1
|
de Sousa VE, da Silva Cortinhas MCF, Creed JC, Batista MGS, Proietti MC, Copertino M. Assessing morphological variations in the seagrass genus Halodule (Cymodoceaceae) along the Brazilian coast through genetic analyses. PeerJ 2025; 13:e19038. [PMID: 40124603 PMCID: PMC11929505 DOI: 10.7717/peerj.19038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Background Seagrass meadows are distributed globally and provide critical ecological functions and ecosystem services, but seagrasses are still poorly studied compared with other coastal and marine foundation species. Species taxonomy is uncertain in various seagrass genera, such as the genus Halodule. Until recently, the morphological characteristics of leaves were the major criteria for species identification. In Brazil, three species of Halodule are recognized and separated solely using leaf morphology criteria by some authors; however, the leaves present high variability and plasticity, resulting in great uncertainty about species diversity. A review of seagrass species validation using both morphological and phylogenetic methods is needed. This includes examining the genus Halodule with the aim of better understanding its diversity and spatial distribution and consequently supporting management and conservation goals. Methods Plant samples with the morphological forms of H. beaudettei and H. wrightii were collected at five sites across three Brazilian marine ecoregions. Leaf tip format and leaf width and length were compared among all the sites and between the two populations with different leaf tip forms. Molecular diversity and divergence indices and analyses were used to estimate the genetic distance between H. wrightii and H. beaudettei populations. To determine the phylogenetic relationship between the two morphologies, we sequenced two molecular markers, the internal transcribed spacer (ITS) fragment and the rbcL gene, to construct phylogenetic trees using Bayesian inference. Results We identified H. beaudettei morphology at two sites in Northeast Brazil, while H. wrightii was found in all the ecoregions in the remaining areas, distinguished by the leaf tip shape that occurred at each site. Leaf width and length varied across the five sites, and leaf length differed between H. wrightii and H. beaudettei, with higher values observed in H. beaudettei. Variations in morphological measurements may be related to habitat conditions at each site studied. No divergence was observed for the DNA sequences of two molecular markers, except for a single base in the ITS region, resulting in the Brazilian specimens merging at a single node in the phylogenetic trees. AMOVA and genetic distance analysis revealed low genetic variation but high structuring within populations. The ITS marker showed insufficient genetic variance to delineate the two morphologies as different species which indicating H. wrightii and H. beaudettei are closely related. A genomic approach is needed to fully resolve this issue. This study represents the first step toward the complete determination of the Halodule genus on the Brazilian coast.
Collapse
Affiliation(s)
- Virgínia Eduarda de Sousa
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
- Laboratório de Ecologia Molecular Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | | | - Joel C. Creed
- Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maira C. Proietti
- Laboratório de Ecologia Molecular Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Margareth Copertino
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Chen J, Zang Y, Shang S, Yang Z, Liang S, Xue S, Wang Y, Tang X. Chloroplast genomic comparison provides insights into the evolution of seagrasses. BMC PLANT BIOLOGY 2023; 23:104. [PMID: 36814193 PMCID: PMC9945681 DOI: 10.1186/s12870-023-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Development of Quantitative Real-Time PCR for Detecting Environmental DNA Derived from Marine Macrophytes and Its Application to a Field Survey in Hiroshima Bay, Japan. WATER 2022. [DOI: 10.3390/w14050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sequestration and storage of carbon dioxide by marine macrophytes is called blue carbon; this ecosystem function of coastal marine ecosystems constitutes an important countermeasure to global climate change. The contribution of marine macrophytes to blue carbon requires a detailed examination of the organic carbon stock released by these macrophytes. Here, we introduce a quantitative real-time polymerase chain reaction (qPCR)-based environmental DNA (eDNA) system for the species-specific detection of marine macrophytes. and report its application in a field survey in Hiroshima Bay, Japan. A method of qPCR-based quantification was developed for mangrove, seagrass, Phaeophyceae, Rhodophyta and Chlorophyta species, or species-complex, collected from the Japanese coast to investigate their dynamics after they wither and die in the marine environment. A trial of the designed qPCR system was conducted using sediment samples from Hiroshima Bay. Ulva spp. were abundant in coastal areas of the bay, yet their eDNA in the sediments was scarce. In contrast, Zostera marina and the Sargassum subgenus Bactrophycus spp. were found at various sites in the bay, and high amounts of their eDNA were detected in the sediments. These results suggest that the fate of macrophyte-derived organic carbon after death varies among species.
