1
|
Tang Y, Yi X, Ai J. mRNA vaccines for prostate cancer: A novel promising immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189333. [PMID: 40288658 DOI: 10.1016/j.bbcan.2025.189333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of advanced prostate cancer (PCa) primarily based on androgen deprivation therapy (ADT); however, patients inevitably progress to the castration-resistant prostate cancer (CRPC) stage. Despite the recent advancements in CRPC treatment with novel endocrine drugs that further inhibit androgen receptor signaling, resistance ultimately develops, underscoring the urgent need for new effective therapeutic strategies. Therapeutic cancer vaccines, a form of immunotherapy, exert anti-cancer effects by activating the host's immune system. Over the past few decades, various conventional therapeutic PCa vaccines based on cells, microbes, proteins, peptides, or DNA have been developed and tested in patients with advanced PCa. These attempts have largely failed to improve survival, with the sole exception of sipuleucel-T, which extended the median overall survival of asymptomatic or minimally symptomatic metastatic CRPC (mCRPC) patients by four months. The rapid development and high efficacy of mRNA vaccines during the COVID-19 pandemic have garnered worldwide attention. Compared to conventional vaccines, mRNA vaccines offer several unique advantages, including high production efficiency, low cost, high safety, strong immune response induction, and high adaptability and precision. These attributes make mRNA vaccines a promising frontier in the treatment of advanced PCa.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
2
|
Del Bene A, D'Aniello A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Benedetti R, Altucci L, Cosconati S, Di Maro S, Messere A. From genetic code to global health: the impact of nucleic acid vaccines on disease prevention and treatment. RSC Med Chem 2025:d5md00032g. [PMID: 40337306 PMCID: PMC12053015 DOI: 10.1039/d5md00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccinology has revolutionized modern medicine, delivering groundbreaking solutions to prevent and control infectious diseases while pioneering innovative strategies to tackle non-infectious challenges, including cancer. Traditional vaccines faced inherent limitations, driving the evolution of next-generation vaccines such as subunit vaccines, peptide-based vaccines, and nucleic acid-based platforms. Among these, nucleic acid-based vaccines, including DNA and mRNA technologies, represent a major innovation. Pioneering studies in the 1990s demonstrated their ability to elicit immune responses by encoding specific antigens. Recent advancements in delivery systems and molecular engineering have overcome initial challenges, enabling their rapid development and clinical success. This review explores nucleic acid-based vaccines, including chemically modified variants, by examining their mechanisms, structural features, and therapeutic potential, while underscoring their pivotal role in modern immunization strategies and expanding applications across contemporary medicine.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | | | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Erica Campagna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
- Biogem Institute of Molecular and Genetic Biology 83031 Ariano Irpino Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
3
|
Zhou J, Li Y, Jiang X, Xin Z, Liu W, Zhang X, Zhai Y, Zhang Z, Shi T, Xue M, Zhang M, Wu Y, Chu Y, Wang S, Jin X, Zhu W, Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater Today Bio 2025; 31:101603. [PMID: 40124340 PMCID: PMC11926701 DOI: 10.1016/j.mtbio.2025.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Engaging antigen-presenting cells and T lymphocytes is essential for invigorating the immune system's response to cancer. Nonetheless, challenges such as the low immunogenicity of tumor antigens, the genetic heterogeneity of tumor cells, and the elevated expression of immune checkpoint molecules frequently result in resistance to immunotherapy or enable immune evasion by tumors. To overcome this resistance, we developed a therapeutic tumor vaccine employing cationic liposomes to encapsulate MC38 total RNA alongside PD-L1 siRNA (siPD-L1). The encapsulated total RNA, enriched with tumor mRNA, effectively transduces dendritic cells (DCs), thereby enhancing antigen presentation. The incorporation of siPD-L1 specifically targets and diminishes PD-L1 expression on both DCs and tumor cells, synergistically amplifying the cytotoxic capabilities of CD8+ T cells. Furthermore, cationic liposomes play dual roles as carriers crucial for preserving the integrity of nucleic acids for antigen translation and as inhibitors of autophagy-a process essential for both promoting antigen cross-presentation and revitalizing MHC-I expression on tumor cells, thereby increasing their immunogenicity. This cationic liposomal vaccine represents a promising strategy in cancer immunotherapy, launching a multidimensional offensive against tumor cells that enhances cytotoxic T lymphocyte (CTL) activation and prevents tumor immune evasion.
Collapse
Affiliation(s)
- Jingsheng Zhou
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanyuan Li
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xianghe Jiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhongyuan Xin
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhuanzhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Te Shi
- Department of Gastroenterology, Chinese People's Liberation Army Naval Medical Center, Shanghai, 200052, China
| | - Minghao Xue
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
4
|
Sharp SY, Martella M, D'Agostino S, Milton CI, Ward G, Woodhead AJ, Richardson CJ, Carr MG, Chiarparin E, Cons BD, Coyle J, East CE, Hiscock SD, Martinez-Fleites C, Mortenson PN, Palmer N, Pathuri P, Powers MV, Saalau SM, St Denis JD, Swabey K, Vinković M, Walton H, Williams G, Clarke PA. Integrating fragment-based screening with targeted protein degradation and genetic rescue to explore eIF4E function. Nat Commun 2024; 15:10037. [PMID: 40016190 PMCID: PMC11868579 DOI: 10.1038/s41467-024-54356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2024] [Indexed: 03/01/2025] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) serves as a regulatory hub for oncogene-driven protein synthesis and is considered a promising anticancer target. Here we screen a fragment library against eIF4E and identify a ligand-binding site with previously unknown function. Follow-up structure-based design yields a low nM tool compound (4, Kd = 0.09 µM; LE 0.38), which disrupts the eIF4E:eIF4G interaction, inhibits translation in cell lysates, and demonstrates target engagement with eIF4E in intact cells (EC50 = 2 µM). By coupling targeted protein degradation with genetic rescue using eIF4E mutants, we show that disruption of both the canonical eIF4G and non-canonical binding sites is likely required to drive a strong cellular effect. This work highlights the power of fragment-based drug discovery to identify pockets in difficult-to-drug proteins and how this approach can be combined with genetic characterization and degrader technology to probe protein function in complex biological systems.
Collapse
Affiliation(s)
- Swee Y Sharp
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - Marianna Martella
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - Sabrina D'Agostino
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - Christopher I Milton
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - George Ward
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Andrew J Woodhead
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK.
