1
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
2
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Moran JC, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. Science 2024; 385:eadm9238. [PMID: 39024447 PMCID: PMC11510358 DOI: 10.1126/science.adm9238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- J. Conor Moran
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Amir Brivanlou
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Michele Brischigliaro
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Silvi Rouskin
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16 St, Miami, FL-33125 (USA)
| |
Collapse
|
4
|
Baleva MV, Piunova U, Chicherin I, Vasilev R, Levitskii S, Kamenski P. Mitochondrial Protein SLIRP Affects Biosynthesis of Cytochrome c Oxidase Subunits in HEK293T Cells. Int J Mol Sci 2023; 25:93. [PMID: 38203264 PMCID: PMC10779364 DOI: 10.3390/ijms25010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Mitochondria carry out various vital roles in eukaryotic cells, including ATP energy synthesis, the regulation of apoptosis, Fe-S cluster formation, and the metabolism of fatty acids, amino acids, and nucleotides. Throughout evolution, mitochondria lost most of their ancestor's genome but kept the replication, transcription, and translation machinery. Protein biosynthesis in mitochondria is specialized in the production of highly hydrophobic proteins encoded by mitochondria. These proteins are components of oxidative phosphorylation chain complexes. The coordination of protein synthesis must be precise to ensure the correct assembly of nuclear-encoded subunits for these complexes. However, the regulatory mechanisms of mitochondrial translation in human cells are not yet fully understood. In this study, we examined the contribution of the SLIRP protein in regulating protein biosynthesis in mitochondria. Using a click-chemistry approach, we discovered that deletion of the SLIRP gene disturbs mitochondrial translation, leading to the dysfunction of complexes I and IV, but it has no significant effect on complexes III and V. We have shown that this protein interacts only with the small subunit of the mitochondrial ribosome, which may indicate its involvement in the regulation of the mitochondrial translation initiation stage.
Collapse
Affiliation(s)
| | | | | | | | - Sergey Levitskii
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia; (M.V.B.); (U.P.); (I.C.); (R.V.)
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia; (M.V.B.); (U.P.); (I.C.); (R.V.)
| |
Collapse
|
5
|
Conor Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564750. [PMID: 37961485 PMCID: PMC10635011 DOI: 10.1101/2023.10.31.564750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome. We gained insights into mt-mRNA biology and translation regulatory mechanisms, including a unique programmed ribosomal frameshifting for the ATP8/ATP6 transcript. Furthermore, absence of the mt-mRNA maintenance factor LRPPRC led to a mitochondrial transcriptome structured differently, with specific mRNA regions exhibiting increased or decreased structuredness. This highlights the role of LRPPRC in maintaining mRNA folding to promote mt-mRNA stabilization and efficient translation. In conclusion, our mt-mRNA folding maps reveal novel mitochondrial gene expression mechanisms, serving as a detailed reference and tool for studying them in different physiological and pathological contexts.
Collapse
|
6
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
7
|
Kienzle L, Bettinazzi S, Choquette T, Brunet M, Khorami HH, Jacques JF, Moreau M, Roucou X, Landry CR, Angers A, Breton S. A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics. BMC Biol 2023; 21:111. [PMID: 37198654 DOI: 10.1186/s12915-023-01609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Collapse
Affiliation(s)
- Laura Kienzle
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marie Brunet
- Service de génétique médicale, Département de pédiatrie, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | | | - Jean-François Jacques
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathilde Moreau
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
8
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Translation in Mitochondrial Ribosomes. Methods Mol Biol 2023; 2661:53-72. [PMID: 37166631 DOI: 10.1007/978-1-0716-3171-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Collapse
Affiliation(s)
- Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Baleva MV, Chicherin I, Piunova U, Zgoda V, Patrushev MV, Levitskii S, Kamenski P. Pentatricopeptide Protein PTCD2 Regulates COIII Translation in Mitochondria of the HeLa Cell Line. Int J Mol Sci 2022; 23:ijms232214241. [PMID: 36430722 PMCID: PMC9693627 DOI: 10.3390/ijms232214241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Protein biosynthesis in mitochondria is tightly coupled with assembly of inner membrane complexes and therefore must be coordinated with cytosolic translation of the mRNAs corresponding to the subunits which are encoded in the nucleus. Molecular mechanisms underlying the regulation of mitochondrial translation remain unclear despite recent advances in structural biology. Until now, only one translational regulator of protein biosynthesis in mammalian mitochondria is known-protein TACO1, which regulates translation of COI mRNA. Here we describe the function of pentatricopeptide-containing protein PTCD2 as a translational regulator of another mitochondrially encoded subunit of cytochrome c oxidase-COIII in the HeLa cell line. Deletion of the PTCD2 gene leads to significant decrease in COIII translation efficiency and impairment in CIV activity. Additionally, we show that PTCD2 protein is partially co-sedimentates with associated mitochondrial ribosome and associates with mitochondrial ribosome proteins in pull-down assays. These data allow concluding that PTCD2 is a specific translational regulator of COIII which attracts the mRNA to the mitochondrial ribosome.
