1
|
Wu Z, Xue X. Analysis of structural and metabolic changes in surface microorganisms following powdery mildew infection in wheat and assessment of their potential function in biological control. PLoS One 2025; 20:e0320682. [PMID: 40261875 PMCID: PMC12013872 DOI: 10.1371/journal.pone.0320682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/23/2025] [Indexed: 04/24/2025] Open
Abstract
Powdery mildew is a highly destructive disease that greatly reduces both the yield and quality of wheat. As there is limited research on changes in microorganism community caused by powdery mildew infection in different tissue parts, especially after spike infection, this study aimed to examine surface microorganisms in infected and healthy wheat plants. Samples were collected from the leaves and spikes, and the number of operational taxonomic units (OTUs), diversity index, abundance, and metabolic changes of the surface microbial community were analysed using 16S rRNA amplicon sequencing technology. Through the identification of surface microbial community in different tissues, 24 phyla were identified in the leaves, and 20 phyla were identified in the spikes. The dominant bacterial phyla observed were Proteobacteria and Bacteroidetes. At the genus level, 19 genera were detected in the leaves, and 11 genera were detected in the spikes. Notably, the total number of genera in the leaves exceeded that in the spikes. The dominant genera were Pseudomonas, Sphingomonas, and Pantoea. At the species level, there were 37 types identified in leaves and 35 types in spikes. The dominant bacterial species identified included Pedobacterium panaciterrae, Pseudomonas baetica, Pseudomonas rhizophaerae, and Sphingomonas aerolata. The analysis conducted in this study revealed that the incidence of powdery mildew was greater in plots situated closer to obstacles than in other plots. Notably, when wheat was infected with powdery mildew, the results indicated that surface microorganisms on both leaves and spikes were significantly impacted, with the response of surface microorganisms on the spikes being more pronounced than that on the leaves. Different from the response of microorganisms on the leaf surface, after infection with powdery mildew, the pathway changes of microorganisms on the spike surface are mainly metabolic regulation. These research results provide theoretical support for the prevention and control of powdery mildew in wheat crops.
Collapse
Affiliation(s)
- Zhen Wu
- School of Biomedicine and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Xiaodong Xue
- School of Biomedicine and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
- Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| |
Collapse
|
2
|
Gan CM, Tang T, Zhang ZY, Li M, Zhao XQ, Li SY, Yan YW, Chen MX, Zhou X. Unraveling the Intricacies of Powdery Mildew: Insights into Colonization, Plant Defense Mechanisms, and Future Strategies. Int J Mol Sci 2025; 26:3513. [PMID: 40331988 PMCID: PMC12027038 DOI: 10.3390/ijms26083513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Powdery mildew, a debilitating phytopathogen caused by biotrophic fungi within the order Erysiphales, endangers crop yields and global food security. Although traditional approaches have largely emphasized resistant cultivar development and chemical control, novel strategies are necessary to counter the advent of challenges, such as pathogen adaptation and climate change. This review fully discusses three principal areas of pathogen effector functions, e.g., the reactive oxygen species (ROS)-suppressive activity of CSEP087, and host susceptibility factors, like vesicle trafficking regulated by Mildew Locus O (MLO). It also briefly mentions the transcriptional regulation of resistance genes mediated by factors, like WRKY75 and NAC transcription factors, and post-transcriptional regulation via alternative splicing (As). In addition, this discussion discusses the intricate interactions among powdery mildew, host plants, and symbiotic microbiomes thereof, highlighting the mechanism through which powdery mildew infections disrupt the foliar microbiota balance. Lastly, we present a new biocontrol approach that entails synergistic microbial consortia, such as combinations of Bacillus and Trichoderma, to induce plant immunity while minimizing fungicide dependency. Through the study of combining knowledge of molecular pathogenesis with ecological resilience, this research offers useful insights towards climate-smart crop development and sustainable disease-management strategies in the context of microbiome engineering.
Collapse
Affiliation(s)
- Chun-Mei Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Ting Tang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Zi-Yu Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Mei Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Xiao-Qiong Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Shuang-Yu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Ya-Wen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Mo-Xian Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| |
Collapse
|
3
|
De Mandal S, Jeon J. Phyllosphere Microbiome in Plant Health and Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3481. [PMID: 37836221 PMCID: PMC10575124 DOI: 10.3390/plants12193481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The phyllosphere refers to the aboveground surface of plants colonized by diverse microorganisms. Microbes inhabiting this environment play an important role in enhancing the host's genomic and metabolic capabilities, including defense against pathogens. Compared to the large volume of studies on rhizosphere microbiome for plant health and defense, our understanding of phyllosphere microbiome remains in its infancy. In this review, we aim to explore the mechanisms that govern the phyllosphere assembly and their function in host defence, as well as highlight the knowledge gaps. These efforts will help develop strategies to harness the phyllosphere microbiome toward sustainable crop production.
