1
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. PLoS Genet 2025; 21:e1011315. [PMID: 40397886 DOI: 10.1371/journal.pgen.1011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded the SHH domain, while overexpressing PBX3 resulted in an opposite effect. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 to DNA with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro. When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis-regulatory element, named SFE1, that interacts with PBX1/3 either directly or within a complex with cofactors to modulate SHH expression in the FEZ. This research establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
Affiliation(s)
- Chan Hee Mok
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| | - Diane Hu
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| | - Marta Losa
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Maurizio Risolino
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Licia Selleri
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| |
Collapse
|
2
|
Okuzaki Y, Kaneoka H, Suzuki T, Hagihara Y, Nakayama Y, Murakami S, Murase Y, Kuroiwa A, Iijima S, Nishijima KI. PRDM14 and BLIMP1 control the development of chicken primordial germ cells. Dev Biol 2019; 455:32-41. [PMID: 31271752 DOI: 10.1016/j.ydbio.2019.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 11/27/2022]
Abstract
The differentiation of primordial germ cells (PGCs) is a fundamental step in development. PR domain-containing protein 14 (PRDM14) and B lymphocyte-induced maturation protein 1 (BLIMP1) play pivotal roles in mouse PGC specification. In the present study, we assessed the roles of chicken orthologs of PRDM14 and BLIMP1 in PGC development. PRDM14 and BLIMP1 were expressed in blastodermal cells and PGCs. The in vivo knockdown of PRDM14 or BLIMP1 by introducing a replication-competent retroviral vector expressing shRNAs to the blastodermal stage of embryos reduced the number of SSEA-1 or chicken vasa homologue-positive PGCs on day 5.5-6.5. Since the inhibition of Activin receptor-like kinase 4/5/7 in cultured PGCs reduced the expression of PRDM14, BLIMP1, and NANOG, and that of MEK inhibited PRDM14 expression, the expression of these genes seems to be controlled by Activin A and FGF2 signaling. Overall, PRDM14, BLIMP1, and NANOG seem to be involved in the self-renewal of PGCs in cultured PGCs and embryos.
Collapse
Affiliation(s)
- Yuya Okuzaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hidenori Kaneoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yota Hagihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuki Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Seitaro Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yusuke Murase
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinji Iijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ken-Ichi Nishijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
3
|
Williams RM, Senanayake U, Artibani M, Taylor G, Wells D, Ahmed AA, Sauka-Spengler T. Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development 2018; 145:dev.160333. [PMID: 29386245 DOI: 10.1242/dev.160333] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/21/2018] [Indexed: 12/17/2022]
Abstract
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - Mara Artibani
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK.,University of Oxford, Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Gunes Taylor
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - Daniel Wells
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - Ahmed Ashour Ahmed
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK.,University of Oxford, Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| |
Collapse
|
4
|
Gandhi S, Piacentino ML, Vieceli FM, Bronner ME. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Dev Biol 2017; 432:86-97. [PMID: 29150011 PMCID: PMC5728388 DOI: 10.1016/j.ydbio.2017.08.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022]
Abstract
The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Felipe M Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
5
|
Erard N, Knott SRV, Hannon GJ. A CRISPR Resource for Individual, Combinatorial, or Multiplexed Gene Knockout. Mol Cell 2017; 67:348-354.e4. [PMID: 28732207 PMCID: PMC5526787 DOI: 10.1016/j.molcel.2017.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022]
Abstract
We have combined a machine-learning approach with other strategies to optimize knockout efficiency with the CRISPR/Cas9 system. In addition, we have developed a multiplexed sgRNA expression strategy that promotes the functional ablation of single genes and allows for combinatorial targeting. These strategies have been combined to design and construct a genome-wide, sequence-verified, arrayed CRISPR library. This resource allows single-target or combinatorial genetic screens to be carried out at scale in a multiplexed or arrayed format. By conducting parallel loss-of-function screens, we compare our approach to existing sgRNA design and expression strategies.
