1
|
Alyazidi AS, Muthaffar OY, Baaishrah LS, Shawli MK, Jambi AT, Aljezani MA, Almaghrabi MA. Current Concepts in the Management of Sanfilippo Syndrome (MPS III): A Narrative Review. Cureus 2024; 16:e58023. [PMID: 38738088 PMCID: PMC11087936 DOI: 10.7759/cureus.58023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Sanfilippo syndrome is a childhood-onset (1-4 years) autosomal recessive lysosomal storage disease that presents as a neurodegenerative disease by targeting the brain and spinal cord. It is also known as mucopolysaccharidosis III. Mucopolysaccharidosis III is divided into four subtypes (A, B, C, or D). It can cause delayed speech, behavior problems, and features of autism spectrum disorder. Sanfilippo syndrome is of a higher prevalence within consanguineous families that carry its gene alteration. If both parents have a nonfunctional copy of a gene linked to this condition, their children will have a 25% (1 in 4) chance of developing the disease. In Saudi Arabia, the incidence rate is estimated at 2 per 100,000 live births. Recent research focused on promising treatment approaches, such as gene therapy, modified enzyme replacement therapy, and stem cells. These approaches work by exogenous administration of the proper version of the mutant enzyme (enzyme replacement therapy), cleaning the defective enzyme in individuals with glycolipid storage disorders (substrate reduction therapy), or using a pharmacological chaperone to target improperly folded proteins. However, there is currently no approved curative medication for Sanfilippo syndrome that can effectively halt or reverse the disorder.
Collapse
Affiliation(s)
- Anas S Alyazidi
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Osama Y Muthaffar
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Layan S Baaishrah
- Faculty of Pharmacy, King Abdulaziz University Hospital, Jeddah, SAU
| | - Mohammed K Shawli
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Abdulaziz T Jambi
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Maram A Aljezani
- Pediatric Neurology, King Abdulaziz University Hospital, Jeddah, SAU
| | | |
Collapse
|
2
|
Rintz E, Podlacha M, Cyske Z, Pierzynowska K, Węgrzyn G, Gaffke L. Activities of (Poly)phenolic Antioxidants and Other Natural Autophagy Modulators in the Treatment of Sanfilippo Disease: Remarkable Efficacy of Resveratrol in Cellular and Animal Models. Neurotherapeutics 2023; 20:254-271. [PMID: 36344724 PMCID: PMC10119361 DOI: 10.1007/s13311-022-01323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Sanfilippo disease, caused by mutations in the genes encoding heparan sulfate (HS) (a glycosaminoglycan; GAG) degradation enzymes, is a mucopolysaccharidosis (MPS), which is also known as MPS type III, and is characterized by subtypes A, B, C, and D, depending on identity of the dysfunctional enzyme. The lack of activity or low residual activity of an HS-degrading enzyme leads to excess HS in the cells, impairing the functions of different types of cells, including neurons. The disease usually leads to serious psychomotor dysfunction and death before adulthood. In this work, we show that the use of molecules known as dietary (poly)phenolic antioxidants and other natural compounds known as autophagy activators (genistein, capsaicin, curcumin, resveratrol, trehalose, and calcitriol) leads to accelerated degradation of accumulated HS in the fibroblasts of all subtypes of MPS III. Both the cytotoxicity tests we performed and the available literature data indicated that the use of selected autophagy inducers was safe. Since it showed the highest effectivity in cellular models, resveratrol efficacy was tested in experiments with a mouse model of MPS IIIB. Urinary GAG levels were normalized in MPS IIIB mice treated with 50 mg/kg/day resveratrol for 12 weeks or longer. Behavioral tests indicated complete correction of hyperactivity and anxiety in these animals. Biochemical analyses indicated that administration of resveratrol caused autophagy stimulation through an mTOR-independent pathway in the brains and livers of the MPS IIIB mice. These results indicate the potential use of resveratrol (and possibly other autophagy stimulators) in the treatment of Sanfilippo disease.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
3
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
4
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
5
|
Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Genistein: A focus on several neurodegenerative diseases. J Food Biochem 2022; 46:e14155. [PMID: 35460092 DOI: 10.1111/jfbc.14155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are caused by the progressive loss of function or structure of nerve cells in the central nervous system. The most common neurodegenerative diseases include Alzheimer's disease, Huntington's disease, motor neuron disease, and Parkinson's disease. Although the physical or mental symptoms of neurodegenerative disease may be relieved by various treatment combinations, there are currently no strategies to directly slow or prevent neurodegeneration. Given the demographic evidence of a rapidly growing aging population and the associated prevalence of these common neurodegenerative diseases, it is paramount to develop safe and effective ways to protect against neurodegenerative diseases. Most neurodegenerative diseases share some common etiologies such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Genistein is an isoflavone found in soy products that have been shown to exhibit antioxidant, anti-inflammation, and estrogenic properties. Increasing evidence indicates the protective potential of genistein in neurodegenerative disorders. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disease. PRACTICAL APPLICATIONS: Genistein is a naturally occurring isoflavone found mainly in soybean, but also green peas, legumes, and peanuts. Genistein is found to pass through the blood-brain barrier and possess a neuroprotective effect. In this review, we discuss studies in support of these actions and the underlying biological mechanisms. Together, these data indicate that genistein may hold neuroprotective effects in either delaying the onset or relieving the symptoms of neurodegenerative disease.
Collapse
Affiliation(s)
- Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Xiaowen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Węsierska M, Kloska A, Medina DL, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Radzińska M, Moskot M, Malinowska M. Cellular and Gene Expression Response to the Combination of Genistein and Kaempferol in the Treatment of Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 23:ijms23031058. [PMID: 35162981 PMCID: PMC8834790 DOI: 10.3390/ijms23031058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.
