1
|
Elnar AG, Jang Y, Kim GB. Heterologous Expression and Polyphasic Analysis of CLA-Converting Linoleic Acid Isomerase from Bifidobacterium breve JKL2022. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1425-1440. [PMID: 39586027 DOI: 10.1021/acs.jafc.4c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The probiotic Bifidobacterium breve is known for its efficient conjugated linoleic acid (CLA) conversion, yet their CLA conversion pathway remains underexplored. This study investigated B. breve JKL2022 for its CLA conversion in actively growing cells, washed cell states, and in crude protein extracts. Moreover, the study aimed to confirm the CLA-converting enzyme in strain JKL2022 and optimize its purification through heterologous expression of fusion proteins (LAI_sGFP and MBP_LAI). JKL2022 exhibited superior CLA conversion compared to genetically similar B. breve strains (JCM7017, JCM7019, JCM1192, and JCM1273), particularly the observed CLA conversion in washed cells (60.14 ± 7.60%) and crude protein fractions (96.11 ± 6.63%). The multipass transmembrane linoleic acid isomerase (LAI) was cloned into the E. coli BL21(DE3) as free LAI or modified with superfolder-GFP or MBP tags and expressed with 0.01 mM IPTG at 37 °C, resulting in highly active protein fractions. LAI was characterized by predictive modeling, molecular docking, and phylogenetic analyses. Moreover, reverse transcription-quantitative PCR analysis revealed upregulation (20-140× higher expression) of lai in JKL2022 compared with that in the JCM strains. Nevertheless, upscaling the production and purification of LAI for downstream applications remains a challenge, primarily because of their membrane-spanning configuration.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Yujin Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| |
Collapse
|
2
|
El-Demerdash MM, El-Sayed ASA, Teleb SS, Sadek AM, Elsehely HH. DNA barcoding, micromorphology and metabolic traits of selected Ficus L. (Moraceae) species from Egypt. BMC PLANT BIOLOGY 2024; 24:1067. [PMID: 39538137 PMCID: PMC11559249 DOI: 10.1186/s12870-024-05683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The genus Ficus of the family Moraceae, is one of the largest genera of angiosperms, with diverse pharmaceutical applications and biological activities. The traditional approaches based on the morphological traits have been frequently implemented for taxonomical identification of the different taxa of Ficus, however, encompassing these features are quite laborious, due to the dependence of these phenotypic traits on the environmental conditions. So, authenticating the taxonomical identity of the Ficus taxa with molecular barcoding and metabolic profiling, as relatively stable traits, could be a relevant approach for confirming the traditional phenotypic traits of this genus. Nine species of the genus Ficus namely F. amplissima Sm., F. benjamina L. F. binnendijkii, F. drupacea var. pubescens, F. elastica Roxb., F. microcarpa L., F. religiosa L., F. tinctoria subsp. gibbosa and F. virens var. sublancelata in Egypt, were selected for this study. From the anatomical features, three species of subsection Urostigma, F. religiosa, F. virens var. sublanceolata have cystoliths on the abaxial layer, whereas in F. amplissima it was on the adaxial layer. The UPGMA dendrogram of the studied Ficus taxa has been generated from the 21 anatomical characters, categorized the studied taxa into two clusters (I and II) of average distance ~ 3.5, each cluster has been further divided into subclusters I and II. The sub-cluster I includes F. religiosa, F. virens var. sublanceolata and F. tinctoria subsp. gibbosa were grouped together to subsection Urostigma, while the sub-cluster II of the cluster I includes F. benjamina and F. amplissima. From the DNA barcoding analysis, three clusters I, II and III were emerged, the cluster I includes F. benjamina, F. binnendjikee, and F. amplissima. The cluster II, F. virens var. sublanceolata and F. religiosa that belong to subsection Urostigma, while, the cluster III includes F. elastica and F. drupacea var. pubescens, F. microcarpa that belongs to subsection Conosycea. From the metabolic profiling of Ficus species, the major compounds; H-cycloprop-azulen-7-ol, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, 2-(9-octadecenyloxy), pentadecanoic acid, phytol, sitosterol and 9,12-octadecadienoic acid were the common among the taxa, with an obvious fluctuation, that could be a chemotaxonomic markers for these species of Ficus. Based on the metabolic profiling, two distinct clusters I and II were evolved, the cluster I involve F. elastica, F. benjamina, F. drupacea var. pubescens, F. amplissima, while, the cluster II had F. tinctoria subsp. gibbosa and F. religiosa. The fluctuation on the metabolites of the tested Ficus species could be a metabolic fingerprint for each species. So, the delamination of the tested plants based on their anatomical traits was typically matched to the separation based on the ITS sequence analysis.
Collapse
Affiliation(s)
- Marwa M El-Demerdash
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Samir S Teleb
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed M Sadek
- Botany and Microbiology Department, Faculty of Science (Boys Branch), Al-Azhar University, Cairo, 11884, Egypt
| | - Heba H Elsehely
- Botany Department, Faculty of Science, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
3
|
Serefko A, Jach ME, Pietraszuk M, Świąder M, Świąder K, Szopa A. Omega-3 Polyunsaturated Fatty Acids in Depression. Int J Mol Sci 2024; 25:8675. [PMID: 39201362 PMCID: PMC11354246 DOI: 10.3390/ijms25168675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids have received considerable attention in the field of mental health, in particular regarding the treatment of depression. This review presents an overview of current research on the role of omega-3 fatty acids in the prevention and treatment of depressive disorders. The existing body of evidence demonstrates that omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant effects that can be attributed to their modulation of neuroinflammation, neurotransmitter function, and neuroplasticity. Nevertheless, clinical trials of omega-3 supplementation have yielded inconsistent results. Some studies have demonstrated significant reductions in depressive symptoms following omega-3 treatment, whereas others have shown minimal to no beneficial impact. A range of factors, encompassing dosage, the ratio of EPA to DHA, and baseline nutritional status, have been identified as having a potential impact on the noted results. Furthermore, it has been suggested that omega-3 fatty acids may act as an adjunctive treatment for those undergoing antidepressant treatment. Notwithstanding these encouraging findings, discrepancies in study designs and variability in individual responses underscore the necessity of further research in order to establish uniform, standardized guidelines for the use of omega-3 fatty acids in the management of depressive disorders.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| | - Marlena Pietraszuk
- Student Scientific Club, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Małgorzata Świąder
- Student Scientific Club, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
- Student Scientific Club, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8b Jaczewskiego, 20-090 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Khozoei S, Mahdavi AH, Rabiee F, Ghaedi K. Synergistic effects of punicic acid and alpha lipoic acid ameliorate inflammatory and metabolic genes expression in C2C12 myoblast cells under oxidative stress condition. Cell Biochem Funct 2023; 41:1403-1411. [PMID: 37987234 DOI: 10.1002/cbf.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Inflammation is a reaction of the immune system to infection and injury; in fact, it positioned at the center of metabolic disorders, particularly obesity, type 2 diabetes, and cardiovascular diseases. Thus play a major role not only in their development, but also exerts as a crucial linking factor among those diseases. In this regard, one of the strategies for tackling this problem is application of antioxidants to treat such diseases. The present study was performed to evaluate the synergistic effects of punicic acid (PUA) and alpha-lipoic acid (ALA) as antioxidants and radical scavenging reagents on the expression of some inflammatory and metabolism-related genes under oxidative stress in the muscle cells. The experimental treatments consisted of a range of 20, 40, 80, 160, and 320 µM of PUA, and 5, 25, 50, 100, and 200 µM of ALA with a 200 µM concentration of H2 O2 as an oxidative stress inducer. Accordingly, fatty acid treatments were applied for 24 h, and H2 O2 was treated for 1 h. Our results indicated that the simultaneous treatment of PUA and ALA at optimal concentrations (80 and 50 µM, respectively) decreased the expression of inflammation genes and increased the expression of regulatory genes (Pparγ, Pgc-1α) related to metabolism (p < .05). Unexpectedly, H2 O2 treatment increased the Fndc5 expression (p < .05). Maximal upregulation of Pparγ, Pgc-1α were obtained when fatty acids combination (PUA and ALA) were used in the culture of H2 O2 treated cells (p < .05). Therefore, our findings suggest that the simultaneous use of PUA and ALA fatty acids could reduce oxidative stress, and the expression of inflammatory genes, thereby improving the cell metabolism.
Collapse
Affiliation(s)
- Shiva Khozoei
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan (UI), Isfahan, Iran
| |
Collapse
|
5
|
Hajib A, El Harkaoui S, Choukri H, Khouchlaa A, Aourabi S, El Menyiy N, Bouyahya A, Matthaeus B. Apiaceae Family an Important Source of Petroselinic Fatty Acid: Abundance, Biosynthesis, Chemistry, and Biological Proprieties. Biomolecules 2023; 13:1675. [PMID: 38002357 PMCID: PMC10669383 DOI: 10.3390/biom13111675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 11/26/2023] Open
Abstract
Petroselinic fatty acid (PeFA) is considered a rare fatty acid and one of the most important fatty acids in the Apiaceae family. Its content varies depending on plant species, geographical origin, extraction method, ripeness, etc. Indeed, reported levels of petroselinic fatty acid range from 10.4 to 75.6% (in anise seed oil), 1 to 81.9% (in coriander seed oil), 28.5 to 57.6% (in caraway seed oil), 49.4 to 75.6% (in celery seed oil), 41.3 to 61.8% (in caraway seed oil), 79.9 to 87.2% (in dill seed oil), 43.1 to 81.9% (in fennel seed oil), and 35 to 75.1% (parsley seed oil). In this review, we also show current knowledge about genes encoding biosynthesis, from the desaturation of 16:0-ACP to petroselinic acid stored in triacylglycerol in the seeds. Furthermore, petroselinic acid is not related to the synthesis of ABA. PeFA was successfully isolated from Apiaceae family plant seeds in order to study their reactivity and biological activities. Several investigations showed that this fatty acid has a wide range of biological potentials, including antidiabetic, antibacterial, and antifungal activities. In cosmetics, PeFA alone or in association with other active compounds has interesting applications as an anti-inflammatory agent for the treatment of skin, hair, and nail disorders.