Collapse
Affiliation(s)
- Nicolas Erard
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon R V Knott
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cedars-Sinai Medical Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; New York Genome Center, 101 6th Avenue, New York, NY 10013, USA.
| |
Collapse
|
6
|
Sahare AA, Bedekar MK, Jain SK, Singh A, Singh S, Sarkhel BC. Inhibition of infectious bursal disease virus by vector delivered SiRNA in cell culture. Anim Biotechnol 2015; 26:58-64. [PMID: 25153457 DOI: 10.1080/10495398.2014.886584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µ g. The result showed ∼95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.
Collapse
Affiliation(s)
- Amol Ashok Sahare
- a Animal Biotechnology Center, JNKVV Campus, Adhartal , Jabalpur , Madhya Pradesh , India
| | | | | | | | | | | |
Collapse
|
7
|
Haq K, Wootton SK, Barjesteh N, St Paul M, Golovan S, Bendall AJ, Sharif S. Small interfering RNA-mediated knockdown of chicken interferon-γ expression. J Interferon Cytokine Res 2013; 33:319-27. [PMID: 23458611 DOI: 10.1089/jir.2012.0141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN)-γ is a cytokine with a variety of functions, including direct antiviral activities and the capacity to polarize T-cells. However, there is limited information available about the function of this cytokine in the avian immune system. To gain a better understanding of the biological relevance of IFN-γ in chicken immunity, gain-of-function (upregulation) and loss-of-function (downregulation) studies need to be conducted. RNA interference (RNAi), a technique employed for downregulating gene expression, is mediated by small interfering RNA (siRNA), which can trigger sequence-specific gene silencing. In this regard, sequence specificity and delivery of siRNA molecules remain critical issues, especially to cells of the immune system. Various direct and indirect approaches have been employed to deliver siRNA, including the use of viral vectors. The objectives of the present study were to determine whether RNAi could effectively downregulate expression of chicken IFN-γ in vitro, and investigate the feasibility of recombinant adeno-associated virus to deliver siRNA in vitro as well. Three 27-mer Dicer substrate RNAs were selected based on the chicken IFN-γ coding sequence and transfected into cells or delivered using a recombinant avian adeno-associated virus (rAAAV) into a chicken fibroblast cell line expressing chIFN-γ. The expression of chIFN-γ transcripts was significantly downregulated when a cocktail containing all three siRNAs was used. Expression of endogenous IFN-γ was also significantly downregulated in primary cells after stimulation with a peptide. Further, significant suppression of IFN-γ transcript was also observed in vitro in cells that were treated with rAAAV, expressing siRNA targeting IFN-γ. Off-target effects in the form of triggering IFN responses by RNAi, including expression of chicken 2',5'-oligoadenylate synthetase and IFN-α, were also examined. Our results suggest that siRNAs selected were effective at downregulating IFN-γ in vitro both when delivered directly as well as when expressed by an rAAAV-based vector.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
9
|
Hu S, Ni W, Hazi W, Zhang H, Zhang N, Meng R, Chen C. Cloning and Functional Analysis of Sheep U6 Promoters. Anim Biotechnol 2011; 22:170-4. [DOI: 10.1080/10495398.2011.580669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Lambeth LS, Van Hateren NJ, Wilson SA, Nair V. A direct comparison of strategies for combinatorial RNA interference. BMC Mol Biol 2010; 11:77. [PMID: 20937117 PMCID: PMC2958852 DOI: 10.1186/1471-2199-11-77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets. RESULTS Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA. CONCLUSIONS By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi.