Collapse
Affiliation(s)
- Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Naples, Italy;
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Marta Radzińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Marta Moskot
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| |
Collapse
|
7
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
8
|
Ghosh A, Rust S, Langford-Smith K, Weisberg D, Canal M, Breen C, Hepburn M, Tylee K, Vaz FM, Vail A, Wijburg F, O'Leary C, Parker H, Wraith JE, Bigger BW, Jones SA. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J Inherit Metab Dis 2021; 44:1248-1262. [PMID: 34047372 DOI: 10.1002/jimd.12407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to evaluate the efficacy of high dose genistein aglycone in Sanfilippo syndrome (mucopolysaccharidosis type III). High doses of genistein aglycone have been shown to correct neuropathology and hyperactive behaviour in mice, but efficacy in humans is uncertain. This was a single centre, double-blinded, randomised, placebo-controlled study with open-label extension phase. Randomised participants received either 160 mg/kg/day genistein aglycone or placebo for 12 months; subsequently all participants received genistein for 12 months. The primary outcome measure was the change in heparan sulfate concentration in cerebrospinal fluid (CSF), with secondary outcome measures including heparan sulfate in plasma and urine, total glycosaminoglycans in urine, cognitive and adaptive behaviour scores, quality of life measures and actigraphy. Twenty-one participants were randomised and 20 completed the placebo-controlled phase. After 12 months of treatment, the CSF heparan sulfate concentration was 5.5% lower in the genistein group (adjusted for baseline values), but this was not statistically significant (P = .26), and CSF heparan sulfate increased in both groups during the open-label extension phase. Reduction of urinary glycosaminoglycans was significantly greater in the genistein group (32.1% lower than placebo after 12 months, P = .0495). Other biochemical and clinical parameters showed no significant differences between groups. High dose genistein aglycone (160 mg/kg/day) was not associated with clinically meaningful reductions in CSF heparan sulfate and no evidence of clinical efficacy was detected. However, there was a statistically significant reduction in urine glycosaminoglycans. These data do not support the use of genistein aglycone therapy in mucopolysaccharidosis type III. High dose genistein aglycone does not lead to clinically meaningful reductions in biomarkers or improvement in neuropsychological outcomes in mucopolysaccharidosis type III.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Stewart Rust
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kia Langford-Smith
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Daniel Weisberg
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maria Canal
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Catherine Breen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michelle Hepburn
- Wellcome Trust Children's Clinical Research Facility, Royal Manchester Children's Hospital, Manchester, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Andy Vail
- Centre for Biostatistics, School of Health Sciences, University of Manchester, UK
| | - Frits Wijburg
- Amsterdam UMC, location Academic Medical Center, Amsterdam, Netherlands
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - J Ed Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| |
Collapse
|
9
|
Hurdles in treating Hurler disease: potential routes to achieve a "real" cure. Blood Adv 2021; 4:2837-2849. [PMID: 32574368 DOI: 10.1182/bloodadvances.2020001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace. To design better therapies, we need to understand why and where current therapies fail. In this review, we discuss important aspects of the underlying disease and the disease progression. We note that the majority of progressive symptoms that occur in "hard-to-treat" tissues are actually tissues that are difficult to reach, such as avascular connective tissue or tissues isolated from the circulation by a specific barrier (eg, blood-brain barrier, blood-retina barrier). Although easily reached tissues are effectively cured by HCT, disease progression is observed in these "hard-to-reach" tissues. We used these insights to critically appraise ongoing experimental endeavors with regard to their potential to overcome the encountered hurdles and improve long-term clinical outcomes in MPS patients treated with HCT.
Collapse
|
10
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
11
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
12
|
Abstract
Mucopolysaccharidoses (MPSs) are caused by deficiencies of specific lysosomal enzymes that affect the degradation of mucopolysaccharides or glycosaminoglycans (GAGs). Enzyme replacement therapies are available for an increasing number of MPSs since more than 15 years. Together with hematopoietic stem cell transplantation, these enzyme therapies are currently the gold standard of causal treatment in MPS. Both treatments can improve symptoms and prognosis, but they do not cure these severe conditions. The limitations of intravenous enzyme replacement and cell therapy can be summarized as the development of immune reactions against the therapeutic molecules/cells and failure to restore enduring and sufficient drug exposures in all relevant tissues. Thus innovative approaches include small molecules and encapsulated cells that do not induce immune reactions, gene therapy approaches that aim for sustained enzyme expression, and new enzymes that are able to penetrate barriers to drug distribution like the blood-brain barrier. This chapter provides an update on the state of development of these new therapies and highlights current challenges.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
13
|
Luo E, Liu H, Zhao Q, Shi B, Chen Q. Dental-craniofacial manifestation and treatment of rare diseases. Int J Oral Sci 2019; 11:9. [PMID: 30783081 PMCID: PMC6381182 DOI: 10.1038/s41368-018-0041-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/05/2023] Open
Abstract
Rare diseases are usually genetic, chronic and incurable disorders with a relatively low incidence. Developments in the diagnosis and management of rare diseases have been relatively slow due to a lack of sufficient profit motivation and market to attract research by companies. However, due to the attention of government and society as well as economic development, rare diseases have been gradually become an increasing concern. As several dental-craniofacial manifestations are associated with rare diseases, we summarize them in this study to help dentists and oral maxillofacial surgeons provide an early diagnosis and subsequent management for patients with these rare diseases.
Collapse
Affiliation(s)
- En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Abstract
Enzyme replacement therapy is currently considered the standard of care for the treatment of mucopolysaccharidoses (MPS) type I, II, VI, and IV. This approach has shown substantial efficacy mainly on somatic symptoms of the patients, but no benefit was found for other clinical manifestations, such as neurological involvement. New strategies are currently being tested to address these limitations, in particular to obtain sufficient therapeutic levels in the brain. Intrathecal delivery of recombinant enzymes or chimeric enzymes represent promising approaches in this respect. Further innovation will likely be introduced by the recent advancements in the knowledge of lysosomal biology and function. It is now clear that the clinical manifestations of MPS are not only the direct effects of storage, but also derive from a cascade of secondary events that lead to dysfunction of several cellular processes and pathways. Some of these pathways may represent novel therapeutic targets and allow for development of novel or adjunctive therapies for these disorders.
