1
|
Xu M, Cui M, Wang Y, Li B, Feng L, Xing H, Zhang K. Therapeutic potentials of natural products for post-traumatic stress disorder: A focus on epigenetics. CHINESE HERBAL MEDICINES 2025; 17:203-219. [PMID: 40256720 PMCID: PMC12009077 DOI: 10.1016/j.chmed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 07/18/2024] [Indexed: 04/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a relatively common but complex mental illness with a range of diverse risk factors. Typical symptoms include the re-experience or avoidance of traumatic events, cognitive impairment, and hypervigilance. While the exact pathogenesis of PTSD is unclear, many studies indicate that epigenetic regulation plays a key role in its development. Specifically, numerous studies have indicated that the levels of histone acetylation and methylation, DNA methylation, and noncoding RNA are altered in PTSD patients. Further to this, natural products have been found to achieve epigenetic regulation of PTSD by regulating the expression of epigenetic enzymes, long noncoding RNA (lncRNA), and miRNA, thereby playing a role in improving PTSD symptoms. To date, however, no epigenetic regulation related drugs have been used in the treatment of PTSD. Furthermore, while natural products that can epigenetically regulate PTSD have received increasing levels of attention, there have not yet been any systematic reports on the topic. Here, we summarized the roles and mechanisms of natural products in the epigenetic regulation of PTSD, providing a novel and unique perspective that will help to guide the development and application of new PTSD treatments.
Collapse
Affiliation(s)
- Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Sun W, Wang R, Gong K, Wang L, Li F, Deng J. Paeoniflorin-mediated downregulation of VEGFA: unveiling the therapeutic mechanism of buyang huanwu decoction in diabetic retinopathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4571-4582. [PMID: 39508875 DOI: 10.1007/s00210-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness globally. Buyang Huanwu decoction (BHD) is a traditional Chinese medicine for treating DR, but its therapeutic mechanisms are not fully understood. This study aimed to elucidate and validate the underlying mechanisms of BHD in DR treatment through network pharmacology and in vitro experiments. We identified active compounds in BHD and their associated targets using the TCMSP and SwissTargetPrediction. DR-related targets were sourced from GeneCards, NCBI, and OMIM databases. The protein-protein interaction (PPI) network and enrichment analyses were employed to predict common targets and pathways. Subsequent molecular docking and in vitro experiments, including cell viability assays, RT-qPCR, flow cytometry, and Western blot, were conducted to validate the anti-DR mechanism of BHD. Network pharmacology identified paeoniflorin as a key active compound in BHD for treating DR, with VEGFA emerging as a central target. Molecular docking suggested a strong binding affinity between paeoniflorin and VEGFA. In vitro experiments confirmed that paeoniflorin attenuated high glucose-induced increases in cell viability, migration, apoptosis, and inflammatory cytokine expression in retinal pigment epithelial cells. The therapeutic effect of paeoniflorin was primarily mediated through the downregulation of VEGFA expression. Our study demonstrates that paeoniflorin, a key active compound in BHD, effectively mitigates DR by downregulating VEGFA expression and reducing high glucose-induced cellular alterations, thereby highlighting its potential as a therapeutic agent for DR.
Collapse
Affiliation(s)
- Wentao Sun
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Rui Wang
- Tongchuan Wuguan Hospital, Tongchuan, 712100, China
| | - Ke Gong
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Liping Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Fengzhi Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Jin Deng
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China.
| |
Collapse
|
3
|
Song Y, Luo L, Lin Z, Zhang T, Li Z, Cao Y, Zhu X. Paeoniflorin sensitizes imatinib mesylate-resistant chronic myeloid leukemia cells via the inhibition of Cyr61 production. Anticancer Drugs 2025; 36:190-198. [PMID: 39773616 DOI: 10.1097/cad.0000000000001681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity. Little is, however, known regarding the role of PF in IM-resistant CML cells. This study aimed to evaluate whether PF could decrease Cyr61 production and improve IM-resistant CML cell sensitivity to IM and to investigate the underlying mechanisms. CML cell lines (K562 and KCL22) and IM-resistant cell lines (K562G and KCL22R) were used as CML study models. Cyr61 expression was assessed in both parental and IM-resistant CML cells by western blotting, real-time quantitative PCR , and ELISA. Lentiviral vectors were used to induce the knockdown of Cyr61 expression, followed by a comprehensive evaluation of cell proliferation and apoptosis. The results showed that PF decreased the production of Cyr61 in the presence of IM by inhibiting extracellular regulated protein kinases 1/2 activation. PF significantly decreased the IC50 value of IM and increased IM-induced apoptosis of IM-resistant CML cells. Importantly, PF also improved the sensitivity of CML cells to bosutinib and dasatinib via inhibition of Cyr61 production. In conclusion, we report for the first time that PF may effectively improve the sensitivity of IM-resistant CML cells to IM, bosutinib, and dasatinib, at least in part, by subsequently downregulating Cyr61.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Resistance, Neoplasm/drug effects
- Glucosides/pharmacology
- Glucosides/administration & dosage
- Monoterpenes/pharmacology
- Cysteine-Rich Protein 61/biosynthesis
- Cysteine-Rich Protein 61/antagonists & inhibitors
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- K562 Cells
- Apoptosis/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yanfang Song
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Li Luo
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Taigang Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
4
|
Mu X, Luan R, Gao Y, Zhao B, Wang J, Ni X, Gao D. The Traditional Applications, Phytochemistry, Pharmacology, Pharmacokinetics, Quality Control and Safety of Paeoniae Radix Alba: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2337-2376. [PMID: 39756831 DOI: 10.1142/s0192415x24500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Paeoniae Radix Alba (PRA, called Baishao in China) is the dried root of Paeonia lactiflora Pall. In clinical practice, PRA has been used to treat cardiovascular disease, menstrual disorders, abdominal pain, diarrhea, and liver disease, among other conditions. This review provides a systematic summary of its traditional uses, geographical distribution and current cultivation situation, phytochemistry, pharmacokinetics, pharmacology, quality control, and toxicology. Moreover, this review also serves as an in-depth discussion on the shortcomings of the current research on PRA, a subject not previously discussed in reviews regarding PRA, and puts forward its own views and solutions. So far, more needs to be done to understand the mechanism of action of PRA, as well as the relationships between its chemical components and their potential synergistic and antagonistic effects. Furthermore, a comprehensive evaluation of medicinal quality should be carried out to understand the long-term in vivo toxicity and clinical efficacy of PRA and to provide more information for the development of new drugs and treatment methods for various diseases using PRA and its chemical components.