Collapse
Affiliation(s)
- Luke S Lambeth
- Institute for Animal Health, Compton, Berkshire, UK
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | - Nick J Van Hateren
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology & Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
11
|
Chiang HI, Berghman LR, Zhou H. Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonellaenteritidis. Genet Mol Biol 2009; 32:507-15. [PMID: 21637513 PMCID: PMC3036038 DOI: 10.1590/s1415-47572009000300013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 04/23/2009] [Indexed: 11/22/2022] Open
Abstract
The NF-kB pathway plays an important role in regulating the immunity response in animals. In this study, small interfering RNAs (siRNA) were used to specifically inhibit NF-kB 1 expression and to elucidate the role of NF-kB in the signal transduction pathway of the Salmonella challenge in the chicken HD11 cell line. The cells were transfected with either NF-kB 1 siRNA, glyceraldehyde 3-phosphate dehydrogenase siRNA (positive control) or the negative control siRNA for 24 h, followed by Salmonella enteritidis (SE) challenge or non-challenge for 1 h and 4 h. Eight candidate genes related to the signal pathway of SE challenge were selected to examine the effect of NF-kB 1 inhibition on their expressions by mRNA quantification. The results showed that, with a 36% inhibition of NF-kB 1 expression, gene expression of both Toll-like receptor (TLR) 4 and interleukin (IL)-6 was consistently and significantly increased at both 1 h and 4 h following SE challenge, whereas the gene expression of MyD88 and IL-1β was increased at 1 h and 4 h, respectively. These findings suggest a likely inhibitory regulation by NF-kB 1, and could lay the foundation for studying the gene network of the innate immune response of SE infection in chickens.
Collapse
Affiliation(s)
- Hsin-I Chiang
- Department of Poultry Science, Texas AM University, College Station, TX USA
| | | | | |
Collapse
|
12
|
Boonanuntanasarn S, Panyim S, Yoshizaki G. Usage of putative zebrafish U6 promoters to express shRNA in Nile tilapia and shrimp cell extracts. Transgenic Res 2009; 18:323-5. [PMID: 19225901 DOI: 10.1007/s11248-009-9249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
Abstract
We conducted in vitro transcription activities of the three zebrafish U6 putative promoters across species in cell extracts prepared from Nile tilapia (Oreochromis niloticus) and shrimps. The transcription efficiency of these putative U6 promoters in Nile tilapia cell extracts was similar to that of zebrafish cell extracts. In addition, all three zebrafish U6 snRNA promoters were able to express the shRNA in cell extracts prepared from two shrimp species, Penaeus monodon and Litopenaeus vannamei. However, the shRNA transcription products in shrimp cell extracts showed weaker signals. These U6 promoters could promote shRNA expression, suggesting that they have the potential for use for vector-based RNAi in Nile tilapia and shrimps. A putative U6 promoter would provide a powerful tool for long-term GKD in these aquaculture-related species.
Collapse
|
13
|
Wang Y, Sun H, Shen P, Zhang X, Xia X, Xia B. Effective inhibition of replication of infectious bursal disease virus by miRNAs delivered by vectors and targeting the VP2 gene. J Virol Methods 2009; 165:127-32. [PMID: 19189848 DOI: 10.1016/j.jviromet.2008.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
RNA interference (RNAi) is a potent mechanism against a variety of viral infections. Infectious bursal disease virus (IBDV) causes an important disease economically in chickens, which is difficult to control. As part of the development of viral vector-mediated RNAi strategy against the disease, five anti-VP2 small interference RNAs were selected for construction of microRNA (miRNA) expression vectors tailored for avian cells. Transfection of DF-1 cells with the five vectors resulted in significant inhibition of VP2-EGFP reporter gene expression. More effective miVP2A and miVP2E were selected for further study using single or double miRNA expression vectors. After demonstration of specific miRNA expression, the gene silencing effects were determined in the vector-transfected and IBDV-infected cells. Reverse transcriptase PCR and virus titration showed inhibition rates from 76 to 82% on VP2 expression and significant decreases in virus titer by individual and co-expressed miVP2A and miVP2E. The inhibitory effects lasted for at least 120 h after infection with IBDV. These data suggest that the miRNAs targeting the VP2 can inhibit efficiently replication of IBDV.