Collapse
Affiliation(s)
- Maria V. Baleva
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia
| | - Ivan Chicherin
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia
| | - Uliana Piunova
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Russian Academy of Sciences, 10/8 Pogodinskaya Str., 119121 Moscow, Russia
| | - Maxim V. Patrushev
- National Research Centre “Kurchatov Institute”, 1 Akademik Kurchatov Square, 123182 Moscow, Russia
| | - Sergey Levitskii
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia
- Correspondence: (S.L.); (P.K.)
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gory, 119234 Moscow, Russia
- Correspondence: (S.L.); (P.K.)
| |
Collapse
|
10
|
Bharmal MHM, Gega A, Schrader JM. A combination of mRNA features influence the efficiency of leaderless mRNA translation initiation. NAR Genom Bioinform 2021; 3:lqab081. [PMID: 34568822 PMCID: PMC8459731 DOI: 10.1093/nargab/lqab081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial translation is thought to initiate by base pairing of the 16S rRNA and the Shine-Dalgarno sequence in the mRNA's 5' untranslated region (UTR). However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5' UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine-Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic in vivo translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation. Using these data, a simple computational model was built based on the combinatorial relationship of these mRNA features that can accurately classify leaderless mRNAs and predict the translation initiation efficiency of leaderless mRNAs. Thus, start codon accessibility, leader length, and start codon identity combine to define leaderless mRNA translation initiation in bacteria.
Collapse
Affiliation(s)
| | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Baleva MV, Piunova UE, Chicherin IV, Krasavina DG, Levitskii SA, Kamenski PA. Yeast Translational Activator Mss51p and Human ZMYND17 - Two Proteins with a Common Origin, but Different Functions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1151-1161. [PMID: 34565318 DOI: 10.1134/s0006297921090108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.
Collapse
Affiliation(s)
- Maria V Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Uliyana E Piunova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Darya G Krasavina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Piotr A Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
12
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
13
|
Rudler DL, Hughes LA, Viola HM, Hool LC, Rackham O, Filipovska A. Fidelity and coordination of mitochondrial protein synthesis in health and disease. J Physiol 2020; 599:3449-3462. [PMID: 32710561 DOI: 10.1113/jp280359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
14
|
Julius C, Yuzenkova Y. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1512. [PMID: 30353673 DOI: 10.1002/wrna.1512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 11/12/2022]
Abstract
Recently a new type of 5'-RNA cap was discovered. In contrast to the specialized eukaryotic m7 G cap, the novel caps are abundant cellular cofactors like NAD+ . RNAs capped with cofactors are found in prokaryotes and eukaryotes. Unlike m7 G cap, installed by specialized enzymes, cofactors are attached by main enzyme of transcription, RNA polymerase (RNAP). Cofactors act as noncanonical initiating substrates, provided cofactor's nucleoside base-pairs with template DNA at the transcription start site. Adenosine-containing NAD(H), flavin adenine dinucleotide (FAD), and CoA modify transcripts on promoters starting with +1A. Similarly, uridine-containing cell wall precursors, for example, uridine diphosphate-N-acetylglucosamine were shown to cap RNA in vitro on +1U promoters. Noncanonical capping is a universal feature of evolutionary unrelated RNAPs-multisubunit bacterial and eukaryotic RNAPs, and single-subunit mitochondrial RNAP. Cellular concentrations of cofactors, for example, NAD(H) are significantly higher than their Km in transcription. Yet, only a small proportion of a given cellular RNA is noncanonically capped (if at all). This proportion is a net balance between capping, seemingly stochastic, and decapping, possibly determined by RNA folding, protein binding and transcription rate. NUDIX hydrolases in bacteria and eukaryotes, and DXO family proteins eukaryotes act as decapping enzymes for noncanonical caps. The physiological role of noncanonical RNA capping is only starting to emerge. It was demonstrated to affect RNA stability in vivo in bacteria and eukaryotes and to stimulate RNAP promoter escape in vitro in Escherichia coli. NAD+ /NADH capping ratio may connect transcription to cellular redox state. Potentially, noncanonical capping affects mRNA translation, RNA-protein binding and RNA localization. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Export and Localization > RNA Localization RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Christina Julius
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Is mitochondrial gene expression coordinated or stochastic? Biochem Soc Trans 2018; 46:1239-1246. [PMID: 30301847 DOI: 10.1042/bst20180174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial biogenesis is intimately dependent on the coordinated expression of the nuclear and mitochondrial genomes that is necessary for the assembly and function of the respiratory complexes to produce most of the energy required by cells. Although highly compacted in animals, the mitochondrial genome and its expression are essential for survival, development, and optimal energy production. The machinery that regulates gene expression within mitochondria is localised within the same compartment and, like in their ancestors, the bacteria, this machinery does not use membrane-based compartmentalisation to order the gene expression pathway. Therefore, the lifecycle of mitochondrial RNAs from transcription through processing, maturation, translation to turnover is mediated by a gamut of RNA-binding proteins (RBPs), all contained within the mitochondrial matrix milieu. Recent discoveries indicate that multiple processes regulating RNA metabolism occur at once but since mitochondria have a new complement of RBPs, many evolved de novo from nuclear genes, we are left wondering how co-ordinated are these processes? Here, we review recently identified examples of the co-ordinated and stochastic processes that govern the mitochondrial transcriptome. These new discoveries reveal the complexity of mitochondrial gene expression and the need for its in-depth exploration to understand how these organelles can respond to the energy demands of the cell.