Collapse
Affiliation(s)
- Simona Fecarotta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Serena Gasperini
- Metabolic Rare Disease Unit, Pediatric Department, Fondazione MBBM, University of Milano Bicocca, Monza, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
15
|
Nijmeijer SCM, Wijburg FA. Mucopolysaccharidosis type III: current clinical trials, challenges and recommendations. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1411797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie CM Nijmeijer
- Department of Pediatric Metabolic Diseases, Emma Children’s Hospital and Amsterdam Lysosome Center ‘Sphinx,’ Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children’s Hospital and Amsterdam Lysosome Center ‘Sphinx,’ Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Scarpa M, Orchard PJ, Schulz A, Dickson PI, Haskins ME, Escolar ML, Giugliani R. Treatment of brain disease in the mucopolysaccharidoses. Mol Genet Metab 2017; 122S:25-34. [PMID: 29153844 DOI: 10.1016/j.ymgme.2017.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
The mucopolysaccharidosis (MPS) disorders are a group of lysosomal storage diseases caused by lysosomal enzyme deficits that lead to glycosaminoglycan accumulation, affecting various tissues throughout the body based on the specific enzyme deficiency. These disorders are characterized by their progressive nature and a variety of somatic manifestations and neurological symptoms. There are established treatments for some MPS disorders, but these mostly alleviate somatic and non-neurological symptoms and do not cure the disease. Patients with MPS I, II, III, and VII can present with neurological manifestations such as neurocognitive decline and behavioral problems. Treatment of these neurological manifestations remains challenging due to the blood-brain barrier (BBB) that limits delivery of therapeutic agents to the central nervous system (CNS). New therapies that circumvent this barrier and target brain disease in MPS are currently under development. They primarily focus on facilitating penetration of drugs through the BBB, delivery of recombinant enzyme to the brain by gene therapy, or direct CNS administration. This review summarizes existing and potential future treatment approaches that target brain disease in MPS. The information in this review is based on current literature and presentations and discussions during a closed meeting by an international group of experts with extensive experience in managing and treating MPS.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Department of Paediatric and Adolescent Medicine, Helios Dr. Horst Schmidt Kliniken, Center for Rare Diseases, Wiesbaden, Germany; Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - Paul J Orchard
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Angela Schulz
- Department of Pediatrics, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria L Escolar
- Department of Pediatrics, Program for Neurodevelopment in Rare Disorders, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Giugliani
- Department of Genetics, UFRGS & Medical Genetics Service, HCPA, INAGEMP, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Poswar F, Baldo G, Giugliani R. Phase I and II clinical trials for the mucopolysaccharidoses. Expert Opin Investig Drugs 2017; 26:1331-1340. [DOI: 10.1080/13543784.2017.1397130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fabiano Poswar
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Postgraduate Program in Physiology, UFRGS, Porto Alegre, Brazil
- Department of Physiology and Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
18
|
Substrate Deprivation Therapy to Reduce Glycosaminoglycan Synthesis Improves Aspects of Neurological and Skeletal Pathology in MPS I Mice. Diseases 2017; 5:diseases5010005. [PMID: 28933358 PMCID: PMC5456338 DOI: 10.3390/diseases5010005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is the most common form of the MPS group of genetic diseases. MPS I results from a deficiency in the lysosomal enzyme α-l-iduronidase, leading to accumulation of undegraded heparan and dermatan sulphate glycosaminoglycan (GAG) chains in patient cells. MPS children suffer from multiple organ failure and die in their teens to early twenties. In particular, MPS I children also suffer from profound mental retardation and skeletal disease that restricts growth and movement. Neither brain nor skeletal disease is adequately treated by current therapy approaches. To overcome these barriers to effective therapy we have developed and tested a treatment called substrate deprivation therapy (SDT). MPS I knockout mice were treated with weekly intravenous injections of 1 mg/kg rhodamine B for six months to assess the efficacy of SDT. Mice were assessed using biochemistry, micro-CT and a battery of behaviour tests to determine the outcome of treatment. A reduction in female bodyweight gain was observed with the treatment as well as a decrease in lung GAG. Behavioural studies showed slight improvements in inverted grid and significant improvements in learning ability for female MPS I mice treated with rhodamine B. Skeletal disease also improved with a reduction in bone mineral volume observed. Overall, rhodamine B is safe to administer to MPS I knockout mice where it had an effect on improving aspects of neurological and skeletal disease symptoms and may therefore provide a potential therapy or adjunct therapy for MPS I patients.
Collapse
|
19
|
Affiliation(s)
- Saida Ortolano
- Group of Neonatal Pathology, Pediatrics and Rare Diseases, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| |
Collapse
|
20
|
Yasuda E, Suzuki Y, Shimada T, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, Xie L, Miller F, Rahman T, Kecskemethy HH, Nagao K, Morlet T, Shaffer TH, Chinen Y, Yabe H, Tanaka A, Shintaku H, Orii KE, Orii KO, Mason RW, Montaño AM, Fukao T, Orii T, Tomatsu S. Activity of daily living for Morquio A syndrome. Mol Genet Metab 2016; 118:111-22. [PMID: 27161890 PMCID: PMC5016714 DOI: 10.1016/j.ymgme.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate the activity of daily living (ADL) and surgical interventions in patients with mucopolysaccharidosis IVA (MPS IVA). The factor(s) that affect ADL are age, clinical phenotypes, surgical interventions, therapeutic effect, and body mass index. The ADL questionnaire comprises three domains: "Movement," "Movement with cognition," and "Cognition." Each domain has four subcategories rated on a 5-point scale based on the level of assistance. The questionnaire was collected from 145 healthy controls and 82 patients with MPS IVA. The patient cohort consisted of 63 severe and 17 attenuated phenotypes (2 were undefined); 4 patients treated with hematopoietic stem cell transplantation (HSCT), 33 patients treated with enzyme replacement therapy (ERT) for more than a year, and 45 untreated patients. MPS IVA patients show a decline in ADL scores after 10years of age. Patients with a severe phenotype have a lower ADL score than healthy control subjects, and lower scores than patients with an attenuated phenotype in domains of "Movement" and "Movement with cognition." Patients, who underwent HSCT and were followed up for over 10years, had higher ADL scores and fewer surgical interventions than untreated patients. ADL scores for ERT patients (2.5years follow-up on average) were similar with the-age-matched controls below 10years of age, but declined in older patients. Surgical frequency was higher for severe phenotypic patients than attenuated ones. Surgical frequency for patients treated with ERT was not decreased compared to untreated patients. In conclusion, we have shown the utility of the proposed ADL questionnaire and frequency of surgical interventions in patients with MPS IVA to evaluate the clinical severity and therapeutic efficacy compared with age-matched controls.
