1
|
Wu J, Gao A, Wang B, Yang Y, Li N, Zhang H. Cloning and Expression of the Isoprocarb Hydrolase Gene cehA from the Newly Isolated Isoprocarb-Degrading Strain Sphingobium sp. R-7. Curr Microbiol 2025; 82:239. [PMID: 40208354 DOI: 10.1007/s00284-025-04183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
To remove the isoprocarb residues from the environment, a bacterial strain that was capable of degrading isoprocarb was isolated from agricultural soils where isoprocarb has been applied for a long period, and named R-7. On the basis of its cellular morphology and phenotypic features and 16S rRNA phylogenetic analysis, strain R-7 was preliminarily identified as Sphingobium sp. This strain could grow on isoprocarb as a sole carbon source and degrade 98.3% of 0.5 mM of isoprocarb within 16 h in batch liquid culture. The metabolite produced was identified as 2-isopropylphenol by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) analysis. Strain R-7 hydrolysed the ester bond of isoprocarb to generate 2-isopropylphenol, but this metabolite was not further degraded. Upon the genome comparison, the isoprocarb hydrolase gene cehA was cloned from strain R-7 and expressed in Escherichia coli BL21. The purified CehAR-7 displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and kcat values of CehAR-7 for isoprocarb were 169.12 ± 7.74 µmol L-1 and 347 ± 17.73 min-1, respectively. CehAR-7 could hydrolyse carbaryl and isoprocarb efficiently, although its ability to hydrolyse carbofuran, oxamyl and methomyl was poor. In conclusion, this study provided an efficient isoprocarb-degrading microorganism, and identified the isoprocarb hydrolase CehA from strain R-7, which has potential applications for microbial remediation of isoprocarb-polluted environments.
Collapse
Affiliation(s)
- Jing Wu
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Ao Gao
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Bohan Wang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Yingxin Yang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| | - Na Li
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China.
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Hao Zhang
- College of Life Science, Nanyang Normal University, Nanyang, 473061, Henan, China
| |
Collapse
|
2
|
Zhu Q, Liu H, Pan K, Zhu W, Qiao Y, Li Q, Hu J, Zhang M, Qiu J, Yan X, Ge J, Hong Q. The novel hydrolase IpcH initiates the degradation of isoprocarb in a newly isolated strain Rhodococcus sp. D-6. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135045. [PMID: 38944990 DOI: 10.1016/j.jhazmat.2024.135045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 μM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wanhe Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yihui Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
3
|
Zhu Q, Pan K, Liu H, Hu J, Li Q, Bai X, Zhang M, Qiu J, Hong Q. Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131924. [PMID: 37379601 DOI: 10.1016/j.jhazmat.2023.131924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 μM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
4
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol 2022; 106:5973-5986. [PMID: 36063179 DOI: 10.1007/s00253-022-12141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.
Collapse
Affiliation(s)
- Minwen Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Zhang M, Bai X, Li Q, Zhang L, Zhu Q, Gao S, Ke Z, Jiang M, Hu J, Qiu J, Hong Q. Functional analysis, diversity, and distribution of carbendazim hydrolases MheI and CbmA, responsible for the initial step in carbendazim degradation. Environ Microbiol 2022; 24:4803-4817. [PMID: 35880585 DOI: 10.1111/1462-2920.16139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
Abstract
Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbor the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 μM-1 min-1 ) was 200 times more than that of CbmA (0.032-0.21 μM-1 min-1 ). The mheI gene (plasmid encoded) was highly conserved (> 99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xuekun Bai
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Lu Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
7
|
Jiang Z, Qu L, Song G, Liu J, Zhong G. The Potential Binding Interaction and Hydrolytic Mechanism of Carbaryl with the Novel Esterase PchA in Pseudomonas sp. PS21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2136-2145. [PMID: 35147028 DOI: 10.1021/acs.jafc.1c06465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial bioremediation is a very potent and eco-friendly approach to alleviate pesticide pollution in agricultural ecosystems, and hydrolase is an effective element for contaminant degradation. In the present study, a novel Mn2+-dependent esterase, PchA, that efficiently hydrolyzes carbamate pesticides with aromatic structures was identified from Pseudomonas sp. PS21. The hydrolytic activity was confirmed to be related closely to the core catalytic domain, which consists of six residues. The crucial residues indirectly stabilized the position of carbaryl via chelating Mn2+ according to the binding model clarified by molecular simulations, and the additional hydrophobic interactions between carbaryl with several hydrophobic residues also stabilized the binding conformation. The residue Glu398, by serving as the general base, might activate a water molecule and facilitate PchA catalysis. This work offers valuable insights into the binding interaction and hydrolytic mechanism of carbaryl with the hydrolase PchA and will be crucial to designing strategies leading to the protein variants that are capable of degrading related contaminants.