Collapse
|
4
|
Chen J, Zang Y, Shang S, Liang S, Zhu M, Wang Y, Tang X. Comparative Chloroplast Genomes of Zosteraceae Species Provide Adaptive Evolution Insights Into Seagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:741152. [PMID: 34630493 PMCID: PMC8495015 DOI: 10.3389/fpls.2021.741152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Seagrasses are marine flowering plants found in tropical and sub-tropical areas that live in coastal regions between the sea and land. All seagrass species evolved from terrestrial monocotyledons, providing the opportunity to study plant adaptation to sea environments. Here, we sequenced the chloroplast genomes (cpGenomes) of three Zostera species, then analyzed and compared their cpGenome structures and sequence variations. We also performed a phylogenetic analysis using published seagrass chloroplasts and calculated the selection pressure of 17 species within seagrasses and nine terrestrial monocotyledons, as well as estimated the number of shared genes of eight seagrasses. The cpGenomes of Zosteraceae species ranged in size from 143,877 bp (Zostera marina) to 152,726 bp (Phyllospadix iwatensis), which were conserved and displayed similar structures and gene orders. Additionally, we found 17 variable hotspot regions as candidate DNA barcodes for Zosteraceae species, which will be helpful for studying the phylogenetic relationships and interspecies differences between seagrass species. Interestingly, nine genes had positive selection sites, including two ATP subunit genes (atpA and atpF), two ribosome subunit genes (rps4 and rpl20), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), as well as accD, clpP, and ycf2. These gene regions may have played key roles in the seagrass adaptation to diverse environments. The Branch model analysis showed that seagrasses had a higher rate of evolution than terrestrial monocotyledons, suggesting that seagrasses experienced greater environmental pressure. Moreover, a branch-site model identified positively selected sites (PSSs) in ccsA, suggesting their involvement in the adaptation to sea environments. These findings are valuable for further investigations on Zosteraceae cpGenomes and will serve as an excellent resource for future studies on seagrass adaptation to sea environments.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Lv X, Yu P, Deng W, Li Y. Transcriptomic analysis reveals the molecular adaptation to NaCl stress in Zostera marina L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:61-68. [PMID: 29960892 DOI: 10.1016/j.plaphy.2018.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/16/2018] [Accepted: 06/16/2018] [Indexed: 05/25/2023]
Abstract
The seagrass Zostera marina L. shows optimal growth in marine water and reduced growth under low salinity conditions. However, little is known about the molecular mechanisms underlying its adaptation to high salinity in Z. marina. In this study, transcriptomic analyses were performed using RNA-seq of the following two groups with different NaCl content: the CK group (seagrasses grown in the absence of NaCl) and the NaCl group (seagrasses grown in the presence of 400 mM NaCl for 6 h). Approximately 316 million high-quality reads were generated, and 87.9% of the data were mapped to the reference genome. Moreover, differentially expressed genes between the CK and NaCl groups were identified. According to a functional analysis, the up-regulated genes after the NaCl treatment were significantly enriched in nitrogen metabolism, calcium signalling and DNA replication while the down-regulated genes were significantly enriched in photosynthesis. A comparative transcriptomic analysis detected many differentially expressed genes and pathways required for adaptation to NaCl stress, providing a foundation for future studies investigating the molecular mechanisms of salt adaptation in Z. marina. We discuss how molecular changes in these processes may have contributed to the NaCl adaptation.