Collapse
Affiliation(s)
- Eriko Yasuda
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Medical Informatics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Suzuki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Japan
| | - Tsutomu Shimada
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Mary C Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Li Xie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tariq Rahman
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Kyoko Nagao
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Thierry Morlet
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Thomas H Shaffer
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Ryukyu, Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Akemi Tanaka
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji E Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji O Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, MO, USA; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
21
|
Kaidonis X, Byers S, Ranieri E, Sharp P, Fletcher J, Derrick-Roberts A. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice. Mol Genet Metab 2016; 118:100-10. [PMID: 27106513 DOI: 10.1016/j.ymgme.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. SYNOPSIS NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Enzo Ranieri
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Peter Sharp
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Janice Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Ainslie Derrick-Roberts
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
22
|
Giugliani R, Federhen A, Vairo F, Vanzella C, Pasqualim G, da Silva LMR, Giugliani L, de Boer APK, de Souza CFM, Matte U, Baldo G. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin Emerg Drugs 2016; 21:9-26. [PMID: 26751109 DOI: 10.1517/14728214.2016.1123690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being reported for the first time almost one century ago, only in the last few decades effective have treatments become available for the mucopolysaccharidoses (MPSs), a group of 11 inherited metabolic diseases that affect lysosomal function. These diseases are progressive, usually severe, and, in a significant number of cases, involve cognitive impairment. AREAS COVERED This review will not cover established treatments such as bone marrow/hematopoietic stem cell transplantation and classic intravenous enzyme replacement therapy (ERT), whose long-term outcomes have already been published (MPS I, MPS II, and MPS VI), but it instead focuses on emerging therapies for MPSs. That includes intravenous ERT for MPS IVA and VII, intrathecal ERT, ERT with fusion proteins, substrate reduction therapy, gene therapy, and other novel approaches. EXPERT OPINION The available treatments have resulted in improvements for several disease manifestations, but they still do not represent a cure for these diseases; thus, it is important to develop alternative methods to approach the unmet needs (i.e. bone disease, heart valve disease, corneal opacity, and central nervous system (CNS) involvement). The work in progress with novel approaches makes us confident that in 2017, when MPS will commemorate 100 years of its first report, we will be much closer to an effective cure for these challenging conditions.
Collapse
Affiliation(s)
- Roberto Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Andressa Federhen
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,c Post-Graduate Program in Child and Adolescent Health , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Filippo Vairo
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Cláudia Vanzella
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,e Post-Graduate Program in Biological Sciences: Biochemistry , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Gabriela Pasqualim
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Letícia Machado Rosa da Silva
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Luciana Giugliani
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ana Paula Kurz de Boer
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Carolina Fishinger Moura de Souza
- a Medical Genetics Service and Clinical Research Group in Medical Genetics , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Ursula Matte
- b Department of Genetics , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Guilherme Baldo
- d Post-Graduate Program in Genetics and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,f Gene Therapy Center , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,g Department of Physiology , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
23
|
Tylki-Szymańska A, Jurecka A. Prospective therapies for mucopolysaccharidoses. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1089167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Kingma SDK, Wagemans T, IJlst L, Wijburg FA, van Vlies N. Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models. J Inherit Metab Dis 2014; 37:813-21. [PMID: 24699889 DOI: 10.1007/s10545-014-9703-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which results in the accumulation of these GAGs and subsequent cellular dysfunction. Patients present with a variety of symptoms, including severe skeletal disease. Genistein has been shown previously to inhibit GAG synthesis in MPS fibroblasts, presumably through inhibition of tyrosine kinase activity of the epidermal growth factor receptor (EGFR). To determine the potentials of genistein for the treatment of skeletal disease, MPS I fibroblasts were induced into chondrocytes and osteoblasts and treated with genistein. Surprisingly, whereas tyrosine phosphorylation levels (as a measure for tyrosine kinase inhibition) were decreased in all treated cell lines, there was a 1.3 and 1.6 fold increase in GAG levels in MPS I chondrocytes and fibroblast, respectively (p < 0.05). Sulfate incorporation in treated MPS I fibroblasts was 2.6 fold increased (p < 0.05), indicating increased GAG synthesis despite tyrosine kinase inhibition. This suggests that GAG synthesis is not exclusively regulated through the tyrosine kinase activity of the EGFR. We hypothesize that the differences in outcomes between studies on the effect of genistein in MPS are caused by the different effects of genistein on different growth factor signaling pathways, which regulate GAG synthesis. More studies are needed to elucidate the precise signaling pathways which are affected by genistein and alter GAG metabolism in order to evaluate the therapeutic potential of genistein for MPS patients.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
25
|
Quiviger M, Arfi A, Mansard D, Delacotte L, Pastor M, Scherman D, Marie C. High and prolonged sulfamidase secretion by the liver of MPS-IIIA mice following hydrodynamic tail vein delivery of antibiotic-free pFAR4 plasmid vector. Gene Ther 2014; 21:1001-7. [PMID: 25142140 DOI: 10.1038/gt.2014.75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 05/17/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022]
|
26
|
Buhrman D, Thakkar K, Poe M, Escolar ML. Natural history of Sanfilippo syndrome type A. J Inherit Metab Dis 2014; 37:431-7. [PMID: 24271936 DOI: 10.1007/s10545-013-9661-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To describe the natural history of Sanfilippo syndrome type A. METHODS We performed a retrospective review of 46 children (21 boys, 25 girls) with Sanfilippo syndrome type A evaluated between January 2000 and April 2013. Assessments included neurodevelopmental evaluations, audiologic testing, and assessment of growth, adaptive behavior, cognitive behavior, motor function, and speech/language skills. Only the baseline evaluation was included for patients who received hematopoietic stem cell transplantation. RESULTS Median age at diagnosis was 35 months, with a median delay between initial symptoms to diagnosis of 24 months. The most common initial symptoms were speech/language delay (48%), dysmorphology (22%), and hearing loss (20%). Early behavioral problems included perseverative chewing and difficulty with toilet training. All children developed sleep difficulties and behavioral changes (e.g., hyperactivity, aggression). More than 93% of the children experienced somatic symptoms such as hepatomegaly (67%), abnormal dentition (39%), enlarged tongue (37%), coarse facial features (76%), and protuberant abdomen (43%). Kaplan-Meier analysis showed a 60% probability of surviving past 17 years of age. CONCLUSIONS Sanfilippo type A is characterized by severe hearing loss and speech delay, followed by a rapid decline in cognitive skills by 3 years of age. Significant somatic disease occurs in more than half of patients. Behavioral difficulties presented between 2 and 4 years of age during a rapid period of cognitive decline. Gross motor abilities are maintained during this period, which results in an active child with impaired cognition. Sleep difficulties are concurrent with the period of cognitive degeneration. There is currently an unacceptable delay in diagnosis, highlighting the need to increase awareness of this disease among clinicians.