| | | | - Maria G Carr
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | | | - Benjamin D Cons
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Joseph Coyle
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Charlotte E East
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Steven D Hiscock
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | | | - Paul N Mortenson
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Nick Palmer
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Puja Pathuri
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Marissa V Powers
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - Susanne M Saalau
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | | | - Kate Swabey
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK
| | - Mladen Vinković
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Hugh Walton
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Glyn Williams
- Astex Pharmaceuticals, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Paul A Clarke
- RNA Biology and Molecular Therapeutics Team, Centre for Cancer Drug Discovery, Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
5
|
Omidi Y, Pourseif MM, Ansari RA, Barar J. Design and development of mRNA and self-amplifying mRNA vaccine nanoformulations. Nanomedicine (Lond) 2024; 19:2699-2725. [PMID: 39535127 DOI: 10.1080/17435889.2024.2419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The rapid evolution of mRNA vaccines, highlighted by Pfizer-BioNTech and Moderna's COVID-19 vaccines, has transformed vaccine development and therapeutic approaches. Self-amplifying mRNA (saRNA) vaccines, a groundbreaking advancement in RNA-based vaccines, offer promising possibilities for disease prevention and treatment, including potential applications in cancer and neurodegenerative diseases. This review explores the complex design and development of these innovative vaccines, with a focus on their nanoscale formulations that utilize nanotechnology to improve their delivery and effectiveness. It articulates the fundamental principles of mRNA and saRNA vaccines, their mechanisms of action, and the role of synthetic mRNA in eliciting immune responses. The review further elaborates on various nanoscale delivery systems (e.g., lipid nanoparticles, polymeric nanoparticles and other nanocarriers), emphasizing their advantages in enhancing mRNA stability and cellular uptake. It addresses advanced nanoscale delivery techniques such as microfluidics and discusses the challenges in formulating mRNA and saRNA vaccines. By incorporating the latest technologies and current research, this review provides a thorough overview of recent mRNA and saRNA nanovaccines advancements, highlighting their potential to revolutionize vaccine technology and broaden clinical applications.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Engineered Biomaterial Research Center, Khazar University, Baku, Azerbaijan
| | - Rais A Ansari
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
6
|
Lukaszewicz M. Application of Mammalian Nudix Enzymes to Capped RNA Analysis. Pharmaceuticals (Basel) 2024; 17:1195. [PMID: 39338357 PMCID: PMC11434898 DOI: 10.3390/ph17091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA. Enzymatic removal of the 5' cap affects the stability of mRNA in vivo. The NUDIX hydrolase Dcp2 was identified as the first eukaryotic decapping enzyme and is routinely used to analyse the synthetic cap at the 5' end of RNA. Here we highlight three additional NUDIX enzymes with known decapping activity, namely Nudt2, Nudt12 and Nudt16. These enzymes possess a different and some overlapping activity towards numerous 5' RNA cap structures, including non-canonical and chemically modified ones. Therefore, they appear as potent tools for comprehensive in vitro characterisation of capped RNA transcripts, with special focus on synthetic RNAs with therapeutic activity.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Miller M, Alvizo O, Baskerville S, Chintala A, Chng C, Dassie J, Dorigatti J, Huisman G, Jenne S, Kadam S, Leatherbury N, Lutz S, Mayo M, Mukherjee A, Sero A, Sundseth S, Penfield J, Riggins J, Zhang X. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. Faraday Discuss 2024; 252:431-449. [PMID: 38832894 DOI: 10.1039/d4fd00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.
Collapse
Affiliation(s)
- Mathew Miller
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Avinash Chintala
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Chinping Chng
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Justin Dassie
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Gjalt Huisman
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stephan Jenne
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Supriya Kadam
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Neil Leatherbury
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Stefan Lutz
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Melissa Mayo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Arpan Mukherjee
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Antoinette Sero
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stuart Sundseth
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | | | - James Riggins
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Xiyun Zhang
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| |
Collapse
|
8
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
9
|
Kurpiejewski K, Piecyk K, Lukaszewicz M, Kamel K, Chmurski K, Kmiecik S, Jankowska-Anyszka M. The Synergistic Effect of N2 and N7 Modifications on the Inhibitory Efficacy of mRNA Cap Analogues. Pharmaceuticals (Basel) 2024; 17:632. [PMID: 38794202 PMCID: PMC11123931 DOI: 10.3390/ph17050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In the fight against cancer, researchers have turned their attention to the eukaryotic initiation factor eIF4E, a protein whose increased level is strongly correlated with the development and progression of various types of cancer. Among the numerous strategies devised to tackle eIF4E overexpression, the use of 5' end mRNA cap analogues has emerged as a promising approach. Here, we present new candidates as potent m7GMP analogues for inhibiting translation and interfacing with eIF4E. By employing an appropriate strategy, we synthesized doubly modified mono- and dinucleotide cap analogues, introducing simultaneous substituents at both the N7 and N2 positions of the guanine ring. This approach was identified as an effective and promising combination. Our findings reveal that these dual modifications increase the potency of the dinucleotide analogue, marking a significant advancement in the development of cancer therapeutics targeting the eIF4E pathway.
Collapse
Affiliation(s)
- Karol Kurpiejewski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland;
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Kazimierz Chmurski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland;
| | | |
Collapse
|
10
|
Warminski M, Trepkowska E, Smietanski M, Sikorski PJ, Baranowski MR, Bednarczyk M, Kedzierska H, Majewski B, Mamot A, Papiernik D, Popielec A, Serwa RA, Shimanski BA, Sklepkiewicz P, Sklucka M, Sokolowska O, Spiewla T, Toczydlowska-Socha D, Warminska Z, Wolosewicz K, Zuberek J, Mugridge JS, Nowis D, Golab J, Jemielity J, Kowalska J. Trinucleotide mRNA Cap Analogue N6-Benzylated at the Site of Posttranscriptional m6A m Mark Facilitates mRNA Purification and Confers Superior Translational Properties In Vitro and In Vivo. J Am Chem Soc 2024; 146:8149-8163. [PMID: 38442005 PMCID: PMC10979456 DOI: 10.1021/jacs.3c12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edyta Trepkowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Pawel J. Sikorski
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Laboratory
of Epitranscriptomics, Department of Environmental Microbiology and
Biotechnology, Institute of Microbiology, Faculty of Biology, Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | | | - Marcelina Bednarczyk
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Diana Papiernik
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Remigiusz A. Serwa
- Proteomics
Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Brittany A. Shimanski
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Piotr Sklepkiewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Olga Sokolowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Tomasz Spiewla
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Zofia Warminska
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S. Mugridge
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Dominika Nowis
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
11
|
Poveda C, Chen YL, Strych U. Generation and Characterization of In Vitro Transcribed mRNA. Methods Mol Biol 2024; 2786:147-165. [PMID: 38814393 DOI: 10.1007/978-1-0716-3770-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.
Collapse
Affiliation(s)
- Cristina Poveda
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Yi-Lin Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA.
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| |
Collapse
|
12
|
Wang Z, Jacobus EJ, Stirling DC, Krumm S, Flight KE, Cunliffe RF, Mottl J, Singh C, Mosscrop LG, Santiago LA, Vogel AB, Kariko K, Sahin U, Erbar S, Tregoning JS. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102045. [PMID: 37876532 PMCID: PMC10591005 DOI: 10.1016/j.omtn.2023.102045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - David C. Stirling
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Charanjit Singh
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Lucy G. Mosscrop
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | | | | | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
13
|
Zhang L, More KR, Ojha A, Jackson CB, Quinlan BD, Li H, He W, Farzan M, Pardi N, Choe H. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines 2023; 8:156. [PMID: 37821446 PMCID: PMC10567765 DOI: 10.1038/s41541-023-00751-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| | - Kunal R More
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Cody B Jackson
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Brian D Quinlan
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Hao Li
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
14
|
Inagaki M, Abe N, Li Z, Nakashima Y, Acharyya S, Ogawa K, Kawaguchi D, Hiraoka H, Banno A, Meng Z, Tada M, Ishida T, Lyu P, Kokubo K, Murase H, Hashiya F, Kimura Y, Uchida S, Abe H. Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat Commun 2023; 14:2657. [PMID: 37169757 PMCID: PMC10175277 DOI: 10.1038/s41467-023-38244-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Starting with the clinical application of two vaccines in 2020, mRNA therapeutics are currently being investigated for a variety of applications. Removing immunogenic uncapped mRNA from transcribed mRNA is critical in mRNA research and clinical applications. Commonly used capping methods provide maximum capping efficiency of around 80-90% for widely used Cap-0- and Cap-1-type mRNAs. However, uncapped and capped mRNA possesses almost identical physicochemical properties, posing challenges to their physical separation. In this work, we develop hydrophobic photocaged tag-modified cap analogs, which separate capped mRNA from uncapped mRNA by reversed-phase high-performance liquid chromatography. Subsequent photo-irradiation recovers footprint-free native capped mRNA. This approach provides 100% capping efficiency even in Cap-2-type mRNA with versatility applicable to 650 nt and 4,247 nt mRNA. We find that the Cap-2-type mRNA shows up to 3- to 4-fold higher translation activity in cultured cells and animals than the Cap-1-type mRNA prepared by the standard capping method.
