1
|
Cota-Gastélum LA, Reyes-López MÁ, Escamilla-Montes R, Luna-González A, Calderón-Vázquez CL, Diarte-Plata G. In vitro controlled release of the probiotic strain Bacillus licheniformis PPL2016 microencapsulated: Simulating the digestive system by age class and sex in the blue swimming crab Callinectes arcuatus. Braz J Microbiol 2025:10.1007/s42770-025-01674-1. [PMID: 40319424 DOI: 10.1007/s42770-025-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
This work aims to encapsulate Bacillus licheniformis PPL2016 (12 × 106 CFU/mL), a marine probiotic characterized at a biochemical and molecular level, in sodium alginate (2%) microparticles and to evaluate its controlled and directed release in a simulated digestive system (DS) of the swimming crab Callinectes arcuatus, considering the following age classes and sexes: Adult Female, Juvenile Female, Adult Male, and Juvenile. The encapsulation process was carried out using the ionic gelation technique. The microcapsules were characterized physiochemically by their size, morphology, number of encapsulated bacteria after the encapsulation process, as well as bacterial survival after 45 days of storage (4 °C). The in vitro release and survival studies of bacteria inside the organs that make up the DS of C. arcuatus were carried out using a protocol developed in our laboratory by applying extracts of dissected organs from the DS (stomach, hepatopancreas and intestine) of the swimming crab. A χ2 test (α = 0.05) was performed at linearization (Log10) of the percentages of the controlled releases of microencapsulated B. licheniformis PPL2016 at different times (0 h, 4 h, 8 h, 12 h), corresponding to the extracts of the organs which simulated the digestive system of C. arcuatus. After biochemical characterization B. licheniformis PPL2016 was considered probiotic bacteria. Microparticles with an average size of 602 to 639 µm were obtained after using the ionic gelation method. Bacterial survival and encapsulation efficacy showed high cell viability and performance above 77.94%. Stability studies showed that storage at a temperature of 4 °C, kept almost 100% of viable bacteria for 15 days; however, cell viability decreased to a survival of 90% after 30 days of storage at this temperature. Regardless of reduced cell viability after 30 days, there are enough viable bacterial cells. Release and survival studies showed that alginate particles had a protective effect on bacteria, these results suggest that microparticles can be produced by a low-cost method. In juvenile males, the percentage of release of probiotic bacteria was greater in TIV in the enzyme extract of the intestine (12 h) with 95 ± 0.45%. Juvenile males had the lowest in vitro release at the stomach stage (0 h) and thus marks the significance for their low release of microcapsules at the beginning of the in vitro release (χ2 = 6.7509; χ2Calculated Pool = 13.5188; χ2Calculated Critical (0.05, 21) = 11.5919; p < 0.05), with the highest significance in the intestine (12 h) (χ2 = 1.2602; χ2Calculated Pool = 13.5188; χ2Calculated Critical (0.05, 21) = 11.5919; p < 0.05). Significant differences in vitro bacterial release were recorded for age classes and sexes of C. arcuatus.
Collapse
Affiliation(s)
- Luis Abraham Cota-Gastélum
- Aquaculture Department, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional-Sinaloa Unit, Blvd Juan de Dios Bátiz Paredes 250, Col. San Joachín, 81101, Guasave, Sinaloa, Mexico
| | - Miguel Ángel Reyes-López
- Centro de Biotecnología Genómica. Laboratory of Conservation Medicine, Instituto Politécnico Nacional, Blvd. Del Maestro SN, Narciso Mendoza, 88710, Reynosa, Tamaulipas, Mexico
| | - Ruth Escamilla-Montes
- Aquaculture Department, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional-Sinaloa Unit, Blvd Juan de Dios Bátiz Paredes 250, Col. San Joachín, 81101, Guasave, Sinaloa, Mexico
| | - Antonio Luna-González
- Aquaculture Department, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional-Sinaloa Unit, Blvd Juan de Dios Bátiz Paredes 250, Col. San Joachín, 81101, Guasave, Sinaloa, Mexico
| | - Carlos Ligne Calderón-Vázquez
- Aquaculture Department, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional-Sinaloa Unit, Blvd Juan de Dios Bátiz Paredes 250, Col. San Joachín, 81101, Guasave, Sinaloa, Mexico
| | - Genaro Diarte-Plata
- Aquaculture Department, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional-Sinaloa Unit, Blvd Juan de Dios Bátiz Paredes 250, Col. San Joachín, 81101, Guasave, Sinaloa, Mexico.
| |
Collapse
|
2
|
Lu X, Wang L, Guggenberger G, Sun Y, Hu R, Li T. Water level regimes can regulate the influences of microplastic pollution on carbon loss in paddy soils: Insights from dissolved organic matter and carbon mineralization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125296. [PMID: 40222080 DOI: 10.1016/j.jenvman.2025.125296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
The persistence of farmland microplastic (MP) pollution has raised significant concerns regarding its effects on soil organic carbon (SOC) pools in the context of soil pollution but also of global climate change. Nevertheless, the effect of MPs on SOC mineralization as well as dissolved organic carbon (DOC) transformation with different water levels in paddy soils remained uncertain. In this study, we investigated the effect of micro polyethylene (PE) on SOC decomposition in paddy soils under alternating wet and dry (AWD) and continuous flooding (CF) conditions through a 205-day microcosm experiment. Polyethylene addition reduced cumulative CO2 emissions by 5.1-14.8 % under both water conditions. The presence of PE influenced SOC mineralization under CF conditions by diminishing the activity of cellobiohydrolase enzymes and increasing the microbial community diversity. Conversely, at AWD the addition of PE impeded SOC mineralization by reducing the activity of polyphenol oxidase enzymes. However, PE addition resulted in higher DOC content and at low dose of PE addition (0.25 % w/w) increased DOM bioavailability. The most significantly positive effect was found with the addition of 1 % w/w PE, which increased DOC content by 37.2 % and 18.5 % compared to Control (CK) under AWD and CF conditions, respectively. The strong correlation observed between DOC and mineral-associated organic carbon (MAOC) concentrations might result from DOC adsorbed to mineral surfaces to form MAOC and then affect SOC mineralization. Accordingly, AWD is a more efficient management to attenuate the impact of MPs on SOC decomposition compared to CF. Our study is noteworthy in the development of sustainable agricultural practice management in plastic-contaminated soil-crop systems.
Collapse
Affiliation(s)
- Xiaonan Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Georg Guggenberger
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, 30419, Hannover, Germany.
