1
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Seeler S, Andersen MS, Sztanka-Toth T, Rybiczka-Tešulov M, van den Munkhof MH, Chang CC, Maimaitili M, Venø MT, Hansen TB, Pasterkamp RJ, Rybak-Wolf A, Denham M, Rajewsky N, Kristensen LS, Kjems J. A Circular RNA Expressed from the FAT3 Locus Regulates Neural Development. Mol Neurobiol 2023; 60:3239-3260. [PMID: 36840844 PMCID: PMC10122638 DOI: 10.1007/s12035-023-03253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.
Collapse
Affiliation(s)
- Sabine Seeler
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Maria Schertz Andersen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Tamas Sztanka-Toth
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Chi-Chih Chang
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Muyesier Maimaitili
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Morten Trillingsgaard Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Omiics ApS, 8200 Aarhus N, Aarhus, Denmark
| | - Thomas Birkballe Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mark Denham
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Lasse Sommer Kristensen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| |
Collapse
|
3
|
Niu H, Pang Y, Xie L, Yu Q, Shen Y, Li J, Xu X. Clustering pattern and evolution characteristic of microRNAs in grass carp (Ctenopharyngodon idella). BMC Genomics 2023; 24:73. [PMID: 36782132 PMCID: PMC9926789 DOI: 10.1186/s12864-023-09159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND A considerable fraction of microRNAs (miRNAs) are highly conserved, and certain miRNAs correspond to genomic clusters. The clustering of miRNAs can be advantageous, possibly by allowing coordinated expression. However, little is known about the evolutionary forces responsible for the loss and acquisition of miRNA and miRNA clusters. RESULTS The results demonstrated that several novel miRNAs arose throughout grass carp evolution. Duplication and de novo production were critical strategies for miRNA cluster formation. Duplicates accounted for a smaller fraction of the expansion in the grass carp miRNA than de novo creation. Clustered miRNAs are more conserved and change slower, whereas unique miRNAs usually have high evolution rates and low expression levels. The expression level of miRNA expression in clusters is strongly correlated. CONCLUSIONS This study examines the genomic distribution, evolutionary background, and expression regulation of grass carp miRNAs. Our findings provide novel insights into the genesis and development of miRNA clusters in teleost.
Collapse
Affiliation(s)
- Huiqin Niu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Holt J, Walter V, Yin X, Marron D, Wilkerson MD, Choi HY, Zhao X, Jo H, Hayes DN, Ko YH. Integrative Analysis of miRNAs Identifies Clinically Relevant Epithelial and Stromal Subtypes of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2020; 27:831-842. [PMID: 33148669 DOI: 10.1158/1078-0432.ccr-20-0557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/24/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The objective of this study is to characterize the role of miRNAs in the classification of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN Here, we analyzed 562 HNSCC samples, 88 from a novel cohort and 474 from The Cancer Genome Atlas, using miRNA microarray and miRNA sequencing, respectively. Using an integrative correlations method followed by miRNA expression-based hierarchical clustering, we validated miRNA clusters across cohorts. Evaluation of clusters by logistic regression and gene ontology approaches revealed subtype-based clinical and biological characteristics. RESULTS We identified two independently validated and statistically significant (P < 0.01) tumor subtypes and named them "epithelial" and "stromal" based on associations with functional target gene ontology relating to differing stages of epithelial cell differentiation. miRNA-based subtypes were correlated with individual gene expression targets based on miRNA seed sequences, as well as with miRNA families and clusters including the miR-17 and miR-200 families. These correlated genes defined pathways relevant to normal squamous cell function and pathophysiology. miRNA clusters statistically associated with differential mutation patterns including higher proportions of TP53 mutations in the stromal class and higher NSD1 and HRAS mutation frequencies in the epithelial class. miRNA classes correlated with previously reported gene expression subtypes, clinical characteristics, and clinical outcomes in a multivariate Cox proportional hazards model with stromal patients demonstrating worse prognoses (HR, 1.5646; P = 0.006). CONCLUSIONS We report a reproducible classification of HNSCC based on miRNA that associates with known pathologically altered pathways and mutations of squamous tumors and is clinically relevant.
Collapse
Affiliation(s)
- Jeremiah Holt
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Xiaoying Yin
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew D Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hyo Young Choi
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiaobei Zhao
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Heejoon Jo
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - David Neil Hayes
- Division of Hematology and Oncology, Department of Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Nishida K, Kuwano Y, Rokutan K. The MicroRNA-23b/27b/24 Cluster Facilitates Colon Cancer Cell Migration by Targeting FOXP2. Cancers (Basel) 2020; 12:cancers12010174. [PMID: 31936744 PMCID: PMC7017312 DOI: 10.3390/cancers12010174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Acquisition of cell migration capacity is an early and essential process in cancer development. The aim of this study was to identify microRNA gene expression networks that induced high migration capacity. Using colon cancer HCT116 cells subcloned by transwell-based migrated cell selection, microRNA array analysis was performed to examine the microRNA expression profile. Promoter activity and microRNA targets were assessed with luciferase reporters. Cell migration capacity was assessed by either the transwell or scratch assay. In isolated subpopulations with high migration capacity, the expression levels of the miR-23b/27b/24 cluster increased in accordance with the increased expression of the short C9orf3 transcript, a host gene of the miR-23b/27b/24 cluster. E2F1-binding sequences were involved in the basic transcription activity of the short C9orf3 expression, and E2F1-small-interfering (si)RNA treatment reduced the expression of both the C9orf3 and miR-23b/27b/24 clusters. Overexpression experiments showed that miR-23b and miR-27b promoted cell migration, but the opposite effect was observed with miR-24. Forkhead box P2 (FOXP2) mRNA and protein levels were reduced by both/either miR-23b and miR-27b. Furthermore, FOXP2 siRNA treatment significantly promoted cell migration. Our findings demonstrated a novel role of the miR-23b/27b/24 cluster in cell migration through targeting FOXP2, with potential implications for the development of microRNA-based therapy targeted at inhibiting cancer migration.
Collapse
|
7
|
Fadaka AO, Klein A, Pretorius A. In silico identification of microRNAs as candidate colorectal cancer biomarkers. Tumour Biol 2019; 41:1010428319883721. [PMID: 31718480 DOI: 10.1177/1010428319883721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The involvement of microRNA in cancers plays a significant role in their pathogenesis. Specific expressions of these non-coding RNAs also serve as biomarkers for early colorectal cancer diagnosis, but their laboratory/molecular identification is challenging and expensive. The aim of this study was to identify potential microRNAs for colorectal cancer diagnosis using in silico approach. Sequence similarity search was employed to obtain the candidate microRNA from the datasets, and three target prediction software were employed to determine their target genes. To determine the involvement of these microRNAs in colorectal cancer, the microRNA gene list obtained was used alongside with colorectal cancer expressed genes from gbCRC and CoReCG databases for gene intersection analysis. The involvement of these genes in the cancer subtype was further strengthened with the DAVID database. KEGG and Gene Ontology were used for the pathway and functional analysis, while STRING was employed for the interactions of protein network and further visualized by Cytoscape. The cBioPortal database was used to prioritize the target genes; prognostic and expression analysis were finally performed on the candidate microRNAs and the prioritized targets. This study, therefore, identified five candidate microRNAs, two hub genes (CTNNB1 and epidermal growth factor receptor), and seven significant target genes associated with colorectal cancer. The molecular validation studies are ongoing to ascertain the biological fitness of these findings.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
9
|
Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa. Funct Integr Genomics 2019; 19:953-972. [PMID: 31177404 DOI: 10.1007/s10142-019-00692-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/02/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
miRNAs (microRNAs) are ~ 21-nt non-coding small RNAs (sRNAs) that play crucial regulatory roles in plant biotic and abiotic stress responses. Phosphorus (Pi) deficiency constrains plant growth and reduces yields worldwide. To identify tree miRNAs and evaluate their functions in the response to low Pi, we identified 261 known and 31 candidate novel miRNA families from three sRNA libraries constructed from Populus tomentosa subjected to sufficient or Pi deficiency condition or to restoration of a sufficient Pi level after Pi deficiency. Pi deficiency resulted in significant changes in the abundance of TPM (transcript per million) of 65 known and 3 novel miRNAs. Interestingly, four miRNAs responsive to low N-miR167, miR394, miR171, and miR857-were found to be involved in the response to low Pi. Thirty-five known and one novel miRNAs responded dynamically to Pi fluctuations, suggesting their involvement in the response to Pi deficiency. miRNA clusters comprising 36 miRNAs were identified in 10 chromosomes. Intriguingly, nine pairs of sense and antisense miRNAs transcribed from the same loci were detected in P. tomentosa, which is the first such report in woody plants. Moreover, target genes of the known miRNAs and novel miRNA candidates with significantly changed abundance were predicted, and their functions were annotated. Degradome sequencing supported the identified targets of miRNAs in P. tomentosa. These findings will enhance our understanding of universal and specific molecular regulatory mechanisms of trees under nutrition stress and may facilitate improvement of the Pi utilization efficiency of woody plants.