Collapse
Affiliation(s)
- Dakota Buhrman
- University of Pittsburgh and Children's Hospital of Pittsburgh of UPMC, 4401 Penn Ave, Pittsburgh, PA, 15213, USA
| | | | | | | |
Collapse
|
27
|
Noh H, Lee JI. Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Pharm Ther 2014; 39:215-24. [PMID: 24612142 DOI: 10.1111/jcpt.12136] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Mucopolysaccharidoses (MPSs) are a group of rare inherited metabolic diseases caused by genetic defects in the production of lysosomal enzymes. MPSs are clinically heterogeneous and are characterized by progressive deterioration in visceral, skeletal and neurological functions. This article aims to review the classification and pathophysiology of MPSs and discuss current therapies and new targeted agents under development. METHODS A Medline search through PubMed was performed for relevant articles and treatment guidelines on MPSs published in English for years 1970 to September of 2013 inclusive. The references listed in the identified articles, prescribing information of the drugs approved for the treatment of MPSs, as well as recent clinical trial information posted on Clinicaltrials.gov website, were reviewed. RESULTS AND DISCUSSION Until recently, supportive care was the only option available for the management of MPSs. In the early 2000s, enzyme replacement therapy (ERT) was approved by the United States Food and Drug Administration (FDA) for the treatment of MPS I, II and VI. Clinical trials of ERT showed substantial improvements in patients' somatic symptoms; however, no benefit was found in the neurological symptoms because the enzymes do not readily cross the blood-brain barrier (BBB). Haematopoietic stem cell transplantation (HSCT), another potentially curative treatment, is not routinely advocated in clinical practice due to its high risk profile and lack of evidence for efficacy, except in preserving cognition and prolonging survival in young patients with severe MPS I. In recent years, substrate reduction therapy (SRT) and gene therapy have been rapidly gaining greater recognition as potential therapeutic avenues. WHAT IS NEW AND CONCLUSION Enzyme replacement therapy (ERT) is effective for the treatment of many somatic symptoms, particularly walking ability and respiratory function, and remains the mainstay of MPS treatment. The usefulness of HSCT has not been established adequately for most MPSs. Although still under investigation, SRT and gene therapy are promising MPS treatments that may prevent the neurodegeneration not affected by ERT.
Collapse
Affiliation(s)
- H Noh
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Korea; Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Korea
| | | |
Collapse
|
28
|
Negretto GW, Deon M, Burin M, Biancini GB, Ribas G, Garcia SC, Goethel G, Fracasso R, Giugliani L, Giugliani R, Vargas CR. In vitro effect of genistein on DNA damage in leukocytes from mucopolysaccharidosis IVA patients. Mol Genet Metab 2014; 111:205-8. [PMID: 24359664 DOI: 10.1016/j.ymgme.2013.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 11/24/2013] [Indexed: 11/27/2022]
Abstract
Mucopolysaccharidosis IVA is a lysosomal storage disorder leading to an increase in glycosaminoglycans storage. Genistein is an isoflavone capable to inhibit glycosaminoglycans production. The objective of this study was to analyze the in vitro effect of different concentrations of genistein on DNA injury in mucopolysaccharidosis IVA patients. The lower concentration tested (10 μM) showed a significant increase on DNA injury in vitro, although higher concentrations (30 μM and 50 μM) showed higher DNA damage.
Collapse
Affiliation(s)
- G W Negretto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, 1º andar, CEP: 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil.
| | - M Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - M Burin
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - G B Biancini
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - G Ribas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - S C Garcia
- Faculdade de Farmácia, UFRGS, Laboratório de Toxicologia, Endereço: Avenida Ipiranga, 2752, sala 605, CEP: 90610-000, Brazil
| | - G Goethel
- Faculdade de Farmácia, UFRGS, Laboratório de Toxicologia, Endereço: Avenida Ipiranga, 2752, sala 605, CEP: 90610-000, Brazil
| | - R Fracasso
- Faculdade de Farmácia, UFRGS, Laboratório de Toxicologia, Endereço: Avenida Ipiranga, 2752, sala 605, CEP: 90610-000, Brazil
| | - L Giugliani
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - R Giugliani
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - C R Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, 1º andar, CEP: 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil.