| | - Yue Sun
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Runan Hu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Tingxuan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
3
|
Afonso AC, Saavedra MJ, Simões M, Simões LC. The role of the proteosurfaceome and exoproteome in bacterial coaggregation. Biotechnol Adv 2025; 79:108505. [PMID: 39694122 DOI: 10.1016/j.biotechadv.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Bacterial coaggregation is a critical process in multispecies biofilm formation, driven by specific molecular interactions that facilitate the adhesion and aggregation of bacterial cells. These interactions are essential for the development and persistence of complex microbial communities. This review provides a comprehensive analysis of the roles of the proteosurfaceome and exoproteome in bacterial coaggregation. The proteosurfaceome, comprising surface-bound molecules such as adhesins, drives species-specific interactions crucial for partner recognition and adhesion. In parallel, the exoproteome, particularly extracellular polymeric substances (EPS), enhances aggregate stability by reinforcing structural integrity and facilitating intercellular communication, although its direct role in coaggregation remains to be fully clarified. By integrating these perspectives, this review aims to elucidate how the proteosurfaceome and exoproteome influence bacterial coaggregation, offering insights into their combined impact on microbial community structure and function. Furthermore, we highlight existing knowledge gaps and propose directions for future research.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria J Saavedra
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| | - Lúcia C Simões
- CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
4
|
Nuhu M, Lyu X, Dong X, Yin Y, Lee PH, Shrestha S. Advances and insights into modeling extracellular electron transfer in anaerobic bioprocesses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178656. [PMID: 39884191 DOI: 10.1016/j.scitotenv.2025.178656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Extracellular electron transfer (EET) plays an important role in maintaining redox balance in both natural and engineered anaerobic microbial systems, driving key biochemical processes such as energy generation, bioremediation, and waste degradation. While EET has been characterized in a limited number of microbes and applied in anaerobic digestion and bioelectrochemical systems, further research is needed to explore its mechanism across a broader range of microbial species and anaerobic processes. This review highlights advanced modeling frameworks that provide deeper insights into EET mechanisms and dynamics, aiming to optimize research efforts and minimize time and resource expenditure. Mechanistic models, encompassing thermodynamics and kinetics, are discussed for their utility in calculating conduction rates of electroactive microbes and assessing the energetics of medium chain carboxylic acids production. Genome-scale metabolic models are highlighted for elucidating the roles of cytochromes and conductive pili in the EET pathway. Machine learning is presented as a tool to improve model accuracy and predict EET mechanisms. Furthermore, the integration of quantum mechanics/molecular mechanics methods offers molecular-level insights into electron transfer, while quantum computing addresses limitations of classical computers by simulating complex electron transfer processes in multi-heme cytochromes. Developing advanced modeling techniques will complement experimental techniques, enabling precise predictions and optimization strategies for developing innovative and sustainable anaerobic biotechnologies.
Collapse
Affiliation(s)
- Mujaheed Nuhu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States
| | - Xuejiao Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States
| | - Xinyi Dong
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yue Yin
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States.
| |
Collapse
|
5
|
Chen L, Wang Y, Liu H, Zhou Y, Nie Z, Xia J, Shu W. Different fates of Sb(III) and Sb(V) during the formation of jarosite mediated by Acidithiobacillus ferrooxidans. J Environ Sci (China) 2025; 147:342-358. [PMID: 39003052 DOI: 10.1016/j.jes.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 07/15/2024]
Abstract
Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.
Collapse
Affiliation(s)
- Lu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yirong Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongchang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China.
| | - Yuhang Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhenyuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
7
|
Eberwein M, Hellmold N, Frank R, Deobald D, Adrian L. Reductive dehalogenase of Dehalococcoides mccartyi strain CBDB1 reduces cobalt- containing metal complexes enabling anodic respiration. Front Microbiol 2024; 15:1457014. [PMID: 39507334 PMCID: PMC11537884 DOI: 10.3389/fmicb.2024.1457014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Microorganisms capable of direct or mediated extracellular electron transfer (EET) have garnered significant attention for their various biotechnological applications, such as bioremediation, metal recovery, wastewater treatment, energy generation in microbial fuel cells, and microbial or enzymatic electrosynthesis. One microorganism of particular interest is the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1, known for its ability to reductively dehalogenate toxic and persistent halogenated organic compounds through organohalide respiration (OHR), using halogenated organics as terminal electron acceptors. A membrane-bound OHR protein complex couples electron transfer to proton translocation across the membrane, generating a proton motive force, which enables metabolism and proliferation. In this study we show that the halogenated compounds can be replaced with redox mediators that can putatively shuttle electrons between the OHR complex and the anode, coupling D. mccartyi cells to an electrode via mediated EET. We identified cobalt-containing metal complexes, referred to as cobalt chelates, as promising mediators using a photometric high throughput methyl viologen-based enzyme activity assay. Through various biochemical approaches, we show that cobalt chelates are specifically reduced by CBDB1 cells, putatively by the reductive dehalogenase subunit (RdhA) of the OHR complex. Using cyclic voltammetry, we also demonstrate that cobalt chelates exchange electrons with a gold electrode, making them promising candidates for bioelectrochemical cultivation. Furthermore, using the AlphaFold 2-calculated RdhA structure and molecular docking, we found that one of the identified cobalt chelates exhibits favorable binding to RdhA, with a binding energy of approximately -28 kJ mol-1. Taken together, our results indicate that bioelectrochemical cultivation of D. mccartyi with cobalt chelates as anode mediators, instead of toxic halogenated compounds, is feasible, which opens new perspectives for bioremediation and other biotechnological applications of strain CBDB1.
Collapse
Affiliation(s)
- Marie Eberwein
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Nadine Hellmold
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Leipzig, Germany
| | - Darja Deobald
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Department of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe 2024; 32:863-874. [PMID: 38870902 PMCID: PMC11178278 DOI: 10.1016/j.chom.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The composition and function of the gut microbiota are intimately tied to nutrient acquisition strategies and metabolism, with significant implications for host health. Both dietary and host-intrinsic factors influence community structure and the basic modes of bacterial energy metabolism. The intestinal tract is rich in carbon and nitrogen sources; however, limited access to oxygen restricts energy-generating reactions to fermentation. By contrast, increased availability of electron acceptors during episodes of intestinal inflammation results in phylum-level changes in gut microbiota composition, suggesting that bacterial energy metabolism is a key driver of gut microbiota function. In this review article, we will illustrate diverse examples of microbial nutrient acquisition strategies in the context of habitat filters and anatomical location and the central role of energy metabolism in shaping metabolic strategies to support bacterial growth in the mammalian gut.
Collapse
Affiliation(s)
- Matthew K Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA
| | - Sebastian E Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Gu L, Zhao S, Tadesse BT, Zhao G, Solem C. Scrutinizing a Lactococcus lactis mutant with enhanced capacity for extracellular electron transfer reveals a unique role for a novel type-II NADH dehydrogenase. Appl Environ Microbiol 2024; 90:e0041424. [PMID: 38563750 PMCID: PMC11107169 DOI: 10.1128/aem.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Pérez-Bernal MF, Berthomieu R, Quéméner EDL, Bernet N, Trably E. Influence of fumarate on interspecies electron transfer and the metabolic shift induced in Clostridium pasteurianum by Geobacter sulfurreducens. J Appl Microbiol 2024; 135:lxae122. [PMID: 38749675 DOI: 10.1093/jambio/lxae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
AIMS In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.
Collapse
Affiliation(s)
| | - Roland Berthomieu
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | | | - Nicolas Bernet
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | - Eric Trably
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
11
|
Nejati M, Soheili M, Salami M, Khedri M. The effect of redox bacteria on the programmed cell death-1 cancer immunotherapy. Res Pharm Sci 2024; 19:228-237. [PMID: 39035583 PMCID: PMC11257211 DOI: 10.4103/rps.rps_28_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 12/18/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Extracellular electron transferring (EET) or redox bacteria employ a shuttle of flavins to transfer electrons to the oxygen in the intestinal mucosa. Although clinical studies suggest that the gut microbiome modulates the efficiency of immune checkpoint therapy in patients with cancer, the modulation mechanisms have not been well-characterized yet. Experimental approach In the present study, the oral gavage administration of Shewanella oneidensis MR-1 as a prototypic EET bacteria was assayed in a mouse model of lung cancer to determine the effect of EET bacterium on the efficacy of the programmed cell death protein 1 (PD1)-immune checkpoint therapy. Findings/Results It was indicated that in vitro EET from S. oneidensis was mediated by riboflavins that were supplied through extrinsic sources. Co-administration of S. oneidensis and anti-PD 1 antibodies represent better tumor remission compared to the single-administration of each one; however, no statistically significant change was observed in the tumor volume. Conclusion and implications More detailed studies are needed to definitively confirm the therapeutic effects of electrogenic bacteria in patients with cancer. Given the findings of the present study, increasing flavin compounds or EET bacteria in the intestine may provide novel strategies for modulating cancer immunotherapy.