Collapse
|
10
|
Si W, Ye S, Ren Z, Liu X, Wu Z, Li Y, Zhou J, Zhang S, Li Y, Deng R, Chen D. miR‑335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int J Mol Med 2019; 43:1452-1466. [PMID: 30747210 PMCID: PMC6365079 DOI: 10.3892/ijmm.2019.4073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Under harmful environmental conditions, stress granules (SGs), macromolecular aggregates that are associated with cell survival and death, are produced in the eukaryotic cytoplasm. However, whether and how microRNAs (miRNAs/miRs) modulate SG formation induced by acute ischemic stroke has not been investigated. In the present study, a rat model of middle cerebral artery occlusion (MCAO) was utilized and miRNA array profiling and reverse transcription‑quantitative polymerase chain reaction were performed. The results revealed that miR‑335 was downregulated during acute ischemic stroke, which was concomitant with reduced SG formation, enhanced apoptosis levels and increased Rho associated protein kinase 2 (ROCK2) expression. In the MCAO rat and serum‑free cell models, miR‑335 treatment upregulated SG formation, alleviated the ischemia‑induced infarction, and decreased ROCK2 protein expression and apoptosis levels. By contrast, when compared with miR‑335 treatment, the inhibition of miR‑335 resulted in reduced SG formation and higher ROCK2 expression and apoptosis levels. Target prediction analysis and luciferase 3'‑untranslated region reporter assay identified ROCK2 as the direct target of miR‑335. Furthermore, ROCK2 silencing enhanced SG formation and attenuated the level of apoptosis in the serum‑free cell model. In addition, ROCK2 silencing markedly inhibited the effect of miR‑335 on SG formation and apoptosis levels. Unexpectedly, the phosphorylation of T‑cell intracellular antigen‑1 was significantly inhibited by miR‑335 in the MCAO rat model, which provides a reasonable explanation for the promotional effect of miR‑335 on SG formation by specifically targeting ROCK2. In conclusion, these results demonstrate that miR‑335 promotes SG formation and inhibits apoptosis by reducing ROCK2 expression in acute ischemic stroke, which provides a possible therapeutic target for brain injury.
Collapse
Affiliation(s)
- Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yi Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yiwei Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
11
|
Chang ZX, Akinyemi IA, Guo DY, Wu Q. Characterization and comparative analysis of microRNAs in the rice pest Sogatella furcifera. PLoS One 2018; 13:e0204517. [PMID: 30248141 PMCID: PMC6152972 DOI: 10.1371/journal.pone.0204517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous regulatory RNA molecules 21-24 nucleotides in length that act as functional regulators of post-transcriptional repression of messenger RNA. We report the identification and characterization of a conserved miRNA and 171 novel miRNAs in the migratory rice pest Sogatella furcifera by deep sequencing, which were observed to be biased towards female adults of the insect, modulating the functionality and targets of the miRNAs in sex differentiation. A switch in arm usage was also observed in 9 miRNA when compared to the insect ancestor during insect evolution. The miRNA loci showed high 5’ fidelity in both miRNA and star species and about 93.4% of WBPH miRNAs conserved within non-planthopper species were homologous with planthopper species. The novel miRNAs identified in this study provide a better understanding of the sRNA and the regulatory role of miRNA in sexual dimorphism and alteration in the expression or function of miRNAs in the rice pest.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Ibukun A. Akinyemi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- * E-mail:
| |
Collapse
|
12
|
Lee SY, Shin SY, Yoon YJ, Park YR. A Filtering Method for Identification of Significant Target mRNAs of Coexpressed and Differentially Expressed MicroRNA Clusters. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:4932904. [PMID: 30298100 PMCID: PMC6157198 DOI: 10.1155/2018/4932904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/08/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) binding is primarily based on sequence, but structure-specific binding is also possible. Various prediction algorithms have been developed for predicting miRNA target genes; the results, however, have relatively high levels of false positives, and the degree of overlap between predicted targets from different methods is poor or null. We devised a new method for identifying significant miRNA target genes from an extensive list of predicted miRNA target gene relationships using hypergeometric distributions. We evaluated our method in statistical and semantic aspects using a common miRNA cluster from six solid tumors. Our method provides statistically and semantically significant miRNA target genes. Complementing target prediction algorithms with our proposed method may have a significant synergistic effect in finding and evaluating functional annotation and enrichment analysis for miRNA.
Collapse
Affiliation(s)
- Su Yeon Lee
- Bioinformatics Team, Samsung SDS, Seoul, Republic of Korea
| | - Soo-Yong Shin
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Jo Yoon
- Office of Clinical Research Information, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Dioni L, Sucato S, Motta V, Iodice S, Angelici L, Favero C, Cavalleri T, Vigna L, Albetti B, Fustinoni S, Bertazzi P, Pesatori A, Bollati V. Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur J Clin Nutr 2017; 71:142-148. [PMID: 27731332 PMCID: PMC5222989 DOI: 10.1038/ejcn.2016.197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/09/2016] [Accepted: 08/20/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES Epidemiological studies suggest a link between chromium (Cr) status and cardiovascular disease. Increased urinary excretion of Cr was reported in subjects with diabetes compared with non-diabetic controls and those with non-diabetic insulin resistance. Epigenetic alterations have been linked to the presence of Cr, and microRNA (miRNA) expression has been implicated in the pathogenesis of metabolic diseases and cardiovascular diseases (CVDs). We investigated the association between Cr excretion and miRNA expression in leukocytes from obese subjects. We also examined the relationship between altered miRNA expression and selected clinical parameters to further investigate mechanisms linking Cr to metabolic diseases and CVDs. SUBJECTS/METHODS We analyzed urinary Cr in 90 Italian subjects using inductively coupled plasma-mass spectrometry. Peripheral blood miRNA levels were screened with TaqMan Low-Density Array Human MicroRNA A. Cr level-associated expression of miRNAs was detected with multivariate regression analyses, and the top 10 candidate miRNAs were selected for validation. We also used multivariate regression analyses to assess possible associations between validated miRNAs and glycated hemoglobin (A1c) and blood pressure (BP). The validated miRNAs were further investigated by functional analysis with Ingenuity Pathway Analysis software. RESULTS Urinary Cr levels (mean: 0.35 μg/l; s.d.=0.24) ranged from 0.05 to 1.27 μg/l. In the screening phase, 43 miRNAs were negatively associated with Cr. Of the top 10 miRNAs selected for validation, nine (miR-451, miR-301, miR-15b, miR-21, miR-26a, miR-362-3p, miR-182, miR-183 and miR-486-3p) were downregulated in association with Cr (P-false discovery rate (FDR)<0.10). miR-451 expression was associated with A1c (β=-0.06; P=0.0416), whereas miR-486-3p expression was associated both with diastolic (β=2.1; P=0.004) and systolic BP (β=3.3; P=0.003). CONCLUSIONS These results indicate that miR-451 and miR-486-3p are involved in the link between Cr levels and metabolic diseases and CVDs.