| |
Collapse
|
29
|
Opoka-Winiarska V, Jurecka A, Emeryk A, Tylki-Szymańska A. Osteoimmunology in mucopolysaccharidoses type I, II, VI and VII. Immunological regulation of the osteoarticular system in the course of metabolic inflammation. Osteoarthritis Cartilage 2013; 21:1813-23. [PMID: 23954699 DOI: 10.1016/j.joca.2013.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/27/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mucopolysaccharidoses (MPSs) are rare genetic diseases caused by a deficient activity of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. These metabolic blocks lead to the accumulation of GAGs in various organs and tissues, resulting in a multisystemic clinical picture. The pathological GAG accumulation begins a cascade of interrelated responses: metabolic, inflammatory and immunological with systemic effects. Metabolic inflammation, secondary to GAG storage, is a significant cause of osteoarticular symptoms in MPS disorders. OBJECTIVE AND METHOD The aim of this review is to present recent progress in the understanding of the role of inflammatory and immune processes in the pathophysiology of osteoarticular symptoms in MPS disorders and potential therapeutic interventions based on published reports in MPS patients and studies in animal models. RESULTS AND CONCLUSIONS The immune and skeletal systems have a number of shared regulatory molecules and many relationships between bone disorders and aberrant immune responses in MPS can be explained by osteoimmunology. The treatment options currently available are not sufficiently effective in the prevention, inhibition and treatment of osteoarticular symptoms in MPS disease. A lot can be learnt from interactions between skeletal and immune systems in autoimmune diseases such as rheumatoid arthritis (RA) and similarities between RA and MPS point to the possibility of using the experience with RA in the treatment of MPS in the future. The use of different anti-inflammatory drugs requires further study, but it seems to be an important direction for new therapeutic options for MPS patients.
Collapse
Affiliation(s)
- V Opoka-Winiarska
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
30
|
Guo Y, Zhang A, Ding Y, Wang Y, Yuan W. Genistein ameliorates parathyroid hormone-induced epithelial-to-mesenchymal transition and inhibits expression of connective tissue growth factor in human renal proximal tubular cells. Arch Med Sci 2013; 9:724-30. [PMID: 24049536 PMCID: PMC3776185 DOI: 10.5114/aoms.2013.36929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 06/14/2012] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Genistein, a soybean and soy-based product, has been reported to inhibit the growth of a wide range of cancer cells, but there is no evidence concerning its treatment of chronic kidney disease. The aim was to investigate whether genistein has potential to inhibit parathyroid hormone (PTH)-induced renal interstitial fibrosis. MATERIAL AND METHODS Using human renal tubular epithelial HK-2 cells, α-smooth muscle actin (α-SMA) was assessed by using immunofluorescence detection. α-Smooth muscle actin, E-cadherin and connective tissue growth factor (CTGF) were measured by Western blot analysis. The promoter activity of the CTGF gene was examined by the luciferase reporter assay. RESULTS When cells were treated with PTH (0.1 nM) for 48 h, α-SMA protein expression was induced significantly, the protein expression of E-cadherin decreased substantially, and the promoter activity of the CTGF gene as well as its mRNA and protein expression levels increased (p < 0.01). Interestingly, genistein effectively inhibited PTH-induced α-SMA expression, restored E-cadherin expression, decreased mRNA and protein expression of CTGF, and suppressed the promoter activity of CTGF in a dose-dependent manner. CONCLUSIONS Genistein has the ability to block the biomarker for renal transdifferentiation and epithelial-to-mesenchymal transition, α-SMA, following PTH treatment and inhibit CTGF expression in human renal tubular epithelial cells; these might be important modes of actions that contribute to genistein anti-fibrogenic effects and may have great implications for its potential in clinical treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shangdong, China
| | - Aiping Zhang
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shangdong, China
| | - Yaohai Ding
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shangdong, China
| | - Yanxia Wang
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shangdong, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai First People's Hospital Affiliated Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
31
|
Meijer OLM, van Vlies N, Wijburg FA. Treatment of mucopolysaccharidosis type III (Sanfilippo syndrome). Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.830069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Olga LM Meijer
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| | - Naomi van Vlies
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Lab Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| |
Collapse
|
32
|
Wijburg FA, Węgrzyn G, Burton BK, Tylki‐Szymańska A. Mucopolysaccharidosis type III (Sanfilippo syndrome) and misdiagnosis of idiopathic developmental delay, attention deficit/hyperactivity disorder or autism spectrum disorder. Acta Paediatr 2013; 102:462-70. [PMID: 23336697 PMCID: PMC3654162 DOI: 10.1111/apa.12169] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/20/2012] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidosis III is a rare genetic disease characterized by progressive cognitive decline and severe hyperactivity that does not respond to stimulants. Somatic features are relatively mild. Patients are often initially misdiagnosed as having idiopathic developmental delay, attention deficit/hyperactivity disorder and/or autism spectrum disorders, putting them at risk for unnecessary testing and treatments. Conclusion: Children with developmental or speech delay, especially those with a characteristic somatic feature or behavioural abnormalities, should be screened for MPS III.
Collapse
Affiliation(s)
- Frits A Wijburg
- Department of Paediatrics Academic Medical Centre Amsterdam The Netherlands
| | - Grzegorz Węgrzyn
- Department of Molecular Biology University of Gdańsk Gdańsk Poland
| | - Barbara K Burton
- Division of Genetics, Birth Defects and Metabolism Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Anna Tylki‐Szymańska
- Department of Metabolic Diseases The Children's Memorial Health Institute Warsaw Poland
| |
Collapse
|
33
|
|
34
|
Parenti G, Pignata C, Vajro P, Salerno M. New strategies for the treatment of lysosomal storage diseases (review). Int J Mol Med 2012; 31:11-20. [PMID: 23165354 DOI: 10.3892/ijmm.2012.1187] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 11/05/2022] Open
Abstract
The lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders caused by the deficiency of any of the lysosomal functions, in most cases of lysosomal hydrolases. LSDs are typically characterized by storage of a variety of substrates in multiple tissues and organs and by the variable association of unusual clinical manifestations that are often responsible for physical and neurological handicaps. During the past two decades, research in the field of LSDs has made marked progress, particularly with the development of a variety of innovative therapeutic approaches. These include several strategies aimed at increasing the residual activity of the missing enzyme, such as hematopoietic stem cell transplantation, enzyme replacement therapy, pharmacological chaperone therapy and gene therapy. An alternative approach is based on reducing the synthesis of the stored substrate. More recently, the improved knowledge on LSD pathophysiology has indicated additional targets of therapy. The recent progress made in the treatment of LSDs represents a good model that may be extended to other genetic disorders.