Collapse
Affiliation(s)
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Luo K, Zhao G, Chen M, Tian X. Effects of maize resistance and leaf chemical substances on the structure of phyllosphere fungal communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1241055. [PMID: 37645458 PMCID: PMC10461017 DOI: 10.3389/fpls.2023.1241055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well known that plant genotype can regulate phyllosphere fungi at the species level. However, little is known about how plant varieties shape the fungal communities in the phyllosphere. In this study, four types of maize varieties with various levels of resistances to Exserohilum turcicum were subjected to high-throughput sequencing to reveal the properties that influences the composition of phyllosphere fungal communities. The dominant fungi genera for all four maize varieties were Alternaria at different relative abundances, followed by Nigrospora. Hierarchical clustering analysis, non-metric multidimensional scaling and similarity analysis confirmed that the fungal communities in the phyllosphere of the four varieties were significantly different and clustered into the respective maize variety they inhabited. The findings from Redundancy Analysis (RDA) indicated that both maize resistance and leaf chemical constituents, including nitrogen, phosphorus, tannins, and flavonoids, were the major drivers in determining the composition of phyllosphere fungal communities. Among these factors, maize resistance was found to be the most influential, followed by phosphorus. The co-occurrence network of the fungal communities in the phyllosphere of highly resistant variety had higher complexity, integrity and stability compared to others maize varieties. In a conclusion, maize variety resistance and leaf chemical constituents play a major role in shaping the phyllosphere fungal community. The work proposes a link between the assembled fungal communities within the phyllosphere with maize variety that is resistant to pathogenic fungi infection.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Agricultural University, Changsha, Hunan, China
| | - Gonghua Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengfei Chen
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
5
|
Dubey A, Malla MA, Kumar A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Braz J Microbiol 2022; 53:1355-1370. [PMID: 35415800 PMCID: PMC9433584 DOI: 10.1007/s42770-022-00746-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20-34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria (27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrification, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had higher functional activity (strong association with the Shannon-Wiener index, richness index, and hydrocarbon consumption) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean comprises of beneficial bacterial population over susceptible varieties.
Collapse
Affiliation(s)
- Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Muneer Ahmad Malla
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
6
|
Schäfer M, Vogel CM, Bortfeld-Miller M, Mittelviefhaus M, Vorholt JA. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat Microbiol 2022; 7:856-867. [DOI: 10.1038/s41564-022-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
|
7
|
Unlocking the Changes of Phyllosphere Fungal Communities of Fishscale Bamboo (Phyllachora heterocladae) under Rhombic-Spot Disease Stressed Conditions. FORESTS 2022. [DOI: 10.3390/f13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an important nonwood bioresource, fishscale bamboo (Phyllachora heterocladae Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited knowledge about how rhombic-spot disease influences the diversity and structures of phyllosphere fungal communities. In this study, we investigated the phyllosphere fungal communities from stems, branches, and leaves of fishscale bamboo during a rhombic-spot disease outbreak using 18S rRNA sequencing. We found that only the phyllosphere fungal community from stems was significantly affected by pathogen invasion in terms of community richness, diversity, and structure. FUNGuild analysis revealed that the major classifications of phyllosphere fungi based on trophic modes in stems, branches, and leaves changed from symbiotroph-pathotroph, no obvious dominant trophic mode, and symbiotroph to saprotroph, saprotroph–pathotroph–symbiotroph, and saprotroph–symbiotroph, respectively, after pathogen invasion. The fungal community composition of the three tissues displayed significant differences at the genus level between healthy and diseased plants. The associations among fungal species in diseased samples showed more complex co-occurrence network structures than those of healthy samples. Taken together, our results highlight the importance of plant pathological conditions for the assembly of phyllosphere fungal communities in different tissues.