Collapse
Affiliation(s)
- XinFang Lv
- Marine College, Shandong University, Weihai 264200, China
| | - Pei Yu
- Marine College, Shandong University, Weihai 264200, China
| | - WenHao Deng
- Marine College, Shandong University, Weihai 264200, China
| | - Yuchun Li
- Marine College, Shandong University, Weihai 264200, China.
| |
Collapse
|
6
|
Xing Q, Guo J. Characterization of the complete chloroplast genome of the seagrass Zostera marina using Illumina sequencing technology. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Genetic divergence of the endangered seagrass Zostera japonica Ascherson & Graebner between temperate and subtropical coasts of China based on partial sequences of matK and ITS. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Talbot SL, Sage GK, Rearick JR, Fowler MC, Muñiz-Salazar R, Baibak B, Wyllie-Echeverria S, Cabello-Pasini A, Ward DH. The Structure of Genetic Diversity in Eelgrass (Zostera marina L.) along the North Pacific and Bering Sea Coasts of Alaska. PLoS One 2016; 11:e0152701. [PMID: 27104836 PMCID: PMC4841600 DOI: 10.1371/journal.pone.0152701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/17/2016] [Indexed: 11/25/2022] Open
Abstract
Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128-0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.
Collapse
Affiliation(s)
- Sandra L. Talbot
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, United States of America
| | - George K Sage
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, United States of America
| | - Jolene R. Rearick
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Meg C. Fowler
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, United States of America
| | - Raquel Muñiz-Salazar
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Bethany Baibak
- Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Sandy Wyllie-Echeverria
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Center for Marine and Environmental Studies, University of Virgin Islands, St. Thomas, Virgin Islands, United States of America
| | - Alejandro Cabello-Pasini
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, California, Mexico
| | - David H. Ward
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, United States of America
| |
Collapse
|
9
|
Nguyen XV, Höfler S, Glasenapp Y, Thangaradjou T, Lucas C, Papenbrock J. New insights into DNA barcoding of seagrasses. SYST BIODIVERS 2015. [DOI: 10.1080/14772000.2015.1046408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xuan-Vy Nguyen
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang City, Vietnam
| | - Saskia Höfler
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | - Yvana Glasenapp
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | | | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
10
|
Kong F, Li H, Sun P, Zhou Y, Mao Y. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS One 2014; 9:e112245. [PMID: 25423588 PMCID: PMC4244107 DOI: 10.1371/journal.pone.0112245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data. Principal Findings Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO) terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl− channels, and H+ pumping. Conclusions Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to abiotic stress in Z. marina.
Collapse
Affiliation(s)
- Fanna Kong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail:
| | - Hong Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peipei Sun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Triest L, Sierens T. Seagrass radiation after Messinian salinity crisis reflected by strong genetic structuring and out-of-Africa scenario (Ruppiaceae). PLoS One 2014; 9:e104264. [PMID: 25100173 PMCID: PMC4123914 DOI: 10.1371/journal.pone.0104264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/11/2014] [Indexed: 11/24/2022] Open
Abstract
Many aquatic plant and seagrass species are widespread and the origin of their continent-wide ranges might result from high gene flow levels. The response of species when extending northwards since the Last Glacial Maximum can be opposed to the structuring of their populations that survived glaciation cycles in southern regions. The peri-Mediterranean is a complex series of sea basins, coastlines, islands and river deltas with a unique history since the Messinian Crisis that potentially influenced allopatric processes of aquatic life. We tested whether vast ranges across Europe and the peri-Mediterranean of a global seagrass group (Ruppia species complexes) can be explained by either overall high levels of gene flow or vicariance through linking population genetics, phylogeography and shallow phylogenetics. A multigene approach identified haplogroup lineages of two species complexes, of ancient and recent hybrids with most of the diversity residing in the South. High levels of connectivity over long distances were only observed at recently colonized northern ranges and in recently-filled seas following the last glaciation. A strong substructure in the southern Mediterranean explained an isolation-by-distance model across Europe. The oldest lineages of the southern Mediterranean Ruppia dated back to the period between the end of the Messinian and Late Pliocene. An imprint of ancient allopatric origin was left at basin level, including basal African lineages. Thus both vicariance in the South and high levels of connectivity in the North explained vast species ranges. Our findings highlight the need for interpreting global distributions of these seagrass and euryhaline species in the context of their origin and evolutionary significant units for setting up appropriate conservation strategies.