Collapse
Affiliation(s)
- Xiangyu Mu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Ruqiao Luan
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Yan Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
- State Key Laboratory of Tibetan Medicine Research and Development, Qinghai, 810016, P. R. China
| | - Bonian Zhao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
- State Key Laboratory of Tibetan Medicine Research and Development, Qinghai, 810016, P. R. China
| | - Jieqiong Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Xinran Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Dongmei Gao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| |
Collapse
|
5
|
Wan J, Xu H, Ju J, Chen Y, Zhang H, Qi L, Zhang Y, Du Z, Zhao X. Inhibition of hERG by ESEE suppresses the progression of colorectal cancer. Transl Oncol 2024; 50:102137. [PMID: 39307030 PMCID: PMC11440318 DOI: 10.1016/j.tranon.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant cancers. Emodin is a lipophilic anthraquinone commonly found in medicinal herbs and known for its antitumor properties. However, its clinical utility has been hampered by low druggability. We designed and synthesized a new compound named Emodin succinimidyl ethyl ester (ESEE), which improves the bioavailability and preserves the original pharmacological effects of Emodin. In vitro, we have confirmed that ESEE induces apoptosis in colon cancer cells, suppresses cell proliferation, migration, and invasion, and inhibits the growth of subcutaneous transplantation tumors associated with colon cancer. And, in vivo, ESEE robustly inhibited tumor growth. Human Ether-a-go-go Related Gene (hERG) is aberrantly expressed in various cancer cells, where they play an important role in cancer progression. Focal adhesion kinase (FAK) is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Mechanistically, the anti-CRC properties of ESEE are exerted through direct binding with hERG, which impedes the FAK/PI3K/AKT signaling axis-dependent apoptotic cascade.
Collapse
Affiliation(s)
- Jufeng Wan
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Haiying Xu
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yingjie Chen
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongxia Zhang
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lingling Qi
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Zhang
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhimin Du
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Xin Zhao
- Department of Pharmacology, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD) , (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
6
|
Yang Y, Yuan L, Du Y, Ye M, Lu D, Huang S, Zhao J, Tibenda JJ, Meng F, Nan Y. Network pharmacology and in vitro experiments to investigate the anti-gastric cancer effects of paeoniflorin through the RAS/MAPK signaling pathway. Discov Oncol 2024; 15:659. [PMID: 39548020 PMCID: PMC11568095 DOI: 10.1007/s12672-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The aim of this study was to investigate the key targets and signaling pathways of paeoniflorin (PF) for the treatment of gastric cancer (GC). First, the differentially expressed genes (DEGs) of gastric cancer were obtained by analyzing GSE118916 Gene Chip, and then the active components of paeoniflorin and their targets of action were found. And the intersection genes of the two were analyzed for target and pathway analysis. In addition, cell viability after PF intervention was detected by CCK-8. Clone formation assay, wound scratch assay, transwell assay were used to detect cell migration and invasion. The qRT-PCR and Western blot methods were used to verify the mechanism of action. The results showed that a total of 286 paeoniflorin targets and 1799 DEGs were obtained. Secondly, we found that PF could treat gastric cancer through RAS/MAPK signaling pathway. In addition, through in vitro cellular experiments, we also found that PF had a significant therapeutic effect on gastric cancer. Therefore, we believe that PF inhibits the proliferation and metastasis of gastric cancer, and its effect may be exerted by regulating the RAS/MAPK signaling pathway. PF is a promising drug for the treatment of gastric cancer. Combined with the in vitro experiments, we found that the therapeutic effect of PF is related to the regulation of the RAS/MAPK signaling pathway, and the results of the present study preliminarily revealed its complex mechanism, which will lay the foundation for future clinical treatment.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mengyi Ye
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
7
|
Jan K, Hassan N, James A, Hussain I, Rashid SM. Exploring molecular targets in cancer: Unveiling the anticancer potential of Paeoniflorin through a comprehensive analysis of diverse signaling pathways and recent advances. J Biol Methods 2024; 11:e99010014. [PMID: 39323487 PMCID: PMC11423941 DOI: 10.14440/jbm.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
Tumors have posed significant threats to human health for over 250 years, emerging as the foremost cause of death. While chemotherapeutic drugs are effective in treating tumors, their side effects can sometimes be challenging to manage during therapy. Nonetheless, there is growing interest in exploring natural compounds as alternatives, which potentially achieve therapeutic outcomes comparable to conventional chemotherapeutics with fewer adverse effects. Paeoniflorin (PF), a monoterpene glycoside derived from the root of Paeonia lactiflora, has garnered significant attention lately due to its promising anti-cancer properties. This review offers an updated outline of the molecular mechanisms underlying PF's anti-tumor function, with a focus on its modulation of various signaling pathways. PF exerts its anti-tumor activity by regulating crucial cellular processes including apoptosis, angiogenesis, proliferation, and metastasis. We explored the multifaceted impact of PF while modulating through signaling pathways, encompassing nuclear factor kappa B, NOTCH, caspase cascade, transforming growth factor-β, NEDD4, P53/14-3-3, STAT 3, MAPK, MMP-9, and SKP2 signaling pathways, highlighting its versatility in targeting diverse malignancies. Furthermore, we discuss future research directions aimed at exploring innovative and targeted cancer therapies facilitated by PF.