Collapse
Affiliation(s)
- Ahmed Hajib
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Said El Harkaoui
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas, Rabat 10000, Morocco
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Sarra Aourabi
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Bertrand Matthaeus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| |
Collapse
|
6
|
Seif M, Aati H, Amer M, Ragauskas AJ, Seif A, El-Sappah AH, Aati A, Madboli AENA, Emam M. Mitigation of Hepatotoxicity via Boosting Antioxidants and Reducing Oxidative Stress and Inflammation in Carbendazim-Treated Rats Using Adiantum Capillus-Veneris L. Extract. Molecules 2023; 28:4720. [PMID: 37375275 PMCID: PMC10300738 DOI: 10.3390/molecules28124720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Exposure to food contaminants continues to be a substantial source of human health risks all over the world, particularly in developing countries. Carbendazim (CBZ) is a chemical fungicide used to control the spread of various fungi and other pathogens in the agriculture and veterinary sectors. The hazardous effects of CBZ on human health occur due to the accumulation of its residues in agricultural food products. In this study, the possible hepatoprotective effects of Adiantum capillus-veneris L. (ACVL) extract were evaluated in CBZ-treated rats. A GC-MS analysis revealed that ACVL extract contained several bioactive hydrocarbon components and fatty acids, and that the components exerted hepatic protection by mitigating oxidative stress via upregulating antioxidant agents and neutralizing nitrogen and oxygen free radicals. Moreover, ACVL extracts relieved hepatic inflammation via decreasing NO, NF-κB, and pro-inflammatory cytokines (TNF-a, IL-6) in the liver of CBZ-treated rats, both at protein and mRNA levels. In addition, the protective effect of ACVL has appeared in the histopathological figures and function markers in the livers of CBZ-treated rats. According to the present results, ACVL extract can protect the hepatic tissue and restore its functions to a control level in CBZ-treated rats; this effect may be attributed to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Hanan Aati
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - May Amer
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA;
| | - Amr Seif
- Faculty of Medicine, Assuit University, Asyut 71516, Egypt;
| | - Ahmed H. El-Sappah
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Abdulrahman Aati
- Rokn Al-Madaein Pharmaceutical Warehouse Co., P.O. Box 2990, Riyadh 11495, Saudi Arabia;
| | - Abd El-Nasser A. Madboli
- Animal Reproduction and Artificial Insemination Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt;
| |
Collapse
|
7
|
Gaeini Z, Bahadoran Z, Mirmiran P, Feyzi Z, Azizi F. High-Fat Dairy Products May Decrease the Risk of Chronic Kidney Disease Incidence: A Long-Term Prospective Cohort Study. J Ren Nutr 2023; 33:307-315. [PMID: 36270480 DOI: 10.1053/j.jrn.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The association between consumption of dairy products and risk of chronic kidney disease (CKD) is under debate. We aimed to determine the potential effects of total and subtypes of dairy intake on the occurrence of CKD. METHODS This study was conducted within the Tehran Lipid and Glucose Study (TLGS) on 2416 CKD-free adults. At baseline, consumption of dairy products was estimated using a validated 168-items semiquantitative food frequency questionnaire. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of CKD were calculated in tertile categories of dairy products. Also, the CKD risk was estimated with multivariable Cox regression to substitute total dairy with other dietary protein sources. RESULTS During 8.4 years of follow-up, the incidence rate of CKD was 21%. The participants' mean (±SD) age was 38 (±13) years and 46% were men. Dietary intakes of total dairy, low-fat dairy, and fermented dairy were not associated with CKD risk. There were significant lower risks of CKD in the highest compared to the lowest tertiles of high-fat dairy (HR = 0.76, 95% CI = 0.60-0.95) and high-fat milk (HR = 0.75, 95% CI = 0.59-0.96). However, no significant associations were found between other categories of dairy products and CKD incidence. Substitutions of total dairy with other dietary protein sources were not associated with CKD risk. CONCLUSIONS In this study, higher intakes of high-fat dairy and high-fat milk were associated with lower risks of CKD. No significant associations were found between other dairy products and CKD. More prospective and clinical trials are needed to clarify the issue.
Collapse
Affiliation(s)
- Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Feyzi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Venn-Watson SK, Butterworth CN. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLoS One 2022; 17:e0268778. [PMID: 35617322 PMCID: PMC9135213 DOI: 10.1371/journal.pone.0268778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
A growing body of evidence supports that pentadecanoic acid (C15:0), an odd-chain saturated fat found in butter, is an essential fatty acid that is necessary in the diet to support long-term metabolic and heart health. Here, dose dependent and clinically relevant cell-based activities of pure C15:0 (FA15TM) were compared to eicosapentaenoic acid (EPA), a leading omega-3 fatty acid, as well as to an additional 4,500 compounds. These studies included 148 clinically relevant biomarkers measured across 12 primary human cell systems, mimicking various disease states, that were treated with C15:0 at four different concentrations (1.9 to 50 μM) and compared to non-treated control systems. C15:0 was non-cytotoxic at all concentrations and had dose dependent, broad anti-inflammatory and antiproliferative activities involving 36 biomarkers across 10 systems. In contrast, EPA was cytotoxic to four cell systems at 50 μM. While 12 clinically relevant activities were shared between C15:0 and EPA at 17 μM, C15:0 had an additional 28 clinically relevant activities, especially anti-inflammatory, that were not present in EPA. Further, at 1.9 and 5.6 μM, C15:0 had cell-based properties similar to bupropion (Pearson’s scores of 0.78), a compound commonly used to treat depression and other mood disorders. At 5.6 μM, C15:0 mimicked two antimicrobials, climabazole and clarithromycin (Pearson’s scores of 0.76 and 0.75, respectively), and at 50 μM, C15:0 activities matched that of two common anti-cancer therapeutics, gemcitabine and paclitaxel (Pearson’s scores of 0.77 and 0.74, respectively). In summary, C15:0 had dose-dependent and clinically relevant activities across numerous human cell-based systems that were broader and safer than EPA, and C15:0 activities paralleled common therapeutics for mood disorders, microbial infections, and cancer. These studies further support the emerging role of C15:0 as an essential fatty acid.
Collapse
Affiliation(s)
- Stephanie K. Venn-Watson
- Epitracker, Inc., San Diego, California, United States of America
- Seraphina Therapeutics, Inc., San Diego, California, United States of America
- * E-mail:
| | | |
Collapse
|
9
|
Phytochemical Compositions of Some Red Sea Halophyte Plants with Antioxidant and Anticancer Potentials. Molecules 2022; 27:molecules27113415. [PMID: 35684352 PMCID: PMC9182077 DOI: 10.3390/molecules27113415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to determine the compositions of carbohydrates, phenolic compounds, fatty acids (FAs), and amino acids (AAs) of four Rea Sea halophytes: Anabasis ehrenbergii, Suaeda aegyptiaca, Suaeda monoica, and Zygophyllum album. The results showed that S. aegyptiaca and S. monoica were rich in gallic acid with 41.72 and 47.48 mg/g, respectively, while A. ehrenbergii was rich in naringenin with 11.88 mg/g. The polysaccharides of the four species were mainly composed of galactose (54.74%) in A. ehrenbergii, mannose (44.15%) in S. aegyptiaca, glucose and ribose (33 and 26%, respectively) in S. monoica, and arabinose and glucose (36.67 and 31.52%, respectively) in Z. album. Glutamic acid and aspartic acid were the major AAs in all halophyte species with 50–63% and 10–22% of the total AAs, respectively. The proportion of unsaturated fatty acids (UFA) of the four species was 42.18–55.33%, comprised mainly of linolenic acid (15.54–28.63%) and oleic acid (5.68–22.05%), while palmitic acid (23.94–49.49%) was the most abundant saturated fatty acid (SFA). Phytol and 9,19-cyclolanost-24-en-3β–ol represented the major unsaponifiable matter (USM) constituents of S. monoica and A. ehrenbergii with proportions 42.44 and 44.11%, respectively. The phenolic fraction of S. aegyptiaca and S. monoica demonstrated noteworthy antioxidant activity with IC50 values of 9.0 and 8.0 μg/mL, respectively, while the FAs fraction of Z. album exhibited potent cytotoxic activity against Huh-7, A-549, and Caco-2 cancer cell lines with IC50 values of 7.4, 10.8, and 11.8 μg/mL, respectively. Our results indicate that these plants may be considered a source of naturally occurring compounds with antioxidant and anticancer effects that could be suitable for future applications.