Collapse
|
8
|
|
9
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
10
|
Schlechter RO, Miebach M, Remus-Emsermann MN. Driving factors of epiphytic bacterial communities: A review. J Adv Res 2019; 19:57-65. [PMID: 31341670 PMCID: PMC6630024 DOI: 10.1016/j.jare.2019.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteria establish complex, compositionally consistent communities on healthy leaves. Ecological processes such as dispersal, diversification, ecological drift, and selection as well as leaf surface physicochemistry and topology impact community assembly. Since the leaf surface is an oligotrophic environment, species interactions such as competition and cooperation may be major contributors to shape community structure. Furthermore, the plant immune system impacts on microbial community composition, as plant cells respond to bacterial molecules and shape their responses according to the mixture of molecules present. Such tunability of the plant immune network likely enables the plant host to differentiate between pathogenic and non-pathogenic colonisers, avoiding costly immune responses to non-pathogenic colonisers. Plant immune responses are either systemically distributed or locally confined, which in turn affects the colonisation pattern of the associated microbiota. However, how each of these factors impacts the bacterial community is unclear. To better understand this impact, bacterial communities need to be studied at a micrometre resolution, which is the scale that is relevant to the members of the community. Here, current insights into the driving factors influencing the assembly of leaf surface-colonising bacterial communities are discussed, with a special focus on plant host immunity as an emerging factor contributing to bacterial leaf colonisation.
Collapse
Affiliation(s)
- Rudolf O. Schlechter
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Moritz Miebach
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mitja N.P. Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TEA, Krokene P, Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:505-529. [PMID: 31470772 DOI: 10.1146/annurev-phyto-082718-095959] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.
Collapse
Affiliation(s)
- Samuel W Wilkinson
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Melissa H Magerøy
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Ana López Sánchez
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lisa M Smith
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Leonardo Furci
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - T E Anne Cotton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Paal Krokene
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
12
|
Zhang Z, Kong X, Jin D, Yu H, Zhu X, Su X, Wang P, Zhang R, Jia M, Deng Y. Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew. Arch Microbiol 2019; 201:1099-1109. [PMID: 31147747 DOI: 10.1007/s00203-019-01683-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Euonymus japonicus Thunb. is a woody and ornamental plant popular in China, Europe and North America. Powdery mildew is one of the most serious diseases that affect E. japonicus growth. In this study, the diseased and apparently healthy leaves were collected from E. japonicus planted in a greenbelt in Beijing, and the effect of powdery mildew on the epiphytic microbial community was investigated by using Illumina sequencing. The results showed that the healthy leaves (HL) harbored greater bacterial and fungal diversity than diseased leaves (DL). Furthermore, both bacterial and fungal communities in DL exhibited significantly different structures from those in HL. The relative abundance of several bacterial phyla (Proteobacteria and Firmicutes) and fungal phyla (Ascomycota and Basidiomycota) were altered by powdery mildew. At the genus level, most genera decreased as powdery mildew pathogen Erysiphe increased, while the genera Kocuria and Exiguobacterium markedly increased. Leaf properties, especially protein content was found to significantly affect beta-diversity of the bacterial and fungal community. Network analysis revealed that positive bacterial interactions in DL were stronger than those in HL samples. Insights into the underlying the indigenous microbial phyllosphere populations of E. japonicus response to powdery mildew will help in the development of methods for controlling plant diseases.
Collapse
Affiliation(s)
- Zhuo Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Pest Management of Horticultural Crops of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hao Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pei Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Pest Management of Horticultural Crops of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, 30655, Germany
| | - Minghong Jia
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
13
|
Bacterial communities associated with anthracnose symptomatic and asymptomatic leaves of guarana, an endogenous tropical crop, and their pathogen antagonistic effects. Arch Microbiol 2019; 201:1061-1073. [PMID: 31123792 DOI: 10.1007/s00203-019-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.