Collapse
|
16
|
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 2018; 560:263-267. [PMID: 30089917 DOI: 10.1038/s41586-018-0373-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.
Collapse
|
17
|
Beck HJ, Moll I. Leaderless mRNAs in the Spotlight: Ancient but Not Outdated! Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0016-2017. [PMID: 30006995 PMCID: PMC11633608 DOI: 10.1128/microbiolspec.rwr-0016-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Previously, leaderless mRNAs (lmRNAs) were perceived to make up only a minor fraction of the transcriptome in bacteria. However, advancements in RNA sequencing technology are uncovering vast numbers of lmRNAs, particularly in archaea, Actinobacteria, and extremophiles and thus underline their significance in cellular physiology and regulation. Due to the absence of conventional ribosome binding signals, lmRNA translation initiation is distinct from canonical mRNAs and can therefore be differentially regulated. The ribosome's inherent ability to bind a 5'-terminal AUG can stabilize and protect the lmRNA from degradation or allow ribosomal loading for downstream initiation events. As a result, lmRNAs remain translationally competent during a variety of physiological conditions, allowing them to contribute to multiple regulatory mechanisms. Furthermore, the abundance of lmRNAs can increase during adverse conditions through the upregulation of lmRNA transcription from alternative promoters or by the generation of lmRNAs from canonical mRNAs cleaved by an endonucleolytic toxin. In these ways, lmRNA translation can continue during stress and contribute to regulation, illustrating their importance in the cell. Due to their presence in all domains of life and their ability to be translated by heterologous hosts, lmRNAs appear further to represent ancestral transcripts that might allow us to study the evolution of the ribosome and the translational process.
Collapse
Affiliation(s)
- Heather J Beck
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| |
Collapse
|
18
|
Cahoon AB, Qureshi AA. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria. Curr Genet 2018; 64:1321-1333. [DOI: 10.1007/s00294-018-0848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
|
19
|
Gao F, Wesolowska M, Agami R, Rooijers K, Loayza-Puch F, Lawless C, Lightowlers RN, Chrzanowska-Lightowlers ZMA. Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Res 2017; 2:116. [PMID: 29387808 PMCID: PMC5771143 DOI: 10.12688/wellcomeopenres.13119.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA
Phe whilst in humans it is mt-tRNA
Val. We have previously shown that when a mutation in mt-tRNA
Val causes very low steady state levels, there is preferential recruitment of mt-tRNA
Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA
Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA
Phe containing mitoribosomes with those of controls that integrate mt-tRNA
Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5’ leader sequences, except in the two bicistronic RNA units,
RNA7 and
RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA
Val cell line suggest that despite mt-tRNA
Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.
Collapse
Affiliation(s)
- Fei Gao
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Wesolowska
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Immunocore Ltd, Oxford, UK
| | - Reuven Agami
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Koos Rooijers
- The Netherlands Cancer Institute, Amsterdam, Netherlands.,Hubrecht Institute, Utrecht, Netherlands
| | | | - Conor Lawless
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
20
|
Gao F, Wesolowska M, Agami R, Rooijers K, Loayza-Puch F, Lawless C, Lightowlers RN, Chrzanowska-Lightowlers ZMA. Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Res 2017. [PMID: 29387808 DOI: 10.12688/wellcomeopenres.13119.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA Phe whilst in humans it is mt-tRNA Val. We have previously shown that when a mutation in mt-tRNA Val causes very low steady state levels, there is preferential recruitment of mt-tRNA Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA Phe containing mitoribosomes with those of controls that integrate mt-tRNA Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5' leader sequences, except in the two bicistronic RNA units, RNA7 and RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA Val cell line suggest that despite mt-tRNA Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.