Collapse
Affiliation(s)
- Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Khedri
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Chen G, Wang R, Sun M, Chen J, Iyobosa E, Zhao J. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies. CHEMOSPHERE 2023; 344:140251. [PMID: 37769909 DOI: 10.1016/j.chemosphere.2023.140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Large emissions of atmospheric carbon dioxide (CO2) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO2 through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO2 to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO2 reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO2 bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO2 reduction.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Maoxin Sun
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jie Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Eheneden Iyobosa
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|
13
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
14
|
Yu Q, Mao H, Yang B, Zhu Y, Sun C, Zhao Z, Li Y, Zhang Y. Electro-polarization of protein-like substances accelerates trans-cell-wall electron transfer in microbial extracellular respiration. iScience 2023; 26:106065. [PMID: 36818305 PMCID: PMC9929677 DOI: 10.1016/j.isci.2023.106065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Electrical stimulation has been used to strengthen microbial extracellular electron transfer (EET), however, the deep-seated reasons remain unclear. Here we reported that Bacillus subtilis, a typical gram-positive bacterium capable of extracellular respiration, obtained a higher EET capacity after the electrical domestication. After the electrical domestication, the current generated by the EET of B. subtilis was 23.4-fold that of the control group without pre-domestication. Multiple lines of evidence in bacterial cells of B. subtilis, their cell walls, and a model tripeptide indicated that the polarization of amide groups after the electrical stimulation forwarded the H-bonds recombination and radical generation of protein-like substances to develop extracellular electron transfer via the proton-coupled pattern. The improved electrochemical properties of protein-like substances benefited the trans-cell-wall electron transfer and strengthen extracellular respiration. This study was the first exploration to promote microbial extracellular respiration by improving the electrochemical properties of protein-like substances in cell envelopes.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haohao Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yahui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China,Corresponding author
| |
Collapse
|
15
|
Feng Q, Zhu G, Wang K, Li X, Lv Y, Wang C, Piao DM, Din SZU, Li S. Contribution analysis of different electron transfer pathways to methane production in anaerobic digestion coupled with bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157745. [PMID: 35921925 DOI: 10.1016/j.scitotenv.2022.157745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The contribution analysis of different electron transfer pathways to CH4 production was investigated in bioelectrochemical anaerobic digestion (BEAD). It demonstrates that the indirect interspecies electron transfer (IIET) pathway and the direct interspecies electron transfer (DIET) pathways contributed to 41.7 % and 58.3 % of the CH4 production in the BEAD reactor, respectively. The DIET pathway was further divided into DIET via electrode (eDIET) and biological DIET (bDIET) in the bulk solution, and contributed 11.1 % and 47.2 % of CH4 production, respectively. This indicates that the dominant electron transfer pathway for CH4 production is from the bulk solution, rather than on the polarized electrode. The electroactive microorganisms were well enriched in the bulk solution by the electric field generated between anode and cathode. The enriched electroactive microorganisms significantly improved the CH4 production in the bulk solution through the bDIET pathway.
Collapse
Affiliation(s)
- Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Mei Piao
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, Republic of Korea.
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuping Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
16
|
Wang H, Qi X, Zhang L, Zhang X, Xu P, Wang X. Efficient bioelectricity generation and carbazole biodegradation using an electrochemically active bacterium Sphingobium yanoikuyae XLDN2-5. CHEMOSPHERE 2022; 307:135986. [PMID: 35970217 DOI: 10.1016/j.chemosphere.2022.135986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Carbazole and its derivatives are polycyclic aromatic heterocycles with unusual toxicity and mutagenicity. However, disposal of these polycyclic aromatic heterocycles remains a significant challenge. This study focused on efficient resource recovery from carbazole using an obligate aerobe, Sphingobium yanoikuyae XLDN2-5, in microbial fuel cells (MFCs). S. yanoikuyae XLDN2-5 successfully achieved carbazole degradation and simultaneously electricity generation in MFCs with a maximum power density of 496.8 mW m-2 and carbazole degradation rate of 100%. It is the first time that S. yanoikuyae XLDN2-5 was discovered as an electrochemically active bacterium with high extracellular electron transfer (EET) capability. Redox mediator analysis indicated that no self-produced redox mediators were found for S. yanoikuyae XLDN2-5 under analysis conditions, and the exogenous redox mediators used in this study did not promote its EET. The nanowires produced by S. yanoikuyae XLDN2-5 cells were found in the biofilm by morphology characterization and the growth process of the nanowires was consistent with the discharge process of the MFC. Conductivity determination further verified that the nanowires produced by S. yanoikuyae XLDN2-5 cells were electrically conductive. Based on these results, it is speculated that S. yanoikuyae XLDN2-5 may mainly utilize conductive nanowires produced by itself rather than redox mediators to meet the requirements of normal energy metabolism when it grows in the low dissolved oxygen zone of the anodic biofilm. These novel findings on the EET mechanism of S. yanoikuyae XLDN2-5 lay a foundation for further exploration of polycyclic aromatic heterocyclic pollutants treatment in electrochemical devices, which may create new biotechnology processes for these pollutants control.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, PR China
| | - Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Lei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xueli Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
17
|
Ambaye TG, Formicola F, Sbaffoni S, Franzetti A, Vaccari M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. CHEMOSPHERE 2022; 307:136126. [PMID: 36028128 DOI: 10.1016/j.chemosphere.2022.136126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution by hydrophobic hydrocarbons is increasing, notably nowadays due to a large amount of industrial activity. Microbial electrochemical technologies (MET) are promising bio-based systems which can oxidize hydrophobic hydrocarbon pollutants and produce bioelectricity simultaneously. However, MET faces some issues in terms of soil remediation, including low mass transfer, limited electro-activity of anodes as electron acceptors, low bioavailability of hydrocarbons, and the limited activity of beneficial bacteria and inefficient electron transport. This study aims to investigate the role of the addition of rhamnolipid as an analyte solution to the MET to enhance the efficacy and concurrently solve the abovementioned issues. In this regard, a novel long chain of RL was produced by using low-cost carbon winery waste through non-pathogenic Burkholderia thailandensis E264 strains. Different doses of RL were tested, including 10, 50, and 100 mg/L. A maximum enhancement in the oxidation of hydrophobic hydrocarbons was found to be up to 72.5%, while the current density reached 9.5 Am-2 for the MET reactor having a dose of 100 mg/L. The biosurfactants induced a unique microbial enrichment associated with Geobacter, Desulfovibrio, Klebsiella, and Comamona on the anode surface, as well as Pseudomonas, Acinetobacter, and Franconibacter in soil MET, indicating the occurrence of a metabolic pathway in microbes working with the anode and soil bioelectrochemical remediation system. According to cyclic voltammetry analysis, redox peaks appeared, showing a minor shift in redox MET-biosurfactant compared to the bare MET system. Furthermore, the phytotoxicity of polluted soil to L. sativum seeds after and before MET remediation shows a decrease in phytotoxicity of 77.5% and 5% for MET-biosurfactant system and MET only, respectively. With MET as a tool, this study confirmed for the first time that novel long-chain RL produced from non-Pseudomonas bacteria could remarkably facilitate the degradation of petroleum hydrocarbon via extracellular electron transfer, which provides novel insights to understand the mechanisms of RL regulating petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
18
|
Jain A, Kalb MJ, Gralnick JA. Reconstructing electron transfer components from an Fe(II) oxidizing bacterium. Microbiology (Reading) 2022; 168. [DOI: 10.1099/mic.0.001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutrophilic Fe(II) oxidizing bacteria play an important role in biogeochemical processes and have also received attention for multiple technological applications. These micro-organisms are thought to couple their metabolism with extracellular electron transfer (EET) while oxidizing Fe(II) as electron donor outside the cell. Sideroxydans lithotrophicus ES-1 is a freshwater chemolithoautotrophic Fe(II) oxidizing bacterium that is challenging to culture and not yet genetically tractable. Analysis of the S. lithotrophicus ES-1 genome predicts multiple EET pathways, which are proposed to be involved in Fe(II) oxidation, but not yet validated. Here we expressed components of two of the proposed EET pathways, including the Mto and Slit_0867–0870 PCC3 pathways, from S. lithotrophicus ES-1 into
Aeromonas hydrophila
, an established model EET organism. We demonstrate that combinations of putative inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways partially complemented EET activity in
Aeromonas
mutants lacking native components. Our results provide evidence for electron transfer functionality and interactions of inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways. Based on these findings, we suggest that EET in S. lithotrophicus ES-1 could be more complicated than previously considered and raises questions regarding directionality of these electron transfer pathways.