Collapse
Affiliation(s)
- L Dioni
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - S Sucato
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - V Motta
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - S Iodice
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - L Angelici
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - C Favero
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - T Cavalleri
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - L Vigna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Milan, Italy
| | - B Albetti
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - S Fustinoni
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Milan, Italy
| | - P Bertazzi
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Milan, Italy
| | - A Pesatori
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Milan, Italy
| | - V Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Milan, Italy
| |
Collapse
|
14
|
Hessvik NP, Øverbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, Llorente A. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci 2016; 73:4717-4737. [PMID: 27438886 PMCID: PMC11108566 DOI: 10.1007/s00018-016-2309-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
Abstract
Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Anders Øverbye
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Ida Seim Jakobsen
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway.
| |
Collapse
|
15
|
Tkatchenko AV, Luo X, Tkatchenko TV, Vaz C, Tanavde VM, Maurer-Stroh S, Zauscher S, Gonzalez P, Young TL. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice. PLoS One 2016; 11:e0162541. [PMID: 27622715 PMCID: PMC5021328 DOI: 10.1371/journal.pone.0162541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12) of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail: (AVT); (TLY)
| | - Xiaoyan Luo
- Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Center for Human Genetics, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Vivek M. Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
- Institute for Medical Biology, A*STAR, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
| | - Pedro Gonzalez
- Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (AVT); (TLY)
| |
Collapse
|
16
|
Grandjean V, Fourré S, De Abreu DAF, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 2015; 5:18193. [PMID: 26658372 PMCID: PMC4677355 DOI: 10.1038/srep18193] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022] Open
Abstract
The paternal heredity of obesity and diabetes induced by a high-fat and/or high-sugar diet (Western-like diet) has been demonstrated through epidemiological analysis of human cohorts and experimental analysis, but the nature of the hereditary vector inducing this newly acquired phenotype is not yet well defined. Here, we show that microinjection of either testis or sperm RNA of male mice fed a Western-like diet into naive one-cell embryos leads to the establishment of the Western-like diet-induced metabolic phenotype in the resulting progenies, whereas RNAs prepared from healthy controls did not. Among multiple sequence differences between the testis transcriptomes of the sick and healthy fathers, we noted that several microRNAs had increased expression, which was of interest because this class of noncoding RNA is known to be involved in epigenetic control of gene expression. When microinjected into naive one-cell embryos, one of these small RNA, i.e., the microRNA miR19b, induced metabolic alterations that are similar to the diet-induced phenotype. Furthermore, this pathological phenotype was inherited by the offspring after crosses with healthy partners. Our results indicate that acquired food-induced trait inheritance might be enacted by RNA signalling.
Collapse
Affiliation(s)
- Valérie Grandjean
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| | - Sandra Fourré
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 6079 CNRS-UNSA, Sophia Antipolis, France
| | | | - Marie-Alix Derieppe
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| | | | - Minoo Rassoulzadegan
- Inserm, U1091, Nice, F-06108.,CNRS, UMR7277, F-06108, France.,University of Nice-Sophia Antipolis, UFR Sciences, Nice, F-06108
| |
Collapse
|
17
|
Ben-Hamo R, Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 2015; 6:1594-604. [PMID: 25593195 PMCID: PMC4359317 DOI: 10.18632/oncotarget.2734] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
The role of microRNAs as key regulators of a wide variety of fundamental cellular processes, such as apoptosis, differentiation, proliferation and cell cycle is increasingly recognized in most aspects of biology and biomedicine. Accretion of results from multiple microRNA studies over multiple pathway networks, led us to hypothesize that microRNAs target molecular pathways. As we show here, this is a network-wide phenomenon. The work presented, uses statistical tools that show how single microRNAs target molecular pathways. We demonstrate that this targeting could not be the result of random associations and cannot be the result of the sheer numeracy of microRNA targets. Furthermore, the strongest evidence for the association microRNA-pathway, is in a demonstration of the way by which these associations are disease-relevant. In our analyses we study ten different types of cancer involving thousands of samples, and show that the identified microRNA–pathway associations demonstrate a clinical affiliation and an ability to stratify patients. The work presented here shows the first evidence for a mechanism of microRNAs-pathway generic regulation. This regulation is tightly associated with clinical phenotype. The presented approach may catalyze targeted treatment through exposure of hidden regulatory mechanisms and a systems-medicine view of clinical observation.
Collapse
Affiliation(s)
- Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
18
|
Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, Ma M, Jiao X, Wei M. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol 2015; 141:592-601. [PMID: 26644266 DOI: 10.1016/j.ygyno.2015.11.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE BCRP is overexpressed in many tumors and mediates multidrug resistance in breast cancer. In this study, we determined the involvement of miR-302S in the development of drug resistance in breast cancer. METHODS The differential miRNA expression profiling in parental MCF-7 cells and its derivative mitoxantrone (MX)-resistant MCF-7 (MCF-7/MX) cells was determined by the microarray analysis. The levels of miR-302S family and BCRP mRNA expression were determined by using Quantitative Real-Time PCR. The targeting effect between the individuals of miR-302S and BCRP mRNA-3'UTR were detected by dual-luciferase reporter assay. Proteins of BCRP are represented by Western blot assay. Cell viability was assessed by MTS assay. Efflux capacity was evaluated using flow cytometry. RESULTS The miR-302S family including miR-302a, miR-302b, miR-302c, and miR-302d was significantly down-regulated in BCRP-overexpressing MCF-7/MX cells. Luciferase activity assay showed that miR-302 inhibited BCRP expression by targeting the 3'-untranslated region (UTR) of the BCRP mRNA. Overexpression of miR-302 increased intracellular accumulation of MX and sensitized breast cancer cells to MX. Furthermore, intratumoral injection of miR-302 potentiated the inhibitory effect of MX on tumor growth in mice transplanted with MCF-7/MX cells. Most importantly, miR-302S produced stronger effects than each individual member alone. CONCLUSIONS These findings suggest that miR-302 inhibits BCRP expression via targeting the 3'-UTR of BCRP mRNA. miR-302 members may cooperatively downregulate BCRP expression to increase chemosensitivity of breast cancer cells. miR-302 gene cluster may be a potential target for reversing BCRP-mediated chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Mengtao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Xuyang Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| |
Collapse
|
19
|
Lu J, Zhang X, Zhang R, Ge Q. MicroRNA heterogeneity in endometrial cancer cell lines revealed by deep sequencing. Oncol Lett 2015; 10:3457-3465. [PMID: 26788150 PMCID: PMC4665306 DOI: 10.3892/ol.2015.3776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/05/2015] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to obtain comprehensive microRNA (miRNA) profiles of type I [Ishikawa (ISK)] and type II (HEC-1B) human endometrial adenocarcinoma cell lines, utilizing the latest high-throughput sequencing techniques. RNA was extracted from ISK and HEC-1B cell lines. Sequencing results were obtained from a next-generation sequencing platform. Using the miRBase database and a series of software pipelines, miRNA expression was analyzed in the ISK and HEC-1B cell lines. It was revealed that the type and quantity of miRNAs in the two cell types varied significantly; 34 miRNAs were upregulated and 105 miRNAs were downregulated in HEC-1B cells compared with those of ISK cells. Furthermore, it was observed that the expression pattern of the miRNA (miR)-17-92 cluster differed between the two cell types, and the expression levels of the miR-200 family in ISK cells were markedly increased compared with those of HEC-1B cells. The present study therefore identified potential novel biomarkers, which may be useful in the differentiation between type I and type II endometrial cancer, and also revealed miRNA alterations that may be associated with endometrial cancer and its underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Jiafeng Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Xueli Zhang
- Department of Surgery, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, P.R. China; Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| |
Collapse
|
20
|
Huang C, Chen N, Wu X, Huang C, He Y, Tang R, Wang W, Wang H. The zebrafish miR‐462/miR‐731 cluster is induced under hypoxic stress
via
hypoxia‐inducible factor 1α and functions in cellular adaptations. FASEB J 2015; 29:4901-13. [DOI: 10.1096/fj.14-267104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Chun‐Xiao Huang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Nan Chen
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xin‐Jie Wu
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Cui‐Hong Huang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yan He
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Rong Tang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| | - Wei‐Min Wang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| | - Huan‐Ling Wang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| |
Collapse
|
21
|
Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 2015; 43:7173-88. [PMID: 26170234 PMCID: PMC4551935 DOI: 10.1093/nar/gkv703] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/25/2015] [Indexed: 12/28/2022] Open
Abstract
The microRNA (miR)183 cluster, which is comprised of miRs-183, -96 and -182, is also a miR family with sequence homology. Despite the strong similarity in the sequences of these miRs, minute differences in their seed sequences result in both overlapping and distinct messenger RNA targets, which are often within the same pathway. These miRs have tightly synchronized expression during development and are required for maturation of sensory organs. In comparison to their defined role in normal development, the miR-183 family is frequently highly expressed in a variety of non-sensory diseases, including cancer, neurological and auto-immune disorders. Here, we discuss the conservation of the miR-183 cluster and the functional role of this miR family in normal development and diseases. We also describe the regulation of vital cellular pathways by coordinated expression of these miR siblings. This comprehensive review sheds light on the likely reasons why the genomic organization and seeming redundancy of the miR-183 family cluster was conserved through 600 million years of evolution.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Mit Shah
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Brittany Mihelich
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Room 130 CSN, MC 847, Chicago, IL 60612, USA University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Motiño O, Francés DE, Mayoral R, Castro-Sánchez L, Fernández-Velasco M, Boscá L, García-Monzón C, Brea R, Casado M, Agra N, Martín-Sanz P. Regulation of MicroRNA 183 by Cyclooxygenase 2 in Liver Is DEAD-Box Helicase p68 (DDX5) Dependent: Role in Insulin Signaling. Mol Cell Biol 2015; 35:2554-2567. [PMID: 25963660 PMCID: PMC4475926 DOI: 10.1128/mcb.00198-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/04/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenase (COX) catalyzes the first step in prostanoid biosynthesis and exists as two isoforms. COX-1 is a constitutive enzyme involved in physiological processes, whereas COX-2 is induced by a variety of stimuli. MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. Although it is known that COX-2 expression is regulated by miRNAs, there are no data regarding COX-2 involvement in miRNA regulation. Considering our previous results showing that COX-2 expression in hepatocytes protects against insulin resistance, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs implicated in insulin signaling in liver cells. Our results provide evidence of the molecular basis for a novel function of COX-2 in miRNA processing. COX-2 represses miRNA 23b (miR-23b), miR-146b, and miR-183 expression in liver cells by increasing the level of DEAD-box helicase p68 (DDX5) through phosphatidylinositol 3-kinase (PI3K)/p300 signaling and by modulating the enzymatic function of the Drosha (RNase type III) complex through its physical association with DDX5. The decrease of miR-183 expression promotes protection against insulin resistance by increasing insulin receptor substrate 1 (IRS1) levels. These results indicate that the modulation of miRNA processing by COX-2 is a key event in insulin signaling in liver and has potential clinical implications for the management of various hepatic dysfunctions.