Collapse
Affiliation(s)
- Kounser Jan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Neelofar Hassan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Antonisamy James
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| |
Collapse
|
8
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
9
|
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024; 29:1424. [PMID: 38611704 PMCID: PMC11012976 DOI: 10.3390/molecules29071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital, Ningxia Medical University, Wuzhong 751100, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
10
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Lv J, Du Q, Shi S, Ma M, Zhang W, Ge D, Xing L, Yu N. Untargeted Metabolomics Based on UPLC-Q-Exactive-Orbitrap-MS/MS Revealed the Differences and Correlations between Different Parts of the Root of Paeonia lactiflora Pall. Molecules 2024; 29:992. [PMID: 38474505 DOI: 10.3390/molecules29050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the "peeling" process, which involves removing the cork and a portion of the phloem. PLP's biological function is strongly linked to its secondary metabolites, and the distribution of metabolites in different regions of the PLP rhizome causes changes in efficacy when PLP is processed into various therapeutic compounds. METHODS The metabolites of the cork (cor), phloem (phl), and xylem (xyl) were examined in the roots of PLP using a metabolomics approach based on UPLC-Q-Exactive-Orbitrap-MS/MS (UPLC-MS/MS), and the differential metabolites were evaluated using multivariate analysis. RESULTS Significant changes were observed among the cor, phl, and xyl samples. In both positive and negative ion modes, a total of 15,429 peaks were detected and 7366 metabolites were identified. A total of 525 cor-phl differential metabolites, 452 cor-xyl differential metabolites, and 328 phl-xyl differential metabolites were evaluated. Flavonoids, monoterpene glycosides, fatty acids, sugar derivatives, and carbohydrates were among the top 50 dissimilar chemicals. The key divergent metabolic pathways include linoleic acid metabolism, galactose metabolism, ABC transporters, arginine biosynthesis, and flavonoid biosynthesis. CONCLUSION The cor, phl, and xyl of PLP roots exhibit significantly different metabolite types and metabolic pathways; therefore, "peeling" may impact the pharmaceutical effect of PLP. This study represents the first metabolomics analysis of the PLP rhizome, laying the groundwork for the isolation and identification of PLP pharmacological activity, as well as the quality evaluation and efficacy exploration of PLP.
Collapse
Affiliation(s)
- Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Suying Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| | - Dezhu Ge
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
12
|
Su Z, Hu B, Li J, Zeng Z, Chen H, Guo Y, Mao Y, Cao W. Paeoniflorin inhibits colorectal cancer cell stemness through the miR-3194-5p/catenin beta-interacting protein 1 axis. Kaohsiung J Med Sci 2023; 39:1011-1021. [PMID: 37530655 DOI: 10.1002/kjm2.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Paeoniflorin (PF) is a natural plant ingredient with remarkable antitumor effects. Herein, we investigated the biological effects and mechanism of PF in colorectal cancer (CRC) cell stemness. The messenger RNA (mRNA) and protein expressions were assessed using quantitative real-time polymerase chain reaction and western blot. The viability, proliferation, and migration and invasion of CRC cells were evaluated using cell counting kit-8, clone-formation, and transwell migration and invasion assays, respectively. The sphere-formation capacity was determined using the sphere-formation assay. A dual-luciferase reporter gene assay was employed to analyze the interaction between miR-3194-5p and catenin beta-interacting protein 1 (CTNNBIP1). The viability, migration, invasion, epithelial-mesenchymal transition, and stemness of CRC cells were repressed by PF. MiR-3194-5p was upregulated in CRC tissues and cells. MiR-3194-5p knockdown suppressed CRC cell stemness, while miR-3194-5p overexpression had the opposite effect. In addition, the inhibition of CRC cell stemness caused by PF was eliminated by miR-3194-5p overexpression. CTNNBIP1 functioned as the target of miR-3194-5p, whose knockdown abrogated the repression of CRC cell stemness and Wnt/β-catenin signaling activation by PF.PF regulated the miR-3194-5p/CTNNBIP1/Wnt/β-catenin axis to repress CRC cell stemness.
Collapse
Affiliation(s)
- Zhao Su
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Beier Hu
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhichun Zeng
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hu Chen
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuhang Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun Mao
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wen Cao
- Tumor Hematology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Sun RJ, Xu J, Gao W, Zhang YY, Sun XQ, Ji L, Cui X. Effect of Guizhi Fuling Capsule on Apoptosis of Myeloma Cells Through Mitochondrial Apoptosis Pathway. Chin J Integr Med 2023; 29:127-136. [PMID: 36401751 DOI: 10.1007/s11655-022-3624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms. METHODS MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry. RESULTS GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05). CONCLUSION GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.