Collapse
|
35
|
Anderson SL, Liu B, Qiu J, Sturm AJ, Schwartz JA, Peters AJ, Sullivan KA, Rubin BY. Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells. Mol Nutr Food Res 2012; 56:570-9. [PMID: 22495984 DOI: 10.1002/mnfr.201100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SCOPE The reported ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD)-causing mutation in the IKBKAP gene prompted an evaluation of the impact of commonly consumed nutraceuticals on the splicing of this transcript. METHODS AND RESULTS Screening efforts revealed the ability of the isoflavones, genistein, and daidzein, to impact splicing and increase the production of the wild-type, exon-20-containing, transcript, and the full-length IKBKAP-encoded IΚB kinase complex associated protein(IKAP) in FD-derived cells. Genistein was also found to impact splicing in neuronal cells, a cell type profoundly impacted by FD. The simultaneous exposure of FD-derived cells to genistein and epigallocatechin gallate (EGCG) resulted in the almost exclusive production of the exon-20-containing transcript and the production of wild-type amounts of IKAP protein. CONCLUSION This study represents the first demonstration that the isoflavones, genistein and daidzein, possess splice-altering capabilities and that simultaneous treatment with genistein and EGCG reverses the splice-altering impact of the FD-causing mutation. These findings support the clinical evaluation of the therapeutic impact of the combined administration of these two commonly consumed nutraceuticals on this patient population and suggest a broader evaluation of the impact of these nutraceuticals on the in vivo RNA splicing process.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY10458, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Putative biological mechanisms of efficiency of substrate reduction therapies for mucopolysaccharidoses. Arch Immunol Ther Exp (Warsz) 2012; 60:461-8. [PMID: 22949095 DOI: 10.1007/s00005-012-0195-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/15/2012] [Indexed: 01/18/2023]
Abstract
Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by mutations in genes coding for lysosomal enzymes involved in the degradation of glycosaminoglycans (GAGs). Dysfunction of any of these enzymes results in the accumulation of GAGs, which leads to severe clinical symptoms and significantly shortened life span. Several kinds of therapies have been proposed to treat MPS, including bone marrow or stem cell transplantation, enzyme replacement therapy, and gene therapy. Another option is substrate reduction therapy (SRT), in which synthesis of GAGs is inhibited. Recent studies employing in vitro and animal models suggested that this therapy may be efficient in decreasing levels of GAGs in MPS cells, including those bearing two null alleles of the affected gene. Results of behavioral tests in animals as well as some preliminary clinical observations with pediatric patients corroborated the suggestions about possible efficacy of SRT in MPS treatment, including brain functions. Efficient reduction of GAG levels in MPS cells homozygous for null mutations may be intriguing in the commonly accepted scheme of SRT mode of action. In this paper, we propose an explanation of this phenomenon, based on already known facts. Thus, we suggest that SRT may lead to reduction of GAG levels in MPS cells due to inhibition of efficiency of GAG synthesis combined with (a) any readthrough of the stop codon, (b) dilution of already accumulated GAGs due to cell growth followed by cell divisions, and (c) action of endoglycosidases degrading GAGs, e.g., heparanase, in combination with functional GAG-specific hydrolases.
Collapse
|
37
|
Kloska A, Narajczyk M, Jakóbkiewicz-Banecka J, Grynkiewicz G, Szeja W, Gabig-Cimińska M, Węgrzyn G. Synthetic genistein derivatives as modulators of glycosaminoglycan storage. J Transl Med 2012; 10:153. [PMID: 22846663 PMCID: PMC3441846 DOI: 10.1186/1479-5876-10-153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 01/07/2023] Open
Abstract
Background Mucopolysaccharidoses (MPS) are severe metabolic disorders caused by accumulation of undegraded glycosaminoglycans (GAGs) in lysosomes due to defects in certain lysosomal hydrolases. Substrate reduction therapy (SRT) has been proposed as one of potential treatment procedures of MPS. Importantly, small molecules used in such a therapy might potentially cross the blood–brain barrier (BBB) and improve neurological status of patients, as reported for a natural isoflavone, 5, 7-dihydroxy-3- (4-hydroxyphenyl)-4 H-1-benzopyran-4-one, also known as genistein. Although genistein is able to cross BBB to some extent, its delivery to the central nervous system is still relatively poor (below 10% efficiency). Thus, we aimed to develop a set of synthetically modified genistein molecules and characterize physicochemical as well as biological properties of these compounds. Methods Following parameters were determined for the tested synthetic derivatives of genistein: cytotoxicity, effects on cell proliferation, kinetics of GAG synthesis, effects on epidermal growth factor (EGF) receptor’s tyrosine kinase activity, effects on lysosomal storage, potential ability to cross BBB. Results We observed that some synthetic derivatives inhibited GAG synthesis similarly to, or more efficiently than, genistein and were able to reduce lysosomal storage in MPS III fibroblasts. The tested compounds were generally of low cytotoxicity and had minor effects on cell proliferation. Moreover, synthetic derivatives of genistein revealed higher lipophilicity (assessed in silico) than the natural isoflavone. Conclusion Some compounds tested in this study might be promising candidates for further studies on therapeutic agents in MPS types with neurological symptoms.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Molecular Biology, University of Gdańsk, Kładki 24, Gdańsk, 80-822, Poland
| | | | | | | | | | | | | |
Collapse
|
38
|
Narajczyk M, Tylki-Szymańska A, Węgrzyn G. Changes in hair morphology as a biomarker in gene expression-targeted isoflavone therapy for Sanfilippo disease. Gene 2012; 504:292-5. [PMID: 22633875 DOI: 10.1016/j.gene.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/07/2012] [Indexed: 01/06/2023]
Abstract
Lack of unequivocal markers for assessment of therapeutic effects of treatment procedures is a common problem, but it is especially pronounced in genetic diseases. One of them is Sanfilippo disease (mucopolysaccharidosis type III, or MPS III). Changes in hair morphology have already been reported as one of characteristic and easily detected symptoms of this disease and other mucopolysaccharidoses. This feature has been used previously to monitor efficacy of gene expression-targeted isoflavone therapy (GET IT) in pilot clinical studies performed with low number of patients. Here, we studied changes in hair morphology, observed by using scanning electron microscopy, in 35 patients subjected to GET IT for one year at doses of 5 and 15 mg/kg/day. We have observed statistically significant correction of hair morphology in both groups of patients, corroborating results of earlier studies with low number of patients that suggested easily observable improvement in this parameter during different therapies of MPS. Since the improvement was evident in both previous reports and this study, we propose that analysis of hair morphology may be considered as a non-invasive method in monitoring effects of treatment on somatic symptoms of Sanfilippo disease patients.