Collapse
Affiliation(s)
- Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Susit Acharyya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kazuya Ogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ayaka Banno
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Tatsuma Ishida
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Pingxue Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kengo Kokubo
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
15
|
Scalable mRNA Machine for Regulatory Approval of Variable Scale between 1000 Clinical Doses to 10 Million Manufacturing Scale Doses. Processes (Basel) 2023. [DOI: 10.3390/pr11030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The production of messenger ribonucleic acid (mRNA) and other biologics is performed primarily in batch mode. This results in larger equipment, cleaning/sterilization volumes, and dead times compared to any continuous approach. Consequently, production throughput is lower and capital costs are relatively high. Switching to continuous production thus reduces the production footprint and also lowers the cost of goods (COG). During process development, from the provision of clinical trial samples to the production plant, different plant sizes are usually required, operating at different operating parameters. To speed up this step, it would be optimal if only one plant with the same equipment and piping could be used for all sizes. In this study, an efficient solution to this old challenge in biologics manufacturing is demonstrated, namely the qualification and validation of a plant setup for clinical trial doses of about 1000 doses and a production scale-up of about 10 million doses. Using the current example of the Comirnaty BNT162b2 mRNA vaccine, the cost-intensive in vitro transcription was first optimized in batch so that a yield of 12 g/L mRNA was achieved, and then successfully transferred to continuous production in the segmented plug flow reactor with subsequent purification using ultra- and diafiltration, which enables the recycling of costly reactants. To realize automated process control as well as real-time product release, the use of appropriate process analytical technology is essential. This will also be used to efficiently capture the product slug so that no product loss occurs and contamination from the fill-up phase is <1%. Further work will focus on real-time release testing during a continuous operating campaign under autonomous operational control. Such efforts will enable direct industrialization in collaboration with appropriate industry partners, their regulatory affairs, and quality assurance. A production scale-operation could be directly supported and managed by data-driven decisions.
Collapse
|
16
|
Nwokeoji AO, Chou T, Nwokeoji EA. Low Resource Integrated Platform for Production and Analysis of Capped mRNA. ACS Synth Biol 2023; 12:329-339. [PMID: 36495278 PMCID: PMC9872168 DOI: 10.1021/acssynbio.2c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 12/14/2022]
Abstract
The existing platform for large-scale mRNA production is fast, but consumable costs, process technicality, and complexity represent key bottlenecks limiting global mRNA biologics manufacturing. Another challenge is the lack of a consolidated platform for mRNA product characterization and assays that meet regulatory requirements. Bridging these innovation gaps to simplify processes and reduce cost would improve mRNA biologics manufacturability, especially in low-resource settings. This study develops a "cotranscriptional" capping strategy that utilizes T7 RNA polymerase, and the Vaccinia Capping System to synthesize and cap mRNA. We created an "integrated reaction buffer" that supports both capping enzymes for catalytic and in vitro transcription processes, enabling one-pot, two-step capped mRNA synthesis. Additionally, we report a novel, one-step analytic platform for rapid, quantitative, capped mRNA analysis. The assay involves target mRNA segment protection with cheap DNA primers and RNase digest of non-hybridized or non-target sequences before analysis by single nucleotide-resolving urea-polyacrylamide gel electrophoresis (PAGE). The integrated approach simplifies production processes and saves costs. Moreover, this assay has potential applications for mRNA analyses and post-transcriptional modification detection in biological samples. Finally, we propose a strategy that may enable unparalleled sequence coverage in RNase mass mapping by adapting the developed assay and replacing urea-PAGE with mass spectrometry.
Collapse
Affiliation(s)
- Alison Obinna Nwokeoji
- Chemical
and Biological Engineering, University of
Sheffield, Sheffield S1 3JD, South Yorkshire, U.K.
| | - Tachung Chou
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, South Yorkshire, U.K.
- All
First Technologies, No.
208, Longnan Rd, Pingzhen District, Taoyuan
City 324, Taiwan
| | - Eleojo Ahuva Nwokeoji
- All
First Technologies, No.
208, Longnan Rd, Pingzhen District, Taoyuan
City 324, Taiwan
| |
Collapse
|
17
|
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023; 11:6. [PMID: 36650562 PMCID: PMC9845107 DOI: 10.1186/s40364-023-00449-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
High-frequency mutations in tumor genomes could be exploited as an asset for developing tumor vaccines. In recent years, with the tremendous breakthrough in genomics, intelligence algorithm, and in-depth insight of tumor immunology, it has become possible to rapidly target genomic alterations in tumor cell and rationally select vaccine targets. Among a variety of candidate vaccine platforms, the early application of mRNA was limited by instability low efficiency and excessive immunogenicity until the successful development of mRNA vaccines against SARS-COV-2 broken of technical bottleneck in vaccine preparation, allowing tumor mRNA vaccines to be prepared rapidly in an economical way with good performance of stability and efficiency. In this review, we systematically summarized the classification and characteristics of tumor antigens, the general process and methods for screening neoantigens, the strategies of vaccine preparations and advances in clinical trials, as well as presented the main challenges in the current mRNA tumor vaccine development.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xingxing He
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
18
|
Senthilvelan A, Vonderfecht T, Shanmugasundaram M, Potter J, Kore AR. Click-iT trinucleotide cap analog: Synthesis, mRNA translation, and detection. Bioorg Med Chem 2023; 77:117128. [PMID: 36516685 DOI: 10.1016/j.bmc.2022.117128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The first example of the synthesis of a new trinucleotide cap analog containing propargyl group such as m7,3'-O-propargylG(5')PPP(5')AmpG is reported. The effect of the propargyl group in trinucleotide analog with a standard trinucleotide cap analog (GAG), m7G(5')ppp(5')AmpG was evaluated with respect to their capping efficiency, in vitro T7 RNA polymerase transcription efficiency, and translation activity using cultured A549 lung carcinoma epithelial cells. The new propargyl cap analog is a substrate for T7 RNA polymerase. Notably, the mRNA capped with the propargyl cap is translated ∼ 1.3 times more efficiently than the mRNA capped with the GAG cap. The most characteristic feature of the new propargyl cap analog is that the presence of the propargyl group allows further modification of the mRNA by chemical ligation of an azide-containing fluorescent-labeled substrate to the mRNA via click chemistry.
Collapse
Affiliation(s)
- Annamalai Senthilvelan
- Life Sciences and Laboratory Products Group, Thermo Fisher Scientific, 2130, Woodward Street, Austin, TX 78744-1832, USA
| | - Tyson Vonderfecht
- Life Sciences and Laboratory Products Group, Thermo Fisher Scientific, 5781, Van Allen Way, Carlsbad, CA 92008, USA
| | - Muthian Shanmugasundaram
- Life Sciences and Laboratory Products Group, Thermo Fisher Scientific, 2130, Woodward Street, Austin, TX 78744-1832, USA
| | - Jason Potter
- Life Sciences and Laboratory Products Group, Thermo Fisher Scientific, 5781, Van Allen Way, Carlsbad, CA 92008, USA
| | - Anilkumar R Kore
- Life Sciences and Laboratory Products Group, Thermo Fisher Scientific, 2130, Woodward Street, Austin, TX 78744-1832, USA.