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Liwen Qu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
8
|
Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of carbamates. CHEMOSPHERE 2021; 279:130500. [PMID: 33892453 DOI: 10.1016/j.chemosphere.2021.130500] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
10
|
Bhatt P, Zhou X, Huang Y, Zhang W, Chen S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125026. [PMID: 33461010 DOI: 10.1016/j.jhazmat.2020.125026] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Ester-containing organophosphate, carbamate, and pyrethroid (OCP) pesticides are used worldwide to minimize the impact of pests and increase agricultural production. The toxicity of these chemicals to humans and other organisms has been widely reported. Chemically, these pesticides share an ester bond in their parent structures. A particular group of hydrolases, known as esterases, can catalyze the first step in ester-bond hydrolysis, and this initial regulatory metabolic reaction accelerates the degradation of OCP pesticides. Esterases can be naturally found in plants, animals, and microorganisms. Previous research on the esterase enzyme mechanisms revealed that the active sites of esterases contain serine residues that catalyze reactions via a nucleophilic attack on the substrates. In this review, we have compiled the previous research on esterases from different sources to determine and summarize the current knowledge of their properties, classifications, structures, mechanisms, and their applications in the removal of pesticides from the environment. This review will enhance the understanding of the scientific community when studying esterases and their applications for the degradation of broad-spectrum ester-containing pesticides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
11
|
Carbamate C-N Hydrolase Gene ameH Responsible for the Detoxification Step of Methomyl Degradation in Aminobacter aminovorans Strain MDW-2. Appl Environ Microbiol 2020; 87:AEM.02005-20. [PMID: 33097501 DOI: 10.1128/aem.02005-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Methomyl {bis[1-methylthioacetaldehyde-O-(N-methylcarbamoyl)oximino]sulfide} is a highly toxic oxime carbamate insecticide. Several methomyl-degrading microorganisms have been reported so far, but the role of specific enzymes and genes in this process is still unexplored. In this study, a protein annotated as a carbamate C-N hydrolase was identified in the methomyl-degrading strain Aminobacter aminovorans MDW-2, and the encoding gene was termed ameH A comparative analysis between the mass fingerprints of AmeH and deduced proteins of the strain MDW-2 genome revealed AmeH to be a key enzyme of the detoxification step of methomyl degradation. The results also demonstrated that AmeH was a functional homodimer with a subunit molecular mass of approximately 34 kDa and shared the highest identity (27%) with the putative formamidase from Schizosaccharomyces pombe ATCC 24843. AmeH displayed maximal enzymatic activity at 50°C and pH 8.5. Km and k cat of AmeH for methomyl were 87.5 μM and 345.2 s-1, respectively, and catalytic efficiency (k cat/Km ) was 3.9 μM-1 s-1 Phylogenetic analysis revealed AmeH to be a member of the FmdA_AmdA superfamily. Additionally, five key amino acid residues (162, 164, 191, 193, and 207) of AmeH were identified by amino acid variations.IMPORTANCE Based on the structural characteristic, carbamate insecticides can be classified into oxime carbamates (methomyl, aldicarb, oxamyl, etc.) and N-methyl carbamates (carbaryl, carbofuran, isoprocarb, etc.). So far, research on the degradation of carbamate pesticides has mainly focused on the detoxification step and hydrolysis of their carbamate bond. Several genes, such as cehA, mcbA, cahA, and mcd, and their encoding enzymes have also been reported to be involved in the detoxification step. However, none of these enzymes can hydrolyze methomyl. In this study, a carbamate C-N hydrolase gene, ameH, responsible for the detoxification step of methomyl in strain MDW-2 was cloned and the key amino acid sites of AmeH were investigated. These findings provide insight into the microbial degradation mechanism of methomyl.