Collapse
Affiliation(s)
- Run-Jie Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Gao
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan-Yu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao-Qi Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Lin Ji
- Department of Neurology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| | - Xing Cui
- Department of Oncology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
14
|
Paeoniflorin Regulates NEDD4L/STAT3 Pathway to Induce Ferroptosis in Human Glioma Cells. JOURNAL OF ONCOLOGY 2022; 2022:6093216. [PMID: 36618071 PMCID: PMC9812627 DOI: 10.1155/2022/6093216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/04/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Background Paeoniflorin is an active component of a widely used traditional Chinese medicine with antitumor activity through ferroptosis induction. It has been reported recently that ferroptosis is emerging in certain types of cancer; however, its relevance in glioma is still not well studied. Methods CCK8 assay was performed for cell proliferation. Expression of mRNA and protein was tested by qPCR and western blot, respectively. Clinical section samples were detected by IHC. The relationship between NEDD4L and STAT3 was validated by a coimmunoprecipitation assay. Apoptosis was identified by TUNEL assay. A xenograft mouse model was utilized to validate the potential of paeoniflorin toward glioma cancer cells. Results The data suggested that paeoniflorin could increase NEDD4L expression in glioma cells. The NEDD4L expression level was lower in glioma cancer tissues compared to adjacent normal tissues, and it correlates with poor prognosis. Meanwhile, NEDD4L mediates the ubiquitination of STAT3. Furthermore, increased NEDD4L significantly inhibited cell viability and induced accumulation of intracellular ROS levels, accompanied by decreased expression of key ferroptosis factors Nrl2 and GPX4, while NEDD4L knockdown had a reverse effect, suggesting that ferroptosis could be involved. NEDD4L-induced ferroptosis could be rescued by forced expression of STAT3. A xenograft nude mouse model showed that paeoniflorin inhibits tumor growth and further sensitizes glioma cells to RSL3, another well-known ferroptosis inducer. Conclusions In summary, this study demonstrated that paeoniflorin might function as an effective drug for glioma by inducing ferroptosis via upregulation of NEDD4L and repression of Nrl2, GPX4, and STAT3.
Collapse
|
15
|
Liu Z, Wang Z, Chen D, Liu X, Yu G, Zhang Y, Chen C, Xu R, Wang Y, Liu RE. Paeoniflorin Inhibits EMT and Angiogenesis in Human Glioblastoma via K63-Linked C-Met Polyubiquitination-Dependent Autophagic Degradation. Front Oncol 2022; 12:785345. [PMID: 35957872 PMCID: PMC9360619 DOI: 10.3389/fonc.2022.785345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Paeoniflorin has been widely studied in experimental models and clinical trials for cancer treatment because of its anti-cancer property. However, the underlying mechanisms of paeoniflorin in EMT and angiogenesis in glioblastoma was not fully elucidated. The present study aimed to investigate whether paeoniflorin inhibits EMT and angiogenesis, which involving c-Met suppression, while exploring the potential ways of c-Met degradation. In our study, we found that paeoniflorin inhibited EMT via downregulating c-Met signaling in glioblastoma cells. Furthermore, overexpressing c-Met in glioblastoma cells abolished the effects of paeoniflorin on EMT. Moreover, paeoniflorin showed anti-angiogenic effects by suppressing cell proliferation, migration, invasion and tube formation through downregulating c-Met in human umbilical vein endothelial cells (HUVECs). And c-Met overexpression in HUVECs offset the effects of paeoniflorin on angiogenesis. Additionally, paeoniflorin induced autophagy activation involving mTOR/P70S6K/S6 signaling and promoted c-Met autophagic degradation, a process dependent on K63-linked c-Met polyubiquitination. Finally, paeoniflorin suppressed mesenchymal makers (snail, vimentin, N-cadherin) and inhibited angiogenesis via the identical mechanism in an orthotopic xenograft mouse model. The in vitro and in vivo experiments showed that paeoniflorin treatment inhibited EMT, angiogenesis and activated autophagy. What’s more, for the first time, we identified c-Met may be a potential target of paeoniflorin and demonstrated paeoniflorin downregulated c-Met via K63-linked c-Met polyubiquitination-dependent autophagic degradation. Collectively, these findings indicated that paeoniflorin inhibits EMT and angiogenesis via K63-linked c-Met polyubiquitination-dependent autophagic degradation in human glioblastoma.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
| | - Zhaotao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Danmin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaorui Liu
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guoyong Yu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Chen Chen
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ru-en Liu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
- *Correspondence: Ru-en Liu,
| |
Collapse
|
16
|
Wang XZ, Xia L, Zhang XY, Chen Q, Li X, Mou Y, Wang T, Zhang YN. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed Pharmacother 2022; 149:112800. [PMID: 35279012 DOI: 10.1016/j.biopha.2022.112800] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
Paeoniflorin is a water-soluble monoterpenoid glycoside that can be derived from multiple herbaceous plants, such as Radix Paeoniae Rubra, Radix Paeoniae Alba, Paeonia suffruticosa and Cimicifugae Foetidae. Multiple studies have suggested that Paeoniflorin possesses an excellent anti-tumor effect in variety of tumors, including liver cancer, gastric cancer, breast cancer, lung cancer, pancreatic cancer, colorectal cancer and bladder cancer. It can induce cell apoptosis, inhibit proliferation, invasion and metastasis via different molecular mechanisms, which are mainly involved in nuclear transcription factor kappα (NF-κB), B-cell lymphoma-2(Bcl-2) family, MicroRNA, neural precursor cell expressed developmentally down-regulated protein 4(NEDD4) signaling pathway, transcription activating factor (STAT3), p21, p53/14-3-3 signaling pathway, transforming growth factor-β1(TGF-β1)/Smads signaling pathway, Mitogen-activated protein kinase (MAPK) signaling pathway and Notch-1. Current studies on anti-tumor effect and mechanism of action of Paeoniflorin remain unclear. Therefore, this study reviews the research progress in the anti-tumor effect and mechanism of Paeoniflorin in an attempt to provide a new thought and theoretical basis for further development and clinical application of Paeoniflorin.
