expression involves transcription initiation, elongation and degradation. In cells, these dynamic processes are highly regulated. However, experimental characterization of the dynamic processes in vivo is difficult due to the paucity of methods capable of direct measurements. We present a highly sensitive and versatile method enabling direct characterization of the dynamic processes. Our method is based on single-molecule fluorescence in situ hybridization (smFISH) and quantitative analyses of hybridization signals. We hybridized multiple probes labelled with spectrally distinct fluorophores to multiple sub-regions of single mRNAs, and visualized the kinetics of synthesis and degradation of the sub-regions. Quantitative analyses of the data lead to absolute quantification of the lag time of mRNA induction (the time it takes for external signals to activate transcription initiation), transcription initiation rate, transcription elongation speed (i.e. mRNA chain-growth speed), the rate of premature termination of transcripts and degradation rates. Applying our method to three different biological problems, we demonstrated how our method may be applicable to reveal dynamics of mRNA expression that was difficult to study previously. We expect such absolute quantification can greatly facilitate understanding of gene expression and its regulation working at the levels of transcriptional initiation, elongation and degradation.
Collapse
Affiliation(s)
- Sukanya Iyer
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Bo Ryoung Park
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|