Collapse
|
12
|
Zhou Y, Ke Z, Ye H, Hong M, Xu Y, Zhang M, Jiang W, Hong Q. Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation in Rhizobium sp. X9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14739-14747. [PMID: 33264024 DOI: 10.1021/acs.jafc.0c03845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbaryl is a widely used carbamate pesticide in agriculture. The strain Rhizobium sp. X9 possesses the typical carbaryl degradation pathway in which carbaryl is mineralized via 1-naphthol, salicylate, and gentisate. In this study, we cloned a carbaryl hydrolase gene cehA and a novel two-component 1-naphthol hydroxylase gene cehC1C2. CehA mediates carbaryl hydrolysis to 1-naphthol and CehC1, an FMNH2 or FADH2-dependent monooxygenase belonging to the HpaB superfamily, and hydroxylates 1-naphthol in the presence of reduced nicotinamide-adenine dinucleotide (FMN)/flavin adenine dinucleotide (FAD), and the reductase CehC2. CehC1 has the highest amino acid similarity (58%) with the oxygenase component of a two-component 4-nitrophenol 2-monooxygenase, while CehC2 has the highest amino acid similarity (46%) with its reductase component. CehC1C2 could utilize both FAD and FMN as the cofactor during the hydroxylation, although higher catalytic activity was observed with FAD as the cofactor. The optimal molar ratio of CehC1 to CehC2 was 2:1. The Km and Kcat/Km values of CehC1 for 1-naphthol were 74.71 ± 16.07 μM and (8.29 ± 2.44) × 10-4 s-1·μM-1, respectively. Moreover, the enzyme activities and substrate spectrum between CehC1C2 and previously reported 1-naphthol hydroxylase McbC were compared. The results suggested that McbC had a higher 1-naphthol hydroxylation activity, while CehC1C2 had a broader substrate spectrum.
Collapse
Affiliation(s)
- Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hangting Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yifei Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
13
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
14
|
Gaytán I, Sánchez-Reyes A, Burelo M, Vargas-Suárez M, Liachko I, Press M, Sullivan S, Cruz-Gómez MJ, Loza-Tavera H. Degradation of Recalcitrant Polyurethane and Xenobiotic Additives by a Selected Landfill Microbial Community and Its Biodegradative Potential Revealed by Proximity Ligation-Based Metagenomic Analysis. Front Microbiol 2020; 10:2986. [PMID: 32038514 PMCID: PMC6987047 DOI: 10.3389/fmicb.2019.02986] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives (N-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, C-C, and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome, genes encoding known enzymes, and putative enzymes and metabolic pathways accounting for the biodegradative activity of the BP8 community over the additives and PE-PU-A copolymer were identified. This is the first study revealing the genetically encoded potential biodegradative capability of a microbial community selected from a landfill, that thrives within a WPUD system and shows potential for bioremediation of polyurethane- and xenobiotic additives-contamitated sites.
Collapse
Affiliation(s)
- Itzel Gaytán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ayixon Sánchez-Reyes
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Burelo
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martín Vargas-Suárez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | - M. Javier Cruz-Gómez
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Fareed A, Riaz S, Nawaz I, Iqbal M, Ahmed R, Hussain J, Hussain A, Rashid A, Naqvi TA. Immobilized cells of a novel bacterium increased the degradation of N-methylated carbamates under low temperature conditions. Heliyon 2019; 5:e02740. [PMID: 31768430 PMCID: PMC6872827 DOI: 10.1016/j.heliyon.2019.e02740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Carbamates are synthetic pesticides, extensively used throughout the world due to their broad specificity against various insect pests. However, their enormous and inadequate use have made them a potential threat to the environment. At low temperature, degradation of carbamates becomes difficult mainly because of low biological activity. In the present study, we isolated a bacterial strain from a low temperature climate where the N-methylated carbamates are used for crop protection. The bacterium, was identified as Pseudomonas plecoglossicida strain (TA3) by 16S rRNA analysis. Degradation experiments with both free and immobilized cells in minimal salt medium indicated that the strain TA3 utilized carbaryl, carbofuran and aldicarb as both carbon and nitrogen source. TA3 can grow well at 4 °C and demonstrated the ability to degrade three carbamates (50 μgml-1) at low temperature. The immobilized cells were found more efficient than their free cells counter parts. Immobilized cells has ability to degrade 100% of carbamates at 30 °C while 80% at 4 °C but incase of their free cells counter parts the efficiency to degrade carbamates was less which was 60% at 4 °C and 80% at 30 °C. TA3 free cellsextract also depicted high activity against all the three carbamates even at 4 °C indicating a possible enzymatic mechanism of degradation.