Collapse
Affiliation(s)
- Fei Gao
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Wesolowska
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Immunocore Ltd, Oxford, UK
| | - Reuven Agami
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Koos Rooijers
- The Netherlands Cancer Institute, Amsterdam, Netherlands.,Hubrecht Institute, Utrecht, Netherlands
| | | | - Conor Lawless
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
21
|
Choi EK, Ulanowicz KA, Nguyen YAH, Frandsen JK, Mitton-Fry RM. SHAPE analysis of the htrA RNA thermometer from Salmonella enterica. RNA (NEW YORK, N.Y.) 2017; 23:1569-1581. [PMID: 28739676 PMCID: PMC5602114 DOI: 10.1261/rna.062299.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
RNA thermometers regulate expression of some genes involved in virulence of pathogenic bacteria such as Yersinia, Neisseria, and Salmonella They often function through temperature-dependent conformational changes that alter accessibility of the ribosome-binding site. The 5'-untranslated region (UTR) of the htrA mRNA from Salmonella enterica contains a very short RNA thermometer. We have systematically characterized the structure and dynamics of this thermometer at single-nucleotide resolution using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays. Our results confirm that the htrA thermometer adopts the predicted hairpin conformation at low temperatures, with conformational change occurring over a physiological temperature regime. Detailed SHAPE melting curves for individual nucleotides suggest that the thermometer unfolds in a cooperative fashion, with nucleotides from both upper and lower portions of the stem gaining flexibility at a common transition temperature. Intriguingly, analysis of an extended htrA 5' UTR sequence revealed not only the presence of the RNA thermometer, but also an additional, stable upstream structure. We generated and analyzed point mutants of the htrA thermometer, revealing elements that modulate its stability, allowing the hairpin to melt under the slightly elevated temperatures experienced during the infection of a warm-blooded host. This work sheds light on structure-function relationships in htrA and related thermometers, and it also illustrates the utility of SHAPE assays for detailed study of RNA thermometer systems.
Collapse
Affiliation(s)
- Edric K Choi
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Kelsey A Ulanowicz
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Yen Anh H Nguyen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Jane K Frandsen
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| | - Rachel M Mitton-Fry
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, USA
| |
Collapse
|
22
|
Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Enzymes 2017; 41:1-50. [PMID: 28601219 DOI: 10.1016/bs.enz.2017.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The posttranscriptional modifications of tRNA's anticodon stem and loop (ASL) domain represent a third level, a third code, to the accuracy and efficiency of translating mRNA codons into the correct amino acid sequence of proteins. Modifications of tRNA's ASL domain are enzymatically synthesized and site specifically located at the anticodon wobble position-34 and 3'-adjacent to the anticodon at position-37. Degeneracy of the 64 Universal Genetic Codes and the limitation in the number of tRNA species require some tRNAs to decode more than one codon. The specific modification chemistries and their impact on the tRNA's ASL structure and dynamics enable one tRNA to decode cognate and "wobble codons" or to expand recognition to synonymous codons, all the while maintaining the translational reading frame. Some modified nucleosides' chemistries prestructure tRNA to read the two codons of a specific amino acid that shares a twofold degenerate codon box, and other chemistries allow a different tRNA to respond to all four codons of a fourfold degenerate codon box. Thus, tRNA ASL modifications are critical and mutations in genes for the modification enzymes and tRNA, the consequences of which is a lack of modification, lead to mistranslation and human disease. By optimizing tRNA anticodon chemistries, structure, and dynamics in all organisms, modifications ensure translational fidelity of mRNA transcripts.
Collapse
Affiliation(s)
- Paul F Agris
- The RNA Institute, State University of New York, Albany, NY, United States.
| | - Amithi Narendran
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Kathryn Sarachan
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Ville Y P Väre
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Emily Eruysal
- The RNA Institute, State University of New York, Albany, NY, United States
| |
Collapse
|
23
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
24
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
25
|
Potluri P, Procaccio V, Scheffler IE, Wallace DC. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1336-1343. [PMID: 26946086 DOI: 10.1016/j.bbabio.2016.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Procaccio
- Dépt. de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Immo E Scheffler
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Yasuzaki Y, Yamada Y, Ishikawa T, Harashima H. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector. Mol Pharm 2015; 12:4311-20. [PMID: 26567847 DOI: 10.1021/acs.molpharmaceut.5b00511] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuma Yamada
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Ishikawa
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 2015; 348:303-8. [PMID: 25837512 DOI: 10.1126/science.aaa3872] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 2014; 588:2496-503. [PMID: 24911204 PMCID: PMC4099522 DOI: 10.1016/j.febslet.2014.05.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Agata Rozanska
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
29
|
Jackson CB, Zbinden C, Gallati S, Schaller A. Heterologous expression from the human D-Loop in organello. Mitochondrion 2014; 17:67-75. [PMID: 24911383 DOI: 10.1016/j.mito.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
We report the expression of a linear reporter construct in isolated human mitochondria. The reporter construct contained the entire human D-Loop with adjacent tRNA (MTT) genes (mt.15956-647), the human ND1 gene with an in frame GFP gene and adjacent endogenous MTT genes and heterologous rat MTT genes. Natural competence of isolated human mitochondria of HepG2 cells was used to import reporter constructs. The import efficiency of various fluorescently labelled PCR-generated import substrates in the range of 250bp up to 3.5kb was assessed by quantitative PCR and evaluated by confocal microscopy. Heterologous expression of the imported construct was confirmed at RNA level by a circular RNA (cRNA)-RT-PCR assay for the expression of tRNAs and by in organello [α-(32)P]-UTP labelling and subsequent hybridisation to reporter-specific sequences for monitoring mRNA expression. Heterologous expression of rat mitochondrial tRNA(Leu(UUR)) (rMT-TL1) was confirmed by co-/post-transcriptional trinucleotide (CCA) addition. Interestingly, the rat-specific MT-TL1 was correctly processed in isolated human mitochondria at the 3' end, but showed an aberrant 5' end processing. Correct 3' end processing of the heterologous expressed mitochondrial rat tRNA(Ser2) (MT-TS2) was detected. These findings demonstrate the feasibility of genetic manipulation of human mitochondria, providing a tool for characterisation of cis-acting elements of the human mitochondrial genome and for the study of human mitochondrial tRNA processing in organello.