Collapse
Affiliation(s)
- Omar Motiño
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Rafael Mayoral
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Castro-Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Rocío Brea
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Noelia Agra
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Zhao W, Zheng XL, Peng DQ, Zhao SP. Myocyte Enhancer Factor 2A Regulates Hydrogen Peroxide-Induced Senescence of Vascular Smooth Muscle Cells Via microRNA-143. J Cell Physiol 2015; 230:2202-11. [PMID: 25655189 DOI: 10.1002/jcp.24948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Wang Zhao
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology; The Libin Cardiovascular Institute of Alberta; Cumming School of Medicine; The University of Calgary; Health Sciences Center; Calgary Alberta Canada
| | - Dao-Quan Peng
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital; Central South University; Changsha Hunan China
| |
Collapse
|
24
|
Mobuchon L, Marthey S, Boussaha M, Le Guillou S, Leroux C, Le Provost F. Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics 2015; 16:285. [PMID: 25888052 PMCID: PMC4430871 DOI: 10.1186/s12864-015-1471-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNA) are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets. The first whole goat genome sequence became available in 2013, with few annotations. Our goal was to establish a list of the miRNA expressed in the mammary gland of lactating goats, thus enabling implementation of the goat miRNA repertoire and considerably enriching annotation of the goat genome. Results Here, we performed high throughput RNA sequencing on 10 lactating goat mammary glands. The bioinformatic detection of miRNA was carried out using miRDeep2 software. Three different methods were used to predict, quantify and annotate the sequenced reads. The first was a de novo approach based on the prediction of miRNA from the goat genome only. The second approach used bovine miRNA as an external reference whereas the last one used recently available goat miRNA. The three methods enabled the prediction and annotation of hundreds of miRNA, more than 95% were commonly identified. Using bovine miRNA, 1,178 distinct miRNA were detected, together with the annotation of 88 miRNA for which corresponding precursors could not be retrieved in the goat genome, and which were not detected using the de novo approach or with the use of goat miRNA. Each chromosomal coordinate of the precursors determined here were generated and depicted on a reference localisation map. Forty six goat miRNA clusters were also reported. The study revealed 263 precursors located in goat protein-coding genes, amongst which the location of 43 precursors was conserved between human, mouse and bovine, revealing potential new gene regulations in the goat mammary gland. Using the publicly available cattle QTL database, and cow precursors conserved in the goat and expressed in lactating mammary gland, 114 precursors were located within known QTL regions for milk production and composition. Conclusions The results reported here represent the first major identification study on miRNA expressed in the goat mammary gland at peak lactation. The elements generated by this study will now be used as references to decipher the regulation of miRNA expression in the goat mammary gland and to clarify their involvement in the lactation process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1471-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenha Mobuchon
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France. .,INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Sylvain Marthey
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Mekki Boussaha
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Sandrine Le Guillou
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Christine Leroux
- INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Fabienne Le Provost
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:104-21. [PMID: 25450577 DOI: 10.1016/j.bbcan.2014.09.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
PI3K/AKT signaling leads to reduced apoptosis, stimulates cell growth and increases proliferation. Under normal conditions, PI3K/AKT activation is tightly controlled and dependent on both extracellular growth signals and the availability of amino acids and glucose. Genetic aberrations leading to PI3K/AKT hyper-activation are observed at considerable frequency in all major nodes in most tumors. In colorectal cancer the most commonly observed pathway changes are IGF2 overexpression, PIK3CA mutations and PTEN mutations and deletions. Combined, these alterations are found in about 40% of large bowel tumors. In addition, but not mutually exclusive to these, KRAS mutations are observed at a similar frequency. There are however additional, less frequent and more poorly understood events that may also push the PI3K/AKT pathway into overdrive and thus promote malignant growth. Here we discuss aberrations of components at the genetic, epigenetic, transcriptional, post-transcriptional, translational and post-translational level where perturbations may drive excessive PI3K/AKT signaling. Integrating multiple molecular levels will advance our understanding of this cancer critical circuit and more importantly, improve our ability to pharmacologically target the pathway in view of clonal development, tumor heterogeneity and drug resistance mechanisms. In this review, we revisit the PI3K/AKT pathway cancer susceptibility syndromes, summarize the known aberrations at the different regulatory levels and the prognostic and predictive values of these alterations in colorectal cancer.
Collapse
Affiliation(s)
- Stine Aske Danielsen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter Wold Eide
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Tormod Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Liang T, Yang C, Li P, Liu C, Guo L. Genetic analysis of loop sequences in the let-7 gene family reveal a relationship between loop evolution and multiple isomiRs. PLoS One 2014; 9:e113042. [PMID: 25397967 PMCID: PMC4232593 DOI: 10.1371/journal.pone.0113042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/11/2014] [Indexed: 11/18/2022] Open
Abstract
While mature miRNAs have been widely studied, the terminal loop sequences are rarely examined despite regulating both primary and mature miRNA functions. Herein, we attempted to understand the evolutionary pattern of loop sequences by analyzing loops in the let-7 gene family. Compared to the stable miRNA length distributions seen in most metazoans, higher metazoan species exhibit a longer length distribution. Examination of these loop sequence length distributions, in addition to phylogenetic tree construction, implicated loop sequences as the main evolutionary drivers in miRNA genes. Moreover, loops from relevant clustered miRNA gene families showed varying length distributions and higher levels of nucleotide divergence, even between homologous pre-miRNA loops. Furthermore, we found that specific nucleotides were dominantly distributed in the 5' and 3' terminal loop ends, which may contribute to the relatively precise cleavage that leads to a stable isomiR expression profile. Overall, this study provides further insight into miRNA processing and maturation and further enriches our understanding of miRNA biogenesis.