| |
Collapse
|
19
|
Nakayama H, Nobe Y, Koike M, Taoka M. Liquid Chromatography-Mass Spectrometry-Based Qualitative Profiling of mRNA Therapeutic Reagents Using Stable Isotope-Labeled Standards Followed by the Automatic Quantitation Software Ariadne. Anal Chem 2022; 95:1366-1375. [PMID: 36574727 PMCID: PMC9850353 DOI: 10.1021/acs.analchem.2c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mRNA-based medicines are a promising modality for preventing virus-caused illnesses, including COVID-19, and treating various types of cancer and genetic diseases. To develop such medicines, methods to characterize long mRNA molecules are needed for quality control and metabolic analysis. Here, we developed an analytical platform based on isotope-dilution liquid chromatography-mass spectrometry (LC-MS) that quantitatively characterizes long, modified mRNAs by comparing them to a stable isotope-labeled reference with an identical sequence to that of the target medicine. This platform also includes database searching using the mass spectra as a query, which allowed us to confirm the primary structures of 200 to 4300 nt mRNAs including chemical modifications, with sequence coverage at 100%, to detect/identify defects in the sequences, and to define the efficiencies of the 5'-capping and integrity of the polyadenylated tail. Our findings indicated that this platform should be valuable for quantitatively characterizing mRNA vaccines and other mRNA medicines.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular
Characterization Unit, RIKEN Center for
Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Yuko Nobe
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masami Koike
- Biomolecular
Characterization Unit, RIKEN Center for
Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Masato Taoka
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan,
| |
Collapse
|
20
|
Shanmugasundaram M, Senthilvelan A, Kore AR. Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines. CHEM REC 2022; 22:e202200005. [PMID: 35420257 PMCID: PMC9111249 DOI: 10.1002/tcr.202200005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Indexed: 12/15/2022]
Abstract
The recent FDA approval of the mRNA vaccine for severe acute respiratory syndrome coronavirus (SARS-CoV-2) emphasizes the importance of mRNA as a powerful tool for therapeutic applications. The chemically modified mRNA cap analogs contain a unique cap structure, m7 G[5']ppp[5']N (where N=G, A, C or U), present at the 5'-end of many eukaryotic cellular and viral RNAs and several non-coding RNAs. The chemical modifications on cap analog influence orientation's nature, translational efficiency, nuclear stability, and binding affinity. The recent invention of a trinucleotide cap analog provides groundbreaking research in the area of mRNA analogs. Notably, trinucleotide cap analogs outweigh dinucleotide cap analogs in terms of capping efficiency and translational properties. This review focuses on the recent development in the synthesis of various dinucleotide cap analogs such as dinucleotide containing a triazole moiety, phosphorothiolate cap, biotinylated cap, cap analog containing N1 modification, cap analog containing N2 modification, dinucleotide containing fluorescence probe and TAT, bacterial caps, and trinucleotide cap analogs. In addition, the biological applications of these novel cap analogs are delineated.
Collapse
Affiliation(s)
| | - Annamalai Senthilvelan
- Life Sciences Solutions GroupThermo Fisher Scientific2130 Woodward StreetAustinTX 78744-1832US
| | - Anilkumar R. Kore
- Life Sciences Solutions GroupThermo Fisher Scientific2130 Woodward StreetAustinTX 78744-1832US
| |
Collapse
|
21
|
Liu A, Wang X. The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Front Cell Dev Biol 2022; 10:901510. [PMID: 35912117 PMCID: PMC9326091 DOI: 10.3389/fcell.2022.901510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
After over a decade of development, mRNA has recently matured into a potent modality for therapeutics. The advantages of mRNA therapeutics, including their rapid development and scalability, have been highlighted due to the SARS-CoV-2 pandemic, in which the first two clinically approved mRNA vaccines have been spotlighted. These vaccines, as well as multiple other mRNA therapeutic candidates, are modified to modulate their immunogenicity, stability, and translational efficiency. Despite the importance of mRNA modifications for harnessing the full efficacy of mRNA drugs, the full breadth of potential modifications has yet to be explored clinically. In this review, we survey the field of mRNA modifications, highlighting their ability to tune the properties of mRNAs. These include cap and tail modifications, nucleoside substitutions, and chimeric mRNAs, each of which represents a component of mRNA that can be exploited for modification. Additionally, we cover clinical and preclinical trials of the modified mRNA platform not only to illustrate the promise of modified mRNAs but also to call attention to the room for diversifying future therapeutics.
Collapse
Affiliation(s)
- Albert Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
22
|
Janowski M, Andrzejewska A. The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:272-284. [PMID: 35855896 PMCID: PMC9278038 DOI: 10.1016/j.omtn.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
mRNA is like Hermes, delivering the genetic code to cellular construction sites, so it has long been of interest, but only to a small group of scientists, and only demonstrating its remarkable efficacy in coronavirus disease 2019 (COVID-19) vaccines allowed it to go out into the open. Therefore, now is the right timing to delve into the stepping stones that underpin this success and pay tribute to the underlying scientists. From this perspective, advances in mRNA engineering have proven crucial to the rapidly growing role of this molecule in healthcare. Development of consecutive generations of cap analogs, including anti-reverse cap analogs (ARCAs), has significantly boosted translation efficacy and maintained an enthusiasm for mRNA research. Nucleotide modification to protect mRNA molecules from the host's immune system, followed by finding appropriate purification and packaging methods, were other links in the chain enabling medical breakthroughs. Currently, vaccines are the central area of mRNA research, but it will reach far beyond COVID-19. Supplementation of missing or abnormal proteins is another large field of mRNA research. Ex vivo cell engineering and genome editing have been expanding recently. Thus, it is time to recognize mRNA pioneers while building upon their legacy.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Program in Image Guided Neurointerventions, Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland,Corresponding author Anna Andrzejewska, NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
23
|
Strezsak S, Pimentel AJ, Hill IT, Beuning PJ, Skizim NJ. Novel Mobile Phase to Control Charge States and Metal Adducts in the LC/MS for mRNA Characterization Assays. ACS OMEGA 2022; 7:22181-22191. [PMID: 35811888 PMCID: PMC9260895 DOI: 10.1021/acsomega.2c00185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry is a widely used tool in the characterization of oligonucleotides. This analysis can be challenging due to the large number of possible charge states of oligonucleotides, which can limit the sensitivity of the assay, along with the propensity of oligonucleotides to readily form adducts with free alkali metals. To reduce the adduct formation, oligonucleotides are typically purified with desalting columns prior to analysis. We have developed a mobile phase that gives superior reduction in charge states and adduct formation compared to previously reported methods and, more importantly, obviates the requirement of desalting samples prior to mass spectrometric analysis, significantly decreasing the sample preparation time and amount of RNA required for analysis. We have applied this mobile phase to develop methods to quantify the 5'-capping efficiency and to characterize the polyadenosine (poly(A)) tail of mRNA synthesized in vitro: two critical quality attributes of mRNA therapeutics. Through this, we were able to demonstrate RNA that was co-transcriptionally capped to have capping efficiency equivalent (the percent total molecules that contain a cap) to other reports in the literature using materials that were generated using the same synthesis procedure. Furthermore, by using a mobile phase mixture comprised of hexafluoroisopropanol, triethylammonium acetate, triethylamine, and ethanol, we were able to determine the size distribution of the poly(A) tail in various mRNA samples from DNA templates that ranged from 50 to 150 nt poly(A) and verify that distribution with commercially available RNA standards, successfully demonstrating that this mobile phase composition could be used for characterization assays for both mRNA caps and tails.