Collapse
Affiliation(s)
- C B Jackson
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Berne, Switzerland.
| | - C Zbinden
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| | - S Gallati
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| | - A Schaller
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| |
Collapse
|
30
|
Richman TR, Rackham O, Filipovska A. Mitochondria: Unusual features of the mammalian mitoribosome. Int J Biochem Cell Biol 2014; 53:115-20. [PMID: 24842111 DOI: 10.1016/j.biocel.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Mitochondria are responsible for generating most of the energy required by the cell. The oxidative phosphorylation (OXPHOS) system that produces the energy is composed of nuclear and mitochondrial encoded polypeptides. The 13 polypeptides encoded by the mitochondrial genome are synthesized by mitochondrial ribosomes (mitoribosomes). The evolutionary divergence of mitoribosomes has seen a reduction in their rRNA content and an increase in ribosomal proteins compared to their bacterial and cytoplasmic counterparts. Recent advances in cryo-electron microscopy (cryo-EM) mapping have revealed not all of these proteins simply replace the roles of the rRNA and that many have new roles. The mitoribosome has unique features that include a gatelike structure at the mRNA entrance that may facilitate recruitment of leaderless mitochondrial mRNAs and also a polypeptide exit tunnel that has an unusual nascent-polypeptide exit mechanism. Defects in the mitochondrial translation machinery are a common contributor to multi-system disorders known as mitochondrial diseases for which currently there are no cures or effective treatments.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
31
|
Liu G, Mercer TR, Shearwood AMJ, Siira SJ, Hibbs ME, Mattick JS, Rackham O, Filipovska A. Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting. Cell Rep 2013; 5:839-48. [PMID: 24183674 DOI: 10.1016/j.celrep.2013.09.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Human mitochondrial DNA is transcribed as long polycistronic transcripts that encompass each strand of the genome and are processed subsequently into mature mRNAs, tRNAs, and rRNAs, necessitating widespread posttranscriptional regulation. Here, we establish methods for massively parallel sequencing and analyses of RNase-accessible regions of human mitochondrial RNA and thereby identify specific regions within mitochondrial transcripts that are bound by proteins. This approach provides a range of insights into the contribution of RNA-binding proteins to the regulation of mitochondrial gene expression.
Collapse
Affiliation(s)
- Ganqiang Liu
- Garvan Institute of Medical Research, Sydney NSW 2010, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
33
|
Abstract
Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNA(Met). This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f(5)C), at the wobble position-34 of human mitochondrial tRNA(f5CAU)(Met) (hmtRNA(f5CAU)(Met)) enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson-Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f(5)C34•A base pair geometry with two hydrogen bonds.
Collapse
|
34
|
Chatzoglou E, Kyriakou E, Zouros E, Rodakis GC. The mRNAs of maternally and paternally inherited mtDNAs of the mussel Mytilus galloprovincialis: Start/end points and polycistronic transcripts. Gene 2013; 520:156-65. [DOI: 10.1016/j.gene.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
35
|
Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL, Weeks KM, Swanstrom R. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog 2013; 9:e1003294. [PMID: 23593004 PMCID: PMC3616985 DOI: 10.1371/journal.ppat.1003294] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve.