Collapse
|
14
|
Panstruga R, Kuhn H. Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. MOLECULAR PLANT PATHOLOGY 2019; 20:463-470. [PMID: 30467940 PMCID: PMC6637862 DOI: 10.1111/mpp.12771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Powdery mildew is a common and widespread plant disease of considerable agronomic relevance. It is caused by obligate biotrophic fungal pathogens which, in most cases, epiphytically colonize aboveground plant tissues. The disease has been typically studied as a binary interaction of the fungal pathogen with its plant hosts, neglecting, for the most part, the mutual interplay with the wealth of other microorganisms residing in the phyllo- and/or rhizosphere and roots. However, the establishment of powdery mildew disease can be impacted by the presence/absence of host-associated microbiota (epi- and endophytes) and, conversely, plant colonization by powdery mildew fungi might disturb indigenous microbial community structures. In addition, other (foliar) phytopathogens could interact with powdery mildews, and mycoparasites may affect the outcome of plant-powdery mildew interactions. In this review, we discuss the current knowledge regarding the intricate and multifaceted interplay of powdery mildew fungi, host plants and other microorganisms, and outline current gaps in our knowledge, thereby setting the basis for potential future research directions.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityWorringerweg 1Aachen52056Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityWorringerweg 1Aachen52056Germany
| |
Collapse
|
15
|
Santana JO, Gramacho KP, de Souza Eduvirgens Ferreira KT, Rezende RP, Mangabeira PAO, Dias RPM, Couto FM, Pirovani CP. Witches' broom resistant genotype CCN51 shows greater diversity of symbiont bacteria in its phylloplane than susceptible genotype catongo. BMC Microbiol 2018; 18:194. [PMID: 30470193 PMCID: PMC6251189 DOI: 10.1186/s12866-018-1339-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background Theobroma cacao L. (cacao) is a perennial tropical tree, endemic to rainforests of the Amazon Basin. Large populations of bacteria live on leaf surfaces and these phylloplane microorganisms can have important effects on plant health. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated studies of the phylloplane microbiome. In this study, we characterized the bacterial microbiome of the phylloplane of the catongo genotype (susceptible to witch’s broom) and CCN51 (resistant). Bacterial microbiome was determined by sequencing the V3-V4 region of the bacterial 16S rRNA gene. Results After the pre-processing, a total of 1.7 million reads were considered. In total, 106 genera of bacteria were characterized. Proteobacteria was the predominant phylum in both genotypes. The exclusive genera of Catongo showed activity in the protection against UV radiation and in the transport of substrates. CCN51 presented genus that act in the biological control and inhibition in several taxonomic groups. Genotype CCN51 presented greater diversity of microorganisms in comparison to the Catongo genotype and the total community was different between both. Scanning electron microscopy analysis of leaves revealed that on the phylloplane, many bacterial occur in large aggregates in several regions of the surface and isolated nearby to the stomata. Conclusions We describe for the first time the phylloplane bacterial communities of T. cacao. The Genotype CCN51, resistant to the witch’s broom, has a greater diversity of bacterial microbioma in comparison to Catongo and a greater amount of exclusive microorganisms in the phylloplane with antagonistic action against phytopathogens. Electronic supplementary material The online version of this article (10.1186/s12866-018-1339-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rachel Passos Rezende
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Ricardo Pedro Moreira Dias
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco M Couto
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
16
|
The Abundance of Fungi, Bacteria and Denitrification Genes during Insect Outbreaks in Scots Pine Forests. FORESTS 2018. [DOI: 10.3390/f9080497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Outbreaks of defoliating insects may affect microbial populations in forests and thereby mass balances and ecosystem functioning. Here, we investigated the microbial dynamics in Scots pine (Pinus sylvestris L.) forests during outbreaks of the nun moth (Lymantria monacha L.) and the pine-tree lappet (Dendrolimus pini L.). We used real-time PCR (polymerase chain reaction) to quantify genes that characterize bacterial and fungal abundance and the denitrification processes (nirK, nirS, nosZ clades I and II) in different forest compartments and we analyzed the C and N content of pine needles, insect feces, larvae, vegetation layers, organic layers, and mineral soil horizons. The infestation of the nun moth increased the bacterial abundance on pine needles, in the vegetation layer, and in the upper organic layer, while fungal populations were increased in the vegetation layer and upper organic layer during both outbreaks. In soil, the abundance of nirK increased after insect defoliation, while the C/N ratios decreased. nosZ clades I and II showed variable responses in different soil layers and to different defoliating insects. Our results illustrate changes in the microbial populations in pine forests that were infested by defoliating insects and changes in the chemical soil properties that foster these populations, indicating a genetic potential for increased soil N2O emissions during the defoliation peak of insect outbreak events.