Collapse
Affiliation(s)
- Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ping Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- * E-mail:
| |
Collapse
|
27
|
Ge Q, Zhu Y, Li H, Tian F, Xie X, Bai Y. Differential expression of circulating miRNAs in maternal plasma in pregnancies with fetal macrosomia. Int J Mol Med 2014; 35:81-91. [PMID: 25370776 PMCID: PMC4249743 DOI: 10.3892/ijmm.2014.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/21/2014] [Indexed: 01/11/2023] Open
Abstract
Macrosomia is associated with problems at birth and has life-long health implications for the infant. The aim of this study was to profile the plasma microRNAs (miRNAs or miRs) and evaluate the potential of circulating miRNAs to predict fetal macrosomia. The expression levels of miRNAs in plasma samples obtained from pregnant women with fetal macrosomia and from women with normal pregnancies (controls) were analyzed using TaqMan Low-Density Arrays (TLDAs) followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) validation and analysis. The TLDA data revealed that 143 miRNAs were differentially expressed in the plasma samples from pregnant women with fetal macrosomia compared with the controls (43 upregulated and 100 downregulated miRNAs). Twelve of these miRNAs were selected for RT-qPCR analysis. Receiver operational characteristic (ROC) curve analysis indicated that several miRNAs (e.g., miR-141-3p and miR-200c-3p) were clearly distinguished between pregnancies with fetal macrosomia and other types of abnormal pregnancy and healthy pregnancies with high sensitivity and specificity (AUC >0.9). The expression of miRNA clusters also showed a similar trend in pregnancies with fetal macrosomia. This study provides a platform for profiling circulating miRNAs in maternal plasma. Our data also suggest that altered levels of maternal plasma miRNAs have great potential to serve as non-invasive biomarkers and as a mechanistic indicator of abnormal pregnancies.
Collapse
Affiliation(s)
- Qinyu Ge
- Key Laboratory for Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 2100096, P.R. China
| | - Yanan Zhu
- Key Laboratory for Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 2100096, P.R. China
| | - Hailing Li
- Department of Gynecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing 210009, P.R. China
| | - Fei Tian
- Key Laboratory for Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 2100096, P.R. China
| | - Xueying Xie
- Key Laboratory for Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 2100096, P.R. China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 2100096, P.R. China
| |
Collapse
|
28
|
GUO L, LUO C, FAN J, HOU Z, JI X, CHEN F, ZHU B, NI C. Serum miRNA profiling identifies miR-150/30a as potential biomarker for workers with damaged nerve fibers from carbon disulfide. INDUSTRIAL HEALTH 2014; 53:38-47. [PMID: 25224332 PMCID: PMC4331193 DOI: 10.2486/indhealth.2014-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
As crucial small regulatory molecules, serum microRNAs (miRNAs) have been widely identified as potential noninvasive biomarkers. To survey and identify serum miRNAs associated with workers who had experienced injury to their nerve system from carbon disulfide (CS2), we profiled abnormally expressed miRNAs using the microarray technique and further performed qRT-PCR validation in case and control samples (n=20). Microarray profiling in pooled RNA samples showed that many miRNAs in workers exposed to CS2 were aberrantly expressed. Based on control samples exposed to CS2, a great amount of abnormal miRNAs, including some miRNA gene clusters and families, were obtained from microarray datasets. Most of deregulated miRNAs were up-regulated, and almost all miRNAs showed consistent expression patterns between workers with different numbers of damaged nerve fibers. Functional enrichment analysis suggested that these abnormal miRNAs showed versatile roles by contributing to multiple biological processes. Some aberrantly expressed miRNAs were characterized as miRNA gene clusters or families, and they always showed consistent expression patterns. miR-150 and miR-30a were selected to be further validated by qRT-PCR as up-regulated species, and they could discern case samples from control samples. miR-150 and miR-30a may be potential noninvasive biomarkers for a damaged nervous system.
Collapse
Affiliation(s)
- Li GUO
- Department of Epidemiology and Biostatistics, School of
Public Health, Nanjing Medical University, China
| | - Chen LUO
- Department of Occupational Medicine and Environmental Health,
School of Public Health, Nanjing Medical University, China
| | - Jingjing FAN
- Department of Occupational Medicine and Environmental Health,
School of Public Health, Nanjing Medical University, China
| | - Zhiguo HOU
- Department of Occupational Medicine and Environmental Health,
School of Public Health, Nanjing Medical University, China
| | - Xiaoming JI
- Department of Occupational Medicine and Environmental Health,
School of Public Health, Nanjing Medical University, China
| | - Feng CHEN
- Department of Epidemiology and Biostatistics, School of
Public Health, Nanjing Medical University, China
| | - Baoli ZHU
- Center for Disease Control and Prevention of Jiangsu
Province, China
| | - Chunhui NI
- Department of Occupational Medicine and Environmental Health,
School of Public Health, Nanjing Medical University, China
| |
Collapse
|
29
|
Van den Hof WFPM, Van Summeren A, Lommen A, Coonen MLJ, Brauers K, van Herwijnen M, Wodzig WKWH, Kleinjans JCS. Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity. Toxicology 2014; 324:18-26. [PMID: 25047351 DOI: 10.1016/j.tox.2014.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
The liver is responsible for drug metabolism and drug-induced hepatotoxicity is the most frequent reason for drug withdrawal, indicating that better pre-clinical toxicity tests are needed. In order to bypass animal models for toxicity screening, we exposed primary mouse hepatocytes for exploring the prototypical hepatotoxicant cyclosporin A. To elucidate the mechanisms underlying cyclosporin A-induced hepatotoxicity, we analyzed expression levels of proteins, mRNAs, microRNAs and metabolites. Integrative analysis of transcriptomics and proteomics showed that protein disulfide isomerase family A, member 4 was up-regulated on both the protein level and mRNA level. This protein is involved in protein folding and secretion in the endoplasmic reticulum. Furthermore, the microRNA mmu-miR-182-5p which is predicted to interact with the mRNA of this protein, was also differentially expressed, further emphasizing endoplasmic reticulum stress as important event in drug-induced toxicity. To further investigate the interaction between the significantly expressed proteins, a network was created including genes and microRNAs known to interact with these proteins and this network was used to visualize the experimental data. In total 6 clusters could be distinguished which appeared to be involved in several toxicity related processes, including alteration of protein folding and secretion in the endoplasmic reticulum. Metabonomic analyses resulted in 5 differentially expressed metabolites, indicative of an altered glucose, lipid and cholesterol homeostasis which can be related to cholestasis. Single and integrative analyses of transcriptomics, proteomics and metabonomics reveal mechanisms underlying cyclosporin A-induced cholestasis demonstrating that endoplasmic reticulum stress and the unfolded protein response are important processes in drug-induced liver toxicity.
Collapse
Affiliation(s)
- Wim F P M Van den Hof
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Anke Van Summeren
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Arjen Lommen
- RIKILT, Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Karen Brauers
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | - Will K W H Wodzig
- Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Afshar AS, Xu J, Goutsias J. Integrative identification of deregulated miRNA/TF-mediated gene regulatory loops and networks in prostate cancer. PLoS One 2014; 9:e100806. [PMID: 24968068 PMCID: PMC4072696 DOI: 10.1371/journal.pone.0100806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) have attracted a great deal of attention in biology and medicine. It has been hypothesized that miRNAs interact with transcription factors (TFs) in a coordinated fashion to play key roles in regulating signaling and transcriptional pathways and in achieving robust gene regulation. Here, we propose a novel integrative computational method to infer certain types of deregulated miRNA-mediated regulatory circuits at the transcriptional, post-transcriptional and signaling levels. To reliably predict miRNA-target interactions from mRNA/miRNA expression data, our method collectively utilizes sequence-based miRNA-target predictions obtained from several algorithms, known information about mRNA and miRNA targets of TFs available in existing databases, certain molecular structures identified to be statistically over-represented in gene regulatory networks, available molecular subtyping information, and state-of-the-art statistical techniques to appropriately constrain the underlying analysis. In this way, the method exploits almost every aspect of extractable information in the expression data. We apply our procedure on mRNA/miRNA expression data from prostate tumor and normal samples and detect numerous known and novel miRNA-mediated deregulated loops and networks in prostate cancer. We also demonstrate instances of the results in a number of distinct biological settings, which are known to play crucial roles in prostate and other types of cancer. Our findings show that the proposed computational method can be used to effectively achieve notable insights into the poorly understood molecular mechanisms of miRNA-mediated interactions and dissect their functional roles in cancer in an effort to pave the way for miRNA-based therapeutics in clinical settings.