Collapse
Affiliation(s)
- Anum Fareed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sania Riaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Ismat Nawaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raza Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Azhar Hussain
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Azhar Rashid
- Pakistan Atomic Energy Commission, Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
- Corresponding author.
| |
Collapse
|
16
|
Zhu S, Qiu J, Wang H, Wang X, Jin W, Zhang Y, Zhang C, Hu G, He J, Hong Q. Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1126-1135. [PMID: 30216972 DOI: 10.1016/j.jhazmat.2017.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Carbamate hydrolase is the initial and key enzyme for degradation of carbamate pesticides. In the present study, we report the isolation of a carbaryl-degrading strain Pseudomonas sp. XWY-1, the cloning of its carbaryl hydrolase gene (mcbA) and the characterization of McbA. Strain XWY-1 was able to utilize carbaryl as a sole carbon source and degrade it using 1-naphthol as an intermediate. Transposon mutagenesis identified a mutant of XWY-1M that was unable to hydrolyze carbaryl. The transposon-disrupted gene mcbA was cloned by self-formed adaptor PCR, then expressed in Escherichia coli BL21(DE3) and purified. McbA was able to hydrolyze carbamate pesticides including carbaryl, isoprocarb, fenobucarb, carbofuran efficiently, while it hydrolyzed aldicarb, and propoxur poorly. The optimal pH of McbA was 7.0 and the optimal temperature was 40°C. The apparent Km and kcat values of McbA for carbaryl were 77.67±12.31μM and 2.12±0.10s-1, respectively. Three amino acid residues (His467, His477 and His504) in the predicted polymerase/histidinol phosphatase-like domain were shown to be closely related to the activity of McbA, with His504 being the most important, as a replacement of His504 led to the complete loss of activity. This is the first study to identify key amino acids in McbA.
Collapse
Affiliation(s)
- Shijun Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiang Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wen Jin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yingkun Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chenfei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Gang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
17
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
18
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
19
|
Trivedi VD, Jangir PK, Sharma R, Phale PS. Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci Rep 2016; 6:38430. [PMID: 27924916 PMCID: PMC5141477 DOI: 10.1038/srep38430] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.
Collapse
Affiliation(s)
- Vikas D Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod Kumar Jangir
- Microbial Biotechnology and Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Rakesh Sharma
- Microbial Biotechnology and Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Rousidou C, Karaiskos D, Myti D, Karanasios E, Karas PA, Tourna M, Tzortzakakis EA, Karpouzas DG. Distribution and function of carbamate hydrolase genescehAandmcdin soils: the distinct role of soil pH. FEMS Microbiol Ecol 2016; 93:fiw219. [DOI: 10.1093/femsec/fiw219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
|
21
|
Öztürk B, Ghequire M, Nguyen TPO, De Mot R, Wattiez R, Springael D. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene. Environ Microbiol 2016; 18:4878-4887. [PMID: 27312345 DOI: 10.1111/1462-2920.13409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Carbofuran-mineralizing strain Novosphingobium sp. KN65.2 produces the CfdJ enzyme that converts the N-methylcarbamate insecticide to carbofuran phenol. Purified CfdJ shows a remarkably low KM towards carbofuran. Together with the carbaryl hydrolase CehA of Rhizobium sp. strain AC100, CfdJ represents a new protein family with several uncharacterized bacterial members outside the proteobacteria. Although both enzymes differ by only four amino acids, CehA does not recognize carbofuran as a substrate whereas CfdJ also hydrolyzes carbaryl. None of the CfdJ amino acids that differ from CehA were shown to be silent regarding carbofuran hydrolytic activity but one particular amino acid substitution, i.e., L152 to F152, proved crucial. CfdJ is more efficient in degrading methylcarbamate pesticides with an aromatic side chain whereas CehA is more efficient in degrading the oxime carbamate nematicide oxamyl. The presence of common flanking sequences suggest that the cfdJ gene is located on a remnant of the mobile genetic element Tnceh carrying cehA. Our results suggest that these enzymes can be acquired through horizontal gene transfer and can evolve to degrade new carbamate substrates by limited amino acid substitutions. We demonstrate that a carbaryl hydrolase can gain the additional capacity to degrade carbofuran by a single nucleotide transversion.