Collapse
|
10
|
Briou B, Améduri B, Boutevin B. Trends in the Diels-Alder reaction in polymer chemistry. Chem Soc Rev 2021; 50:11055-11097. [PMID: 34605835 DOI: 10.1039/d0cs01382j] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Diels-Alder (DA) reaction is regarded as quite a useful strategy in organic and macromolecular syntheses. The reversibility of this reaction and the advent of self-repair technology, as well as other applications in controlled macromolecular architectures and crosslinking, have strongly boosted the research activity, which is still attracting a huge interest in both academic and industrial research. The DA reaction is a simple and scalable toolbox. Though it is well-established that furan/maleimide is the most studied diene/dienophile couple, this perspective article reports strategies using other reversible systems with deeper features on other types of diene/dienophile pairs being either petro-sourced (cyclopentadiene, anthracene) or bio-sourced (muconic and sorbic acids, myrcene and farnesene derivatives, eugenol, cardanol). This review is composed of four sections. The first one briefly recalls the background on the DA reactions involving cyclodimerizations, dienes, and dienophiles, parameters affecting the reaction, while the second part deals with the furan/maleimide reaction. The third one deals with petro-sourced and bio-sourced (or products becoming bio-sourced) reactants involved in DA reactions are also listed and discussed. Finally, the authors' opinion is given on the potential future of the crosslinking-decrosslinking reaction, especially regarding the process (e.g., key temperatures of decrosslinking) or possibly monocomponents. It presents both fundamental and applied research on the DA reaction and its applications.
Collapse
Affiliation(s)
- Benoit Briou
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bruno Améduri
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bernard Boutevin
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
11
|
Effects of a Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation during Late Pregnancy and Early Lactation on Hematologic and Immunological Traits and the Oxidative and Anti-Oxidative Status in Blood Plasma of Neonatal Calves. Animals (Basel) 2021; 11:ani11082168. [PMID: 34438626 PMCID: PMC8388434 DOI: 10.3390/ani11082168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
Fatty acids are known for their regulatory role in inflammation and oxidative stress. The present study investigated 38 calves born from dams, abomasally supplemented with coconut oil, essential fatty acids (EFA), conjugated linoleic acid (CLA) or EFA + CLA, according to immunological traits and the oxidative and anti-oxidative status for the first 5 days of life. On day 2 of life, plasma total bilirubin, cholesterol, interleukin 1-β and ferric ion reducing anti-oxygen power (FRAP) were lower in calves with than without maternal EFA supplementation, and FRAP additionally on day 4. On day 3, the concentrations of reactive oxygen metabolites were higher in calves with than without maternal EFA supplementation and additionally on day 5 together of retinol. Total leucocyte counts were decreased in the EFA group compared to the CLA group on day 5. Lymphocyte proportions decreased from day 1 to 5 only in the EFA + CLA group. On day 2, plasma total protein was higher in CLA and EFA + CLA than in EFA calves. Similarly, CLA calves had higher interleukin 1-β concentrations compared to EFA + CLA calves. FRAP was decreased by CLA on day 4. Overall, the maternal fatty acid supply affected the inflammatory response and the oxidative and anti-oxidative status of the neonatal offspring.
Collapse
|
12
|
The sublethal effects of neonicotinoids on spiders are independent of their nutritional status. Sci Rep 2021; 11:8496. [PMID: 33875743 PMCID: PMC8055996 DOI: 10.1038/s41598-021-87935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.
Collapse
|
13
|
Mixotrophic cultivation of Thalassiosira pseudonana with pure and crude glycerol: Impact on lipid profile. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Uken KL, Schäff CT, Vogel L, Gnott M, Dannenberger D, Görs S, Tuchscherer A, Tröscher A, Liermann W, Hammon HM. Modulation of colostrum composition and fatty acid status in neonatal calves by maternal supplementation with essential fatty acids and conjugated linoleic acid starting in late lactation. J Dairy Sci 2021; 104:4950-4969. [PMID: 33589265 DOI: 10.3168/jds.2020-19627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Sufficient maternal supply of essential fatty acids (EFA) to neonatal calves is critical for calf development. In the modern dairy cow, EFA supply has shifted from α-linolenic acid (ALA) to linoleic acid (LA) due to the replacement of pasture feeding by corn silage-based diets. As a consequence of reduced pasture feeding, conjugated linoleic acid (CLA) provision by rumen biohydrogenation was also reduced. The present study investigated the fatty acid (FA) status and performance of neonatal calves descended from dams receiving corn silage-based diets and random supplementation of either 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n-6/n-3 FA ratio = 1:3; n = 9), 38 g/d Lutalin (BASF SE, Ludwigshafen, Germany) providing 27% cis-9,trans-11 and trans-10,cis-12 CLA, respectively (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) in the last 9 wk before parturition and following lactation. The experimental period comprised the first 5 d of life, during which calves received colostrum and transition milk from their own dam. The nutrient compositions of colostrum and transition milk were analyzed. Plasma samples were taken after birth and before first colostrum intake and on d 5 of life for FA analyses of the total plasma fat and lipid fractions. Maternal EFA and CLA supplementation partly affected colostrum and transition milk composition but did not change the body weights of calves. Most EFA in calves were found in the phospholipid (PL) and cholesterol ester (CE) fractions of the plasma fat. Maternal EFA supplementation increased the percentage of ALA in all lipid fractions of EFA and EFA+CLA compared with CTRL and CLA calves on d 1 and 5, and the increase was much greater on d 5 than on d 1. The LA concentration increased from d 1 to 5 in the plasma fat and lipid fractions of all groups. The concentrations of docosapentaenoic acid, docosahexaenoic acid, and arachidonic acid in plasma fat were higher on d 1 than on d 5, and the percentage of n-3 metabolites was mainly increased in PL if dams received EFA. The percentage of cis-9,trans-11 CLA was higher in the plasma fat of EFA+CLA than CTRL calves after birth. By d 5, the percentages of both CLA isomers increased, leading to higher proportions in plasma fat of CLA and EFA+CLA than in CTRL and EFA calves. Elevated cis-9,trans-11 CLA enrichment was observed on d 5 in PL, CE, and triglycerides of CLA-treated calves, whereas trans-10,cis-12 CLA could not be detected in individual plasma fractions. These results suggest that an altered maternal EFA and CLA supply can reach the calf via the placenta and particularly via the intake of colostrum and transition milk, whereas the n-3 and n-6 FA metabolites partly indicated a greater transfer via the placenta. Furthermore, the nutrient supply via colostrum and transition milk might be partly modulated by an altered maternal EFA and CLA supply but without consequences on calf performance during the first 5 d of life.
Collapse
Affiliation(s)
- K L Uken
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - D Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - S Görs
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - W Liermann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
15
|
Liermann W, Viergutz T, Uken KL, Vogel L, Gnott M, Dannenberger D, Tuchscherer A, Kienberger H, Rychlik M, Tröscher A, Hammon HM. Influences of Maternal Conjugated Linoleic Acid and Essential Fatty Acid Supply During Late Pregnancy and Early Lactation on T and B Cell Subsets in Mesenteric Lymph Nodes and the Small Intestine of Neonatal Calves. Front Vet Sci 2021; 7:604452. [PMID: 33392296 PMCID: PMC7772138 DOI: 10.3389/fvets.2020.604452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) isomers are known for their health-promoting effects in mammals and metabolic functions in dairy cows and are synthesized in the forestomach depending on essential fatty acid (EFA) intake. The current preliminary study investigated effects of a maternal fatty acid supplementation (MFAS) during late pregnancy and early lactation with coconut oil (CON, control), CLA (Lutalin®), or CLA + EFA (Lutalin® linseed oil; safflower oil) on plasma fatty acid composition and T and B cell subsets in mesenteric lymph nodes (MLN) and the small intestine of 5-day-old calves. MFAS of CLA + EFA increased α-linolenic, eicosapentaenoic, docosapentaenoic, and n-3 fatty acid proportions in calf plasma fat on days 1 and 5 after birth (P < 0.05). On day 5, CLA and CLA + EFA calves showed higher plasma fat trans-10, cis-12 CLA proportions, and CLA calves had higher plasma cis-9, trans-11 CLA proportions compared with CON calves (P < 0.1). MFAS of CLA tended to increase CD4+ T cell subsets in MLN and increased CD21+ B cell subsets in ileal lamina propria compared with CON but decreased CD2+ T cell subsets in jejunal lamina propria (P < 0.05). CLA + EFA decreased CD4+ T cell subsets in MLN compared with CLA (P < 0.05). MFAS of CLA seemed to affect the intestinal adaptive immune system of calves, but additional EFA supplementations reversed CLA effects. Possible direct CLA and EFA effects or whether changes in milk composition affected this immune modulation must be clarified in further studies.
Collapse
Affiliation(s)
- Wendy Liermann
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Katrin Lena Uken
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Laura Vogel
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Michael Rychlik
- Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | | | - Harald Michael Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
16
|
Gnott M, Vogel L, Kröger-Koch C, Dannenberger D, Tuchscherer A, Tröscher A, Trevisi E, Stefaniak T, Bajzert J, Starke A, Mielenz M, Bachmann L, Hammon HM. Changes in fatty acids in plasma and association with the inflammatory response in dairy cows abomasally infused with essential fatty acids and conjugated linoleic acid during late and early lactation. J Dairy Sci 2020; 103:11889-11910. [PMID: 32981719 DOI: 10.3168/jds.2020-18735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1β was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response.