Collapse
Affiliation(s)
- Ali Sobhi Afshar
- Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joseph Xu
- Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John Goutsias
- Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:697-712. [PMID: 24944010 DOI: 10.1002/wrna.1240] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
The prevalence of type-2 diabetes (T2D) is increasing significantly throughout the globe since the last decade. This heterogeneous and multifactorial disease, also known as insulin resistance, is caused by the disruption of the insulin signaling pathway. In this review, we discuss the existence of various miRNAs involved in regulating the main protein cascades in the insulin signaling pathway that affect insulin resistance. The influence of miRNAs (miR-7, miR-124a, miR-9, miR-96, miR-15a/b, miR-34a, miR-195, miR-376, miR-103, miR-107, and miR-146) in insulin secretion and beta (β) cell development has been well discussed. Here, we highlight the role of miRNAs in different significant protein cascades within the insulin signaling pathway such as miR-320, miR-383, miR-181b with IGF-1, and its receptor (IGF1R); miR-128a, miR-96, miR-126 with insulin receptor substrate (IRS) proteins; miR-29, miR-384-5p, miR-1 with phosphatidylinositol 3-kinase (PI3K); miR-143, miR-145, miR-29, miR-383, miR-33a/b miR-21 with AKT/protein kinase B (PKB) and miR-133a/b, miR-223, miR-143 with glucose transporter 4 (GLUT4). Insulin resistance, obesity, and hyperlipidemia (high lipid levels in the blood) have a strong connection with T2D and several miRNAs influence these clinical outcomes such as miR-143, miR-103, and miR-107, miR-29a, and miR-27b. We also corroborate from previous evidence how these interactions are related to insulin resistance and T2D. The insights highlighted in this review will provide a better understanding on the impact of miRNA in the insulin signaling pathway and insulin resistance-associated diagnostics and therapeutics for T2D.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | | | | | | |
Collapse
|
32
|
A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 2014; 544:1-7. [PMID: 24768184 DOI: 10.1016/j.gene.2014.04.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that a single microRNA (miRNA) locus can generate a series of sequences during miRNA maturation process. These multiple sequences, called miRNA variants, or isomiRs, have different lengths and different 5' and 3' ends. Some of these isomiRs are detected as varied nucleotides and 3' additional non-template nucleotides. As physiological miRNA isoforms, they have drawn attention for possible regulatory biological roles. The present work mainly reviews miRNA/isomiR biogenesis, isomiR expression patterns, and functional and evolutionary implications, especially between isomiRs from homologous and clustered miRNA loci. The phenomenon of multiple isomiRs and their biological roles indicates that analysis performed at the miRNA and isomiR levels should be included in miRNA studies. This may enrich and complicate miRNA biogenesis and coding-non-coding RNA regulatory networks.
Collapse
|
33
|
Global analysis of miRNA gene clusters and gene families reveals dynamic and coordinated expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:782490. [PMID: 24791000 PMCID: PMC3984827 DOI: 10.1155/2014/782490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022]
Abstract
To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer) and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.
Collapse
|
34
|
Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:907420. [PMID: 24689063 PMCID: PMC3945032 DOI: 10.1155/2014/907420] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/24/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding regulatory molecules. They are involved in many essential biological processes and act by suppressing gene expression. The present work reports an integrative analysis of miRNA-mRNA and miRNA-miRNA interactions and their regulatory patterns using high-throughput miRNA and mRNA datasets. Aberrantly expressed miRNA and mRNA profiles were obtained based on fold change analysis, and qRT-PCR was used for further validation of deregulated miRNAs. miRNAs and target mRNAs were found to show various expression patterns. miRNA-miRNA interactions and clustered/homologous miRNAs were also found to contribute to the flexible and selective regulatory network. Interacting miRNAs (e.g., miRNA-103a and miR-103b) showed more pronounced differences in expression, which suggests the potential “restricted interaction” in the miRNA world. miRNAs from the same gene clusters (e.g., miR-23b gene cluster) or gene families (e.g., miR-10 gene family) always showed the same types of deregulation patterns, although they sometimes differed in expression levels. These clustered and homologous miRNAs may have close functional relationships, which may indicate collaborative interactions between miRNAs. The integrative analysis of miRNA-mRNA based on biological characteristics of miRNA will further enrich miRNA study.
Collapse
|
35
|
Li Z, Wang H, Chen L, Wang L, Liu X, Ru C, Song A. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing. Anim Genet 2013; 45:20-7. [PMID: 24308606 DOI: 10.1111/age.12096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 01/12/2023]
Abstract
MicroRNA (miRNA) mediates post-transcriptional gene regulation and plays an important role in regulating the development of immune cells and in modulating innate and adaptive immune responses in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in peripheral blood from healthy and mastitis Holstein cattle by Solexa sequencing and bioinformatics. In total, 608 precursor hairpins (pre-miRNAs) encoding for 753 mature miRNAs were detected. Statistically, 173 unique miRNAs (of 753, 22.98%) were identified that had significant differential expression between healthy and mastitis Holstein cattle (P < 0.001). Most differentially expressed miRNAs (118 of 173, 68.21%) belonged to the chemokine signaling pathway involved in the immune responses. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the peripheral blood from healthy and mastitis Holstein cattle, which provide important information on mastitis in miRNAs expression. Diverse miRNAs may play an important role in the treatment of mastitis in Holstein cattle.
Collapse
Affiliation(s)
- Zhixiong Li
- College of Animal Science and Technology, Northwest A&F University; Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
36
|
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:354-67. [PMID: 24287119 PMCID: PMC4357785 DOI: 10.1016/j.gpb.2013.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 09/14/2013] [Accepted: 11/14/2013] [Indexed: 02/08/2023]
Abstract
We aimed to shed new light on the roles of microRNAs (miRNAs) in liver cancer using an integrative in silico bioinformatics analysis. A new protocol for target prediction and functional analysis is presented and applied to the 26 highly differentially deregulated miRNAs in hepatocellular carcinoma. This framework comprises: (1) the overlap of prediction results by four out of five target prediction tools, including TargetScan, PicTar, miRanda, DIANA-microT and miRDB (combining machine-learning, alignment, interaction energy and statistical tests in order to minimize false positives), (2) evidence from previous microarray analysis on the expression of these targets, (3) gene ontology (GO) and pathway enrichment analysis of the miRNA targets and their pathways and (4) linking these results to oncogenesis and cancer hallmarks. This yielded new insights into the roles of miRNAs in cancer hallmarks. Here we presented several key targets and hundreds of new targets that are significantly enriched in many new cancer-related hallmarks. In addition, we also revealed some known and new oncogenic pathways for liver cancer. These included the famous MAPK, TGFβ and cell cycle pathways. New insights were also provided into Wnt signaling, prostate cancer, axon guidance and oocyte meiosis pathways. These signaling and developmental pathways crosstalk to regulate stem cell transformation and implicate a role of miRNAs in hepatic stem cell deregulation and cancer development. By analyzing their complete interactome, we proposed new categorization for some of these miRNAs as either tumor-suppressors or oncomiRs with dual roles. Therefore some of these miRNAs may be addressed as therapeutic targets or used as therapeutic agents. Such dual roles thus expand the view of miRNAs as active maintainers of cellular homeostasis.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt.
| | - Bangli Soliman
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Nourhan Abu-Shahba
- Stem Cells Research Group, Centre of Excellence for Advanced Sciences, Medical Molecular Genetics Department, National Research Centre, Cairo 12622, Egypt
| | - Marwa Amer
- Biology Department, American University in Cairo (AUC), New Cairo 11211, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City 16432, Egypt
| |
Collapse
|
37
|
Sasidharan V, Lu YC, Bansal D, Dasari P, Poduval D, Seshasayee A, Resch AM, Graveley BR, Palakodeti D. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA (NEW YORK, N.Y.) 2013; 19:1394-1404. [PMID: 23974438 PMCID: PMC3854530 DOI: 10.1261/rna.038653.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
In recent years, the planarian Schmidtea mediterranea has emerged as a tractable model system to study stem cell biology and regeneration. MicroRNAs are small RNA species that control gene expression by modulating translational repression and mRNA stability and have been implicated in the regulation of various cellular processes. Though recent studies have identified several miRNAs in S. mediterranea, their expression in neoblast subpopulations and during regeneration has not been examined. Here, we identify several miRNAs whose expression is enriched in different neoblast subpopulations and in regenerating tissue at different time points in S. mediterranea. Some of these miRNAs were enriched within 3 h post-amputation and may, therefore, play a role in wound healing and/or neoblast migration. Our results also revealed miRNAs, such as sme-miR-2d-3p and the sme-miR-124 family, whose expression is enriched in the cephalic ganglia, are also expressed in the brain primordium during CNS regeneration. These results provide new insight into the potential biological functions of miRNAs in neoblasts and regeneration in planarians.