Collapse
Affiliation(s)
- Yongjuan Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, China
| | | | | | | | | | | |
Collapse
|
14
|
Lambeth LS, Zhao Y, Smith LP, Kgosana L, Nair V. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine 2009; 27:298-306. [PMID: 18977264 DOI: 10.1016/j.vaccine.2008.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Live attenuated herpesvirus vaccines such as herpesvirus of turkey (HVT) have been used since 1970 for the control of Marek's disease (MD), a highly infectious lymphoproliferative disease of poultry. Despite the success of these vaccines in reducing losses from the disease, Marek's disease virus (MDV) strains have shown a continuing increase in virulence, presumably due to the inability of the current vaccines in preventing MDV replication. The highly specific and effective nature of RNA interference (RNAi) makes this technology particularly attractive for new antiviral strategies. In order to exploit the power of RNAi-mediated suppression of MDV replication in vivo delivered through existing vaccines, we engineered recombinant HVT expressing short hairpin RNA (shRNA) against MDV genes gB and UL29. The levels of protection induced by the RNAi-expressing HVT against virulent virus challenge were similar to the parent pHVT3 virus. However, chickens vaccinated with recombinant HVT expressing shRNA showed moderate reduction of challenge virus replication in blood and feather samples. Delivery of RNAi-based gene silencing through live attenuated vaccines for reducing replication of pathogenic viruses is a novel approach for the control of infectious diseases.
Collapse
Affiliation(s)
- Luke S Lambeth
- Division of Microbiology, Institute for Animal Health, High Street, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Boonanuntanasarn S, Panyim S, Yoshizaki G. Characterization and organization of the U6 snRNA gene in zebrafish and usage of their promoters to express short hairpin RNA. Mar Genomics 2008; 1:115-21. [PMID: 21798162 DOI: 10.1016/j.margen.2008.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
We have characterized three U6 snRNA genes in zebrafish and randomly designated them as U6-1, U6-2, and U6-3. The U6-1 gene is closely related to the mammal U6 snRNA genes and that the U6-2 and U6-3 genes are more closely related to the Drosophila and Xenopus U6 snRNA genes. The upstream regulatory sequences were located based on their conserved position relative to the transcription start site. Furthermore, we speculate that the "CCAAT box" functions as the distal sequence element in the zebrafish U6 snRNA genes. Genomic BLASTn analysis revealed that at least 555 copies of the U6-1 gene are dispersed throughout the zebrafish genome, whereas the U6-2 and U6-3 genes are each present as a single copy. Three U6 snRNA genes are functionally expressed in various tissues. All three putative promoters were able to transcribe short hairpin RNA (shRNA) in zebrafish cell extracts. Our findings demonstrate that these putative promoters have the potential to be used for vector-based RNA interference (RNAi) in zebrafish. Another U6 snRNA was found from the genomic BLASTn search and designated as U6-4, demonstrating that there are four different types of zebrafish U6 snRNA genes.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000 Thailand
| | | | | |
Collapse
|
16
|
Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines. Biochem Biophys Res Commun 2008; 371:480-3. [DOI: 10.1016/j.bbrc.2008.04.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
|
17
|
Wise TG, Schafer DJ, Lambeth LS, Tyack SG, Bruce MP, Moore RJ, Doran TJ. Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs. Anim Biotechnol 2008; 18:153-62. [PMID: 17612838 DOI: 10.1080/10495390600867515] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA interference (RNAi) is a powerful method of sequence-specific gene knockdown that can be mediated by DNA-based expression of short hairpin RNA (shRNA) molecules. A number of vectors for expression of shRNA have been developed with promoters for a small group of RNA polymerase III (pol III) transcripts of either mouse or human origin. To advance the use of RNAi as a tool for functional genomic research and future development of specific therapeutics in the chicken species, we have developed shRNA expression vectors featuring chicken U6 small nuclear RNA (snRNA) promoters. These sequences were identified based on the presence of promoter element sequence motifs upstream of matching snRNA sequences that are characteristic of these types of pol III promoters. To develop suitable shRNA expression vectors specifically for chicken functional genomic RNAi applications, we compared the efficiency of each of these promoters to express shRNA molecules. Promoter activity was measured in the context of RNAi by targeting and silencing the reporter gene encoding the enhanced green fluorescent protein (EGFP). Plasmids containing one of four identified chicken U6 promoters gave a similar degree of knockdown in DF-1 cells (chicken); although, there was some variability in Vero cells (monkey). Because the chicken promoters were not stronger than the benchmark mouse U6 promoter, we suggest that the promoter sequence and structure is more important in determining efficiency in vitro rather than its species origin.