Collapse
Affiliation(s)
- M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - D Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - J Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - M Mielenz
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
17
|
Haubold S, Kröger-Koch C, Tuchscherer A, Kanitz E, Weitzel JM, Hoeflich A, Starke A, Tröscher A, Sauerwein H, Hammon HM. Effects of a combined essential fatty acid and conjugated linoleic acid abomasal infusion on metabolic and endocrine traits, including the somatotropic axis, in dairy cows. J Dairy Sci 2020; 103:12069-12082. [PMID: 32981718 DOI: 10.3168/jds.2020-18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid (ALA), and conjugated linoleic acid (CLA) supplementation on metabolic and endocrine traits related to energy metabolism, including the somatotropic axis, in mid-lactation dairy cows. Four cows (126 ± 4 d in milk) were used in a dose-escalation study design and were abomasally infused with coconut oil (CTRL; 38.3 g/d; providing saturated fatty acids), linseed and safflower oils (EFA; 39.1 and 1.6 g/d; n-6:n-3 FA ratio = 1:3), Lutalin (CLA; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d of each), or EFA and CLA (EFA+CLA) for 6 wk. The initial dosage was doubled twice after 2 wk, resulting in 3 dosages (dosages 1, 2, and 3). Each cow received each fat treatment at different times. Cows were fed with a corn silage-based total mixed ration providing a low-fat content and a high n-6:n-3 fatty acid ratio. Plasma concentrations of metabolites and hormones (insulin-like growth factor-binding proteins only on wk 0 and 6) were analyzed at wk 0, 2, 4, and 6 of each treatment period. Liver biopsies were taken before starting the trial and at wk 6 of each treatment period to measure hepatic mRNA abundance of genes linked to glucose, cholesterol and lipid metabolism, and the somatotropic axis. The changes in the milk and blood fatty acid patterns and lactation performance of these cows have already been published in a companion paper. The plasma concentration of total cholesterol increased with dosage in all groups, except CLA, reaching the highest levels in EFA+CLA and CTRL compared with CLA. The high-density lipoprotein cholesterol plasma concentration increased in CTRL and was higher than that in EFA and CLA, whereas the concentration of low-density lipoprotein cholesterol increased in a dose-dependent manner in EFA and EFA+CLA, and was higher than that in CLA. Hepatic mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA synthase 1 was upregulated in all groups but was highest in EFA+CLA. Expression of sterol regulatory element-binding factor 1 tended to be lowest due to EFA treatment, whereas expression of long chain acyl-CoA-synthetase was lower in EFA than in CTRL. Hepatic mRNA expression of GHR1A tended to be higher in EFA+CLA than in CTRL. The plasma concentration of insulin-like growth factor I increased in CLA, and the plasma IGFBP-2 concentration was lower in EFA+CLA than in CTRL at wk 6. The plasma concentration of adiponectin decreased in EFA+CLA up to dosage 2. Plasma concentrations of albumin and urea were lower in CLA than in CTRL throughout the experimental period. Supplementation with EFA and CLA affected cholesterol and lipid metabolism and their regulation differently, indicating distinct stimulation after the combined EFA and CLA treatment. The decreased IGFBP-2 plasma concentration and upregulated hepatic mRNA abundance of GHR1A in EFA+CLA-supplemented cows indicated the beneficial effect of the combined EFA and CLA treatment on the somatotropic axis in mid-lactation dairy cows. Moreover, supplementation with CLA might affect protein metabolism in dairy cows.
Collapse
Affiliation(s)
- S Haubold
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
18
|
Vogel L, Gnott M, Kröger-Koch C, Dannenberger D, Tuchscherer A, Tröscher A, Kienberger H, Rychlik M, Starke A, Bachmann L, Hammon HM. Effects of abomasal infusion of essential fatty acids together with conjugated linoleic acid in late and early lactation on performance, milk and body composition, and plasma metabolites in dairy cows. J Dairy Sci 2020; 103:7431-7450. [PMID: 32475659 DOI: 10.3168/jds.2019-18065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Rations including high amounts of corn silage are currently very common in dairy production. Diets with corn silage as forage source result in a low supply of essential fatty acids, such as α-linolenic acid, and may lead to low conjugated linoleic acid (CLA) production. The present study investigated the effects of abomasal infusion of essential fatty acids, especially α-linolenic acid, and CLA in dairy cows fed a corn silage-based diet on performance, milk composition, including fatty acid (FA) pattern, and lipid metabolism from late to early lactation. Rumen-cannulated Holstein cows (n = 40) were studied from wk 9 antepartum to wk 9 postpartum and dried off 6 wk before calving. The cows were assigned to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 and 4 g/d; linseed/safflower oil ratio = 19.5:1; n-6/n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; BASF SE, Ludwigshafen, Germany; isomers cis-9,trans-11 and trans-10,cis-12 each 10 g/d) or EFA+CLA. Milk composition was analyzed weekly, and blood samples were taken several times before and after parturition to determine plasma concentrations of metabolites related to lipid metabolism. Liver samples were obtained by biopsy on d 63 and 21 antepartum and on d 1, 28, and 63 postpartum to measure triglyceride concentration. Body composition was determined after slaughter. Supplementation of CLA reduced milk fat concentration, increased body fat mass, and improved energy balance (EB) in late and early lactation, but EB was lowest during late lactation in the EFA group. Cows with CLA treatment alone showed an elevated milk citrate concentration in early lactation, whereas EFA+CLA did not reveal higher milk citrate but did have increased acetone. Milk protein was increased in late lactation but was decreased in wk 1 postpartum in CLA and EFA+CLA. Milk urea was reduced by CLA treatment during the whole period. After calving, the increase of nonesterified fatty acids in plasma was less in CLA groups; liver triglycerides were raised lowest at d 28 in CLA groups. Our data confirm an improved metabolic status with CLA but not with exclusive EFA supplementation during early lactation. Increased milk citrate concentration in CLA cows points to reduced de novo FA synthesis in the mammary gland, but milk citrate was less affected in EFA+CLA cows, indicating that EFA supplementation may influence changes in mammary gland FA metabolism achieved by CLA.
Collapse
Affiliation(s)
- L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - D Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Kienberger
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - M Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
19
|
Ren Q, Yang B, Zhu G, Wang S, Fu C, Zhang H, Ross RP, Stanton C, Chen H, Chen W. Antiproliferation Activity and Mechanism of c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 on Colon Cancer Cells. Molecules 2020; 25:molecules25051225. [PMID: 32182796 PMCID: PMC7179453 DOI: 10.3390/molecules25051225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Conjugated linolenic acid (CLNA) is a type of ω-3 fatty acid which has been proven to have a series of benefits. However, there is no study about the function of Lactobacillus-derived CLNA isomer. Lactobacillus plantarum ZS2058 has been proven to manifest comprehensive functions and can produce CLNA. To investigate the specific functions of CLNA produced by this probiotic bacterium, two different conjugated α-linolenic acid (CLNA) isomers were successfully isolated. These isoforms, CLNA1 (c9, t11, c15-CLNA, purity 97.48%) and CLNA2 (c9, t11, t15-CLNA, purity 99.00%), both showed the ability to inhibit the growth of three types of colon cancer cells in a time- and concentration-dependent manner. In addition, the expression of MDA in Caco-2 cells was increased by CLNA1 or CLNA2, which indicated that lipid peroxidation was related to the antiproliferation activity of CLNAs. An examination of the key protein of pyroptosis showed that CLNA1 induced the cleavage of caspase-1 and gasdermin-D, while CLNA2 induced the cleavage of caspase-4, 5 and gasdermin-D. The addition of relative inhibitors could alleviate the pyroptosis by CLNAs. CLNA1 and CLNA2 showed no effect on caspase-3, 7, 9 and PARP-1, which were key proteins associated with apoptosis. No sub-diploid apoptotic peak appeared in the result of PI single staining test. In conclusion, CLNA1 activated caspase-1 and induced Caco-2 cell pyroptosis, whereas CLNA2 induced pyroptosis through the caspase-4/5-mediated pathway. The inhibition of Caco-2 cells by the two isomers was not related to apoptosis. This is the first study on the function of Lactobacillus-derived CLNA isomer. The inhibition pathway of Lactobacillus-derived CLNA isomer on colon cancer cells were proved.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Guangzhen Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Shunyu Wang
- Zhejiang Liziyuan Food Co., Ltd., Jinhua 321015, China; (S.W.); (C.F.)