Collapse
Affiliation(s)
- Abhiney Jain
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota — Twin Cities, St. Paul, MN 55108, USA
| | - Madison J. Kalb
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota — Twin Cities, St. Paul, MN 55108, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota — Twin Cities, St. Paul, MN 55108, USA
| |
Collapse
|
19
|
Halobacterium salinarum NRC-1 Sustains Voltage Production in a Dual-Chambered Closed Microbial Fuel Cell. ScientificWorldJournal 2022; 2022:3885745. [PMID: 36132437 PMCID: PMC9484973 DOI: 10.1155/2022/3885745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Sustained bioenergy production from organisms that thrive in high salinity, low oxygen, and low nutrition levels is useful in monitoring hypersaline polluted environments. Microbial fuel cell (MFC) studies utilizing single species halophiles under salt concentrations higher than 1 M and as a closed microbial system are limited. The current study aimed to establish baseline voltage, current, and power density from a dual-chambered MFC utilizing the halophile Halobacterium salinarum NRC-1. MFC performance was determined with two different electrode sizes (5 cm2 and 10 cm2), under oscillating and nonoscillating conditions, as well as in a stacked series. A closed dual-chamber MFC system of 100 mL capacity was devised with Halobacterium media (4.3 M salt concentration) as both anolyte and catholyte, with H. salinarum NRC-1 being the anodic organism. The MFC measured electrical output over 7, 14, 28, and 42 days. MFC output increased with 5 cm2 sized electrodes under nonoscillating (p < 0.0001) relative to oscillating conditions. However, under oscillating conditions, doubling the electrode size increased MFC output significantly (p = 0.01). The stacked series MFC, with an electrode size of 10 cm2, produced the highest power density (1.2672 mW/m2) over 14 days under oscillation. Our results highlight the potentiality of H. salinarum as a viable anodic organism to produce sustained voltage in a closed-MFC system.
Collapse
|
20
|
He Y, Zhou Q, Mo F, Li T, Liu J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119344. [PMID: 35483484 DOI: 10.1016/j.envpol.2022.119344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Collapse
Affiliation(s)
- Yuqing He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tian Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Zhang YT, Zhang Y, Peng L. Electrochemical fluorescence microscopy reveals insignificant long-range extracellular electron transfer in Shewanella oneidensis anodic processes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Lozano H, Millan-Solsona R, Blanco-Cabra N, Fabregas R, Torrents E, Gomila G. Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1. NANOSCALE 2021; 13:18754-18762. [PMID: 34747424 DOI: 10.1039/d1nr04689f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shewanella oneidensis MR-1 is a metal-reducing bacterium that is able to exchange electrons with solid-phase minerals outside the cell. These bacterial cells can produce outer membrane extensions (OMEs) that are tens of nanometers wide and several microns long. The capability of these OMEs to transport electrons is currently under investigation. Tubular chemically fixed OMEs from S. oneidensis have shown good dc conducting properties when measured in an air environment. However, no direct demonstration of the conductivity of the more common bubble-like OMEs has been provided yet, due to the inherent difficulties in measuring it. In the present work, we measured the electrical properties of bubble-like OMEs in a dry air environment by Scanning Dielectric Microscopy (SDM) in force detection mode. We found that at the frequency of the measurements (∼2 kHz), OMEs show an insulating behavior, with an equivalent homogeneous dielectric constant εOME = 3.7 ± 0.7 and no dephasing between the applied ac voltage and the measured ac electric force. The dielectric constant measured for the OMEs is comparable to that obtained for insulating supramolecular protein structures (εprotein = 3-4), pointing towards a rich protein composition of the OMEs, probably coming from the periplasm. Based on the detection sensitivity of the measuring instrument, the upper limit for the ac longitudinal conductivity of bubble-like OMEs in a dry air environment has been set to σOME,ac < 10-5 S m-1, a value several orders of magnitude smaller than the dc conductivity measured in tubular chemically fixed OMEs. The lack of conductivity of bubble-like OMEs can be attributed to the relatively large separation between cytochromes in these larger OMEs and to the suppression of cytochrome mobility due to the dry environmental conditions.
Collapse
Affiliation(s)
- Helena Lozano
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
| | - Ruben Millan-Solsona
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Nuria Blanco-Cabra
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
| | - Rene Fabregas
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Gabriel Gomila
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| |
Collapse
|
23
|
Kokilaramani S, Rajasekar A, AlSalhi MS, Devanesan S. Characterization of methanolic extract of seaweeds as environmentally benign corrosion inhibitors for mild steel corrosion in sodium chloride environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme. Proc Natl Acad Sci U S A 2021; 118:2107939118. [PMID: 34556577 PMCID: PMC8488605 DOI: 10.1073/pnas.2107939118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Multiheme cytochromes have been identified as essential proteins for electron exchange between bacterial enzymes and redox substrates outside of the cell. In microbiology, these proteins contribute to efficient energy storage and conversion. For biotechnology, multiheme cytochromes contribute to the production of green fuels and electricity. Furthermore, these proteins inspire the design of molecular-scale electronic devices. Here, we report exceptionally high rates of heme-to-heme electron transfer in a multiheme cytochrome. We expect similarly high rates, among the highest reported for ground-state electron transfer in biology, in other multiheme cytochromes as the close-packed hemes adopt similar configurations despite very different amino acid sequences and protein folds. Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Collapse
|
25
|
Zhang T, Wang J, Li G, Liu H. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater. Bioelectrochemistry 2021; 142:107933. [PMID: 34560601 DOI: 10.1016/j.bioelechem.2021.107933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
Abstract
Crevice corrosion of X80 carbon steel in simulated seawater with the presence of SRB was studied by surface analysis and electrochemical measurements. The electrode inside crevice was seriously corroded. Large amount of corrosion products accumulated along the crevice mouth. Galvanic current densities measurements confirmed that there was a galvanic effect between the carbon steel at the crevice interior and exterior during the crevice corrosion. The difference in the sessile SRB cells quantities and SRB biofilms developments inside and outside crevice caused the galvanic effect between the carbon steel inside and outside the crevice, which further induced crevice corrosion. Increased crevice width reduced the galvanic effect, resulting in less crevice corrosion in wider crevice.