Collapse
Affiliation(s)
- Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Yi-Chien Lu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Pranavi Dasari
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Deepak Poduval
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Aswin Seshasayee
- National Center for Biological Sciences, Bangalore 560065, India
| | - Alissa M. Resch
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Brenton R. Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| |
Collapse
|
38
|
Pio G, Ceci M, D'Elia D, Loglisci C, Malerba D. A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinformatics 2013; 14 Suppl 7:S8. [PMID: 23815553 PMCID: PMC3633049 DOI: 10.1186/1471-2105-14-s7-s8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs' role in the control of cell life and death. In this paper we propose a novel data mining algorithm, called HOCCLUS2, specifically designed to bicluster miRNAs and target messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Indeed, existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their importance) and work on similarities of feature values (do not limit the analysis to reliable interactions). RESULTS To overcome these limitations, HOCCLUS2 i) extracts possibly overlapping biclusters, to catch multiple roles of both miRNAs and their target genes; ii) extracts hierarchically organized biclusters, to facilitate bicluster browsing and to distinguish between universe and pathway-specific miRNAs; iii) extracts highly cohesive biclusters, to consider only reliable interactions; iv) ranks biclusters according to the functional similarities, computed on the basis of Gene Ontology, to facilitate bicluster analysis. CONCLUSIONS Our results show that HOCCLUS2 is a valid tool to support biologists in the identification of context-specific miRNAs regulatory modules and in the detection of possibly unknown miRNAs target genes. Indeed, results prove that HOCCLUS2 is able to extract cohesiveness-preserving biclusters, when compared with competitive approaches, and statistically confirm (at a confidence level of 99%) that mRNAs which belong to the same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters. Finally, the hierarchy of biclusters provides useful insights to understand the intrinsic hierarchical organization of miRNAs and their potential multiple interactions on target genes.
Collapse
Affiliation(s)
- Gianvito Pio
- Department of Computer Science, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Domenica D'Elia
- CNR, Institute for Biomedical Technologies, Via Amendola 122/D, 70126, Bari, Italy
| | - Corrado Loglisci
- Department of Computer Science, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Donato Malerba
- Department of Computer Science, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
39
|
Nikolova EV, Herwig R, Nikolov SG, Petrov VG. Predictive Dynamical Modelling MicroRNAs Role in Complex Networks. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this chapter is to give an extended analytical consideration of mathematical modelling of the microRNA role in cancer networks. For this purpose, ordinary and partial differential equations are used for synthesizing and analyzing the models of gene, microRNAs and mRNAs concentration alterations as time-dependent variables related by functional and differential relations. The architecture of the models and the definitions of their components are inspired by the qualitative theory of differential equations. This chapter’s analysis shows that it is able to ensure the authenticity and validity of the following qualitative conclusions: (a) the rates of protein production decrease with the increasing constant production rate of microRNA at microRNA-mediated target regulation on mRNAs; (b) time delay has a stabilizing role in the interaction between the miRNA-17-92 cluster and the transcription factors E2F and Myc.
Collapse
Affiliation(s)
| | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Germany
| | | | | |
Collapse
|
40
|
Identification and characterization of the miRNA transcriptome of Ovis aries. PLoS One 2013; 8:e58905. [PMID: 23516575 PMCID: PMC3596360 DOI: 10.1371/journal.pone.0058905] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
The discovery and identification of Ovis aries (sheep) miRNAs will further promote the study of miRNA functions and gene regulatory mechanisms. To explore the microRNAome (miRNAome) of sheep in depth, samples were collected that included eight developmental stages: the longissimus dorsi muscles of Texel fetuses at 70, 85, 100, 120, and 135 days, and the longissimus dorsi muscles of Ujumqin fetuses at 70, 85, 100, 120, and 135 d, and lambs at 0 (birth), 35, and 70 d. These samples covered all of the representative periods of Ovis aries growth and development throughout gestation (about 150 d) and 70 d after birth. Texel and Ujumqin libraries were separately subjected to Solexa deep sequencing; 35,700,772 raw reads were obtained overall. We used ACGT101-miR v4.2 to analyze the sequence data. Following meticulous comparisons with mammalian mature miRNAs, precursor hairpins (pre-miRNAs), and the latest sheep genome, we substantially extended the Ovis aries miRNAome. The list of pre-miRNAs was extended to 2,319, expressing 2,914 mature miRNAs. Among those, 1,879 were genome mapped to unique miRNAs, representing 2,436 genome locations, and 1,754 pre-miRNAs were mapped to chromosomes. Furthermore, the Ovis aries miRNAome was processed using an elaborate bioinformatic analysis that examined multiple end sequence variation in miRNAs, precursors, chromosomal localizations, species-specific expressions, and conservative properties. Taken together, this study provides the most comprehensive and accurate exploration of the sheep miRNAome, and draws conclusions about numerous characteristics of Ovis aries miRNAs, including miRNAs and isomiRs.
Collapse
|
41
|
Zhang S. Integrating multiple types of data to identify microRNA-gene co-modules. Methods Mol Biol 2013; 1049:215-229. [PMID: 23913219 DOI: 10.1007/978-1-62703-547-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) and genes work cooperatively to form the kernel part of gene regulatory system and affect many crucial biological processes. However, the detailed combinatorial roles of most miRNAs and genes in cellular processes and diseases are still unclear. The huge amount of diverse functional genomic data provides unprecedented opportunities to study the miRNA-gene co-regulations. How to integrate diverse genomic data to identify the regulatory modules of miRNAs and genes is a challenging problem in computational biology. Recently, we have proposed a mathematical data integration framework to discover the miRNA-gene regulatory co-modules. We have applied the proposed method to integrate a set of heterogeneous data sources including the expression profiles of miRNAs and genes on 385 human ovarian cancer samples as well as miRNA-gene interactions and gene-gene interactions. The revealed co-modules show significant biological relevance and potential associations with ovarian cancers and others.
Collapse
Affiliation(s)
- Shihua Zhang
- Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing, China
| |
Collapse
|
42
|
Abstract
MicroRNAs (miRNAs) are a class of ∼22-nucleotide endogenous noncoding RNAs which regulate target gene expression via repressing translation or promoting mRNAs degradation. Any individual mammalian miRNA often has more than a hundred predicted mRNA targets and that close to one thirds of all mRNA transcripts bear one or more conserved miRNA binding sites in their 3'-untranslated region. Enrichment analysis of miRNA targets has become a standard technique to elucidating hierarchical functions of miRNAs in gene regulatory networks. In this protocol, we discuss analytical methods and use of computational tools in a step-by-step manner. Important details are also provided to help researchers choose more appropriate tools for a given type of analysis. Available Web-based resources for enrichment analysis of miRNA targets are summarized.
Collapse
Affiliation(s)
- Jianzhen Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou, China.
| | | |
Collapse
|
43
|
Schmitz U, Wolkenhauer O. Web resources for microRNA research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:225-50. [PMID: 23377976 DOI: 10.1007/978-94-007-5590-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.