| | - Chengli Fu
- Zhejiang Liziyuan Food Co., Ltd., Jinhua 321015, China; (S.W.); (C.F.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Correspondence: ; Tel.: +86-510-85197239
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
20
|
Haubold S, Kröger-Koch C, Starke A, Tuchscherer A, Tröscher A, Kienberger H, Rychlik M, Bernabucci U, Trevisi E, Hammon HM. Effects of abomasal infusion of essential fatty acids and conjugated linoleic acid on performance and fatty acid, antioxidative, and inflammatory status in dairy cows. J Dairy Sci 2019; 103:972-991. [PMID: 31704022 DOI: 10.3168/jds.2019-17135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) supplementation on fatty acid (FA) composition, performance, and systemic and hepatic antioxidative and inflammatory responses in dairy cows. Four cows (126 ± 4 d in milk) were investigated in a 4 × 4 Latin square and were abomasally infused with 1 of the following for 6 wk: (1) coconut oil (control treatment, CTRL; 38.3 g/d; providing saturated FA), (2) linseed and safflower oil (EFA treatment; 39.1 and 1.6 g/d, respectively; providing mainly α-linolenic acid), (3) Lutalin (BASF, Ludwigshafen, Germany; CLA treatment; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d each), (4) or EFA+CLA. The initial dosage was doubled every 2 wk, resulting in 3 dosages (dosage 1, 2, and 3). Cows were fed a corn silage-based total mixed ration with a high n-6/n-3 FA ratio. Dry matter intake and milk yield were recorded daily, and milk composition was measured weekly. The FA compositions of milk fat and blood plasma were analyzed at wk 0, 2, 4, and 6. The plasma concentration and hepatic mRNA abundance of parameters linked to the antioxidative and inflammatory response were analyzed at wk 0 and 6 of each treatment period. Infused FA increased in blood plasma and milk of the respective treatment groups in a dose-dependent manner. The n-6/n-3 FA ratio in milk fat was higher in CTRL and CLA than in EFA and EFA+CLA. The sum of FA <C16 in milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner. Energy-corrected milk and milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner and were higher in EFA and CTRL than in CLA at dosages 2 and 3. Energy balance tended to be highest in CLA cows. Milk protein content was lower in CLA and EFA+CLA than in CTRL. Milk urea concentration decreased in CLA and EFA+CLA in a dosage-dependent manner and was lower in CLA and EFA+CLA than in EFA and CTRL at dosages 2 and 3. Milk citrate concentration increased in CLA in a dosage-dependent manner and was higher in CLA and EFA+CLA than in EFA and CTRL. Glutathione peroxidase activity in blood plasma was lower in CTRL than in EFA, and plasma concentration of β-carotene increased in EFA and EFA+CLA with dosage. Increased milk citrate pointed at reduced de novo FA synthesis and a better antioxidative status in milk due to CLA treatment. Supplementation with CLA may also affect milk protein synthesis, but EFA and CLA treatment did not influence the inflammatory status in a consistent manner in mid-lactating cows.
Collapse
Affiliation(s)
- S Haubold
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - A Tuchscherer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Kienberger
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, 85354 Freising, Germany
| | - M Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
21
|
Yang B, Chen H, Gao H, Ren Q, Zhang H, Chen W. Genetic determinates for conjugated linolenic acid production in Lactobacillus plantarum ZS2058. J Appl Microbiol 2019; 128:191-201. [PMID: 31561280 DOI: 10.1111/jam.14466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
AIMS To investigate the genetic determinates for conjugated linolenic acid (CLNA) production in Lactobacillus plantarum ZS2058, a high CLNA producer. METHODS AND RESULTS After culturing with α-linolenic acid (ALA) in the medium, the fatty acid compositions of supernatant fluid and cell pellets were analysed via GC-MS. cis9,trans11,cis15-CLNA was identified to be the predominant isomer. And during CLNA production, 10-hydroxy-cis12-cis15-octadecenoic acid (10-HOEA) and 10-oxo-cis12-cis15-octadecenoic acid (10-OXOA) were accumulated. The E. coli recombinants harbouring genes encoding myosin-cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC), respectively, were analysed for their roles in CLNA production. The results indicated that MCRA converted ALA to 10-HOEA, following converted to 10-OXOA by DH. While with the combination of three recombinants, ALA could be transformed into CLNA plus 10-HOEA and 10-OXOA. When the three genes were deleted, none of the L. plantarum ZS2058 knockout mutants could produce any CLNA, after complementation, and all the complementary mutants recovered the CLNA-production ability at similar levels as the wild strain. CONCLUSIONS Lactobacillus plantarum ZS2058 produced CLNA from ALA with 10-HOEA and 10-OXOA as intermediates. The triple-component isomerase of MCRA, DH and DC was the unique genetic determinant for CLNA generation. SIGNIFICANCE AND IMPACT OF THE STUDY The current results firstly provided conclusive evidence that the triple-component isomerase complex was shared by both CLA and CLNA production in lactobacilli.
Collapse
Affiliation(s)
- B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Q Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
22
|
Elyasi H, Sepahvand A, Rahimi H, Nafari A, Azizi S, Khadem E, Zamani A, Behnaminia N, Bahmani M. Fatty Acids and Herbal Medicine. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083805666190514082338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Fatty acid is a type of carboxylic acid with carbon chain that can be short (4 carbons, such as butyric acid) or long (14 carbons and more, like DHA). Generally, fatty acids are divided into two groups of unsaturated fatty acids and saturated fatty acids. They have important and valuable medicinal properties especially against microbial pathogens.Objective:Studies have shown that the epidemic of the twentieth century's heart disease is due to the abuse of trans fatty acids. The consumption of various fatty acids has various therapeutic effects on various diseases.Method:Relevant articles were searched from Google Scholar, Pub Med, Scopus, Science direct, and Cochrane library.Results:Getting omega-3 fatty acids through diet and supplements affects both acute and chronic inflammation. Consumption of omega-3 fatty acids can slow down the growth of cancer, increase the effect of chemotherapy and reduce the side effects of chemotherapy or cancer. This can be done by reducing angiogenesis in the tumor, creating the differentiation of cancer cells, reducing the risk of heart attack from cancer, etc.Conclusion:In general, fatty acids are valuable and affordable, and available with numerous medicinal properties, including anti-fungal and anti-bacterial properties that can be extracted from and used by many sources, especially many medicinal plants. Since antimicrobial chemicals generally have many side effects and have resistance to many microbial species, various studies and experiments to identify and extract fatty acids and their application to the title of the pharmaceutical formulation are essential.
Collapse
Affiliation(s)
- Hossein Elyasi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hadis Rahimi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirhossein Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soleiman Azizi
- Student Research Committee, Azad University of Tehran East, Faculty of Paramedical, Tehran, Iran
| | - Erfan Khadem
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Zamani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nima Behnaminia
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
23
|
A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile. AMB Express 2019; 9:60. [PMID: 31055712 PMCID: PMC6500514 DOI: 10.1186/s13568-019-0786-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Okara is a major agro-waste produced from the soybean industry. To hydrolyze the okara and enable nutrient release, a strategy to valorize okara using solid-state fermentation with food grade Bacillus subtilis (B. subtilis) WX-17 was carried out. The study showed that fermentation of okara with B. subtilis WX-17 improved its overall nutritional content. The total amino acids content increased from 3.04 ± 0.14 mg/g in unfermented okara to 5.41 ± 1.21 mg/g in okara fermented with B. subtilis WX-17. Total fatty acids content increased from 153.04 ± 5.10 to 166.78 ± 2.41 mg/g okara, after fermentation. Antioxidant content (DPPH) also increased by 6.4 times after fermentation. To gain insight into the mechanism, gas chromatography–mass spectrometry analysis was carried out. In total, 49 metabolites were detected, which could be classified mainly into carbohydrates, TCA cycle metabolites, amino acids and fatty acids. The decrease in carbohydrate metabolites, showed that glycolysis was upregulated. This would have provided the energy and metabolic flux towards the amino acid and fatty acid pathway. This is also in line with the increased amino acids and fatty acid production seen in okara fermented with B. subtilis WX-17. The findings of this work demonstrated the potential of using B. subtilis WX-17 fermentation, to enhance the nutritional profile of okara. This could serve as a potential low-cost animal feed or incorporated into the human diet.
Collapse
|
24
|
Cointet E, Wielgosz-Collin G, Méléder V, Gonçalves O. Lipids in benthic diatoms: A new suitable screening procedure. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Cholewski M, Tomczykowa M, Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018; 10:E1662. [PMID: 30400360 PMCID: PMC6267444 DOI: 10.3390/nu10111662] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined.
Collapse
Affiliation(s)
- Mateusz Cholewski
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
26
|
Kasprzak K, Wojtunik-Kulesza K, Oniszczuk T, Kuboń M, Oniszczuk A. Secondary Metabolites, Dietary Fiber and Conjugated Fatty Acids as Functional Food Ingredients against Overweight and Obesity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Obesity is a common serious health problem leading to many serious health disorders. This phenomenon is defined as the over-storage of lipids in adipose tissue that occurs when there is an imbalance between the energy intake and energy used. During obesity, many metabolic alterations occur that can damage several organs, such as vascular or skeletal muscle resulting in the dysfunction of these tissues. In this review, we will discuss molecular genetics and causes of obesity, some of the disorders related to human obesity as well as anti-obesity tool. An interesting solution to the obesity problem is natural substances, revealing anti-obesity activity, as well as functional food enriched with aforementioned substances. Functional foods are products exhibiting a potentially positive effect on health beyond basic nutrition. They contain well-known biologically active natural compounds, which promote optimal health and reduce the risk of many diseases, including obesity.