Collapse
|
17
|
Arrigoni E, Antonielli L, Pindo M, Pertot I, Perazzolli M. Tissue age and plant genotype affect the microbiota of apple and pear bark. Microbiol Res 2018; 211:57-68. [PMID: 29705206 DOI: 10.1016/j.micres.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 01/16/2023]
Abstract
Plant tissues host complex fungal and bacterial communities, and their composition is determined by host traits such as tissue age, plant genotype and environmental conditions. Despite the importance of bark as a possible reservoir of plant pathogenic microorganisms, little is known about the associated microbial communities. In this work, we evaluated the composition of fungal and bacterial communities in the pear (Abate and Williams cultivars) and apple (Golden Delicious and Gala cultivars) bark of three/four-year-old shoots (old bark) or one-year-old shoots (young bark), using a meta-barcoding approach. The results showed that both fungal and bacterial communities are dominated by genera with ubiquitous attitudes, such as Aureobasidium, Cryptococcus, Deinococcus and Hymenobacter, indicating intense microbial migration to surrounding environments. The shoot age, plant species and plant cultivar influenced the composition of bark fungal and bacterial communities. In particular, bark communities included potential biocontrol agents that could maintain an equilibrium with potential plant pathogens. The abundance of fungal (e.g. Alternaria, Penicillium, Rosellinia, Stemphylium and Taphrina) and bacterial (e.g. Curtobacterium and Pseudomonas) plant pathogens was affected by bark age and host genotype, as well as those of fungal genera (e.g. Arthrinium, Aureobasidium, Rhodotorula, Sporobolomyces) and bacterial genera (e.g. Bacillus, Brevibacillus, Methylobacterium, Sphingomonas and Stenotrophomonas) with possible biocontrol and plant growth promotion properties.
Collapse
Affiliation(s)
- Elena Arrigoni
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Livio Antonielli
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430, Tulln an der Donau, Austria
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; Centre for Agriculture, Food and the Environment, University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| |
Collapse
|
18
|
|
19
|
Prior R, Mittelbach M, Begerow D. Impact of three different fungicides on fungal epi- and endophytic communities of common bean (Phaseolus vulgaris) and broad bean (Vicia faba). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:376-386. [PMID: 28277075 DOI: 10.1080/03601234.2017.1292093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the impacts of three different fungicides to fungal phyllosphere communities on broad bean (Vicia faba, Fabaceae) and common bean (Phaseolus vulgaris, Fabaceae) were analyzed. The fungicides included copper, sulfur, and azoxystrobin. The plants were sowed, grown, and treated under conditions occurring in conventional and organic farming. A culture-based approach was used to identify changes in the phyllosphere fungal community after the treatment. Different effects on species richness and growth index of the epiphytic and endophytic communities for common bean and broad bean could be shown. Treatments with sulfur showed the weakest effect, followed by those based on copper and the systemic azoxystrobin, which showed the strongest effect especially on endophytic communities. The epiphytic fungal community took five weeks to recover after treatment with azoxystrobin. However, the effect of azoxystrobin on the endophytic community lasted more than five weeks. Finally, the data suggest that the surface structure of the host leaves have a huge impact on the mode of action that the fungicides exert.
Collapse
Affiliation(s)
- René Prior
- a Ruhr-Universität Bochum , Bochum , Germany
| | | | | |
Collapse
|
20
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
21
|
Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. SPRINGERPLUS 2016; 5:1596. [PMID: 27652169 PMCID: PMC5026986 DOI: 10.1186/s40064-016-3286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2016] [Indexed: 12/29/2022]
Abstract
To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ18O and δ15N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.
Collapse
Affiliation(s)
- Keiji Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan ; Center for Environmental Science in Saitama, Kazo, Saitama 347-0115 Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Wataru Suda
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562 Japan
| | - Shigeki Yamamura
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Takejiro Takamatsu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Akio Takenaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Masami Kanao Koshikawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Seiji Hayashi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Mirai Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| |
Collapse
|
22
|
Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. MICROBIOME 2016; 4:27. [PMID: 27316353 PMCID: PMC4912770 DOI: 10.1186/s40168-016-0174-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The increasing awareness of the role of phyllosphere microbial communities in plant health calls for a greater understanding of their structure and dynamics in natural ecosystems. Since most knowledge of tree phyllosphere bacterial communities has been gathered in tropical forests, our goal was to characterize the community structure and assembly dynamics of phyllosphere epiphytic bacterial communities in temperate forests in Quebec, Canada. We targeted five dominant tree species: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea, and Picea glauca. We collected 180 samples of phyllosphere communities on these species at four natural forest sites, three times during the growing season. RESULTS Host functional traits (i.e., wood density, leaf nitrogen content) and climate variables (summer mean temperature and precipitation) were strongly correlated with community structure. We highlight three key findings: (1) temperate tree species share a "core microbiome"; (2) significant evolutionary associations exist between groups of bacteria and host species; and (3) a greater part of the variation in phyllosphere bacterial community assembly is explained by host species identity (27 %) and species-site interaction (14 %), than by site (11 %) or time (1 %). CONCLUSIONS We demonstrated that host species identity is a stronger driver of temperate tree phyllosphere bacterial communities than site or time. Our results suggest avenues for future studies on the influence of host functional traits on phyllosphere community functional biogeography across terrestrial biomes.