Collapse
Affiliation(s)
- Elizabeth Pollom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristen K. Dang
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Lake Potter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christina L. Burch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
36
|
Kazama T, Yagi Y, Toriyama K, Nakamura T. Heterogeneity of the 5'-end in plant mRNA may be involved in mitochondrial translation. FRONTIERS IN PLANT SCIENCE 2013; 4:517. [PMID: 24381580 PMCID: PMC3865367 DOI: 10.3389/fpls.2013.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 05/04/2023]
Affiliation(s)
- Tomohiko Kazama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Yusuke Yagi
- Faculty of Agriculture, Kyushu UniversityFukuoka, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Kyushu UniversityFukuoka, Japan
- *Correspondence:
| |
Collapse
|
37
|
Yagi M, Uchiumi T, Takazaki S, Okuno B, Nomura M, Yoshida SI, Kanki T, Kang D. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res 2012; 40:9717-37. [PMID: 22904065 PMCID: PMC3479211 DOI: 10.1093/nar/gks774] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
de Breyne S, Chamond N, Décimo D, Trabaud MA, André P, Sargueil B, Ohlmann T. In vitrostudies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS J 2012; 279:3098-111. [DOI: 10.1111/j.1742-4658.2012.08689.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ritz J, Martin JS, Laederach A. Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics 2012; 13 Suppl 4:S6. [PMID: 22759654 PMCID: PMC3303743 DOI: 10.1186/1471-2164-13-s4-s6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The structure of RiboNucleic Acid (RNA) has the potential to be altered by a Single Nucleotide Polymorphism (SNP). Disease-associated SNPs mapping to non-coding regions of the genome that are transcribed into RiboNucleic Acid (RNA) can potentially affect cellular regulation (and cause disease) by altering the structure of the transcript. We performed a large-scale meta-analysis of Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) data, which probes the structure of RNA. We found that several single point mutations exist that significantly disrupt RNA secondary structure in the five transcripts we analyzed. Thus, every RNA that is transcribed has the potential to be a “RiboSNitch;” where a SNP causes a large conformational change that alters regulatory function. Predicting the SNPs that will have the largest effect on RNA structure remains a contemporary computational challenge. We therefore benchmarked the most popular RNA structure prediction algorithms for their ability to identify mutations that maximally affect structure. We also evaluated metrics for rank ordering the extent of the structural change. Although no single algorithm/metric combination dramatically outperformed the others, small differences in AUC (Area Under the Curve) values reveal that certain approaches do provide better agreement with experiment. The experimental data we analyzed nonetheless show that multiple single point mutations exist in all RNA transcripts that significantly disrupt structure in agreement with the predictions.
Collapse
Affiliation(s)
- Justin Ritz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
40
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
Scharff LB, Childs L, Walther D, Bock R. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 2011; 7:e1002155. [PMID: 21731509 PMCID: PMC3121790 DOI: 10.1371/journal.pgen.1002155] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/05/2011] [Indexed: 02/05/2023] Open
Abstract
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site. Protein biosynthesis (translation) is a highly regulated process in gene expression. In all organisms, initiation of translation depends on molecular recognition of the messenger RNA by ribosomes. In prokaryotes (bacteria, mitochondria, and chloroplasts), this recognition is mediated by a specific sequence motif in the 5′ untranslated region of the mRNA, called “ribosome-binding site” or “Shine-Dalgarno sequence.” However, many messenger RNAs lack Shine-Dalgarno sequences, and it is currently unknown how the correct translation initiation site is recognized in these mRNAs. Here, we provide insights into the mechanism of translation initiation in the absence of a ribosome-binding site. We have performed genome-wide searches for Shine-Dalgarno–independent translation in bacterial and organellar genomes and report that a large fraction of transcripts is translated in a Shine-Dalgarno–independent manner in all prokaryotic systems. We find that Shine-Dalgarno–independent translation initiation is strongly correlated with the presence of a local minimum in RNA secondary structure around the translational start codon. The significance of RNA unfoldedness as the key determinant of start codon recognition in Shine-Dalgarno–independent translation initiation was confirmed experimentally by employing reporter gene fusions in the bacterium Escherichia coli. In conclusion, our work suggests an intriguing mechanism for translation initiation on mRNAs that lack a ribosome-binding site.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
42
|
Bilbille Y, Gustilo EM, Harris KA, Jones CN, Lusic H, Kaiser RJ, Delaney MO, Spremulli LL, Deiters A, Agris PF. The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 2011; 406:257-74. [PMID: 21168417 PMCID: PMC3662834 DOI: 10.1016/j.jmb.2010.11.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022]
Abstract
Human mitochondrial mRNAs utilize the universal AUG and the unconventional isoleucine AUA codons for methionine. In contrast to translation in the cytoplasm, human mitochondria use one tRNA, hmtRNA(Met)(CAU), to read AUG and AUA codons at both the peptidyl- (P-), and aminoacyl- (A-) sites of the ribosome. The hmtRNA(Met)(CAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position 34 (f(5)C(34)), and a cytidine substituting for the invariant uridine at position 33 of the canonical U-turn in tRNAs. The structure of the tRNA anticodon stem and loop domain (hmtASL(Met)(CAU)), determined by NMR restrained molecular modeling, revealed how the f(5)C(34) modification facilitates the decoding of AUA at the P- and the A-sites. The f(5)C(34) defined a reduced conformational space for the nucleoside, in what appears to have restricted the conformational dynamics of the anticodon bases of the modified hmtASL(Met)(CAU). The hmtASL(Met)(CAU) exhibited a C-turn conformation that has some characteristics of the U-turn motif. Codon binding studies with both Escherichia coli and bovine mitochondrial ribosomes revealed that the f(5)C(34) facilitates AUA binding in the A-site and suggested that the modification favorably alters the ASL binding kinetics. Mitochondrial translation by many organisms, including humans, sometimes initiates with the universal isoleucine codons AUU and AUC. The f(5)C(34) enabled P-site codon binding to these normally isoleucine codons. Thus, the physicochemical properties of this one modification, f(5)C(34), expand codon recognition from the traditional AUG to the non-traditional, synonymous codons AUU and AUC as well as AUA, in the reassignment of universal codons in the mitochondria.