Collapse
Affiliation(s)
- Tiansui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Junlei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Piper SEH, Edwards MJ, van Wonderen JH, Casadevall C, Martel A, Jeuken LJC, Reisner E, Clarke TA, Butt JN. Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit. Front Microbiol 2021; 12:714508. [PMID: 34484155 PMCID: PMC8415449 DOI: 10.3389/fmicb.2021.714508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis exchanges electrons between cellular metabolism and external redox partners in a process that attracts much attention for production of green electricity (microbial fuel cells) and chemicals (microbial electrosynthesis). A critical component of this pathway is the outer membrane spanning MTR complex, a biomolecular wire formed of the MtrA, MtrB, and MtrC proteins. MtrA and MtrC are decaheme cytochromes that form a chain of close-packed hemes to define an electron transfer pathway of 185 Å. MtrA is wrapped inside MtrB for solubility across the outer membrane lipid bilayer; MtrC sits outside the cell for electron exchange with external redox partners. Here, we demonstrate tight and spontaneous in vitro association of MtrAB with separately purified MtrC. The resulting complex is comparable with the MTR complex naturally assembled by Shewanella in terms of both its structure and rates of electron transfer across a lipid bilayer. Our findings reveal the potential for building bespoke electron conduits where MtrAB combines with chemically modified MtrC, in this case, labeled with a Ru-dye that enables light-triggered electron injection into the MtrC heme chain.
Collapse
Affiliation(s)
- Samuel E H Piper
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Marcus J Edwards
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jessica H van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Thomas A Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
27
|
Nasiri SS, Sarabi M, Fatemi F, Dini S. Investigating the rus and petI operon expression patterns in exposed Acidithiobacillus ferrooxidans sp. FJ2 to different doses of gamma irradiation. Appl Radiat Isot 2021; 177:109911. [PMID: 34481316 DOI: 10.1016/j.apradiso.2021.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The bioleaching process is developing as an economic and successful biotechnology method in the metallurgy industry. Acidithiobacillus ferrooxidans is one of the most important bacteria involved in uranium bioleaching which converts insoluble U4+ to soluble U6+ by oxidation of Fe2+ to Fe3+ using several periplasmic proteins encoded by the genes in rus and petI operons in its electron transport pathway. Accordingly, the purpose of this study was to consider the expression of these genes through exposed A. ferrooxidans sp. FJ2 to γ-ray in 17 different doses targeting uranium extraction yield. Acidithiobacillus ferrooxidans sp. FJ2 was irradiated by gamma rays at 25, 50, 75, 100, 150, 300, 450, 600, 750 Gy and 1, 2, 5, 10, 15, 20, 25 and 30 kGy doses. Moreover, the Eh value of 9k culture media was measured as special screening criteria to select the four treatments. The selected bacteria were cultured in 9k media, containing 50% uranium ore powder in the bioleaching process. Then, the value of pH & Eh of culture media, Fe2+ and uranium concentrations in 4, 8 and 13 day's period of incubation were measured. In followings, the expression levels of cyc1, cyc2, rus, coxB, petA, petB, petC and cycA genes at the end of each period were investigated by real-time PCR. Overall, all samples demonstrated a decrease in pH value and Fe2+ concentration and an increase in Eh value and U concentration in time intervals. The gamma irradiation in given doses raised the expression levels of all genes encoded in rus and petI operons, except petB gene during the bioleaching process, although, it had no effect either on the pH, Eh values or on Fe2+ and uranium concentrations. This result implies that during the oxidation of ferrous iron and formation of Jarosite sediment, the decreasing trend of pH and the increasing trend of Eh occurred in all samples. However, the differences in expression of the genes of rus and petI operons in the samples did not have an effect on uranium extraction.
Collapse
Affiliation(s)
- Sara Sheikh Nasiri
- Radiation Application Development Company, AEOI, Tehran, Iran; Department of Biology, Payame Noor University, Tehran, Iran
| | - Mona Sarabi
- Radiation Application Development Company, AEOI, Tehran, Iran; Department of Biology, Shahed University, Tehran, Iran
| | - Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology, Research Institute, Tehran, Iran.
| | - Salome Dini
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
28
|
Chukwubuikem A, Berger C, Mady A, Rosenbaum MA. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb Biotechnol 2021; 14:1613-1626. [PMID: 34000093 PMCID: PMC8313257 DOI: 10.1111/1751-7915.13827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa produces phenazine-1-carboxylic acid (PCA) and pyocyanin (PYO), which aid its anaerobic survival by mediating electron transfer to distant oxygen. These natural secondary metabolites are being explored in biotechnology to mediate electron transfer to the anode of bioelectrochemical systems. A major challenge is that only a small fraction of electrons from microbial substrate conversion is recovered. It remained unclear whether phenazines can re-enter the cell and thus, if the electrons accessed by the phenazines arise mainly from cytoplasmic or periplasmic pathways. Here, we prove that the periplasmic glucose dehydrogenase (Gcd) of P. aeruginosa and P. putida is involved in the reduction of natural phenazines. PYO displayed a 60-fold faster enzymatic reduction than PCA; PCA was, however, more stable for long-term electron shuttling to the anode. Evaluation of a Gcd knockout and overexpression strain showed that up to 9% of the anodic current can be designated to this enzymatic reaction. We further assessed phenazine uptake with the aid of two molecular biosensors, which experimentally confirm the phenazines' ability to re-enter the cytoplasm. These findings significantly advance the understanding of the (electro) physiology of phenazines for future tailoring of phenazine electron discharge in biotechnological applications.
Collapse
Affiliation(s)
- Anthony Chukwubuikem
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute (HKI)JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Carola Berger
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Ahmed Mady
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Miriam A. Rosenbaum
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute (HKI)JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| |
Collapse
|
29
|
Afonso AC, Gomes IB, Saavedra MJ, Giaouris E, Simões LC, Simões M. Bacterial coaggregation in aquatic systems. WATER RESEARCH 2021; 196:117037. [PMID: 33751976 DOI: 10.1016/j.watres.2021.117037] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The establishment of a sessile community is believed to occur in a sequence of steps where genetically distinct bacteria can become attached to partner cells via specific molecules, in a process known as coaggregation. The presence of bacteria with the ability to autoaggregate and coaggregate has been described for diverse aquatic systems, particularly freshwater, drinking water, wastewater, and marine water. In these aquatic systems, coaggregation already demonstrated a role in the development of complex multispecies sessile communities, including biofilms. While specific molecular aspects on coaggregation in aquatic systems remain to be understood, clear evidence exist on the impact of this mechanism in multispecies biofilm resilience and homeostasis. The identification of bridging bacteria among coaggregating consortia has potential to improve the performance of wastewater treatment plants and/or to contribute for the development of strategies to control undesirable biofilms. This study provides a comprehensive analysis on the occurrence and role of bacterial coaggregation in diverse aquatic systems. The potential of this mechanism in water-related biotechnology is further described, with particular emphasis on the role of bridging bacteria.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Inês B Gomes
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria José Saavedra
- CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, Myrina 81400, Lemnos, Greece
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
30
|
Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, Merroun ML. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol 2021; 14:810-828. [PMID: 33615734 PMCID: PMC8085914 DOI: 10.1111/1751-7915.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.