Collapse
Affiliation(s)
- Isabelle Laforest-Lapointe
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| | - Christian Messier
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
- Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, Ripon, J0V 1V0, Québec, Canada
| | - Steven W Kembel
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
- Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| |
Collapse
|
23
|
MacQueen A, Bergelson J. Modulation of R-gene expression across environments. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2093-105. [PMID: 26983577 PMCID: PMC4793800 DOI: 10.1093/jxb/erv530] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.
Collapse
Affiliation(s)
- Alice MacQueen
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Minervini F, Celano G, Lattanzi A, Tedone L, De Mastro G, Gobbetti M, De Angelis M. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle. Appl Environ Microbiol 2015; 81:6736-48. [PMID: 26187970 PMCID: PMC4561690 DOI: 10.1128/aem.01852-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.
Collapse
Affiliation(s)
- Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna Lattanzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Tedone
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Mastro
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
25
|
McGarvey J, Han R, Connell J, Stanker L, Hnasko R. Bacterial populations on the surfaces of organic and conventionally grown almond drupes. J Appl Microbiol 2015; 119:529-38. [DOI: 10.1111/jam.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- J.A. McGarvey
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - R. Han
- Department of Plant Sciences; University of California; Davis CA USA
| | - J.H. Connell
- University of California Cooperative Extension; Oroville CA USA
| | - L.H. Stanker
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - R. Hnasko
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| |
Collapse
|
26
|
Ikeda S, Tokida T, Nakamura H, Sakai H, Usui Y, Okubo T, Tago K, Hayashi K, Sekiyama Y, Ono H, Tomita S, Hayatsu M, Hasegawa T, Minamisawa K. Characterization of leaf blade- and leaf sheath-associated bacterial communities and assessment of their responses to environmental changes in CO₂, temperature, and nitrogen levels under field conditions. Microbes Environ 2015; 30:51-62. [PMID: 25740174 PMCID: PMC4356464 DOI: 10.1264/jsme2.me14117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 01/12/2023] Open
Abstract
Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research OrganizationShinsei, Memuro-cho, Kasai-gun, Hokkaido 082–0081Japan
| | - Takeshi Tokida
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | | | - Hidemitsu Sakai
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Yasuhiro Usui
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Kanako Tago
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Kentaro Hayashi
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Yasuyo Sekiyama
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Hiroshi Ono
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Satoru Tomita
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Masahito Hayatsu
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Toshihiro Hasegawa
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| |
Collapse
|
27
|
González-Teuber M, Kaltenpoth M, Boland W. Mutualistic ants as an indirect defence against leaf pathogens. THE NEW PHYTOLOGIST 2014; 202:640-650. [PMID: 24392817 DOI: 10.1111/nph.12664] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/28/2013] [Indexed: 05/08/2023]
Abstract
Mutualistic ants are commonly considered as an efficient indirect defence against herbivores. Nevertheless, their indirect protective role against plant pathogens has been scarcely investigated. We compared the protective role against pathogens of two different ant partners, a mutualistic and a parasitic ant, on the host plant Acacia hindsii (Fabaceae). The epiphytic bacterial community on leaves was evaluated in the presence and absence of both ant partners by cultivation and by 454 pyrosequencing of the 16S rRNA gene. Pathogen-inflicted leaf damage, epiphytic bacterial abundance (colony-forming units) and number of operational taxonomic units (OTUs) were significantly higher in plants inhabited by parasitic ants than in plants inhabited by mutualistic ants. Unifrac unweighted and weighted principal component analyses showed that the bacterial community composition on leaves changed significantly when mutualistic ants were removed from plants or when plants were inhabited by parasitic ants. Direct mechanisms provided by ant-associated bacteria would contribute to the protective role against pathogens. The results suggest that the indirect defence of mutualistic ants also covers the protection from bacterial plant pathogens. Our findings highlight the importance of considering bacterial partners in ant-plant defensive mutualisms, which can contribute significantly to ant-mediated protection from plant pathogens.
Collapse
Affiliation(s)
- Marcia González-Teuber
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| |
Collapse
|
28
|
Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME JOURNAL 2013; 8:359-68. [PMID: 24108329 DOI: 10.1038/ismej.2013.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/30/2022]
Abstract
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.