Collapse
Affiliation(s)
- Yann Bilbille
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Estella M. Gustilo
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Kimberly A. Harris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Christie N. Jones
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hrvoje Lusic
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert J. Kaiser
- Thermo Fisher Scientific, 2650 Crescent Drive #100, Lafayette, CO 80026, USA
| | - Michael O. Delaney
- Thermo Fisher Scientific, 2650 Crescent Drive #100, Lafayette, CO 80026, USA
| | - Linda L. Spremulli
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul F. Agris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
43
|
Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J 2010; 430:551-8. [PMID: 20604745 PMCID: PMC2995420 DOI: 10.1042/bj20100757] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial Ras-like protein Era has been reported previously to bind 16S rRNA within the 30S ribosomal subunit and to play a crucial role in ribosome assembly. An orthologue of this essential GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes and although its exact molecular function and cellular localization is unknown, its absence has been linked to apoptosis. In the present study we show that human ERAL1 is a mitochondrial protein important for the formation of the 28S small mitoribosomal subunit. We also show that ERAL1 binds in vivo to the rRNA component of the small subunit [12S mt (mitochondrial)-rRNA]. Bacterial Era associates with a 3′ unstructured nonanucleotide immediately downstream of the terminal stem–loop (helix 45) of 16S rRNA. This site contains an AUCA sequence highly conserved across all domains of life, immediately upstream of the anti-Shine–Dalgarno sequence, which is conserved in bacteria. Strikingly, this entire region is absent from 12S mt-rRNA. We have mapped the ERAL1-binding site to a 33 nucleotide section delineating the 3′ terminal stem–loop region of 12S mt-rRNA. This loop contains two adenine residues that are reported to be dimethylated on mitoribosome maturation. Furthermore, and also in contrast with the bacterial orthologue, loss of ERAL1 leads to rapid decay of nascent 12S mt-rRNA, consistent with a role as a mitochondrial RNA chaperone. Finally, whereas depletion of ERAL1 leads to apoptosis, cell death occurs prior to any appreciable loss of mitochondrial protein synthesis or reduction in the stability of mitochondrial mRNA.
Collapse
|
44
|
Christian BE, Spremulli LL. Preferential selection of the 5'-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes. J Biol Chem 2010; 285:28379-86. [PMID: 20610392 DOI: 10.1074/jbc.m110.149054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondrial mRNAs are basically leaderless, having few or no untranslated nucleotides prior to the 5'-start codon. We demonstrate here that mammalian mitochondrial 55 S ribosomes preferentially form initiation complexes at a 5'-terminal AUG codon over an internal AUG. The preferential use of the 5'-start codon is also seen on mitochondrial 28 S small subunits, which suggests that mitochondrial translation initiation on leaderless mRNAs does not require the large ribosomal subunit. The selection of the 5'-AUG is dependent on the presence of fMet-tRNA and is enhanced by the presence of the mitochondrial initiation factor IF2(mt). In prokaryotes, IF3 is believed to antagonize initiation on leaderless mRNAs. However, IF3(mt) stimulates initiation complex formation on leaderless mRNAs when tested with 55 S ribosomes. The addition of even a few nucleotides 5' to the AUG codon significantly reduces the efficiency of initiation, highlighting the importance of the leaderless or nearly leaderless nature of mitochondrial mRNAs. In addition, very few initiation complexes could form on a hybrid mRNA construct consisting of tRNA(Met) attached at the 5'-end of a mitochondrial protein-coding sequence. This observation demonstrates that post-transcriptional processing must occur prior to translation in mammalian mitochondria.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
45
|
Low JT, Weeks KM. SHAPE-directed RNA secondary structure prediction. Methods 2010; 52:150-8. [PMID: 20554050 DOI: 10.1016/j.ymeth.2010.06.007] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/25/2022] Open
Abstract
The diverse functional roles of RNA are determined by its underlying structure. Accurate and comprehensive knowledge of RNA structure would inform a broader understanding of RNA biology and facilitate exploiting RNA as a biotechnological tool and therapeutic target. Determining the pattern of base pairing, or secondary structure, of RNA is a first step in these endeavors. Advances in experimental, computational, and comparative analysis approaches for analyzing secondary structure have yielded accurate structures for many small RNAs, but only a few large (>500 nts) RNAs. In addition, most current methods for determining a secondary structure require considerable effort, analytical expertise, and technical ingenuity. In this review, we outline an efficient strategy for developing accurate secondary structure models for RNAs of arbitrary length. This approach melds structural information obtained using SHAPE chemistry with structure prediction using nearest-neighbor rules and the dynamic programming algorithm implemented in the RNAstructure program. Prediction accuracies reach >or=95% for RNAs on the kilobase scale. This approach facilitates both development of new models and refinement of existing RNA structure models, which we illustrate using the Gag-Pol frameshift element in an HIV-1 M-group genome. Most promisingly, integrated experimental and computational refinement brings closer the ultimate goal of efficiently and accurately establishing the secondary structure for any RNA sequence.