Collapse
Affiliation(s)
- Margarita Lopez‐Fernandez
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Institute of Resource EcologyHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| | - Miguel A. Ruiz‐Fresneda
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Departamento de Cristalografía y Biología EstructuralCentro Superior de Investigaciones Científicas (CSIC)Instituto de Química‐Física Rocasolano (IQFR)Calle Serrano 119Madrid28006Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| |
Collapse
|
31
|
Tanaka K, Shimakawa G, Kusama S, Harada T, Kato S, Nakanishi S. Ferrihydrite Reduction by Photosynthetic Synechocystis sp. PCC 6803 and Its Correlation With Electricity Generation. Front Microbiol 2021; 12:650832. [PMID: 33763051 PMCID: PMC7982531 DOI: 10.3389/fmicb.2021.650832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial extracellular electron transfer (EET) to solid-state electron acceptors such as anodes and metal oxides, which was originally identified in dissimilatory metal-reducing bacteria, is a key process in microbial electricity generation and the biogeochemical cycling of metals. Although it is now known that photosynthetic microorganisms can also generate (photo)currents via EET, which has attracted much interest in the field of biophotovoltaics, little is known about the reduction of metal (hydr)oxides via photosynthetic microbial EET. The present work quantitatively assessed the reduction of ferrihydrite in conjunction with the EET of the photosynthetic microbe Synechocystis sp. PCC 6803. Microbial reduction of ferrihydrite was found to be initiated in response to light but proceeded at higher rates when exogenous glucose was added, even under dark conditions. These results indicate that current generation from Synechocystis cells does not always need light irradiation. The qualitative trends exhibited by the ferrihydrite reduction rates under various conditions showed significant correlation with those of the microbial currents. Notably, the maximum concentration of Fe(II) generated by the cyanobacterial cells under dark conditions in the presence of glucose was comparable to the levels observed in the photic layers of Fe-rich microbial mats.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Shoko Kusama
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| |
Collapse
|
32
|
Ma K, Ma A, Zheng G, Ren G, Xie F, Zhou H, Yin J, Liang Y, Zhuang X, Zhuang G. Mineralosphere Microbiome Leading to Changed Geochemical Properties of Sedimentary Rocks from Aiqigou Mud Volcano, Northwest China. Microorganisms 2021; 9:560. [PMID: 33803112 PMCID: PMC7998385 DOI: 10.3390/microorganisms9030560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The properties of rocks can be greatly affected by seepage hydrocarbons in petroleum-related mud volcanoes. Among them, the color of sedimentary rocks can reflect the changes of sedimentary environment and weathering history. However, little is known about the microbial communities and their biogeochemical significance in these environments. In this study, contrasting rock samples were collected from the Aiqigou mud volcano on the southern margin of the Junggar Basin in Northwest China as guided by rock colors indicative of redox conditions. The physicochemical properties and mineral composition are similar under the same redox conditions. For example, the content of chlorite, muscovite, quartz, and total carbon were higher, and the total iron was lower under reduced conditions compared with oxidized environments. High-throughput sequencing of 16S rRNA gene amplicons revealed that different functional microorganisms may exist under different redox conditions; microbes in oxidized conditions have higher diversity. Statistical analysis and incubation experiments indicated that the microbial community structure is closely related to the content of iron which may be an important factor for color stratification of continental sedimentary rocks in the Aiqigou mud volcano. The interactions between organics and iron-bearing minerals mediated by microorganisms have also been hypothesized.
Collapse
Affiliation(s)
- Ke Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
- Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zheng
- Key Laboratory of Petroleum Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Ge Ren
- National Institute of Metrology, Beijing 100029, China;
| | - Fei Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Yang X, Chen S. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144145. [PMID: 33303196 DOI: 10.1016/j.scitotenv.2020.144145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A sediment microbial fuel cell (SMFC) is a device that harvests electrical energy from sediments rich in organic matter. SMFCs have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. The microorganisms inhabiting sediments and the overlying water play a pivotal role in SMFCs. Since the SMFC is applied in an open environment rather than in an enclosed chamber, the effects of the environment on the microbes should be intense and the microbial community succession should be extremely complex. Thus, this review aims to provide an overview of the microorganisms in SMFCs, which few previous review papers have reported. In this study, the anodic and cathodic niches for the microorganisms in SMFCs are summarized, how the microbial population and community interact with the SMFC environment is discussed, a new microbial succession strategy called the electrode stimulation succession is proposed, and recent developments in the environmental functions of SMFCs are discussed from the perspective of microorganisms. Future studies are needed to investigate the electrode stimulation succession, the environmental function and the electron transfer mechanism in order to boost the application of SMFCs for power generation and environmental remediation.
Collapse
Affiliation(s)
- Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Igarashi K, Kato S. Reductive Transformation of Fe(III) (oxyhydr)Oxides by Mesophilic Homoacetogens in the Genus Sporomusa. Front Microbiol 2021; 12:600808. [PMID: 33633701 PMCID: PMC7901989 DOI: 10.3389/fmicb.2021.600808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial reduction of iron contributes to the dissolution and transformation of iron-containing minerals in nature. Diverse groups of homoacetogenic bacteria (homoacetogens) have been reported to reduce insoluble Fe(III) oxides, such as hydrous ferric oxide (HFO), an Fe(III) mineral commonly found in soils and sediments. Several members of genus Sporomusa reportedly oxidize Fe(0), indicating the presence of an extracellular electron-uptake mechanism. However, the ability of the genus to reduce insoluble Fe(III) oxides is limited, and the underlying reduction mechanism remains to be elucidated. In this study, the HFO reduction ability of three Sporomusa spp. (Sporomusa sp. strain GT1, Sporomusa sphaeroides, and Sporomusa ovata) and a homoacetogen of a different genus (Acetobacterium woodii) were assayed under organotrophic (ethanol) and lithotrophic (H2 + CO2) conditions without a chelator or reducing reagent. All tested homoacetogens showed acetogenic growth and concomitant reduction of HFO under both organotrophic and lithotrophic conditions. Analysis of the growth stoichiometry showed that Fe(III) reduction does not support direct energy conservation, thereby indicating that Fe(III) reduction is a side reaction of acetogenesis to dissipate the excess reducing power. HFO was reduced to a soluble Fe(II) form by microbial activity. In addition, we observed that strain GT1, S. sphaeroides, and S. ovata reduced crystalline Fe(III) oxides, and HFO was reductively transformed into magnetite (Fe3O4) under phosphate-limiting conditions. Separation of HFO by a dialysis membrane still permitted Fe(II) production, although the reduction rate was decreased, suggesting that Fe(III) reduction is at least partially mediated by soluble redox compound(s) secreted from the cells. Finally, culture experiments and comparative genomic analysis suggested that electron transfer by flavins and multiheme c-type cytochrome were not directly correlated with Fe(III) reduction activity. This study reveals the capability of Sporomusa spp. in the reductive transformation of iron mineral and indicates the potential involvement of these organisms in iron and other mineral cycles in nature.
Collapse
Affiliation(s)
- Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Wu H, Yang M, Tsui TH, Yin Z, Yin C. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: Performance, limitation, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111145. [PMID: 32801108 DOI: 10.1016/j.jenvman.2020.111145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, Yanbian University, Yanji, 133002, China; Department of Environmental Engineering, Yanshan University, Qinhuangdao, 066000, China
| | - Mengxin Yang
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Chengri Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
36
|
Gagen EJ, Levett A, Paz A, Bostelmann H, Valadares RBDS, Bitencourt JAP, Gastauer M, Nunes GL, Oliveira G, Vasconcelos PM, Tyson GW, Southam G. Accelerating microbial iron cycling promotes re-cementation of surface crusts in iron ore regions. Microb Biotechnol 2020; 13:1960-1971. [PMID: 32812342 PMCID: PMC7533318 DOI: 10.1111/1751-7915.13646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/02/2022] Open
Abstract
Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10 months in crushed canga (a by-product from iron ore mining, dominated by crystalline iron oxides) in 1 m3 containers. Ferrous iron concentrations reached 445 ppm in treatments and diverse lineages of the candidate phyla radiation dominated pore waters, implicating them in fermentation and/or metal cycling in this system. After a 6-month evaporation period, iron-rich cements had formed between grains and 20-cm aggregates were recoverable from treatments throughout the 1-m depth profile, while material from untreated and water-only controls remained unconsolidated. Canga-adapted plants seeded into one of the treatments germinated and grew well. Therefore, application of this geobiotechnology offers promise for stabilization of mine wastes, as well as re-formation of surface crusts that underpin unique and threatened plant ecosystems in iron ore regions.