Collapse
|
29
|
Sylla J, Alsanius BW, Krüger E, Reineke A, Strohmeier S, Wohanka W. Leaf microbiota of strawberries as affected by biological control agents. PHYTOPATHOLOGY 2013; 103:1001-11. [PMID: 24020904 DOI: 10.1094/phyto-01-13-0014-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The increasing use of biological control agents (BCAs) against Botrytis cinerea in strawberry raises the question of whether there are any undesirable impacts of foliar applications of BCAs on nontarget microorganisms in the phyllosphere. Therefore, our objective was to investigate this issue within a field study. Strawberry plants were repeatedly sprayed with three BCAs-namely, RhizoVital 42 fl. (Bacillus amyloliquefaciens FZB42), Trianum-P (Trichoderma harzianum T22), and Naturalis (Beauveria bassiana ATCC 74040)-to suppress Botrytis cinerea infections. Microbial communities of differentially treated leaves were analyzed using plate counts and pyrosequencing and compared with the microbial community of nontreated leaves. Plate count results indicate that the applied Bacillus and Trichoderma spp. survived in the strawberry phyllosphere throughout the strawberry season. However, no significant impacts on the leaf microbiota could be detected by this culture-dependent technique. Pyrosequencing of internal transcribed spacer ribosomal RNA and 16S RNA sequences revealed a change in fungal composition and diversity at class level after the introduction of T. harzianum T22 to the phyllosphere, whereas the bacterial composition and diversity was not affected by either this Trichoderma preparation or the other two BCAs. Our results suggest that pyrosequencing represents a useful method for studying microbial interactions in the phyllosphere.
Collapse
|
30
|
Rastogi G, Coaker GL, Leveau JH. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 2013; 348:1-10. [DOI: 10.1111/1574-6968.12225] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022] Open
Affiliation(s)
- Gurdeep Rastogi
- Department of Plant Pathology; University of California; Davis; CA; USA
| | - Gitta L. Coaker
- Department of Plant Pathology; University of California; Davis; CA; USA
| | - Johan H.J. Leveau
- Department of Plant Pathology; University of California; Davis; CA; USA
| |
Collapse
|
31
|
Abstract
Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
Collapse
Affiliation(s)
- Julia A Vorholt
- Institute of Microbiology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Wolfgang-Pauli-Strasse 10, HCI F429, 8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C. Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. THE NEW PHYTOLOGIST 2012; 196:510-519. [PMID: 22934891 DOI: 10.1111/j.1469-8137.2012.04284.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Little is known about the potential effect of climate warming on phyllosphere fungi, despite their important impact on the dynamics and diversity of plant communities. The structure of phyllosphere fungal assemblages along elevation gradients may provide information about this potential effect, because elevation gradients correspond to temperature gradients over short geographic distances. We thus investigated variations in the composition of fungal assemblages inhabiting the phyllosphere of European beech (Fagus sylvatica) at four sites over a gradient of 1000 m of elevation in the French Pyrénées Mountains, by using tag-encoded 454 pyrosequencing. Our results show that the composition of fungal assemblages varied significantly between elevation sites, in terms of both the relative abundance and the presence-absence of species, and that the variations in assemblage composition were well correlated with variations in the average temperatures. Our results therefore suggest that climate warming might alter both the incidence and the abundance of phyllosphere fungal species, including potential pathogens. For example, Mycosphaerella punctiformis, a causal agent of leaf spots, showed decreasing abundance with elevation and might therefore shift to higher elevations in response to warming.
Collapse
Affiliation(s)
- Tristan Cordier
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| | - Cécile Robin
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| | - Xavier Capdevielle
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| | - Olivier Fabreguettes
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| | - Marie-Laure Desprez-Loustau
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| | - Corinne Vacher
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- University of Bordeaux, UMR1202 BIOGECO, F-33400, Talence, France
| |
Collapse
|
34
|
Berlec A. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:96-102. [PMID: 22794922 DOI: 10.1016/j.plantsci.2012.05.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 05/20/2012] [Indexed: 05/12/2023]
Abstract
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
35
|
Yoshida S, Ohba A, Liang YM, Koitabashi M, Tsushima S. Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads. MICROBIAL ECOLOGY 2012; 64:214-225. [PMID: 22314388 DOI: 10.1007/s00248-012-0009-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
The specificity of culturable bacteria on healthy and Fusarium head blight (FHB)-infected spikelets of wheat heads was investigated to find a candidate of biocontrol agents against FHB. The bacterial genus Pseudomonas was commonly isolated from the tissues, and phylogenetic analysis using 16S ribosomal RNA gene sequences of isolates of the genera revealed that particular phylogenetic groups in the genus specifically inhabited either healthy or infected spikelet tissues. The specificity of each group was suggested to be due to differences in the ability to form biofilms and colonize spikelet tissues; isolates originated from healthy spikelets formed biofilms on polyvinyl chloride microplate wells and highly colonized the spikelet tissues. Other bacterial groups obtained from FHB-infected spikelets less formed biofilms and attached with low densities on the spikelet tissues. Their colonization on the tissues, however, was promoted when co-inoculated with the causal pathogenic fungus, Fusarium graminearum, and several isolates were observed to smash the mycelia in vivo. Moreover, based on results of in vitro mycelial growth inhibition activity, the diseased tissue-originated isolates were verified to have a negative effect on the fungal growth. These results suggest that Pseudomonas isolates obtained from infected spikelet tissues were highly associated with the FHB pathogen and have potential as candidates for biological control against FHB.