Collapse
Affiliation(s)
- Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
| | - Maarten Ghequire
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Thi Phi Oanh Nguyen
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium.,Department of Biology, College of Natural Sciences, Cantho University, Vietnam
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Mons, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Rousidou K, Chanika E, Georgiadou D, Soueref E, Katsarou D, Kolovos P, Ntougias S, Tourna M, Tzortzakakis EA, Karpouzas DG. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene. Front Microbiol 2016; 7:616. [PMID: 27199945 PMCID: PMC4850150 DOI: 10.3389/fmicb.2016.00616] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/14/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial degradation is the main process controlling the environmental dissipation of the nematicide oxamyl. Despite that, little is known regarding the microorganisms involved in its biotransformation. We report the isolation of four oxamyl-degrading bacterial strains from an agricultural soil exhibiting enhanced biodegradation of oxamyl. Multilocus sequence analysis (MLSA) assigned the isolated bacteria to different subgroups of the genus Pseudomonas. The isolated bacteria hydrolyzed oxamyl to oxamyl oxime, which was not further transformed, and utilized methylamine as a C and N source. This was further supported by the detection of methylamine dehydrogenase in three of the four isolates. All oxamyl-degrading strains carried a gene highly homologous to a carbamate-hydrolase gene cehA previously identified in carbaryl- and carbofuran-degrading strains. Transcription analysis verified its direct involvement in the hydrolysis of oxamyl. Selected isolates exhibited relaxed degrading specificity and transformed all carbamates tested including the oximino carbamates aldicarb and methomyl (structurally related to oxamyl) and the aryl-methyl carbamates carbofuran and carbaryl which share with oxamyl only the carbamate moiety.
Collapse
Affiliation(s)
- Konstantina Rousidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Eleni Chanika
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Dafne Georgiadou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Eftychia Soueref
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Demetra Katsarou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Panagiotis Kolovos
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of ThraceXanthi, Greece
| | - Maria Tourna
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| | - Emmanuel A. Tzortzakakis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, National Agricultural Research Foundation, Hellenic Agricultural Organization-DEMETERHeraklion, Greece
| | - Dimitrios G. Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of ThessalyLarisa, Greece
| |
Collapse
|
23
|
Lavrov KV, Novikov AD, Ryabchenko LE, Yanenko AS. Expression of acylamidase gene in Rhodococcus erythropolis strains. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414090087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Appl Microbiol Biotechnol 2014; 98:8235-52. [DOI: 10.1007/s00253-014-5858-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022]
|
25
|
Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils. Biodegradation 2013; 25:383-94. [PMID: 24197220 DOI: 10.1007/s10532-013-9667-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Forty-five fenobucarb-degrading bacteria were isolated from rice paddy soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize fenobucarb as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that all the isolates were related to members of the genera Sphingobium and Novosphingobium. Among 45 isolates, 21 different chromosomal DNA fingerprinting patterns were obtained. All these strains exhibited similar growth and degradation patterns on fenobucarb. 2-sec-butylphenol was identified as an intermediate during fenobucarb degradation by HPLC analysis. All of the isolates were able to degrade another carbamate insecticide, carbaryl, and 2-sec-butylphenol, but not other fenobucarb related compounds such as aldicarb and fenoxycarb. Representative strains of the different repetitive extragenic palindromic sequence PCR fingerprint types had one to six plasmids. The plasmid-cured strains lost their degradation abilities, suggesting that fenobucarb degradative genes were on their plasmid DNAs in these strains. When analyzed with PCR amplification using the primers targeting for the previously reported carbamate hydrolase genes, most of the isolates did not exhibit any positive signals for different genes involved in carbamate degradation such as mcd, cahA and cehA genes. This is the first report that microorganisms involved in the degradation of fenobucarb have been isolated and the intermediate of fenobucarb biodegradation was identified.
Collapse
|
26
|
Lavrov KV, Yanenko AS. Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413070090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
28
|
Zhang Q, Wang B, Cao Z, Yu Y. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:178-84. [PMID: 22560241 DOI: 10.1016/j.jhazmat.2012.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 05/07/2023]
Abstract
To overcome the poor survival and low activity of the bacteria used for bioremediation, a plasmid-mediated bioaugmentation method was investigated, which could result in a persistent capacity for the degradation of chlorpyrifos in soil. The results indicate that the pDOC plasmid could transfer into soil bacteria, including members of the Pseudomonas and Staphylococcus genera. The soil bacteria acquired the ability to degrade chlorpyrifos within 5 days of the transfer of pDOC. The efficiency of the pDOC transfer in the soil, as measured by the chlorpyrifos degradation efficiency and the most probable number (MPN) of chlorpyrifos degraders, was influenced by the soil temperature, moisture level and type. The best performance for the transfer of pDOC was observed under conditions of 30°C and 60% water-holding capacity (WHC). The results presented in this paper show that the transfer of pDOC can enhance the degradation of chlorpyrifos in various soils, although the degradation efficiency did vary with the soil type. It may be concluded that the introduction of plasmids encoding enzymes that can degrade xenobiotics or donor strains harboring these plasmids is an alternative approach in bioaugmentation.