Collapse
Affiliation(s)
- Xue Zhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Yu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Ya Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
17
|
Na S, Ying L, Jun C, Ya X, Suifeng Z, Yuxi H, Jing W, Zonglang L, Xiaojun Y, Yue W. Study on the molecular mechanism of nightshade in the treatment of colon cancer. Bioengineered 2022; 13:1575-1589. [PMID: 35012428 PMCID: PMC8805967 DOI: 10.1080/21655979.2021.2016045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023] Open
Abstract
The present study attempts to explore the effective components, action targets, and potential mechanism of nightshade for colon cancer treatment. The relationship network diagram of 'traditional Chinese medicine - component - target - disease' was firstly constructed by employing network pharmacology. Experiments were conducted in vivo and in vitro to verify the influence of quercetin, the core effective component of nightshade, on colon cancer. Meanwhile, the regulatory effects of quercetin on core targets and main signaling pathways were determined. Based on the network diagram of 'traditional Chinese medicine - component - target - disease' and KEGG analysis, quercetin might exhibit certain effects on colon cancer treatment by regulating the biological behavior of core targets related to cell apoptosis in tumors including PIK3R1, PIK3CA, Akt1, and Akt2. Furthermore, quercetin has been demonstrated in vitro experiments to suppress the proliferation and migration of colon cancer cells whereas promote their apoptosis in a dose-dependent fashion. In vivo experiments indicate that quercetin had an antitumor effect on human colon cancer SW480 cells in nude mice bearing tumors. Furthermore, PIK3CA could bind to quercetin directly, which is validated by immunocoprecipitation. Therefore, the activation of PI3K/AKT phosphorylation was inhibited by quercetin and moreover the expressions of apoptotic proteins caspase-3 and Bcl2-Associated X protein (BAX) were up-regulated. In conclusion, the potential mechanism of nightshade lies in the activation of the PI3K/AKT signaling pathway inhibited by quercetin, thus promoting apoptosis of colon cancer cells for colon cancer treatment.
Collapse
Affiliation(s)
- Song Na
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Li Ying
- Department of Nephrology, Chongqing Hospital Of Traditional Chinese Medicine, Chongqing, 400020China
| | - Cheng Jun
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Xiong Ya
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Zhang Suifeng
- Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - He Yuxi
- Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Wang Jing
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Lai Zonglang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Yang Xiaojun
- Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Wu Yue
- Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| |
Collapse
|
18
|
Tang M, Chen M, Li Q. Paeoniflorin ameliorates chronic stress-induced depression-like behavior in mice model by affecting ERK1/2 pathway. Bioengineered 2021; 12:11329-11341. [PMID: 34872456 PMCID: PMC8810059 DOI: 10.1080/21655979.2021.2003676] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023] Open
Abstract
Depression is a mental and emotional disorder that has made an opening great burden to the society. Paeoniflorin showed remarkable antidepressant-like effects in multiple animal models with depressive disorders. However, the molecule of paeoniflorin on depression is less studied. This study aims to explore the effect and the molecular mechanism of paeoniflorin on depression in a chronic restraint stress (CRS) mice model. CRS model of C57BL/6 J mice was set up. Sucrose preference test (SPT), tail suspension test (TST), open field test (OFT) and forced swimming test (FST) were used to assess depression symptoms. Immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were implemented to detect the expression changes of the proteins involved in extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Results showed that paeoniflorin treatment decreased the degree of depression in the CRS mice. Further analysis showed that the expression of ERK1/2 proteins was significantly downregulated, while paeoniflorin could elevate the expression of ERK1/2 proteins in CRS mice. Finally, it showed that inhibiting signaling ERK1/2 pathway could aggravate the depressive behavior when treatment with ERK-specific inhibitor U0126, while the condition could be partially relieved when treated with paeoniflorin. In conclusion, the present study demonstrated that paeoniflorin attenuated chronic stress-induced depression-like behavior in mice by affecting the ERK1/2 pathway. These findings provided the basis for the molecular mechanism of paeoniflorin on the effect of depression, which support paeoniflorin might act as an important drug in the treatment of depression.
Collapse
Affiliation(s)
- Meiling Tang
- Department of Nursing, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Min Chen
- Department of Enrolment and Employment, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiang Li
- Department of Nursing, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
19
|
Chen L, Zhao X, Wei S, Ma X, Liu H, Li J, Jing M, Wang M, Zhao Y. Mechanism of Paeoniflorin on ANIT-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front Pharmacol 2021; 12:737630. [PMID: 34526905 PMCID: PMC8435635 DOI: 10.3389/fphar.2021.737630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Paeoniflorin (PF), the major active compound isolated from the roots of Paeonia lactiflora Pall., has been used in the treatment of severe hepatic diseases for several decades and displays bright prospects in liver protective effect. However, its biological mechanism that regulates bile acid metabolism and cholestatic liver injury has not been fully elucidated. Our study aims to investigate the mechanism by which PF in the treatment of cholestatic liver injury using a comprehensive approach combining metabolomics and network pharmacological analysis. Methods: The hepatoprotective effect of PF against cholestasis liver injury, induced by α-naphthylisothiocyanate (ANIT), was evaluated in rats. The serum biochemical indices including ALT, AST, TBA, TBIL, ALP, ALB, and the pathological characteristics of the liver were analyzed. Moreover, UHPLC-Q-TOF was performed to explore the feces of rats with ANIT-induced cholestatic liver injury treated with PF and the potential biomarkers were screened by metabolomics. The targets for the regulation of potential biomarkers by PF were screened by network pharmacology, and then the relevant key targets were verified by immunohistochemical and western blotting methods. Results: PF significantly improved serum indexes and alleviated liver histological damage. Metabolomics analyses showed that the therapeutic effect of PF is mainly associated with the regulation of 13 metabolites involved in 16 metabolic pathways. The "PF-targets-metabolites" interaction network was constructed, and then five key targets including CDC25B, CYP2C9, MAOB, mTOR, and ABCB1 that regulated the potential biomarkers were obtained. The above five targets were further verified by immunohistochemistry and western blotting, and the results showed that PF significantly improved the expression of key proteins regulating these biomarkers. Conclusion: Our study provides direct evidence for the modulatory properties of PF treatment on ANIT-induced cholestatic liver injury using metabolomics and network pharmacology analyses. PF exhibits favorable pharmacological effect by regulating related signal pathways and key targets for biomarkers. Therefore, these findings may help better understand the complex mechanisms and provide a new and effective approach to the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Hepotology Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Kong X, Liu C, Lu P, Guo Y, Zhao C, Yang Y, Bo Z, Wang F, Peng Y, Meng J. Combination of UPLC-Q-TOF/MS and Network Pharmacology to Reveal the Mechanism of Qizhen Decoction in the Treatment of Colon Cancer. ACS OMEGA 2021; 6:14341-14360. [PMID: 34124457 PMCID: PMC8190929 DOI: 10.1021/acsomega.1c01183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
Traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. Qizhen decoction (QZD), a potential compound prescription of TCM, possesses multiple biological activities. It has been proven clinically effective in the treatment of colon cancer. However, the molecular mechanism of anticolon cancer activity is still not clear. This study aimed to identify the chemical composition of QZD. Furthermore, a collaborative analysis strategy of network pharmacology and cell biology was used to further explore the critical signaling pathway of QZD anticancer activity. First, ultraperformance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the chemical composition of QZD. Then, the chemical composition database of QZD was constructed based on a systematic literature search and review of chemical constituents. Moreover, the common and indirect targets of chemical components of QZD and colon cancer were searched by multiple databases. A protein-protein interaction (PPI) network was constructed using the String database (https://www.string-db.org/). All of the targets were analyzed by Gene Oncology (GO) bioanalysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the visual network topology diagram of "Prescription-TCM-Chemical composition-Direct target-Indirect target-Pathway" was constructed by Cytoscape software (v3.7.1). The top molecular pathway ranked by statistical significance was further verified by molecular biology methods. The results of UPLC-Q-TOF/MS showed that QZD had 111 kinds of chemical components, of which 103 were unique components and 8 were common components. Ten pivotal targets of QZD in the treatment of colon cancer were screened by the PPI network. Targets of QZD involve many biological processes, such as the signaling pathway, immune system, gene expression, and so on. QZD may interfere with biological pathways such as cell replication, oxygen-containing compounds, or organic matter by protein binding, regulation of signal receptors or enzyme binding, and affect cytoplasm and membrane-bound organelles. The main antitumor core pathways were the apoptosis metabolic pathway, the PI3K-Akt signal pathway, and so on. Expression of the PI3K-Akt signal pathway was significantly downregulated after the intervention of QZD, which was closely related to the inhibition of proliferation and migration of colon cancer cells by cell biology methods. The present work may facilitate a better understanding of the effective components, therapeutic targets, biological processes, and signaling pathways of QZD in the treatment of colon cancer and provide useful information about the utilization of QZD.
Collapse
Affiliation(s)
- Xianbin Kong
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- School
of Chinese Materia Medical, Beijing University
of Chinese Medicine, Beijing 102488, China
| | - Peng Lu
- State
Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhu Guo
- Department
of Radiotherapy, Tianjin Hospital, Tianjin 300211, China
| | - Chenchen Zhao
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yuying Yang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Zhichao Bo
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Fangyuan Wang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yingying Peng
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College
of Traditional Chinese Medicine, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
22
|
Ma Y, Li G, Yu M, Cao K, Li Q, Sun X, Yang G, Wang X. Anti-Lung Cancer Targets of Radix Paeoniae Rubra and Biological Molecular Mechanism: Network Pharmacological Analyses and Experimental Validation. Onco Targets Ther 2021; 14:1925-1936. [PMID: 33758512 PMCID: PMC7981145 DOI: 10.2147/ott.s261071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To systematically explore the pharmacological mechanism of Radix Paeoniae Rubra (RPR) against lung cancer (LC). Methods A network pharmacology approach, which involves active ingredients and target forecast, network construction, gene ontology and pathway enrichment, was employed in this research. In addition, the effect of Baicalein (BAI) in RPR on A549 cells was researched in vitro and in vivo. Results A total of 159 targets of the 29 active components in RPR were procured by pharmacokinetic parameters. The network analysis showed that β-sitosterol, baicalein, (+)-catechin, ellagic acid, stigmasterol, (2R, 3R)-4-methoxyl-distylin were the main ingredients and JUN, VEGFA, BCL2 were the hub targets of RPR in the treatment of LC. The functional enrichment analysis showed that RPR likely was useful to LC by regulating numerous pathways including Pathways in cancer, MAPK signaling pathway and so on. MTT results showed that 100μM, 200μM, 400μM of BAI had a time and dose-dependent inhibitory effect on A549 cells proliferation; Wound healing and transwell assays showed that 100μM, 200μM, 400μM of BAI could significantly restrain the migration and invasion of A549 cells; Flow cytometry assay results showed that 100μM, 200μM, 400μM of BAI could induce apoptosis of A549 cells. In vivo, BAI (50, 100 mg/kg) significantly inhibited tumor growth and promoted apoptosis of tumor cells compared with the control group. Conclusion BAI in RPR may exert anti-tumor effects by inhibiting the proliferation, migration and invasion of LC cells, and inducing the apoptosis of LC cells.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Guangda Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mingwei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Kexin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Qiwei Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xu Sun
- Department of Integrated Chinese and Western Medicine, The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaomin Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Park HR, Choi HJ, Kim BS, Chung TW, Kim KJ, Joo JK, Ryu D, Bae SJ, Ha KT. Paeoniflorin Enhances Endometrial Receptivity through Leukemia Inhibitory Factor. Biomolecules 2021; 11:439. [PMID: 33809755 PMCID: PMC8002267 DOI: 10.3390/biom11030439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
Despite advances in assisted reproductive technology, treatment for deficient endometrial receptivity is a major clinical unmet need. In our previous study, the water extract of Paeonia lactiflora Pall. enhanced endometrial receptivity in vitro and in vivo via induction of leukemia inhibitory factor (LIF), an interleukin (IL)-6 family cytokine. In the present study, we found that paeoniflorin, a monoterpene glycoside, is the major active compound of P. lactiflora. Paeoniflorin significantly improved the embryo implantation rate in a murine model of mifepristone (RU486)-induced implantation failure. In addition, paeoniflorin increased the adhesion of human trophectoderm-derived JAr cells to endometrial Ishikawa cells through the expression of LIF in vitro. Moreover, using the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database of the human endometrium, we confirmed that LIF signaling is a key regulator for improving human endometrial receptivity. Therefore, these results suggest that paeoniflorin might be a potent drug candidate for the treatment of endometrial implantation failure by enhancing endometrial receptivity.