Collapse
Affiliation(s)
- Terry G Wise
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Bannister SC, Wise TG, Cahill DM, Doran TJ. Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnol 2007; 7:79. [PMID: 18021456 PMCID: PMC2235858 DOI: 10.1186/1472-6750-7-79] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 11/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA polymerase III (pol III) type 3 promoters such as U6 or 7SK are commonly used to express short-hairpin RNA (shRNA) effectors for RNA interference (RNAi). To extend the use of RNAi for studies of development using the chicken as a model system, we have developed a system for expressing shRNAs using the chicken 7SK (ch7SK) promoter. RESULTS We identified and characterised the ch7SK promoter sequence upstream of the full-length 7SK small nuclear RNA (snRNA) sequence in the chicken genome and used this to construct vectors to express shRNAs targeting enhanced green fluorescent protein (EGFP). We transfected chicken DF-1 cells with these constructs and found that anti-EGFP-shRNAs (shEGFP) expressed from the ch7SK promoter could induce efficient knockdown of EGFP expression. We further compared the efficiency of ch7SK-directed knockdown to that of chicken U6 (cU6) promoters and found that the efficiency of the ch7SK promoter was not greater than, but comparable to the efficiency of cU6 promoters. CONCLUSION In this study we have demonstrated that the ch7SK promoter can express shRNAs capable of mediating efficient RNAi in a chicken cell line. However, our finding that RNAi driven by the ch7SK promoter is not more efficient than cU6 promoters contrasts previous comparisons of mammalian U6 and 7SK promoters. Since the ch7SK promoter is the first non-mammalian vertebrate 7SK promoter to be characterised, this finding may be helpful in understanding the divergence of pol III promoter activities between mammalian and non-mammalian vertebrates. This aside, our results clearly indicate that the ch7SK promoter is an efficient alternative to U6-based shRNA expression systems for inducing efficient RNAi activity in chicken cells.
Collapse
Affiliation(s)
- Stephanie C Bannister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Terry G Wise
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Timothy J Doran
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| |
Collapse
|
19
|
Tizard MLV, Moore RJ, Lambeth LS, Lowenthal JW, Doran TJ. Manipulation of small RNAs to modify the chicken transcriptome and enhance productivity traits. Cytogenet Genome Res 2007; 117:158-64. [PMID: 17675856 DOI: 10.1159/000103176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/28/2006] [Indexed: 01/05/2023] Open
Abstract
In recent years there has been a revolution in our understanding of genes and how they come to control the physical outcomes of development. Central to this has been the understanding of the cellular processes of RNA interference (RNAi), for which the Nobel Prize for Physiology or Medicine was awarded in 2006. Coupled with this has been the recognition that microRNAs are key mediators of this process within cells. RNAi whether mediated exogenously by synthetic oligonucleotides or vector-delivered double stranded RNA or endogenously by microRNAs can have a profound and specific effect on gene expression. Elucidating and understanding these processes in the chicken will provide critical information to enable more precise control over breeding strategies for improvement of traits in production poultry, either by direct or indirect means. It will also provide alternative strategies for the control and prevention of important avian diseases.