Collapse
Affiliation(s)
- Shigenobu Yoshida
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
36
|
Arakawa Y, Akiyama Y, Furukawa H, Suda W, Amachi S. Growth stimulation of iodide-oxidizing α-Proteobacteria in iodide-rich environments. MICROBIAL ECOLOGY 2012; 63:522-531. [PMID: 22138964 DOI: 10.1007/s00248-011-9986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
α-Proteobacteria that can oxidize iodide (I(-)) to molecular iodine (I(2)) have only been isolated from iodide-rich natural and artificial environments, i.e., natural gas brine waters and seawaters supplemented with iodide, respectively. To understand the growth characteristics of such iodide-oxidizing bacteria (IOB) under iodide-rich environments, microcosms comprising natural seawater and 1 mM iodide were prepared, and the succession of microbial communities was monitored by culture-independent techniques. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis showed that bacteria closely related with known IOB were predominant in the microcosms after several weeks of incubation. Quantitative PCR analysis targeting specific 16S rRNA gene regions of IOB showed that the relative abundance of IOB in the microcosms was 6-76% of the total bacterial population, whereas that in natural seawater was less than 1%. When 10(3) cells mL(-1) of IOB were inoculated into natural seawater supplemented with 0.1-1 mM iodide, significant growth (cell densities, 10(5)-10(6) cells mL(-1)) and I(2) production (6-32 μM) were observed. Interestingly, similar growth stimulation occurred when 12-44 μM of I(2) was added to seawater, instead of iodide. IOB were found to be more I(2) tolerant than the other heterotrophic bacteria in seawater. These results suggest that I(2) plays a key role in the growth stimulation of IOB in seawater. IOB could potentially attack other bacteria with I(2) to occupy their ecological niche in iodide-rich environments.
Collapse
Affiliation(s)
- Yumi Arakawa
- Department of Applied Biosciences, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan
| | | | | | | | | |
Collapse
|
37
|
Takada Hoshino Y, Morimoto S. Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE). Microbes Environ 2011; 25:281-7. [PMID: 21576883 DOI: 10.1264/jsme2.me10136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We evaluated the fungal specificity and detection bias of four fungal 18S rRNA gene (18S rDNA) primer sets for denaturing-gradient gel electrophoresis (DGGE). We constructed and compared clone libraries amplified from upland and paddy field soils with each primer set (1, NS1/GCFung; 2, FF390/FR1-GC; 3, NS1/FR1-GC; and 4, NS1/EF3 for the first PCR and NS1/FR1-GC for the second PCR). Primer set 4 (for nested PCR) showed the highest specificity for fungi but biased specific sequences. Sets 1, 2, and 3 (for single PCR) amplified non-fungal eukaryotic sequences (from 7 to 16% for upland soil and from 20 to 31% for paddy field soil) and produced libraries with similar distributions of fungal 18S rDNA sequences at both the phylum and the class level. Set 2 tended to amplify more diverse fungal sequences, maintaining higher specificity for fungi. In addition, clone analyses revealed differences among primer sets in the frequency of chimeras. In upland field soil, the libraries amplified with primer sets 3 and 4, which targeted long fragments, contained many chimeric 18S rDNA sequences (18% and 48%, respectively), while the libraries obtained with sets 1 and 2, which targeted short fragments, contained fewer chimeras (5% and 10%, respectively).
Collapse
Affiliation(s)
- Yuko Takada Hoshino
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki, 305–8604, Japan.
| | | |
Collapse
|