Collapse
Affiliation(s)
- Steven
R. Strezsak
- Department
of Chemistry & Chemical Biology, Northeastern
University, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
- Greenlight
Biosciences, 200 Boston Avenue Suite 1000, Medford, Massachusetts 02155, United States
| | - Alyssa Jean Pimentel
- Greenlight
Biosciences, 200 Boston Avenue Suite 1000, Medford, Massachusetts 02155, United States
| | - Ian T. Hill
- Greenlight
Biosciences, 200 Boston Avenue Suite 1000, Medford, Massachusetts 02155, United States
| | - Penny J. Beuning
- Department
of Chemistry & Chemical Biology, Northeastern
University, 102 Hurtig Hall, Boston, Massachusetts 02115, United States
| | - Nicholas J. Skizim
- Greenlight
Biosciences, 200 Boston Avenue Suite 1000, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Bollu A, Peters A, Rentmeister A. Chemo-Enzymatic Modification of the 5' Cap To Study mRNAs. Acc Chem Res 2022; 55:1249-1261. [PMID: 35420432 DOI: 10.1021/acs.accounts.2c00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The central dogma of molecular biology hinges on messenger RNA (mRNA), which presents a blueprint of the genetic information encoded in the DNA and serves as a template for translation into proteins. In addition to its fundamental importance in basic research, this class of biomolecules has recently become the first approved Covid vaccine, underscoring its utility in medical applications.Eukaryotic mRNA is heavily processed, including the 5' cap as the primary hallmark. This 5' cap protects mRNA from degradation by exoribonucleases but also interacts specifically with several proteins and enzymes to ensure mRNA turnover and processing, like splicing, export from the nucleus to the cytoplasm, and initiation of translation. The absence of a 5' cap leads to a strong immune response, and the methylation status contributes to distinguishing self from non-self RNA.Non-natural modifications of the 5' cap provide an avenue to label mRNAs and make them accessible to analyses, which is important to study their cellular localization, trafficking, and binding partners. They bear potential to engineer mRNAs, e.g., more stable or immunogenic mRNAs that are still translated, by impacting select interactions in a distinct manner. The modification of the 5' cap itself is powerful as it can be applied to make long mRNAs (∼1000 nt, not directly accessible by solid-phase synthesis) by in vitro transcription.This Account describes our contribution to the field of chemo-enzymatic modification of mRNA at the 5' cap. Our approach relies on RNA methyltransferases (MTases) with promiscuous activity on analogues of their natural cosubstrate S-adenosyl-L-methionine (AdoMet). We will describe how RNA MTases in combination with non-natural cosubstrates provide access to site-specific modification of different positions of the 5' cap, namely, the N2 and N7 position of guanosine and the N6 position of adenosine as the transcription start nucleotide (TSN) and exemplify strategies to make long mRNAs with modified 5' caps.We will compare the chemical and enzymatic synthesis of the AdoMet analogues used for this purpose. We could overcome previous limitations in methionine adenosyltransferase (MAT) substrate scope by engineering variants (termed PC-MATs) with the ability to convert methionine analogues with benzylic and photocaging groups at the sulfonium ion.The final part of this Account will highlight applications of the modified mRNAs. Like in many chemo-enzymatic approaches, a versatile strategy is to install small functional groups enzymatically and use them as handles in subsequent bioorthogonal reactions. We showed fluorescent labeling of mRNAs via different types of click chemistry in vitro and in cells. In a second line of applications, we used the handles to make mRNAs amenable for analyses, most notably next-generation sequencing. In the case of extremely promiscuous enzymes, the direct installation of photo-cross-linking groups was successful also and provided a way to covalently bind protein-interaction partners. Finally, the non-natural modifications of mRNAs can also modulate the properties of mRNAs. Propargylation of Am as the transcription start nucleotide at its N6 position maintained the translation of mRNAs but increased their immunogenicity. The installation of photocaging groups provides a way to revert these effects and control interactions by light.
Collapse
Affiliation(s)
- Amarnath Bollu
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Aileen Peters
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
26
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
27
|
Ribozyme Assays to Quantify the Capping Efficiency of In Vitro-Transcribed mRNA. Pharmaceutics 2022; 14:pharmaceutics14020328. [PMID: 35214060 PMCID: PMC8879150 DOI: 10.3390/pharmaceutics14020328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of the cap structure on the 5′-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies. Quality control methods necessary for the preclinical and clinical stages of development of these therapeutics are under ongoing development. Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5′-end capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis (PAGE) or liquid chromatography and mass spectrometry (LC–MS). Using this technology, we determined the capping efficiencies of IVT mRNAs with different features, which include: Different cap structures, diverse 5′ untranslated regions, different nucleoside modifications, and diverse lengths. Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of capping efficiency for research and development purposes, as well as a general quality control for mRNA-based therapeutics.
Collapse
|
28
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
Wojcik R, Baranowski MR, Markiewicz L, Kubacka D, Bednarczyk M, Baran N, Wojtczak A, Sikorski PJ, Zuberek J, Kowalska J, Jemielity J. Novel N7-Arylmethyl Substituted Dinucleotide mRNA 5' cap Analogs: Synthesis and Evaluation as Modulators of Translation. Pharmaceutics 2021; 13:pharmaceutics13111941. [PMID: 34834356 PMCID: PMC8623273 DOI: 10.3390/pharmaceutics13111941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dinucleotide analogs of the messenger RNA cap (m7GpppN) are useful research tools and have potential applications as translational inhibitors or reagents for modification of in vitro transcribed mRNAs. It has been previously reported that replacing the methyl group at the N7-position with benzyl (Bn) produces a dinucleotide cap with superior properties. Here, we followed up on this finding by synthesizing 17 novel Bn7GpppG analogs and determining their structure-activity relationship regarding translation and translational inhibition. The compounds were prepared in two steps, including selective N7-alkylation of guanosine 5'-monophosphate by arylmethyl bromide followed by coupling with imidazole-activated GDP, with total yields varying from 22% to 62%. The compounds were then evaluated by determining their affinity for eukaryotic translation initiation factor 4E (eIF4E), testing their susceptibility to decapping pyrophosphatase, DcpS-which is most likely the major cellular enzyme targeting this type of compound-and determining their translation inhibitory properties in vitro. We also synthesized mRNAs capped with the evaluated compounds and tested their translational properties in A549 cells. Our studies identified N7-(4-halogenbenzyl) substituents as promising modifications in the contexts of either mRNA translation or translational inhibition. Finally, to gain more insight into the consequences at the molecular level of N7-benzylation of the mRNA cap, we determined the crystal structures of three compounds with eIF4E.
Collapse
Affiliation(s)
- Radoslaw Wojcik
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
| | - Marek R. Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
| | - Lukasz Markiewicz
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
| | - Natalia Baran
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
| | - Anna Wojtczak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
| | - Pawel J. Sikorski
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02093 Warsaw, Poland; (M.R.B.); (D.K.); (A.W.); (J.Z.)
- Correspondence: (J.K.); (J.J.)
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02097 Warsaw, Poland; (R.W.); (L.M.); (M.B.); (N.B.); (P.J.S.)
- Correspondence: (J.K.); (J.J.)
| |
Collapse
|
30
|
Abstract
The global coronavirus pandemic continues to restrict public life worldwide. An effective means of limiting the pandemic is vaccination. Messenger ribonucleic acid (mRNA) vaccines currently available on the market have proven to be a well-tolerated and effective class of vaccine against coronavirus type 2 (CoV2). Accordingly, demand is presently outstripping mRNA vaccine production. One way to increase productivity is to switch from the currently performed batch to continuous in vitro transcription, which has proven to be a crucial material-consuming step. In this article, a physico-chemical model of in vitro mRNA transcription in a tubular reactor is presented and compared to classical batch and continuous in vitro transcription in a stirred tank. The three models are validated based on a distinct and quantitative validation workflow. Statistically significant parameters are identified as part of the parameter determination concept. Monte Carlo simulations showed that the model is precise, with a deviation of less than 1%. The advantages of continuous production are pointed out compared to batchwise in vitro transcription by optimization of the space–time yield. Improvements of a factor of 56 (0.011 µM/min) in the case of the continuously stirred tank reactor (CSTR) and 68 (0.013 µM/min) in the case of the plug flow reactor (PFR) were found.