Collapse
Affiliation(s)
- Qun Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | |
Collapse
|
29
|
Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides. Appl Environ Microbiol 2012; 78:4848-55. [PMID: 22544249 DOI: 10.1128/aem.00320-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40°C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50°C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with K(m) and k(cat) values of 29.5 μM and 49.2 s(-1), respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments.
Collapse
|
30
|
Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 2011; 4:225-48. [PMID: 25567970 PMCID: PMC3352558 DOI: 10.1111/j.1752-4571.2010.00175.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022] Open
Abstract
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from 'promiscuous' activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments.
Collapse
Affiliation(s)
| | - Colin Scott
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | - Rinku Pandey
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | | | | | - Jian-Wei Liu
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | |
Collapse
|
31
|
Naqvi T, Cheesman MJ, Williams MR, Campbell PM, Ahmed S, Russell RJ, Scott C, Oakeshott JG. Heterologous expression of the methyl carbamate-degrading hydrolase MCD. J Biotechnol 2009; 144:89-95. [DOI: 10.1016/j.jbiotec.2009.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/01/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022]
|
32
|
Ni Y, Xiao W, Kokot S. Application of chemometrics methods for the simultaneous kinetic spectrophotometric determination of aminocarb and carbaryl in vegetable and water samples. JOURNAL OF HAZARDOUS MATERIALS 2009; 168:1239-1245. [PMID: 19349118 DOI: 10.1016/j.jhazmat.2009.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/15/2009] [Accepted: 03/02/2009] [Indexed: 05/27/2023]
Abstract
A procedure for the simultaneous kinetic spectrophotometric determination of aminocarb and carbaryl in vegetable and water samples was described. The method was based on the differential oxidation rate of aminocarb and carbaryl when they were reacted with the oxidant, potassium ferricyanide (K(3)Fe(CN)(6)), in an appropriate alkaline medium. Both species were instantly oxidized, and resulted in a decrease of ferricyanide concentration. This anion has a maximum spectral absorbance at about 420 nm. Under the optimum experimental conditions, the linear ranges were 0.05-0.6 mg L(-1) and 0.1-1.2 mg L(-1) for aminocarb and carbaryl, respectively. The kinetic data collected were processed by chemometrics methods, such as classical least squares (CLS), partial least squares (PLS), principal components regression (PCR), back propagation-artificial neural network (BP-ANN), radial basis function-artificial neural network (RBF-ANN), and principal component-radial basis function-artificial neural network (PC-RBF-ANN). These methods were applied for the prediction of the two carbamate pesticides. The results showed that the PLS and PC-RBF-ANN calibration models gave the lowest prediction errors. The proposed method was successfully applied to the simultaneous determination of aminocarb and carbaryl in vegetable and water samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Yongnian Ni
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | | | | |
Collapse
|
33
|
Yan QX, Hong Q, Han P, Dong XJ, Shen YJ, Li SP. Isolation and characterization of a carbofuran-degrading strainNovosphingobiumsp. FND-3. FEMS Microbiol Lett 2007; 271:207-13. [PMID: 17425661 DOI: 10.1111/j.1574-6968.2007.00718.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A gram-negative Novosphingobium sp. strain FND-3 capable of degrading carbofuran was isolated and characterized. The carbofuran-degrading ability of strain FND-3 was investigated under various culture conditions. Strain FND-3 showed a high average carbofuran-degrading rate of 28.6 mg L(-1) h(-1) in mineral salts medium with 100 mg L(-1) carbofuran. GC/MS analysis pointed out the presence of several unknown metabolites. One hydrolyzate was identified as 2-hydroxy-3-(3-methypropan-2-ol) phenol via hydrolysis of carbofuran phenol. The appearance of another metabolite with M(+) of 180 m/z indicated that the hydroxylation of carbofuran occurred at the aromatic ring. One novel degrading product with M(+) of 239 m/z was identified as 2-hydroxy-3-(3-methylpropan-2-ol) benzene-N-methylcarbamate via hydrolyzing at the ether bond of furanyl ring of carbofuran. Strain FND-3 was also able to degrade other N-methylcarbamate pesticides.
Collapse
Affiliation(s)
- Qiu-Xiang Yan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|