Collapse
Affiliation(s)
- M L V Tizard
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia
| | | | | | | | | |
Collapse
|
20
|
Sutou S, Kunishi M, Kudo T, Wongsrikeao P, Miyagishi M, Otoi T. Knockdown of the bovine prion gene PRNP by RNA interference (RNAi) technology. BMC Biotechnol 2007; 7:44. [PMID: 17655742 PMCID: PMC1976095 DOI: 10.1186/1472-6750-7-44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Accepted: 07/26/2007] [Indexed: 11/29/2022] Open
Abstract
Background Since prion gene-knockout mice do not contract prion diseases and animals in which production of prion protein (PrP) is reduced by half are resistant to the disease, we hypothesized that bovine animals with reduced PrP would be tolerant to BSE. Hence, attempts were made to produce bovine PRNP (bPRNP) that could be knocked down by RNA interference (RNAi) technology. Before an in vivo study, optimal conditions for knocking down bPRNP were determined in cultured mammalian cell systems. Factors examined included siRNA (short interfering RNA) expression plasmid vectors, target sites of PRNP, and lengths of siRNAs. Results Four siRNA expression plasmid vectors were used: three harboring different cloning sites were driven by the human U6 promoter (hU6), and one by the human tRNAVal promoter. Six target sites of bovine PRNP were designed using an algorithm. From 1 (22 mer) to 9 (19, 20, 21, 22, 23, 24, 25, 27, and 29 mer) siRNA expression vectors were constructed for each target site. As targets of siRNA, the entire bPRNP coding sequence was connected to the reporter gene of the fluorescent EGFP, or of firefly luciferase or Renilla luciferase. Target plasmid DNA was co-transfected with siRNA expression vector DNA into HeLaS3 cells, and fluorescence or luminescence was measured. The activities of siRNAs varied widely depending on the target sites, length of the siRNAs, and vectors used. Longer siRNAs were less effective, and 19 mer or 21 mer was generally optimal. Although 21 mer GGGGAGAACTTCACCGAAACT expressed by a hU6-driven plasmid with a Bsp MI cloning site was best under the present experimental conditions, the corresponding tRNA promoter-driven plasmid was almost equally useful. The effectiveness of this siRNA was confirmed by immunostaining and Western blotting. Conclusion Four siRNA expression plasmid vectors, six target sites of bPRNP, and various lengths of siRNAs from 19 mer to 29 mer were examined to establish optimal conditions for knocking down of bPRNP in vitro. The most effective siRNA so far tested was 21 mer GGGGAGAACTTCACCGAAACT driven either by a hU6 or tRNA promoter, a finding that provides a basis for further studies in vivo.
Collapse
Affiliation(s)
- Shizuyo Sutou
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Miho Kunishi
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Toshiyuki Kudo
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Pimprapar Wongsrikeao
- Laboratory of Animal Reproduction and Biotechnology, Veterinary Sciences Yamaguch University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
- Department of Surgery and Theriogenology, Faculty of Veterinary Medicine, Khonkaen University, 40000, Thailand
| | - Makoto Miyagishi
- 21st Century Center of Excellence Program, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction and Biotechnology, Veterinary Sciences Yamaguch University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| |
Collapse
|
21
|
Chen M, Granger AJ, Vanbrocklin MW, Payne WS, Hunt H, Zhang H, Dodgson JB, Holmen SL. Inhibition of avian leukosis virus replication by vector-based RNA interference. Virology 2007; 365:464-72. [PMID: 17493657 DOI: 10.1016/j.virol.2007.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/29/2007] [Accepted: 04/11/2007] [Indexed: 11/20/2022]
Abstract
RNA interference (RNAi) has recently emerged as a promising antiviral technique in vertebrates. Although most studies have used exogenous short interfering RNAs (siRNAs) to inhibit viral replication, vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) are more efficient and are practical for in vivo delivery. In this study, replication competent retroviral vectors were designed to deliver shRNA-mirs targeting subgroup B avian leukosis virus (ALV), the most effective of which reduced expression of protein targets by as much as 90% in cultured avian cells. Cells expressing shRNA-mirs targeting the tvb receptor sequence or the viral env(B) sequence significantly inhibited ALV(B) replication. This study demonstrates efficient antiviral RNAi in avian cells using shRNA-mirs expressed from pol II promoters, including an inducible promoter, allowing for the regulation of the antiviral effect by doxycycline.
Collapse
Affiliation(s)
- Mo Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Das RM, Van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC, Manning EM, McGrew MJ, Ohyama K, Sacco MA, Halley PA, Sang HM, Storey KG, Placzek M, Tickle C, Nair VK, Wilson SA. A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 2006; 294:554-63. [PMID: 16574096 DOI: 10.1016/j.ydbio.2006.02.020] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo.
Collapse
Affiliation(s)
- Raman M Das
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|