Collapse
|
31
|
Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol Life Sci 2021; 78:6869-6885. [PMID: 34541613 PMCID: PMC8558276 DOI: 10.1007/s00018-021-03938-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.
Collapse
|
32
|
Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021; 131:1-15. [PMID: 34133982 PMCID: PMC8198544 DOI: 10.1016/j.actbio.2021.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. Statement of significance The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.
Collapse
|
33
|
Ouranidis A, Choli-Papadopoulou T, Papachristou ET, Papi R, Kostomitsopoulos N. Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models. Vaccines (Basel) 2021; 9:890. [PMID: 34452015 PMCID: PMC8402437 DOI: 10.3390/vaccines9080890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Administration of mRNA against SARS-CoV-2 has demonstrated sufficient efficacy, tolerability and clinical potential to disrupt the vaccination field. A multiple-arm, cohort randomized, mixed blind, placebo-controlled study was designed to investigate the in vivo expression of mRNA antibodies to immunosuppressed murine models to conduct efficacy, safety and bioavailability evaluation. Enabling 4.0 tools we reduced animal sacrifice, while interventions were designed compliant to HARRP and SPIRIT engagement: (a) Randomization, blinding; (b) pharmaceutical grade formulation, monitoring; (c) biochemical and histological analysis; and (d) theoretic, statistical analysis. Risk assessment molded the study orientations, according to the ARRIVE guidelines. The primary target of this protocol is the validation of the research hypothesis that autologous translation of Trastuzumab by in vitro transcribed mRNA-encoded antibodies to immunosuppressed animal models, is non-inferior to classical treatments. The secondary target is the comparative pharmacokinetic assessment of the novel scheme, between immunodeficient and healthy subjects. Herein, the debut clinical protocol, investigating the pharmacokinetic/pharmacodynamic impact of mRNA vaccination to immunodeficient organisms. Our design, contributes novel methodology to guide the preclinical development of RNA antibody modalities by resolving efficacy, tolerability and dose regime adjustment for special populations that are incapable of humoral defense.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Polytechnic School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Eleni T. Papachristou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Rigini Papi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
34
|
Senthilvelan A, Vonderfecht T, Shanmugasundaram M, Pal I, Potter J, Kore AR. Trinucleotide Cap Analogue Bearing a Locked Nucleic Acid Moiety: Synthesis, mRNA Modification, and Translation for Therapeutic Applications. Org Lett 2021; 23:4133-4136. [PMID: 34008991 DOI: 10.1021/acs.orglett.1c01037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of a new trinucleotide cap analogue containing a locked nucleic acid (LNA) moiety such as m7(LNA)G(5')ppp(5')AmpG and its molecular biology applications are described. The most appealing feature is that this new cap analogue outperforms the standard trinucleotide cap m7G(5')ppp(5')AmpG and the anti-reverse cap analogue m27,3'-OG(5')ppp(5')G by a factor of 5 in terms of translational efficiency.
Collapse
Affiliation(s)
- Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Tyson Vonderfecht
- Life Sciences Solutions Group, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Indra Pal
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2202 North Bartlett Avenue, Milwaukee, Wisconsin 53202, United States
| | - Jason Potter
- Life Sciences Solutions Group, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| |
Collapse
|
35
|
Song W, Zhang H, Zhang Y, Chen Y, Lin Y, Han Y, Jiang J. Identification and Characterization of Zika Virus NS5 Methyltransferase Inhibitors. Front Cell Infect Microbiol 2021; 11:665379. [PMID: 33898335 PMCID: PMC8058401 DOI: 10.3389/fcimb.2021.665379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023] Open
Abstract
The recurring outbreak of Zika virus (ZIKV) worldwide makes an emergent demand for novel, safe and efficacious anti-ZIKV agents. ZIKV non-structural protein 5 (NS5) methyltransferase (MTase), which is essential for viral replication, is regarded as a potential drug target. In our study, a luminescence-based methyltransferase assay was used to establish the ZIKV NS5 MTase inhibitor screening model. Through screening a natural product library, we found theaflavin, a polyphenol derived from tea, could inhibit ZIKV NS5 MTase activity with a 50% inhibitory concentration (IC50) of 10.10 μM. Molecular docking and site-directed mutagenesis analyses identified D146 as the key amino acid in the interaction between ZIKV NS5 MTase and theaflavin. The SPR assay indicated that theaflavin had a stronger binding activity with ZIKV NS5 wild-type (WT)-MTase than it with D146A-MTase. Moreover, theaflavin exhibited a dose dependent inhibitory effect on ZIKV replication with a 50% effective concentration (EC50) of 8.19 μM. All these results indicate that theaflavin is likely to be a promising lead compound against ZIKV.
Collapse
Affiliation(s)
- Weibao Song
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjuan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Ely A, Singh P, Smith TS, Arbuthnot P. In vitro transcribed mRNA for expression of designer nucleases: Advantages as a novel therapeutic for the management of chronic HBV infection. Adv Drug Deliv Rev 2021; 168:134-146. [PMID: 32485207 DOI: 10.1016/j.addr.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) remains a significant worldwide medical problem. While diseases caused by HIV infection, tuberculosis and malaria are on the decline, new cases of chronic hepatitis B are on the rise. Because often fatal complications of cirrhosis and hepatocellular carcinoma are associated with chronic hepatitis B, the need for a cure is as urgent as ever. Currently licensed therapeutics fail to eradicate the virus and this is attributable to persistence of the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Elimination or inactivation of the viral cccDNA is thus a goal of research aimed at hepatitis B cure. The ability to engineer nucleases that are capable of specific cleavage of a DNA sequence now provides the means to disable cccDNA permanently. The scientific literature is replete with many examples of using designer zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs) to inactivate HBV. However, important concerns about safety, dose control and efficient delivery need to be addressed before the technology is employed in a clinical setting. Use of in vitro transcribed mRNA to express therapeutic gene editors goes some way to overcoming these concerns. The labile nature of RNA limits off-target effects and enables dose control. Compatibility with hepatotropic non-viral vectors is convenient for the large scale preparation that will be required for advancing gene editing as a mode of curing chronic hepatitis B.
Collapse
|
37
|
Urbina F, Morales-Pison S, Maldonado E. Enzymatic Protein Biopolymers as a Tool to Synthetize Eukaryotic Messenger Ribonucleic Acid (mRNA) with Uses in Vaccination, Immunotherapy and Nanotechnology. Polymers (Basel) 2020; 12:polym12081633. [PMID: 32717794 PMCID: PMC7463467 DOI: 10.3390/polym12081633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022] Open
Abstract
Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes. The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII), which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from specific sites and is positioned by transcription factors, which form a preinitiation complex (PIC) on gene promoters. To recognize and position the RNAPII and the transcription factors on the gene promoters are needed specific DNA sequences in the gene promoters, which are named promoter elements. Those gene promoter elements can vary and therefore several kinds of promoters exist, however, it appears that all promoters can use a similar pathway for PIC formation. Those pathways are discussed in this review. The in vitro transcribed mRNA can be used as vaccines to fight infectious diseases, e.g., in immunotherapy against cancer and in nanotechnology to deliver mRNA for a missing protein into the cell. We have outlined a procedure to produce an mRNA vaccine against the SARS-CoV-2 virus, which is the causing agent of the big pandemic, COVID-19, affecting human beings all over the world. The potential advantages of using eukaryotic RNAPII to synthetize large transcripts are outlined and discussed. In addition, we suggest a method to cap the mRNA at the 5′ terminus by using enzymes, which might be more effective than cap analogs. Finally, we suggest the construction of a future multi-talented RNAPII, which would be able to synthetize large mRNA and cap them in the test tube.