Collapse
Affiliation(s)
- Emma J. Gagen
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
- Australian Centre for EcogenomicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Alan Levett
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
- Present address:
GFZ German Research Centre for GeosciencesPotsdam14473Germany
| | - Anat Paz
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Heike Bostelmann
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
| | | | | | | | | | | | - Paulo M. Vasconcelos
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Gene W. Tyson
- Australian Centre for EcogenomicsSchool of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
- Present address:
School of Biomedical SciencesQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Gordon Southam
- School of Earth and Environmental SciencesThe University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
37
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
Shrestha N, Tripathi AK, Govil T, Sani RK, Urgun-Demirtas M, Kasthuri V, Gadhamshetty V. Electricity from lignocellulosic substrates by thermophilic Geobacillus species. Sci Rep 2020; 10:17047. [PMID: 33046790 PMCID: PMC7552438 DOI: 10.1038/s41598-020-72866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Given our vast lignocellulosic biomass reserves and the difficulty in bioprocessing them without expensive pretreatment and fuel separation steps, the conversion of lignocellulosic biomass directly into electricity would be beneficial. Here we report the previously unexplored capabilities of thermophilic Geobacillus sp. strain WSUCF1 to generate electricity directly from such complex substrates in microbial fuel cells. This process obviates the need for exogenous enzymes and redox mediator supplements. Cyclic voltammetry and chromatography studies revealed the electrochemical signatures of riboflavin molecules that reflect mediated electron transfer capabilities of strain WSUCF1. Proteomics and genomics analysis corroborated that WSUCF1 biofilms uses type-II NADH dehydrogenase and demethylmenaquinone methyltransferase to transfer the electrons to conducting anode via the redox active pheromone lipoproteins localized at the cell membrane.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,Department of Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, USA.
| | - Abhilash Kumar Tripathi
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tanvi Govil
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Rajesh Kumar Sani
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - Meltem Urgun-Demirtas
- Energy Global Security Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Venkateswaran Kasthuri
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
39
|
Hirose A, Kouzuma A, Watanabe K. Hydrogen-dependent current generation and energy conservation by Shewanella oneidensis MR-1 in bioelectrochemical systems. J Biosci Bioeng 2020; 131:27-32. [PMID: 32958393 DOI: 10.1016/j.jbiosc.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Bioelectrochemical systems (BESs) are engineered systems that utilize electrochemical interactions between electrochemically active bacteria (EAB) and electrodes. BESs have attracted considerable attention for their utility in biotechnological processes. In a BES, hydrogen is generated by the reduction of water on low-potential cathode electrodes. However, limited information is available on the effect of hydrogen on the metabolism and growth of EAB and current generation in BESs. Here, we investigated the effect of hydrogen on current generation by a model EAB, Shewanella oneidensis MR-1. We found that this strain utilizes hydrogen as an electron donor for electrode respiration, thereby facilitating current generation and cell growth in the presence of organic substrates. Inner membrane (IM) quinones (i.e., ubiquinone and menaquinone), IM quinone-reactive hydrogenase Hya, and IM-bound quinone reductase CymA are involved in hydrogen-dependent current generation, suggesting that the redox cycling of IM quinones catalyzed by Hya and CymA contributes to the generation of the proton motive force and the synthesis of ATP via F0F1-ATPase. These findings indicate that the evolution of hydrogen on the cathode facilitates energy metabolism and growth of hydrogen-utilizing EAB associated with anodes. The results also suggest that hydrogen cycling between cathodes and anodes can hinder quantitative evaluation of organic substrate-dependent current generation in BESs.
Collapse
Affiliation(s)
- Atsumi Hirose
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan.
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
| |
Collapse
|
40
|
Feng Q, Song YC, Li J, Wang Z, Wu Q. Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production. ENVIRONMENTAL RESEARCH 2020; 188:109867. [PMID: 32846649 DOI: 10.1016/j.envres.2020.109867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and methane yield in the BEAD reactor saturated to 925 ± 29 mL/L and 309.9 ± 9.6 mL CH4/g COD, respectively, which were much higher than 616 ± 3 mL/L and 205.4 ± 205.4 mL CH4/g COD in the anaerobic digester (AD). In the cyclic voltammogram (CV) for bulk solution, the oxidation peak current was 0.52 mA in the BEAD reactor, which was higher than 0.24 mA of AD reactor. This shows that the oxidizing ability of microorganisms was greatly improved in the BEAD reactor. Anaerolineaceae, a well-known electroactive bacterial family, was well enriched in the BEAD reactor. It indicates that the electrostatic field can enrich the electroactive bacteria and activate the DIET pathways for methane production. Moreover, the conductive material (activated carbon) further improved the performance of BEAD reactor, implies that the conductivities of bulk solution is one of the important parameters for the DIET pathways.
Collapse
Affiliation(s)
- Qing Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
41
|
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally-friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently-developed redox-active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
42
|
Rahimi S, Modin O, Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 2020; 43:107570. [PMID: 32531318 DOI: 10.1016/j.biotechadv.2020.107570] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Water contamination is a growing environmental issue. Several harmful effects on human health and the environment are attributed to nitrogen contamination of water sources. Consequently, many countries have strict regulations on nitrogen compound concentrations in wastewater effluents. Wastewater treatment is carried out using energy- and cost-intensive biological processes, which convert nitrogen compounds into innocuous dinitrogen gas. On the other hand, nitrogen is also an essential nutrient. Artificial fertilizers are produced by fixing dinitrogen gas from the atmosphere, in an energy-intensive chemical process. Ideally, we should be able to spend less energy and chemicals to remove nitrogen from wastewater and instead recover a fraction of it for use in fertilizers and similar applications. In this review, we present an overview of various technologies of biological nitrogen removal including nitrification, denitrification, anaerobic ammonium oxidation (anammox), as well as bioelectrochemical systems and microalgal growth for nitrogen recovery. We highlighted the nitrogen removal efficiency of these systems at different temperatures and operating conditions. The advantages, practical challenges, and potential for nitrogen recovery of different treatment methods are discussed.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
43
|
Schofield Z, Meloni GN, Tran P, Zerfass C, Sena G, Hayashi Y, Grant M, Contera SA, Minteer SD, Kim M, Prindle A, Rocha P, Djamgoz MBA, Pilizota T, Unwin PR, Asally M, Soyer OS. Bioelectrical understanding and engineering of cell biology. J R Soc Interface 2020; 17:20200013. [PMID: 32429828 PMCID: PMC7276535 DOI: 10.1098/rsif.2020.0013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo, the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.
Collapse
Affiliation(s)
- Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Gabriel N. Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Murray Grant
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A. Contera
- Clarendon Laboratory, Physics Department, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Paulo Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Teuta Pilizota
- Systems and Synthetic Biology Centre and School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Patrick R. Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
44
|
Su L, Yin T, Du H, Zhang W, Fu D. Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO 2@TiN nanocomposite. Bioelectrochemistry 2020; 134:107519. [PMID: 32251985 DOI: 10.1016/j.bioelechem.2020.107519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/23/2022]
Abstract
Extracellular electron transfer (EET) allows microorganisms to perform anaerobic respiration using insoluble electron acceptors, including minerals and electrodes. EET-based applications require efficient electron transfer between living and non-living systems. To improve EET efficiency, the TiO2@TiN nanocomposite was used to form hybrid biofilms with Shewanella loihica PV-4 (PV-4). Chronoamperometry showed that peak current was increased 4.6-fold via the addition of the TiO2@TiN nanocomposite. Different biofilms were further tested in a dual-chamber microbial fuel cell. The PV-4 biofilm resulted a maximum power density of 33.4 mW/m2, while the hybrid biofilm of the TiO2@TiN nanocomposite with PV-4 yielded a 92.8% increase of power density. Electrochemical impedance spectroscopy analyses showed a lower electron-transfer resistance in the hybrid biofilm. Biological measurements revealed that both flavin secretion and cytochrome c expression were increased when the TiO2@TiN nanocomposite presented. These results demonstrated that the TiO2@TiN nanocomposite could synergistically enhance the EET of PV-4 through altering its metabolism. Our findings provide a new strategy for optimizing biotic-abiotic interactions in bioelectrochemical systems.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Tao Yin
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China
| | - Hongxiu Du
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China
| | - Wen Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China; Suzhou Key Laboratory of Environment and Biosafety, Suzhou 215123, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210018, China.