Collapse
Affiliation(s)
- Hye-Rin Park
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
| | - Bo-Sung Kim
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
| | - Keuk-Jun Kim
- Department of Clinical Pathology, Daekyeung University, Gyeongsan, Gyeongsanabuk-do 38547, Korea;
| | - Jong-Kil Joo
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University Hospital, Busan 49241, Korea;
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Sung-Jin Bae
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea; (H.-R.P.); (H.-J.C.); (B.-S.K.); (T.-W.C.); (S.-J.B.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Korea
| |
Collapse
|
24
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
25
|
Kong MY, Li LY, Lou YM, Chi HY, Wu JJ. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:369-384. [PMID: 32758397 DOI: 10.1016/j.joim.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, colorectal cancer (CRC) is one of the most common malignant tumors, leading to immense social and economic burdens. Currently, the main treatments for CRC include surgery, chemotherapy, radiotherapy and immunotherapy. Despite advances in the diagnosis and treatment of CRC, the prognosis for CRC patients remains poor. Furthermore, the occurrence of side effects and toxicities severely limits the clinical use of these therapies. Therefore, alternative medications with high efficacy but few side effects are needed. An increasing number of modern pharmacological studies and clinical trials have supported the effectiveness of Chinese herbal medicines (CHMs) for the prevention and treatment of CRC. CHMs may be able to effectively reduce the risk of CRC, alleviate the adverse reactions caused by chemotherapy, and prolong the survival time of patients with advanced CRC. Studies of molecular mechanisms have provided deeper insight into the roles of molecules from CHMs in treating CRC. This paper summarizes the current understanding of the use of CHMs for the prevention and treatment of CRC, the main molecular mechanisms involved in these processes, the role of CHMs in modulating chemotherapy-induced adverse reactions, and CHM's potential role in epigenetic regulation of CRC. The current study provides beneficial information on the use of CHMs for the prevention and treatment of CRC in the clinic, and suggests novel directions for new drug discovery against CRC.
Collapse
Affiliation(s)
- Mu-Yan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Le-Yan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Mei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hong-Yu Chi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
26
|
Cao Y, Deng S, Yan L, Gu J, Li J, Wu K, Cai K. Perineural invasion is associated with poor prognosis of colorectal cancer: a retrospective cohort study. Int J Colorectal Dis 2020; 35:1067-1075. [PMID: 32179991 DOI: 10.1007/s00384-020-03566-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Perineural invasion (PNI) is associated with poor prognosis in a variety of cancers. Our aim was to determine the clinicopathological factors associated with PNI in colorectal cancer (CRC) and its impact on patient survival. MATERIAL AND METHODS The clinical data of 1412 patients diagnosed with CRC from July 2013 to July 2016 were retrospectively collected. PNI was determined based on hematoxylin-eosin staining. The relationships of PNI with various clinicopathological factors and prognosis were analyzed. RESULTS The incidence of PNI in the entire cohort was 21.5%. PNI was significantly more common in patients with lower tumor differentiation, higher tumor stage, vascular invasion, TNM stage, tumor diameter, MMR/KRAS/NRAS/BRAF mutation, and more positive lymph nodes. Logistic regression analysis showed that T stage, vascular invasion, tumor diameter, and MMR were the main influencing factors of PNI. Cox regression analysis showed that poor tumor differentiation, N stage, TNM stage, PNI, and BRAF status were independent prognostic factors for OS. The OS, CSS, and PFS rate of the PNI (-) group was higher than that of the PNI (+) group, and the difference was statistically significant (P < 0.001). CONCLUSION PNI in patients with colorectal cancer is significantly associated with T stage, TNM stage, vessel invasion, tumor diameter, MMR status, and BRAF mutation. PNI status is an independent prognostic factor for CRC. Assessing the postoperative PNI status may help predict prognosis and determine further treatment options for these patients.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Lizhao Yan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Jiang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
27
|
Miwa T, Kanda M, Umeda S, Tanaka H, Shimizu D, Tanaka C, Kobayashi D, Hayashi M, Yamada S, Nakayama G, Koike M, Kodera Y. Establishment of Peritoneal and Hepatic Metastasis Mouse Xenograft Models Using Gastric Cancer Cell Lines. In Vivo 2020; 33:1785-1792. [PMID: 31662503 DOI: 10.21873/invivo.11669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Establishment of mouse xenograft models is necessary for oncological research and depends on the characteristics of the cell lines and the immune system of the host. In this study, we describe the development of mouse xenograft models using human gastric cancer (GC) cell lines. MATERIALS AND METHODS MKN1 stably-expressing luciferase (MKN1-Luc), N87, KATO III, MKN45 stably-expressing luciferase (MKN45-Luc), NUGC4, and OCUM-1 human GC cell lines were injected intraperitoneally into mice to establish peritoneal metastasis models. MKN45-Luc were injected into subcutaneously implanted spleen, and MKN1-Luc and MKN45-Luc were injected directly into the portal veins of mice for the establishment of hepatic metastasis models. RESULTS Peritoneal metastasis was formed after implantation of MKN1-Luc, N87, KATO III, MKN45-Luc, and NUGC4 in nude mice, but not formed in OCUM-1 even in NOD/SCID mice. After intrasplenic injection of MKN45-Luc, we found no hepatic metastasis formation. We identified hepatic metastasis formation after direct injection of MKN45-Luc and MKN1-Luc into the portal veins of NOD/SCID mice. CONCLUSION Peritoneal and hepatic metastasis mouse xenograft models were successfully established using several human GC cell lines.