Collapse
Affiliation(s)
- Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Sebastián Morales-Pison
- Laboratorio de Genética Molecular Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
- Correspondence: ; Tel.: +56-2-2978-6207
| |
Collapse
|
38
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Highly regioselective methylation of inosine nucleotide: an efficient synthesis of 7-methylinosine nucleotide. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1011-1019. [PMID: 32189563 DOI: 10.1080/15257770.2020.1738457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A facile, straightforward, reliable, and an efficient chemical synthesis of inosine nucleotides such as 7-methylinosine 5'-O-monophosphate, 7-methylinosine 5'-O-diphosphate, and 7-methylinosine 5'-O-triphosphate, starting from the corresponding inosine nucleotide is delineated. The present methylation reaction of inosine nucleotide utilizes dimethyl sulfate as a methylating agent and water as a solvent at room temperature. It is noteworthy that the present methylation reaction proceeds smoothly under aqueous conditions that is highly regioselective to afford exclusive 7-methylinosine nucleotide in good yields with high purity (>99.5%).
Collapse
Affiliation(s)
| | | | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, Texas, USA
| |
Collapse
|
39
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Highly Regioselective Methylation of Guanosine Nucleotides: An Efficient Synthesis of 7-Methylguanosine Nucleotides. ACTA ACUST UNITED AC 2020; 79:e100. [PMID: 31756051 DOI: 10.1002/cpnc.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article describes a simple, reliable, efficient, and general method for the synthesis of 7-methylguanosine nucleotides such as 7-methylguanosine 5'-O-monophosphate (m7 GMP), 7-methylguanosine 5'-O-diphosphate (m7 GDP), 7-methyl-2'-deoxyguanosine 5'-O-triphosphate (m7 2'dGTP), and 7-methylguanosine 5'-O-triphosphate (m7 GTP) starting from the corresponding guanosine nucleotide is described. The present protocol involves methylation reaction of guanosine nucleotide using dimethyl sulfate as a methylating agent and water as a solvent at room temperature to provide the corresponding 7-methylguanosine nucleotide in good yields with high purity (>99.5%). It is noteworthy that the present methylation reaction proceeds smoothly under aqueous conditions that is highly regioselective to afford exclusive 7-methylguanosine nucleotide. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Synthesis of 7-methylguanosine nucleotides.
Collapse
Affiliation(s)
| | | | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, Texas
| |
Collapse
|
40
|
Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 2020; 5:11. [PMID: 32047656 PMCID: PMC7000814 DOI: 10.1038/s41541-020-0159-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
mRNA technologies have the potential to transform areas of medicine, including the prophylaxis of infectious diseases. The advantages for vaccines range from the acceleration of immunogen discovery to rapid response and multiple disease target manufacturing. A greater understanding of quality attributes that dictate translation efficiency, as well as a comprehensive appreciation of the importance of mRNA delivery, are influencing a new era of investment in development activities. The application of translational sciences and growing early-phase clinical experience continue to inform candidate vaccine selection. Here we review the state of the art for the prevention of infectious diseases by using mRNA and pertinent topics to the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nicholas A. C. Jackson
- Coalition for Epidemic Preparedness Innovations (CEPI), Gibbs building, 215 Euston Road, Bloomsbury, London, NW1 2BE UK
| | - Kent E. Kester
- Sanofi Pasteur, 1 Discovery Dr, Swiftwater, PA 18370 USA
| | | | | | - Frank DeRosa
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421 USA
| |
Collapse
|
41
|
Poveda C, Biter AB, Bottazzi ME, Strych U. Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7040131. [PMID: 31569760 PMCID: PMC6963847 DOI: 10.3390/vaccines7040131] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The preferred product characteristics (for chemistry, control, and manufacture), in addition to safety and efficacy, are quintessential requirements for any successful therapeutic. Messenger RNA vaccines constitute a relatively new alternative to traditional vaccine development platforms, and thus there is less clarity regarding the criteria needed to ensure regulatory compliance and acceptance. Generally, to identify the ideal product characteristics, a series of assays needs to be developed, qualified and ultimately validated to determine the integrity, purity, stability, and reproducibility of a vaccine target. Here, using the available literature, we provide a summary of the array of biophysical and biochemical assays currently used in the field to characterize mRNA vaccine antigen candidates. Moreover, we review various in vitro functional cell-based assays that have been employed to facilitate the early assessment of the biological activity of these molecules, including the predictive immune response triggered in the host cell. Messenger RNA vaccines can be produced rapidly and at large scale, and thus will particularly benefit from well-defined and well-characterized assays ultimately to be used for in-process, release and stability-indications, which will allow equally rapid screening of immunogenicity, efficacy, and safety without the need to conduct often lengthy and costly in vivo experiments.
Collapse
Affiliation(s)
- Cristina Poveda
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Amadeo B Biter
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA.
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Julius C, Yuzenkova Y. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1512. [PMID: 30353673 DOI: 10.1002/wrna.1512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 11/12/2022]
Abstract
Recently a new type of 5'-RNA cap was discovered. In contrast to the specialized eukaryotic m7 G cap, the novel caps are abundant cellular cofactors like NAD+ . RNAs capped with cofactors are found in prokaryotes and eukaryotes. Unlike m7 G cap, installed by specialized enzymes, cofactors are attached by main enzyme of transcription, RNA polymerase (RNAP). Cofactors act as noncanonical initiating substrates, provided cofactor's nucleoside base-pairs with template DNA at the transcription start site. Adenosine-containing NAD(H), flavin adenine dinucleotide (FAD), and CoA modify transcripts on promoters starting with +1A. Similarly, uridine-containing cell wall precursors, for example, uridine diphosphate-N-acetylglucosamine were shown to cap RNA in vitro on +1U promoters. Noncanonical capping is a universal feature of evolutionary unrelated RNAPs-multisubunit bacterial and eukaryotic RNAPs, and single-subunit mitochondrial RNAP. Cellular concentrations of cofactors, for example, NAD(H) are significantly higher than their Km in transcription. Yet, only a small proportion of a given cellular RNA is noncanonically capped (if at all). This proportion is a net balance between capping, seemingly stochastic, and decapping, possibly determined by RNA folding, protein binding and transcription rate. NUDIX hydrolases in bacteria and eukaryotes, and DXO family proteins eukaryotes act as decapping enzymes for noncanonical caps. The physiological role of noncanonical RNA capping is only starting to emerge. It was demonstrated to affect RNA stability in vivo in bacteria and eukaryotes and to stimulate RNAP promoter escape in vitro in Escherichia coli. NAD+ /NADH capping ratio may connect transcription to cellular redox state. Potentially, noncanonical capping affects mRNA translation, RNA-protein binding and RNA localization. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Export and Localization > RNA Localization RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Christina Julius
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
44
|
Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem (Cham) 2017; 375:16. [PMID: 28116583 PMCID: PMC5396385 DOI: 10.1007/s41061-017-0106-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The cap is a natural modification present at the 5' ends of eukaryotic messenger RNA (mRNA), which because of its unique structural features, mediates essential biological functions during the process of gene expression. The core structural feature of the mRNA cap is an N7-methylguanosine moiety linked by a 5'-5' triphosphate chain to the first transcribed nucleotide. Interestingly, other RNA 5' end modifications structurally and functionally resembling the m7G cap have been discovered in different RNA types and in different organisms. All these structures contain the 'inverted' 5'-5' oligophosphate bridge, which is necessary for interaction with specific proteins and also serves as a cleavage site for phosphohydrolases regulating RNA turnover. Therefore, cap analogs containing oligophosphate chain modifications or carrying spectroscopic labels attached to phosphate moieties serve as attractive molecular tools for studies on RNA metabolism and modification of natural RNA properties. Here, we review chemical, enzymatic, and chemoenzymatic approaches that enable preparation of modified cap structures and RNAs carrying such structures, with emphasis on phosphate-modified mRNA cap analogs and their potential applications.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
45
|
Beverly M, Dell A, Parmar P, Houghton L. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Anal Bioanal Chem 2016; 408:5021-30. [PMID: 27193635 DOI: 10.1007/s00216-016-9605-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
A label-free method for determining the 5'-end cap identity and orientation of a messenger RNA (mRNA) is described. Biotin-tagged probes that were complementary to the 5' end of target mRNA were used with RNase H to cleave the 5' end of the mRNA. The cleaved end sequence was isolated using streptavidin-coated magnetic beads and then analyzed by LC-MS. Quantitative and qualitative information on the 5' cap was determined from the unique mass of the isolated cleaved sequence. This approach, combined with the use of 5' RNA pyrophosphohydrolase, was also used to ascertain the orientation of the 5' cap. The assay showed low-picomole sensitivity for detecting capping reaction impurities. Uncapped triphosphate mRNA, spiked into 100 pmol of capped mRNA, could be detected over the tested range of 0.5 to 25 % with a linear response. The capping efficiency of several vaccinia-capped mRNA preparations was determined to be between 88 and 98 % depending on the modification type and length of the mRNA. mRNA of 2.2K and 9K nucleotides in length and containing the modified nucleotides pseudouridine and 5-methylcytidine were all successfully analyzed, demonstrating the utility of the technique to study mRNA capping. Graphical abstract mRNA 5' end analysis with RNAse H cleavage and capture probe.