| |
Collapse
|
45
|
Benarroch JM, Asally M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends Microbiol 2020; 28:304-314. [DOI: 10.1016/j.tim.2019.12.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
46
|
Igarashi K, Miyako E, Kato S. Direct Interspecies Electron Transfer Mediated by Graphene Oxide-Based Materials. Front Microbiol 2020; 10:3068. [PMID: 32010112 PMCID: PMC6978667 DOI: 10.3389/fmicb.2019.03068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/19/2019] [Indexed: 11/30/2022] Open
Abstract
Conductive materials are known to promote direct interspecies electron transfer (DIET) by electrically bridging microbial cells. Previous studies have suggested that supplementation of graphene oxide (GO) based materials, including GO, and reduced GO (rGO), to anaerobic microbial communities, can promote DIET. This promotion mechanism is thought to be involved in electron transfer via rGO or biologically formed rGO. However, concrete evidence that rGO directly promotes DIET is still lacking. Furthermore, the effects of the physicochemical properties of GO-based materials on DIET efficiency have not been elucidated. In the current work, we investigated whether chemically and biologically reduced GO compounds can promote DIET in a defined model coculture system, and also examined the effects of surface properties on DIET-promoting efficiency. Supplementation of GO to a defined DIET coculture composed of an ethanol-oxidizing electron producer Geobacter metallireducens and a methane-producing electron consumer Methanosarcina barkeri promoted methane production from ethanol. X-ray photoelectron spectroscopy revealed that GO was reduced to rGO during cultivation by G. metallireducens activity. The stoichiometry of methane production from ethanol and the isotope labeling experiments clearly showed that biologically reduced GO induced DIET-mediated syntrophic methanogenesis. We also assessed the DIET-promoting efficiency of chemically reduced GO and its derivatives, including hydrophilic amine-functionalized rGO (rGO-NH2) and hydrophobic octadecylamine-functionalized rGO (rGO-ODA). While all tested rGO derivatives induced DIET, the rGO derivatives with higher hydrophilicity showed higher DIET-promoting efficiency. Optical microscope observation revealed that microbial cells, in particular, G. metallireducens, more quickly adhered to more hydrophilic GO-based materials. The superior ability to recruit microbial cells is a critical feature of the higher DIET-promoting efficiency of the hydrophilic materials. This study demonstrates that biologically and chemically reduced GO can promote DIET-mediated syntrophic methanogenesis. Our results also suggested that the surface hydrophilicity (i.e., affinity toward microbial cells) is one of the important determinants of the DIET-promoting efficiencies. These observations will provide useful guidance for the selection of conductive particles for the improvement of methanogenesis in anaerobic digesters.
Collapse
Affiliation(s)
- Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Eijiro Miyako
- Nanomaterials Research Institute, AIST, Tsukuba, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
47
|
Ishikawa M, Kawai K, Kaneko M, Tanaka K, Nakanishi S, Hori K. Extracellular electron transfer mediated by a cytocompatible redox polymer to study the crosstalk among the mammalian circadian clock, cellular metabolism, and cellular redox state. RSC Adv 2020; 10:1648-1657. [PMID: 35494713 PMCID: PMC9047959 DOI: 10.1039/c9ra10023g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023] Open
Abstract
The circadian clock is an endogenous biological timekeeping system that controls various physiological and cellular processes with a 24 h rhythm. The crosstalk among the circadian clock, cellular metabolism, and cellular redox state has attracted much attention. To elucidate this crosstalk, chemical compounds have been used to perturb cellular metabolism and the redox state. However, an electron mediator that facilitates extracellular electron transfer (EET) has not been used to study the mammalian circadian clock due to potential cytotoxic effects of the mediator. Here, we report evidence that a cytocompatible redox polymer pMFc (2-methacryloyloxyethyl phosphorylcholine-co-vinyl ferrocene) can be used as the mediator to study the mammalian circadian clock. EET mediated by oxidized pMFc (ox-pMFc) extracted intracellular electrons from human U2OS cells, resulting in a longer circadian period. Analyses of the metabolome and intracellular redox species imply that ox-pMFc receives an electron from glutathione, thereby inducing pentose phosphate pathway activation. These results suggest novel crosstalk among the circadian clock, metabolism, and redox state. We anticipate that EET mediated by a redox cytocompatible polymer will provide new insights into the mammalian circadian clock system, which may lead to the development of new treatments for circadian clock disorders. Cytocompatible redox polymer pMFc altered the cellular redox state and metabolism, resulting in a longer circadian period.![]()
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kazuki Kawai
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masahiro Kaneko
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kenya Tanaka
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
- Research Center for Solar Energy Chemistry
| | - Katsutoshi Hori
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
48
|
Tabish Noori M, Min B. Highly Porous Fe
x
MnO
y
Microsphere as an Efficient Cathode Catalyst for Microbial Electrosynthesis of Volatile Fatty Acids from CO
2. ChemElectroChem 2019. [DOI: 10.1002/celc.201901427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and EngineeringKyung Hee University-Global campus Republic of Korea
| | - Booki Min
- Department of Environmental Science and EngineeringKyung Hee University-Global campus Republic of Korea
| |
Collapse
|
49
|
Ranaivoarisoa TO, Singh R, Rengasamy K, Guzman MS, Bose A. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J Ind Microbiol Biotechnol 2019; 46:1401-1417. [PMID: 30927110 PMCID: PMC6791910 DOI: 10.1007/s10295-019-02165-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Bacterial synthesis of polyhydroxybutyrates (PHBs) is a potential approach for producing biodegradable plastics. This study assessed the ability of Rhodopseudomonas palustris TIE-1 to produce PHBs under various conditions. We focused on photoautotrophy using a poised electrode (photoelectroautotrophy) or ferrous iron (photoferroautotrophy) as electron donors. Growth conditions were tested with either ammonium chloride or dinitrogen gas as the nitrogen source. Although TIE-1's capacity to produce PHBs varied fairly under different conditions, photoelectroautotrophy and photoferroautotrophy showed the highest PHB electron yield and the highest specific PHB productivity, respectively. Gene expression analysis showed that there was no differential expression in PHB biosynthesis genes. This suggests that the variations in PHB accumulation might be post-transcriptionally regulated. This is the first study to systematically quantify the amount of PHB produced by a microbe via photoelectroautotrophy and photoferroautotrophy. This work could lead to sustainable bioproduction using abundant resources such as light, electricity, iron, and carbon dioxide.
Collapse
Affiliation(s)
- Tahina Onina Ranaivoarisoa
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Rajesh Singh
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Karthikeyan Rengasamy
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Michael S Guzman
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
50
|
van Wonderen JH, Hall CR, Jiang X, Adamczyk K, Carof A, Heisler I, Piper SEH, Clarke TA, Watmough NJ, Sazanovich IV, Towrie M, Meech SR, Blumberger J, Butt JN. Ultrafast Light-Driven Electron Transfer in a Ru(II)tris(bipyridine)-Labeled Multiheme Cytochrome. J Am Chem Soc 2019; 141:15190-15200. [DOI: 10.1021/jacs.9b06858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jessica H. van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher R. Hall
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Katrin Adamczyk
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Antoine Carof
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Ismael Heisler
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Samuel E. H. Piper
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Thomas A. Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Nicholas J. Watmough
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Stephen R. Meech
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| | - Julea N. Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|