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Xiang Y, Zhang Q, Wei S, Huang C, Li Z, Gao Y. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. ACTA ACUST UNITED AC 2019; 72:483-495. [PMID: 31858611 DOI: 10.1111/jphp.13204] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Paeoniflorin, a representative pinane monoterpene glycoside in plants of Paeoniaceae family, possesses promising anticancer activities on diverse tumours. This paper summarized the advance of Paeoniflorin on cancers in vivo and in vitro, discussed the related molecular mechanisms, as well as suggested some perspectives of the future investigations. KEY FINDINGS Anticancer activities of paeoniflorin have been comprehensively investigated, including liver cancer, gastric cancer, breast cancer, lung cancer, pancreatic cancer, colorectal cancer, glioma, bladder cancer and leukaemia. Furthermore, the potential molecular mechanisms corresponding to the antitumour effects of Paeoniflorin might be related to the following aspects: inhibition of tumour cell proliferation and neovascularization, induction apoptosis, and inhibition of tumour invasion and metastasis. SUMMARY Paeoniflorin has wide spectrum antitumour activities; however, in vivo and clinical investigations on antitumour effect of Paeoniflorin are lacking which should be focused on further studies. Our present review on antitumour effects of Paeoniflorin would be beneficial for the further molecular mechanisms study, candidate antitumour drug development and clinical research of Paeoniflorin in the future.
Collapse
Affiliation(s)
- Yongjing Xiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengsheng Li
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongxiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
30
|
Deng LJ, Lei YH, Chiu TF, Qi M, Gan H, Zhang G, Peng ZD, Zhang DM, Chen YF, Chen JX. The Anticancer Effects of Paeoniflorin and Its Underlying Mechanisms. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19876409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Paeoniflorin (PF) is an important pharmacological component of some Chinese traditional herbal formulas, such as Bai Shao, Chi Shao, and Dan Pi, which have been clinically used for centuries. Although many experimental studies have explored a wide range of pharmacological properties of PF, including anticancer, anti-inflammatory, antioxidant, immunoregulatory, and prevention of insulin resistance, there is no review to describe these reported effects systematically, especially the antitumor effect and the underlying mechanisms. In this review, we summarize the recent progress on the anticancer profiles both in vitro and in vivo of PF. Moreover, we highlight the integrated molecular mechanisms of PF and contemplate its future prospects as a potential anticancer drug.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Yu-He Lei
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Tsz-Fung Chiu
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Ming Qi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Hua Gan
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| | - Ge Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Zhi-Da Peng
- Ji Chuang Health Technology Development (Guangzhou) Co., Ltd, P.R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yan-Fen Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P.R. China
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
31
|
Wen J, Xu B, Sun Y, Lian M, Li Y, Lin Y, Chen D, Diao Y, Almoiliqy M, Wang L. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res 2019; 146:104308. [PMID: 31181335 DOI: 10.1016/j.phrs.2019.104308] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a common pathological process with high clinical morbidity and mortality. Paeoniflorin, a monoterpene glucoside, is found to have diverse health beneficial effects including autophagy modulation, anti-inflammatory, anti-apoptotic, and anti-oxidative effects. Based on our pre-experiments, we proposed that paeoniflorin could ameliorate intestinal I/R injury and restore autophagy through activating LKB1/AMPK signal pathway. Our proposal was verified using rat intestinal I/R model in vivo and intestinal epithelial cell line (IEC-6 cells) hypoxia/reoxygenation (H/R) model in vitro. Our results showed that paeoniflorin pretreatment exerted protective effects in rat intestinal I/R injury by reducing intestinal morphological damage, inflammation, oxidative stress, and apoptosis. Paeoniflorin restored H/R-impaired autophagy flux by up-regulating autophagy-related protein p62/SQSTM1 degradation, LC3II and beclin-1 expression, and autophagosomes synthesis without significantly affecting control IEC-6 cells. Paeoniflorin pretreatment significantly activated LKB1/AMPK signaling pathway by reversing the decreased LKB1 and AMPK phosphorylation without affecting total LKB1 both in vivo and in vitro. LKB1 knockdown reduced AMPK phosphorylation, suppressed LC3II and Beclin-1 level, and decreased the degradation of SQSTM/p62, and the knockdown weakened the effects of paeoniflorin in restoring the impaired autophagy flux in H/R injured IEC-6 cells, suggesting that paeoniflorin mitigated the intestinal I/R-impaired autophagy flux by activating LKB1/AMPK signaling pathway. Our study may provide valuable information for further studies.
Collapse
Affiliation(s)
- Jin Wen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Bin Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuchao Sun
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Mengqiao Lian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yanli Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuan Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Marwan Almoiliqy
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|