Collapse
Affiliation(s)
- Magdalena Narajczyk
- Laboratory of Electron Microscopy, University of Gdańsk, Kładki 24, Gdańsk, Poland.
| | | | | |
Collapse
|
39
|
Węgrzyn A. Gene expression-targeted isoflavone therapy. IUBMB Life 2012; 64:307-15. [PMID: 22362546 DOI: 10.1002/iub.1007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/09/2012] [Indexed: 01/23/2023]
Abstract
Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This proposal can be tested in double-blinded, placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland.
| |
Collapse
|
40
|
Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, Bedwell DM, Keeling KM. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab 2012; 105:116-25. [PMID: 22056610 PMCID: PMC3253910 DOI: 10.1016/j.ymgme.2011.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 12/20/2022]
Abstract
Suppression therapy utilizes compounds that suppress translation termination at in-frame premature termination codons (PTCs) to restore full-length, functional protein. This approach may provide a treatment for diseases caused by nonsense mutations such as mucopolysaccharidosis type I-Hurler (MPS I-H). MPS I-H is a lysosomal storage disease caused by severe α-L-iduronidase deficiency and subsequent lysosomal glycosaminoglycan (GAG) accumulation. MPS I-H represents a good target for suppression therapy because the majority of MPS I-H patients carry nonsense mutations, and restoration of even a small amount of functional α-L-iduronidase may attenuate the MPS I-H phenotype. In this study, we investigated the efficiency of suppression therapy agents to suppress the Idua-W392X nonsense mutation in an MPS I-H mouse model. The drugs tested included the conventional aminoglycosides gentamicin, G418, amikacin, and paromomycin. In addition, the designer aminoglycosides NB54 and NB84, two compounds previously designed to mediate efficient PTC suppression with reduced toxicity, were also examined. Overall, NB84 suppressed the Idua-W392X nonsense mutation much more efficiently than any of the other compounds tested. NB84 treatment restored enough functional α-L-iduronidase activity to partially reverse abnormal GAG accumulation and lysosomal abundance in mouse embryonic fibroblasts derived from the Idua-W392X mouse. Finally, in vivo administration of NB84 to Idua-W392X mice significantly reduced urine GAG excretion and tissue GAG storage. Together, these results suggest that NB84-mediated suppression therapy has the potential to attenuate the MPS I-H disease phenotype.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Valery Belakhov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jeyakumar Kandasamy
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Su-Chen Li
- Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA
| | - Yu-Teh Li
- Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA
| | - David M. Bedwell
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim M. Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Corresponding author: Kim M. Keeling, Address: Department of Microbiology, BBRB 456, 845 19 Street South, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Telephone: 205-975-6585; Fax: 205-975-5482.
| |
Collapse
|
41
|
Malinová V, Węgrzyn G, Narajczyk M. The use of elevated doses of genistein-rich soy extract in the gene expression-targeted isoflavone therapy for Sanfilippo disease patients. JIMD Rep 2011; 5:21-5. [PMID: 23430913 DOI: 10.1007/8904_2011_87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/26/2011] [Accepted: 08/25/2011] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are severe, inherited metabolic disorders caused by storage of glycosaminoglycans (GAGs). Sanfilippo disease (mucopolysaccharidosis type III, MPS III) is described as severe neurological type of MPS, characterized by rapid deterioration of brain functions. No therapy for Sanfilippo disease is approved to date, however, a specific substrate reduction therapy (SRT), called gene expression-targeted isoflavone therapy (GET IT), has been used as an experimental therapy. In this report, we describe effects of treatment of six Sanfilippo disease patients with GET IT, in which the dose of genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), an active compound of GET IT present in the soy isoflavone extract, has been increased to 10, and then to 15 mg/kg/day, contrary to the previously reported dose of 5 mg/kg/day. By measuring levels of urinary GAGs and assessing hair dysmorphology as biomarkers, and by considering clinical symptoms of patients, we obtained results suggesting that elevated doses of genistein may improve efficacy of GET IT for Sanfilippo disease.
Collapse
Affiliation(s)
- Věra Malinová
- Department of Pediatrics and Adolescent Medicine, Charles University, Ke Karlovu 2, 120 00, Praha 2, Czech Republic
| | | | | |
Collapse
|
42
|
Lysosomale Speicherkrankheiten. Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Marucha J, Tylki-Szymańska A, Jakóbkiewicz-Banecka J, Piotrowska E, Kloska A, Czartoryska B, Węgrzyn G. Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am J Med Genet A 2011; 155A:2257-62. [PMID: 21834048 DOI: 10.1002/ajmg.a.34146] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 04/23/2011] [Indexed: 11/11/2022]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter disease) is an X chromosome-linked inherited metabolic disease caused by mutations resulting in deficiency of activity of iduronate-2-sulfatase (IDS) and accumulation of undegraded glycosaminoglycans (GAGs), heparan sulfate, and dermatan sulfate. Previous experiments with cell cultures and studies on animal model of MPS II suggested that gene expression-targeted isoflavone therapy (GET IT), based on genistein-mediated reduction of efficiency of GAG synthesis, might be a suitable therapy for this disease. In this report, we demonstrate efficacy of GET IT in connective tissue elasticity, particularly in improving the range of joint motion in seven patients with MPS II after 26 weeks of treatment with an isoflavone extract at the dose corresponding to 5 mg/kg/day of genistein.
Collapse
Affiliation(s)
- Jolanta Marucha
- Department of Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|