Collapse
Affiliation(s)
- Kamila Kasprzak
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | | | - Tomasz Oniszczuk
- Department of Food Process Engineering, Lublin University of Life Sciences, 44 Doświadczalna Street, 20-236 Lublin, Poland
| | - Maciej Kuboń
- Department of Agricultural Engineering and Informatics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, ul. Balicka 116B 30-149, Kraków, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
27
|
Paul A, Banerjee K, Goon A, Saha S. Chemo-profiling of anthocyanins and fatty acids present in pomegranate aril and seed grown in Indian condition and its bioaccessibility study. Journal of Food Science and Technology 2018; 55:2488-2496. [PMID: 30042564 DOI: 10.1007/s13197-018-3166-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022]
Abstract
The goal of the present study was to investigate the bioactive molecules (anthocyanins and fatty acids) present in the aril of pomegranate. Major anthocyanins present in the aril of pomegranate were identified by HRMS as delphinidin 3,5-diglucoside, cyanidin 3,5-diglucoside, pelargonidin 3,5-diglucoside, cyanidin 3-glucoside and delphinidin 3-glucoside. In-vitro study revealed that bioaccessibility of anthocyanin in duodenal condition was varied between 7.3 and 9.7%. Encapsulation enhances the bioaccessibility of both the phenolics to some extent in gastric as well as duodenal condition. Seed oil contains significant amount of unsaturated fatty acids especially ω-5 fatty acids. Geometrical isomers of ω-5 fatty acids were also identified by GC-MS. The spray dried anthocyanin formulation has potential for food application.
Collapse
Affiliation(s)
- Anindita Paul
- 1Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Center for Grapes, Pune, Maharashtra 412 307 India
| | - Arnab Goon
- National Referral Laboratory, ICAR-National Research Center for Grapes, Pune, Maharashtra 412 307 India
| | - Supradip Saha
- 1Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
28
|
Dairy products and chronic kidney disease: protective or harmful? asystematic review of prospective cohort studies. Nutrition 2018; 55-56:21-28. [PMID: 29960152 DOI: 10.1016/j.nut.2018.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Evidence on the relationship between food sources of protein and progressive decline in renal function in the general population is still controversial. Among the protein-rich foods, dairy products have gained a lot of attention in research on the prevention of metabolic disorders. This systemic review attempted to summarize the findings of prospective cohort studies on the relationship between dairy foods and incident chronic kidney disease (CKD) in the general population. METHODS The PubMed, Embase, Scopus, and Web of Science databases were searched from inception up to January 2018 with no restriction on the language of publication. Studies conducted in the general population with consumption of dairy foods as the exposure of interest and with incident CKD and/or decline in renal function as the study outcome were eligible for inclusion in the review. RESULTS Of the 391 articles that were extracted through database searching, 7 were included in the review. Of the seven studies, five reported a protective association for dairy consumption, particularly low-fat dairy, against incident CKD or rapid decline in renal function; however, two studies did not find such an association. CONCLUSION Despite the limited studies on this topic, findings from the available reports are generally in favor of a positive association between dairy and renal health in the general population. However, further studies are needed to replicate this finding and to determine whether this relationship could be influenced by the fat content and/or the dairy subtypes.
Collapse
|
29
|
Li D, Wang W, Zhang L, Liu N, Faiza M, Tan CP, Yang B, Lan D, Wang Y. Synthesis of CLA-Rich Lysophosphatidylcholine by Immobilized MAS1-H108A-Catalyzed Esterification: Effects of the Parameters and Monitoring of the Reaction Process. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daoming Li
- School of Food Science and Engineering, South China University of Technology; Guangzhou 510640 China
| | - Weifei Wang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences; Guangzhou 510610 China
| | - Li Zhang
- College of Life Science, Tarim University; Alar 843300 China
| | - Nan Liu
- School of Food Science and Engineering, South China University of Technology; Guangzhou 510640 China
| | - Muniba Faiza
- School of Food Science and Engineering, South China University of Technology; Guangzhou 510640 China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology; Guangzhou 510006 China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology; Guangzhou 510640 China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology; Guangzhou 510640 China
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
30
|
Zhang Y, Gu H, Shi H, Wang F, Li X. Green Synthesis of Conjugated Linoleic Acids from Plant Oils Using a Novel Synergistic Catalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5322-5329. [PMID: 28470063 DOI: 10.1021/acs.jafc.7b00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel and efficient method has been developed for converting plant oil into a specific conjugated linoleic acid (CLA) using a synergistic biocatalytic system based on immobilized Propionibacterium acnes isomerase (PAI) and Rhizopus oryzae lipase (ROL). PAI exhibited the greatest catalytic activity when immobilized on D301R anion-exchange resin under optimal conditions (PAI dosage of 12 410 U of PAI/g of D301R, glutaraldehyde concentration of 0.4%, and reaction conditions of pH 7.0, 25 °C, and 60 min). Up to 109 g/L trans-10,cis-12-CLA was obtained after incubation of 200 g/L sunflower oil with PAI (1659 U/g of oil) and ROL (625 mU/g of oil) at pH 7.0 and 35 °C for 36 h; the corresponding conversion ratio of linoleic acid (LA) to CLA was 90.5%. This method exhibited the highest proportion of trans-10,cis-12-CLA yet reported and is a promising method for large-scale production.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Huaxiang Gu
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Hao Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Fei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| | - Xun Li
- Co-Innovation Center for Sustainable Forestry in Southern China, §College of Chemical Engineering, and ∥Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University , Nanjing, Jiangsu 210037, People's Republic of China
| |
Collapse
|
31
|
Barreiro R, Regal P, Díaz-Bao M, Vázquez BI, Cepeda A. Effects of bovine pregnancy on the fatty acid composition of milk: the significance for humans needs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:608-616. [DOI: 10.1080/19440049.2016.1277270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- R. Barreiro
- Laboratory of Food Hygiene, Inspection and Control (LHICA), Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - P. Regal
- Laboratory of Food Hygiene, Inspection and Control (LHICA), Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - M. Díaz-Bao
- Laboratory of Food Hygiene, Inspection and Control (LHICA), Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - B. I. Vázquez
- Laboratory of Food Hygiene, Inspection and Control (LHICA), Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| | - A. Cepeda
- Laboratory of Food Hygiene, Inspection and Control (LHICA), Department of Analytical Chemistry, Nutrition and Bromatology, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
32
|
Shaban NZ, Talaat IM, Elrashidy FH, Hegazy AY, Sultan AS. Therapeutic Role of Punica Granatum (Pomegranate) Seed Oil Extract on Bone Turnover and Resorption Induced in Ovariectomized Rats. J Nutr Health Aging 2017; 21:1299-1306. [PMID: 29188893 DOI: 10.1007/s12603-017-0884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Postmenopausal osteoporosis is mostly caused by increased bone remodeling resulting from estrogen deficiency. Hormone replacement therapy (HRT) is used to prevent osteoporosis, but it increases the risk for breast cancer, thromboembolism, strokes, and heart attacks. Pomegranate seed oil extract (SOE) is rich in phytoestrogen and antioxidant compounds. OBJECTIVES To evaluate the therapeutic role of SOE against bone turnover, resorption and osteoporosis induced in ovariectomized rats as a postmenopausal model and comparing the results with those from Generic CycloProgynova drug (D). DESIGN The study used western albino rats undergo bilaterally ovariectomization as a model for postmenopausal. SETTING The study took part in a laboratory setting. ANIMALS Forty female western albino rats (age: 3-4 months) weighing 150-180 gm. MEASUREMENTS Rats were divided into four groups, 10 rats each; SC-group: Sham control = untreated and unovariectomized rats; OVX-group = ovariectomized rats; (OVX-SOE) and (OVX-D) groups = OVX rats were treated with SOE and D, respectively. Bone markers (BMs) especially osteocalcin (BGP), alkaline phosphatase (ALP), tartarate resistance acid phosphatase (TRAcP), bone weight, bone calcium concentration, serum electrolytes (calcium, sodium and potassium) and serum estradiol (E2) level and histopathological examination of bones were determined. Also lipid profile, uric acid, prothrombin time (INR) and liver and kidney functions were measured to evaluate the adverse effects of SOE and D. RESULTS In OVX group the activities of ALP and TRAcP and the levels of BGP, serum calcium, sodium and body weight were significantly higher (p≤0.05) than SC-group, while bone calcium concentration, bone mass, serum E2 and potassium level as well as uterus mass were significantly lower (p≤0.05). Also histopathological results revealed that the outer cortical bone became thinner, while the cancellous bone trabeculae lost their normal architecture. Moreover in OVX group lipid profile and uric acid levels were significantly higher (p≤0.05) than SC group, but there were no significant changes (p≤0.05) in INR level, liver and kidney functions. Treatment of OVX rats with SOE or D for 12 weeks improved both the architecture of bones as shown from the histopathological results and BMs, serum electrolytes and E2 levels (p≤0.05) which approached SC-group. Moreover after treatment of OVX rats with SOE the levels of lipid profile and uric acid were improved and approached SC-group, while liver function became significant lower (p≤0.05) than SC-group. Also there were no significant changes (p≤0.05) in kidney functions and INR of (OVX-SOE), OVX and SC groups. In contrast in (OVX-D) group the levels of lipid profile, liver and kidney functions, uric acid and INR were significantly higher (p≤0.05) than those of OVX and SC groups. CONCLUSION The results of this study show that SOE has therapeutic effects on osteoporosis, while it has no adverse effects on lipid profile, uric acid, liver and kidney functions when compared to HRT. SOE offers a promising alternative in the design of new strategies in nutritional management of age-related bone complications.