Collapse
Affiliation(s)
- Justin T Low
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
46
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
| |
Collapse
|
47
|
Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs--like members of all families, similar but different. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1081-5. [PMID: 20211597 PMCID: PMC3003153 DOI: 10.1016/j.bbabio.2010.02.036] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 10/27/2022]
Abstract
The messenger RNAs containing the thirteen protein coding sequences of the human mitochondrial genome have frequently been regarded as a single functional category, alike in arrangement and hence in mode of expression. The "generic" mitochondrial mRNA is perceived as having (i) an arrangement within the polycistronic unit that permits its liberation following mt-tRNA processing, (ii) no 5' cap structure or introns, (iii) essentially no untranslated regions, and (iv) a poly(A) tail of approximately fifty nucleotides that is required in part to complete the termination codon. Closer inspection reveals that only two molecules fit this pattern. This article examines the extent to which human mitochondrial mRNA species differ from one another.
Collapse
Affiliation(s)
| | | | | | - Zofia M. Chrzanowska-Lightowlers
- Mitochondrial Research Group, Medical School, Institute for Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
48
|
Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010; 2010:737385. [PMID: 20396601 PMCID: PMC2854570 DOI: 10.1155/2010/737385] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 01/29/2010] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders.
Collapse
|
49
|
Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC, Weeks KM. Influence of nucleotide identity on ribose 2'-hydroxyl reactivity in RNA. RNA (NEW YORK, N.Y.) 2009; 15:1314-21. [PMID: 19458034 PMCID: PMC2704086 DOI: 10.1261/rna.1536209] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydroxyl-selective electrophiles, including N-methylisatoic anhydride (NMIA) and 1-methyl-7-nitroisatoic anhydride (1M7), are broadly useful for RNA structure analysis because they react preferentially with the ribose 2'-OH group at conformationally unconstrained or flexible nucleotides. Each nucleotide in an RNA has the potential to form an adduct with these reagents to yield a comprehensive, nucleotide-resolution, view of RNA structure. However, it is possible that factors other than local structure modulate reactivity. To evaluate the influence of base identity on the intrinsic reactivity of each nucleotide, we analyze NMIA and 1M7 reactivity using four distinct RNAs, under both native and denaturing conditions. We show that guanosine and adenosine residues have identical intrinsic 2'-hydroxyl reactivities at pH 8.0 and are 1.4 and 1.7 times more reactive than uridine and cytidine, respectively. These subtle, but statistically significant, differences do not impact the ability of selective 2'-hydroxyl acylation analyzed by primer extension-based (SHAPE) methods to establish an RNA secondary structure or monitor RNA folding in solution because base-specific influences are much smaller than the reactivity differences between paired and unpaired nucleotides.
Collapse
Affiliation(s)
- Kevin A Wilkinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
50
|
Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA (NEW YORK, N.Y.) 2008; 14:1979-90. [PMID: 18772246 PMCID: PMC2553743 DOI: 10.1261/rna.1166808] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/09/2008] [Indexed: 05/02/2023]
Abstract
Analysis of the long-range architecture of RNA is a challenging experimental and computational problem. Local nucleotide flexibility, which directly reports underlying base pairing and tertiary interactions in an RNA, can be comprehensively assessed at single nucleotide resolution using high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE). hSHAPE resolves structure-sensitive chemical modification information by high-resolution capillary electrophoresis and typically yields quantitative nucleotide flexibility information for 300-650 nucleotides (nt) per experiment. The electropherograms generated in hSHAPE experiments provide a wealth of structural information; however, significant algorithmic analysis steps are required to generate quantitative and interpretable data. We have developed a set of software tools called ShapeFinder to make possible rapid analysis of raw sequencer data from hSHAPE, and most other classes of nucleic acid reactivity experiments. The algorithms in ShapeFinder (1) convert measured fluorescence intensity to quantitative cDNA fragment amounts, (2) correct for signal decay over read lengths extending to 600 nts or more, (3) align reactivity data to the known RNA sequence, and (4) quantify per nucleotide reactivities using whole-channel Gaussian integration. The algorithms and user interface tools implemented in ShapeFinder create new opportunities for tackling ambitious problems involving high-throughput analysis of structure-function relationships in large RNAs.
Collapse
Affiliation(s)
- Suzy M Vasa
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|