Collapse
Affiliation(s)
- Michael Beverly
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA.
| | - Amy Dell
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| | - Parul Parmar
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| | - Leslie Houghton
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
46
|
Abstract
The translation initiation factor eIF4E mediates a rate-limiting process that drives selective translation of many oncongenic proteins such as cyclin D1, survivin and VEGF, thereby contributing to tumour growth, metastasis and therapy resistance. As an essential regulatory hub in cancer signalling network, many oncogenic signalling pathways appear to converge on eIF4E. Therefore, targeting eIF4E-mediated cap-dependent translation is considered a promising anticancer strategy. This paper reviews the strategies that can be used to target eIF4E, highlighting agents that target eIF4E activity at each distinct level.
Collapse
|
47
|
Poleganov MA, Eminli S, Beissert T, Herz S, Moon JI, Goldmann J, Beyer A, Heck R, Burkhart I, Barea Roldan D, Türeci Ö, Yi K, Hamilton B, Sahin U. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Hum Gene Ther 2015; 26:751-66. [DOI: 10.1089/hum.2015.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marco Alexander Poleganov
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie Herz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johanna Goldmann
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Arianne Beyer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Rosario Heck
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Burkhart
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Diana Barea Roldan
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kevin Yi
- Stemgent, Cambridge, Massachusetts
| | | | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
48
|
Thumma SC, Jacobson BA, Patel MR, Konicek BW, Franklin MJ, Jay-Dixon J, Sadiq A, De A, Graff JR, Kratzke RA. Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells. Cancer Gene Ther 2015; 22:396-401. [PMID: 26227824 DOI: 10.1038/cgt.2015.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022]
Abstract
Elevated levels of eukaryotic translation initiation factor 4E (eIF4E) enhance translation of many malignancy-related proteins, such as vascular endothelial growth factor (VEGF), c-Myc and osteopontin. In non-small-cell lung cancer (NSCLC), levels of eIF4E are significantly increased compared with normal lung tissue. Here, we used an antisense oligonucleotide (ASO) to inhibit the expression of eIF4E in NSCLC cell lines. eIF4E levels were significantly reduced in a dose-dependent manner in NSCLC cells treated with eIF4E-specific ASO (4EASO) compared with control ASO. Treatment of NSCLC cells with the 4EASO resulted in decreased cap-dependent complex formation, decreased cell proliferation and increased sensitivity to gemcitabine. At the molecular level, repression of eIF4E with ASO resulted in decreased expression of the oncogenic proteins VEGF, c-Myc and osteopontin, whereas expression of β-actin was unaffected. Based on these findings, we conclude that eIF4E-silencing therapy alone or in conjunction with chemotherapy represents a promising approach deserving of further investigation in future NSCLC clinical trials.
Collapse
Affiliation(s)
- S C Thumma
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - B A Jacobson
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M R Patel
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - B W Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - M J Franklin
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J Jay-Dixon
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - A Sadiq
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - A De
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J R Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - R A Kratzke
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
49
|
Ziemniak M, Kowalska J, Lukaszewicz M, Zuberek J, Wnek K, Darzynkiewicz E, Jemielity J. Phosphate-modified analogues of m(7)GTP and m(7)Gppppm(7)G-Synthesis and biochemical properties. Bioorg Med Chem 2015; 23:5369-81. [PMID: 26264844 DOI: 10.1016/j.bmc.2015.07.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/05/2023]
Abstract
The synthesis and biochemical properties of 17 new mRNA cap analogues are reported. Six of these nucleotides are m(7)GTP derivatives, whereas 11 are 'two headed' tetraphosphate dinucleotides based on a m(7)Gppppm(7)G structure. The compounds contain either a boranophosphate or phosphorothioate moiety in the nucleoside neighbouring position(s) and some of them possess an additional methylene group between β and γ phosphorus atoms. The compounds were prepared by divalent metal chloride-mediated coupling of an appropriate m(7)GMP analogue with a given P(1),P(2)-di(1-imidazolyl) derivative. The analogues were evaluated as tools for studying cap-dependent processes in a number of biochemical assays, including determination of affinity to eukaryotic initiation factor eIF4E, susceptibility to enzymatic hydrolysis, and translational efficiency in vitro. The results indicate that modification in the phosphate chain can increase binding to cap-interacting proteins and provides higher resistance to degradation. Furthermore, modified derivatives of m(7)GTP were found to be potent inhibitors of cap-dependent translation in cell free systems.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Katarzyna Wnek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
50
|
Gunawardana D, Domashevskiy AV, Gayler KR, Goss DJ. Efficient preparation and properties of mRNAs containing a fluorescent cap analog: Anthraniloyl-m(7)GpppG. ACTA ACUST UNITED AC 2015; 3:e988538. [PMID: 26779415 DOI: 10.4161/21690731.2014.988538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
A method has been developed for synthesising fluorescently labeled capped mRNA. The method incorporates a single fluorescent molecule as part of the 5'-mRNA or oligonucleotide cap site. The fluorescent molecule, Ant-m(7)GTP is specifically incorporated into the cap site to yield Ant-m(7)GpppG-capped mRNA or oligonucleotide. Efficient capping was observed with 60-100% of the RNA transcripts capped with the fluorescent molecule. The Ant-m(7)G derivative, which has been previously shown to interact with the eukaryotic cap binding protein eIF4E, is shown in this paper to be a substrate for the Vaccinia capping enzyme and the DCP2 decapping enzyme from Arabidopsis. Further, the Ant-m(7)GTP-capped RNA is readily translated. This Ant-m(7)GTP-capped RNA provides an important tool for monitoring capping reactions, translation, and biophysical studies.
Collapse
Affiliation(s)
- Dilantha Gunawardana
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne, Parkville; Victoria, Australia; Present address: Department of Botany; University of Sri Jayewardenepura; Soratha Mawatha, Nugegoda, Sri Lanka
| | - Artem V Domashevskiy
- Department of Sciences; John Jay College of Criminal Justice; City University of New York ; New York, NY USA
| | - Ken R Gayler
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne, Parkville ; Victoria, Australia
| | - Dixie J Goss
- Department of Chemistry and Graduate Center; Hunter College; City University of New York ; New York, NY USA
| |
Collapse
|