Collapse
Affiliation(s)
- N Z Shaban
- Nadia Z. Shaban, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt,
| | | | | | | | | |
Collapse
|
33
|
Białek A, Jelińska M, Tokarz A, Pergół A, Pinkiewicz K. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats. Prostaglandins Other Lipid Mediat 2016; 126:29-37. [DOI: 10.1016/j.prostaglandins.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/07/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
34
|
S. Balogun O, Oladosu IA, Liu Z. Fatty Acid Profile andin VitroBiological Activities ofAllophylus africanus(P. Beauv). ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10496475.2016.1193587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, Cozzi G, Larsen MK, Jordon T, Niggli U, Sakowski T, Calder PC, Burdge GC, Sotiraki S, Stefanakis A, Stergiadis S, Yolcu H, Chatzidimitriou E, Butler G, Stewart G, Leifert C. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br J Nutr 2016; 115:1043-60. [PMID: 26878105 PMCID: PMC4838834 DOI: 10.1017/s0007114516000349] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/13/2015] [Accepted: 01/08/2016] [Indexed: 01/02/2023]
Abstract
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI -1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI -122, -20) % and 93 (95 % CI -116, -70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Collapse
Affiliation(s)
- Dominika Średnicka-Tober
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
- Department of Functional and Organic Food and Commodities, Faculty of
Human Nutrition and Consumer Sciences, Warsaw University of Life
Sciences, Nowoursynowska 159c, Warsaw
02-776, Poland
| | - Marcin Barański
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Chris J. Seal
- School of Agriculture, Food and Rural Development, Human
Nutrition Research Centre, Newcastle University,
Agriculture Building, Kings Road,
Newcastle upon Tyne NE1 7RU, UK
| | - Roy Sanderson
- School of Biology, Newcastle University,
Ridley Building, Newcastle upon Tyne NE1
7RU, UK
| | - Charles Benbrook
- Benbrook Consulting Services, 90063 Troy Road,
Enterprise, OR 97828, USA
| | - Håvard Steinshamn
- Food and Agriculture Division-Grassland and Forage,
Norwegian Institute of Bioeconomy Research (NIBIO),
Gunnars veg 6, N-6630 Tingvoll,
Norway
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer
Sciences, Warsaw University of Life Sciences,
Nowoursynowska 159c, Warsaw 02-776,
Poland
| | - Ewa Rembiałkowska
- Department of Functional and Organic Food and Commodities, Faculty of
Human Nutrition and Consumer Sciences, Warsaw University of Life
Sciences, Nowoursynowska 159c, Warsaw
02-776, Poland
| | - Krystyna Skwarło-Sońta
- Department of Animal Physiology, Faculty of Biology,
University of Warsaw, Miecznikowa 1,
Warsaw 02-096, Poland
| | - Mick Eyre
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Giulio Cozzi
- Department of Animal Medicine, Production and Health,
University of Padua, Viale dell’ Università
19, 35020 Legnaro, Italy
| | - Mette Krogh Larsen
- Department of Food Science-Food Chemistry & Technology,
Aarhus University, Blichers Allé 20,
Building F20/8845, 8830 Tjele,
Denmark
| | - Teresa Jordon
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Urs Niggli
- Research Institute for Organic Agriculture (FiBL),
Ackerstrasse 113, CH-5070 Frick,
Switzerland
| | - Tomasz Sakowski
- Institute of Genetics and Animal Breeding, Polish
Academy of Science, Jastrzębiec, Postępu 36,
Magdalenka 05-552, Poland
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine,
University of Southampton, Southampton SO16
6YD, UK
| | - Graham C. Burdge
- Human Development and Health Academic Unit, Faculty of Medicine,
University of Southampton, Southampton SO16
6YD, UK
| | - Smaragda Sotiraki
- National Agricultural Research Foundation (NAGREF),
Veterinary Research Institute of Thessaloniki,
Thermi 57001, Thessaloniki,
Greece
| | - Alexandros Stefanakis
- National Agricultural Research Foundation (NAGREF),
Veterinary Research Institute of Thessaloniki,
Thermi 57001, Thessaloniki,
Greece
| | - Sokratis Stergiadis
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
- School of Agriculture, Policy and Development, Centre for
Dairy Research, Food Production and Quality Division,
University of Reading, PO Box 237,
Earley Gate, Reading RG6 6AR,
UK
| | - Halil Yolcu
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
- Kelkit Aydin Vocational Training School, Gumushane
University, 29600 Kelkit, Gumushane,
Turkey
| | - Eleni Chatzidimitriou
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Gillian Butler
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Gavin Stewart
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| | - Carlo Leifert
- Nafferton Ecological Farming Group (NEFG), School of
Agriculture, Food and Rural Development, Newcastle
University, Nafferton Farm,
Stocksfield, Northumberland NE43 7XD,
UK
| |
Collapse
|
36
|
Collins KG, Fitzgerald GF, Stanton C, Ross RP. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar Drugs 2016; 14:E60. [PMID: 26999166 PMCID: PMC4820313 DOI: 10.3390/md14030060] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a "westernised lifestyle" characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Catherine Stanton
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - R Paul Ross
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 2016; 51:377-97. [PMID: 26968402 DOI: 10.1007/s11745-016-4135-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Collapse
|
38
|
Prandini A, Sigolo S, Cerioli C, Piva G. Survey on conjugated linoleic acid (CLA) content and fatty acid composition of Grana Padano cheese produced in different seasons and areas. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Liu WN, Leung KN. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages. PLoS One 2015; 10:e0143684. [PMID: 26629697 PMCID: PMC4667904 DOI: 10.1371/journal.pone.0143684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| |
Collapse
|
40
|
Beppu F, Asanuma M, Kawamura Y, Nagai T, Yoshinaga K, Mizobe H, Kojima K, Kasatani S, Nagao K, Kubo A, Kanda J, Gotoh N. Trans-octadecenoic Acid Positional Isomers Have Different Accumulation and Catabolism Properties in Mice. J Oleo Sci 2015; 64:1159-67. [PMID: 26521809 DOI: 10.5650/jos.ess15139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trans fatty acids (TFA) are considered risk factors for cardiovascular disease (CVD), while the details of distribution and metabolism of the individual isomers are not clear. Here we investigated the accumulation and catabolic rate of TFA positional isomers of octadecenoic acid (18:1) in mice. ICR mice were fed deuterium- and [1-(13)C] stable isotope-labeled trans-9-18:1 (9t-18:1*), trans-10-18:1 (10t-18:1*), or trans-11-18:1 (11t-18:1*) for 2 or 4 weeks, or a TFA mixture (9t-18:1*, 10t-18:1*, and 11t-18:1*) for 3 weeks. Analysis of whole-body tissues by gas chromatography-chemical ionization mass spectrometry revealed the highest 9t-18:1* levels in the heart. Significant differences in the accumulation of the respective trans-18:1 were observed in the heart and erythrocytes, where 9t- > 11t- > 10t-18:1*, but no significant difference was observed in the liver or white adipose tissue (WAT). Mice fed on 11t-18:1 demonstrated accumulation of endogenously synthesized conjugated linoleic acid in the liver, WAT, and heart, but any other metabolites were not found in other groups. Furthermore, we analyzed catabolic rates of single-dose-administered trans-18:1* isomers into [(13)C]-labeled CO2 using isotope-ratio mass spectrometry, and the 10t-18:1*catabolic rate was significantly higher than those of 9t- and 11t-18:1*. We found that the accumulation and catabolism of trans-18:1 positional isomers varied in these mice. Differential accumulation in tissues suggests that individual TFA positional isomers may play different roles in human health.
Collapse
Affiliation(s)
- Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu WN, Leung KN. Jacaric acid inhibits the growth of murine macrophage-like leukemia PU5-1.8 cells by inducing cell cycle arrest and apoptosis. Cancer Cell Int 2015; 15:90. [PMID: 26421001 PMCID: PMC4587716 DOI: 10.1186/s12935-015-0246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
Background Conjugated linolenic acids (CLN) refer to the positional and geometric isomers of octadecatrienoic acids with three conjugated double bonds (C18:3). Previous researches have demonstrated that CLN can inhibit the growth of a wide variety of cancer cells, whereas the modulatory effect of CLN on various myeloid leukemia cells remains unclear. This study aims at demonstrating the in vitro anti-tumor effect and action mechanisms of jacaric acid, a CLN isomer which is present in jacaranda seed oil, on the murine macrophage-like leukemia PU5-1.8 cells. Methods and results It was found that jacaric acid inhibited the proliferation of PU5-1.8 cells in a time- and concentration-dependent manner, as determined by the MTT reduction assay and by using CyQUANT® NF Cell Proliferation Assay Kit, while it exerted minimal cytotoxicity on normal murine cells. Besides, the reactive oxygen species production in jacaric acid-treated PU5-1.8 cells was elevated in a concentration-dependent mannar. Flow cytometric analysis revealed the induction of G0/G1 cell cycle arrest, accompanied by a decrease in CDK2 and cyclin E proteins. Jacaric acid also triggered apoptosis as reflected by induction of DNA fragmentation, phosphatidylserine externalization, mitochondrial membrane depolarization, up-regulation of pro-apoptotic Bax protein and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins. Conclusions Our results demonstrated the growth-inhibitory effect of jacaric acid on PU5-1.8 cells through inducing cell cycle arrest and apoptosis, while exhibiting minimal cytotoxicity to normal murine cells. Therefore, jacaric acid is a potential candidate for the treatment of some forms of myeloid leukemia with minimal toxicity and fewer side effects.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| |
Collapse
|
42
|
Liu WN, Leung KN. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1. Biomed Rep 2015; 3:839-842. [PMID: 26623027 DOI: 10.3892/br.2015.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| |
Collapse
|
43
|
Dos Santos Dias AC, Ruiz N, Couzinet-Mossion A, Bertrand S, Duflos M, Pouchus YF, Barnathan G, Nazih H, Wielgosz-Collin G. The Marine-Derived Fungus Clonostachys rosea, Source of a Rare Conjugated 4-Me-6E,8E-hexadecadienoic Acid Reducing Viability of MCF-7 Breast Cancer Cells and Gene Expression of Lipogenic Enzymes. Mar Drugs 2015; 13:4934-48. [PMID: 26258780 PMCID: PMC4557008 DOI: 10.3390/md13084934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
A marine-derived strain of Clonostachys rosea isolated from sediments of the river Loire estuary (France) was investigated for its high lipid production. The fungal strain was grown on six different culture media to explore lipid production changes. An original branched conjugated fatty acid, mainly present in triglycerides and mostly produced when grown on DCA (23% of total fatty acid composition). It was identified as 4-Me-6E,8E-hexadecadienoic on the basis of spectroscopic analyses. This fatty acid reduced viability of MCF-7 breast cancer cells in a dose dependent manner (up to 63%) at physiological free fatty acid human plasma concentration (100 μM). Reduction of gene expression of two lipogenic enzymes, the acetyl CoA carboxylase (ACC) and the fatty acid synthase (FAS) was evaluated to explore the mechanisms of action of 4-Me-6E,8E-16:2 acid. At 50 μM, 50% and 35% of mRNA gene expression inhibition were observed for ACC and FAS, respectively.