Collapse
Affiliation(s)
- Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
44
|
Genome-wide analysis of aberrantly expressed circulating miRNAs in patients with coal workers’ pneumoconiosis. Mol Biol Rep 2012; 40:3739-47. [DOI: 10.1007/s11033-012-2450-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/18/2012] [Indexed: 02/08/2023]
|
45
|
Guo L, Yang S, Zhao Y, Wu Q, Chen F. Dynamic evolution of mir-17-92 gene cluster and related miRNA gene families in vertebrates. Mol Biol Rep 2012; 40:3147-53. [PMID: 23271119 DOI: 10.1007/s11033-012-2388-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
Abstract
mir-17-92 gene cluster is widely distributed in vertebrates and plays an important role in regulating multiple biological processes. Its dysregulation may be associated with risk of some human cancers. The microRNA (miRNA) members are identified in the three gene families: mir-17, mir-19 and mir-25. Herein we attempted to understand the evolutionary processes and patterns in vertebrates. The three miRNA gene families showed difference in distribution, number of miRNA genes and clustered miRNA genes in the five animal species. Compared to other related gene clusters, mir-17-92 cluster was well-conserved and had more abundant roles in multiple biological processes. These clustered miRNAs showed inconsistent nucleotide divergence patterns across different animal species, even between homologous miRNA genes. Simultaneously, they also indicated inconsistent expression patterns although they were co-transcribed as a polycistronic transcript. Phylogenetic tree based on human pre-miRNA sequences showed that mir-19 gene family was an older miRNA species, while tree based on miRNA gene cluster indicated evolutionary positions of different animal species. The study shows dynamic evolution of the mir-17-92 gene cluster and related miRNA gene families across vertebrates, which may be derived from potential functional implication. miRNA gene cluster should be a better phylogenetic marker than a single miRNA gene to reveal functional and evolutionary relationships.
Collapse
Affiliation(s)
- Li Guo
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, 210029 Nanjing, China.
| | | | | | | | | |
Collapse
|
46
|
Lee SY, Sohn KA, Kim JH. MicroRNA-centric measurement improves functional enrichment analysis of co-expressed and differentially expressed microRNA clusters. BMC Genomics 2012; 13 Suppl 7:S17. [PMID: 23281707 PMCID: PMC3521213 DOI: 10.1186/1471-2164-13-s7-s17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Functional annotations are available only for a very small fraction of microRNAs (miRNAs) and very few miRNA target genes are experimentally validated. Therefore, functional analysis of miRNA clusters has typically relied on computational target gene prediction followed by Gene Ontology and/or pathway analysis. These previous methods share the limitation that they do not consider the many-to-many-to-many tri-partite network topology between miRNAs, target genes, and functional annotations. Moreover, the highly false-positive nature of sequence-based target prediction algorithms causes propagation of annotation errors throughout the tri-partite network. Results A new conceptual framework is proposed for functional analysis of miRNA clusters, which extends the conventional target gene-centric approaches to a more generalized tri-partite space. Under this framework, we construct miRNA-, target link-, and target gene-centric computational measures incorporating the whole tri-partite network topology. Each of these methods and all their possible combinations are evaluated on publicly available miRNA clusters and with a wide range of variations for miRNA-target gene relations. We find that the miRNA-centric measures outperform others in terms of the average specificity and functional homogeneity of the GO terms significantly enriched for each miRNA cluster. Conclusions We propose novel miRNA-centric functional enrichment measures in a conceptual framework that connects the spaces of miRNAs, genes, and GO terms in a unified way. Our comprehensive evaluation result demonstrates that functional enrichment analysis of co-expressed and differentially expressed miRNA clusters can substantially benefit from the proposed miRNA-centric approaches.
Collapse
Affiliation(s)
- Su Yeon Lee
- Seoul National University Biomedical Informatics (SNUBI) and Systems Biomedical Informatics Research Center, Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul 110799, Korea
| | | | | |
Collapse
|
47
|
A systematic screen reveals MicroRNA clusters that significantly regulate four major signaling pathways. PLoS One 2012; 7:e48474. [PMID: 23144891 PMCID: PMC3493556 DOI: 10.1371/journal.pone.0048474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are encoded in the genome as individual miRNA genes or as gene clusters transcribed as polycistronic units. About 50% of all miRNAs are estimated to be co-expressed with neighboring miRNAs. Recent studies have begun to illuminate the importance of the clustering of miRNAs from an evolutionary, as well as a functional standpoint. Many miRNA clusters coordinately regulate multiple members of cellular signaling pathways or protein interaction networks. This cooperative method of targeting could produce effects on an overall process that are much more dramatic than the smaller effects often associated with regulation by an individual miRNA. In this study, we screened 366 human miRNA minigenes to determine their effects on the major signaling pathways culminating in AP-1, NF-κB, c-Myc, or p53 transcriptional activity. By stratifying these data into miRNA clusters, this systematic screen provides experimental evidence for the combined effects of clustered miRNAs on these signaling pathways. We also verify p53 as a direct target of miR-200a. This study is the first to provide a panoramic view of miRNA clusters' effects on cellular pathways.
Collapse
|
48
|
MicroRNAs in insulin resistance and obesity. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:484696. [PMID: 22851965 PMCID: PMC3407629 DOI: 10.1155/2012/484696] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/27/2012] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded non-protein coding gene products which can regulate the gene expression through post-transcriptional inhibition of messenger RNA (mRNA) translation. They are known to be involved in many essential biological processes including development, insulin secretion, and adipocyte differentiation. miRNAs are involved in complex metabolic processes, such as energy and lipid metabolism, which have been studied in the context of diabetes and obesity. Obesity, hyperlipidemia (elevated levels of blood lipids), and insulin resistance are strongly associated with the onset of type 2 diabetes. These conditions are also associated with aberrant expression of multiple essential miRNAs in pancreatic islets of Langerhans and peripheral tissues, including adipose tissue. A thorough understanding of the physiological role these miRNAs play in these tissues, and changes to their expression under pathological conditions, will allow researchers to develop new therapeutics with the potential to correct the aberrant expression of miRNAs in type 2 diabetes and obesity.
Collapse
|
49
|
Chan WC, Ho MR, Li SC, Tsai KW, Lai CH, Hsu CN, Lin WC. MetaMirClust: discovery of miRNA cluster patterns using a data-mining approach. Genomics 2012; 100:141-8. [PMID: 22735742 DOI: 10.1016/j.ygeno.2012.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Recent genome-wide surveys on ncRNA have revealed that a substantial fraction of miRNA genes is likely to form clusters. However, the evolutionary and biological function implications of clustered miRNAs are still elusive. After identifying clustered miRNA genes under different maximum inter-miRNA distances (MIDs), this study intended to reveal evolution conservation patterns among these clustered miRNA genes in metazoan species using a computation algorithm. As examples, a total of 15-35% of known and predicted miRNA genes in nine selected species constitute clusters under the MIDs ranging from 1kb to 50kb. Intriguingly, 33 out of 37 metazoan miRNA clusters in 56 metazoan genomes are co-conserved with their up/down-stream adjacent protein-coding genes. Meanwhile, a co-expression pattern of miR-1 and miR-133a in the mir-133-1 cluster has been experimentally demonstrated. Therefore, the MetaMirClust database provides a useful bioinformatic resource for biologists to facilitate the advanced interrogations on the composition of miRNA clusters and their evolution patterns.
Collapse
Affiliation(s)
- Wen-Ching Chan
- Institute of Biomedical Informatics, National Yang-Ming University, Academia Sinica, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
50
|
Xu J, Wang Y, Tan X, Jing H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 2012; 8:873-82. [PMID: 22441107 DOI: 10.4161/auto.19629] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved self-degradative process, which involves the regular turnover of cellular components via sequestering damaged macromolecules and transporting them for lysosomal degradation. In the past few years, the scientific community has produced remarkable advances in our understanding of the genes that are involved in autophagy and of their profound effects on various diseases. Recently, a new class of noncoding RNAs, known as microRNAs (miRNAs), has been demonstrated to play crucial roles in diverse biological processes including development, cell differentiation and apoptosis. Here, we review the current understanding about miRNAs focusing on their involvement in the autophagy process. Intriguingly, several confirmed targets of these autophagy-miRNAs are also important regulators in the crosstalk between autophagy and apoptosis. Furthermore, transcripts involved in autophagy and apoptosis may indirectly modulate each other by competing for common miRNA binding sites. Thus, miRNAs potentially work as molecular switches between these two intimately connected processes and contribute to the cell fate decision.
Collapse
Affiliation(s)
- Jianzhen Xu
- College of Bioengineering, Henan Universitfy of Technology, Zhengzhou, China.
| | | | | | | |
Collapse
|