Collapse
Affiliation(s)
- Ana Camila Dos Santos Dias
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Nicolas Ruiz
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Aurélie Couzinet-Mossion
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Samuel Bertrand
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Muriel Duflos
- Faculty of Pharmacy, University of Nantes, IICiMed, 9 Rue Bias, 44000 Nantes, France; E-Mail:
| | - Yves-François Pouchus
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Gilles Barnathan
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Hassan Nazih
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
- Authors to whom correspondence should be addressed; E-Mails: (H.N.); (G.W.-C.); Tel.: +33-272-641-154 (H.N.); +33-276-645-081 (G.W.-C.)
| | - Gaetane Wielgosz-Collin
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
- Authors to whom correspondence should be addressed; E-Mails: (H.N.); (G.W.-C.); Tel.: +33-272-641-154 (H.N.); +33-276-645-081 (G.W.-C.)
| |
Collapse
|
44
|
Mashhadi Z, Boeglin WE, Brash AR. Robust inhibitory effects of conjugated linolenic acids on a cyclooxygenase-related linoleate 10S-dioxygenase: Comparison with COX-1 and COX-2. Biochim Biophys Acta Mol Cell Biol Lipids 2015. [PMID: 26209563 DOI: 10.1016/j.bbalip.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There are many reports of the anti-inflammatory, anti-cancer, and anti-atherosclerotic activities of conjugated linolenic acids (cLNA). They constitute a small percentage of fatty acids in the typical human diet, although up to 80% of the fatty acids in certain fruits such as pomegranate. In the course of studying a bacterial fatty acid dioxygenase (Nostoc linoleate 10S-DOX, an ancient relative of mammalian cyclooxygenases), we detected strong inhibitory activity in a commercial sample of linoleic acid. We identified two cLNA isomers, β-eleostearic (9E,11E,13E-18:3) and β-calendic acid (8E,10E,12E-18:3), as responsible for that striking inhibition with a Ki of ~49nM and ~125nM, respectively, the most potent among eight cLNA tested. We also examined the effects of all eight cLNA on the activity of COX-1 and COX-2. Jacaric acid (8Z,10E,12Z-18:3) and its 12E isomer, 8Z,10E,12E-18:3, strongly inhibit the activity of COX-1 with a Ki of ~1.7 and ~1.1μM, respectively. By contrast, COX-2 was ≤30% inhibited at 10μM concentrations of the cLNA. Identifying the activities of the naturally occurring fatty acids is of interest in terms of understanding their interaction with the enzymes, and for explaining the mechanistic basis of their biological effects. The study also highlights the potential presence of inhibitory fatty acids in commercial lipids prepared from natural sources. Analysis of seven commercial samples of linoleic acid by HPLC and UV spectroscopy is illustrated as supplementary data.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58:40-50. [DOI: 10.1016/j.plipres.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
46
|
Yang M, Wu Y, Jin S, Hou J, Mao Y, Liu W, Shen Y, Wu L. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome. PLoS One 2015; 10:e0118479. [PMID: 25738565 PMCID: PMC4349590 DOI: 10.1371/journal.pone.0118479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/17/2015] [Indexed: 11/27/2022] Open
Abstract
Sapium sebiferum (Linn.) Roxb. (Chinese Tallow Tree) is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA) and triacylglycerol (TAG) biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.
Collapse
Affiliation(s)
- Minglei Yang
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Ying Wu
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Shan Jin
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Jinyan Hou
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Yingji Mao
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Wenbo Liu
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yangcheng Shen
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
- School of Life Science, Anhui University, Hefei, Anhui, People’s Republic of China
| | - Lifang Wu
- Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
Sankaranarayanan S, Selvam G, Srinivasan K. Double bond isomerization of ethyl linoleate and vegetable oils to conjugated derivatives over an LDH supported ruthenium catalyst. RSC Adv 2015. [DOI: 10.1039/c5ra04822b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Isomerization of ethyl linoleate and vegetable oils to conjugated derivatives is achieved over an MgAl-LDH supported ruthenium catalyst under mild reaction conditions.
Collapse
Affiliation(s)
- Sivashunmugam Sankaranarayanan
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Council of Scientific and Industrial Research (CSIR)
- Bhavnagar-364 002
- India
| | - Gobi Selvam
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Council of Scientific and Industrial Research (CSIR)
- Bhavnagar-364 002
- India
| | - Kannan Srinivasan
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Council of Scientific and Industrial Research (CSIR)
- Bhavnagar-364 002
- India
| |
Collapse
|
48
|
Franczyk-Żarów M, Czyżyńska I, Drahun A, Maślak E, Chłopicki S, Kostogrys RB. Margarine supplemented with conjugated linolenic acid (CLnA) has no effect on atherosclerosis but alleviates the liver steatosis and affects the expression of lipid metabolism genes in apoE/LDLR-/-mice. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Magdalena Franczyk-Żarów
- Department of Human Nutrition, Faculty of Food Technology; University of Agriculture; Kraków Poland
| | - Izabela Czyżyńska
- Department of Human Nutrition, Faculty of Food Technology; University of Agriculture; Kraków Poland
| | - Anna Drahun
- Department of Human Nutrition, Faculty of Food Technology; University of Agriculture; Kraków Poland
| | - Edyta Maślak
- Jagiellonian Centre for Experimental Therapeutics (JCET); Kraków Poland
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET); Kraków Poland
| | - Renata B. Kostogrys
- Department of Human Nutrition, Faculty of Food Technology; University of Agriculture; Kraków Poland
| |
Collapse
|
49
|
Shishlyannikov SM, Klimenkov IV, Bedoshvili YD, Mikhailov IS, Gorshkov AG. Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2014; 21:15. [PMID: 25984498 PMCID: PMC4389971 DOI: 10.1186/2241-5793-21-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/26/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Interest in studies concerning the effect of organic carbon sources on the growth of diatoms is largely aimed at subsequent physiological changes occurring in their cells. There are no data on structural changes in the cytoplasm and their relationship with changes in the composition of fatty acids in the course of mixotrophic culturing of freshwater diatoms. To elucidate the role of lipids in the growth of diatom cells in autotrophic and mixotrophic cultures, it is necessary to obtain information on the distribution of fatty acids among intracellular compartments and on possible ultrastructural changes in the cells. RESULTS In this study, the results demonstrated that Synedra acus cells cultured in the presence of 80 mM glycerol contained lipid bodies of increased size, while cells from cultures supplemented with 40 mM glucose accumulated polysaccharide (chrysolaminarin) granules. An increase in the relative amounts of palmitic and stearic acids was revealed at the exponential growth phase of S. acus in the medium with 80 mM glycerol, which was indicative of the accumulation of fatty acids contained in triacylglycerols. CONCLUSIONS Synedra acus subsp. radians have an ability to proliferate in the presence of high concentrations of organic substances and their transport into cells is evidence for its high adaptation potential, which, along with other factors, accounts for the dominance of this diatom in the spring-summer plankton of the oligotrophic Lake Baikal.
Collapse
Affiliation(s)
- Sergey M Shishlyannikov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3, Ulan-Batorskaya, St, P.O. Box 278, Irkutsk, 664033 Russia
| | - Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3, Ulan-Batorskaya, St, P.O. Box 278, Irkutsk, 664033 Russia
| | - Yekaterina D Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3, Ulan-Batorskaya, St, P.O. Box 278, Irkutsk, 664033 Russia
| | - Ivan S Mikhailov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3, Ulan-Batorskaya, St, P.O. Box 278, Irkutsk, 664033 Russia
| | - Alexander G Gorshkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3, Ulan-Batorskaya, St, P.O. Box 278, Irkutsk, 664033 Russia
| |
Collapse
|
50
|
Koba K, Yanagita T. Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract 2014; 8:e525-32. [DOI: 10.1016/j.orcp.2013.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|