Collapse
Affiliation(s)
- Ludwig Triest
- Plant Biology and Nature Management, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| | - Tim Sierens
- Plant Biology and Nature Management, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar Genomics 2014; 15:65-73. [DOI: 10.1016/j.margen.2014.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/25/2022]
|
13
|
Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL. Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.821187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Chen LY, Chen JM, Gituru RW, Wang QF. Eurasian origin of Alismatidae inferred from statistical dispersal-vicariance analysis. Mol Phylogenet Evol 2013; 67:38-42. [PMID: 23333736 DOI: 10.1016/j.ympev.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/26/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Alismatidae is a wetland or aquatic herb lineage of monocots with a cosmopolitan distribution. Although considerable progress in systematics and biogeography has been made in the past several decades, geographical origin of this group remains unresolved. In this study, we used statistical dispersal-vicariance analysis implemented in program RASP to investigate the biogeography of Alismatidae. Six areas of endemism were used to describe the distribution: North America, South America, Eurasia, Africa, Southeast Asia and Australia. 18,000 trees retained from Bayesian inference of rbcL served as a framework to reconstruct the ancestral areas. The results suggested that the most recent common ancestor of Alismatidae most probably occurred in Eurasia, followed by a split into two major clades. The clade comprising Hydrocharitaceae, Butomaceae and Alismataceae mainly diversified in Eurasia and Africa. The other clade comprising the remaining families dispersed to southern hemisphere. Australia played an important role in diversification of this clade. Several families were suggested to have occurred in Australia, such as Ruppiaceae, Cymodoceaceae, Posidoniaceae and Zosteraceae.
Collapse
Affiliation(s)
- Ling-Yun Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, The Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China
| | | | | | | |
Collapse
|
15
|
Papenbrock J. Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special? ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/103892] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The marine seagrasses form an ecological and therefore paraphyletic group of marine hydrophilus angiosperms which evolved three to four times from land plants towards an aquatic and marine existence. Their taxonomy is not yet solved on the species level and below due to their reduced morphology. So far also molecular data did not completely solve the phylogenetic relationships. Thus, this group challenges a new definition for what a species is. Also their physiology is not well understood due to difficult experimental in situ and in vitro conditions. There remain several open questions concerning how seagrasses adapted secondarily to the marine environment. Here probably exciting adaptation solutions will be detected. Physiological adaptations seem to be more important than morphological ones. Seagrasses contain several compounds in their secondary metabolism in which they differ from terrestrial plants and also not known from other taxonomic groups. Some of these compounds might be of interest for commercial purposes. Therefore their metabolite contents constitute another treasure of the ocean. This paper gives an introduction into some of the most interesting aspects from phylogenetical, physiological, and metabolic points of view.
Collapse
Affiliation(s)
- Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|
16
|
Li Y, Song N, Li WT, Gao TX. Population genetics of Zostera marina Linnaeus (Zosteraceae) based on AFLP analysis. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Chen LY, Chen JM, Gituru RW, Wang QF. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 2012; 12:30. [PMID: 22404786 PMCID: PMC3317846 DOI: 10.1186/1471-2148-12-30] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/10/2012] [Indexed: 11/17/2022] Open
Abstract
Background Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Results Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Conclusions Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots.
Collapse
Affiliation(s)
- Ling-Yun Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan 430074, Hubei, P R China
| | | | | | | |
Collapse
|
18
|
Development of a DNA barcoding system for seagrasses: successful but not simple. PLoS One 2012; 7:e29987. [PMID: 22253849 PMCID: PMC3256190 DOI: 10.1371/journal.pone.0029987] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the understanding of the morphological plasticity of seagrasses versus genetic differentiation.
Collapse
|
19
|
Wanke D. The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. JOURNAL OF PLANT RESEARCH 2011; 124:467-75. [PMID: 21674229 DOI: 10.1007/s10265-011-0434-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/10/2011] [Indexed: 05/07/2023]
Abstract
Hydrophytes comprise aquatic macrophytes from various taxa that are able to sustain and to complete their lifecycle in a flooded environment. Their ancestors, however, underwent adaptive processes to withstand drought on land and became partially or completely independent of water for sexual reproduction. Interestingly, the step backwards into the high-density aquatic medium happened independently several times in numerous plant taxa. For flowering plants, this submersed life-style is especially difficult as they need to erect their floral organs above the water surface to be pollinated. Moreover, fresh-water plants evolved the adaptive mechanism of heterophylly, which enabled them to switch between a submersed and an emersed leaf morphology. The plant hormone abscisic acid (ABA) is a key factor of heterophylly induction in aquatic plants and is a major switch between a submersed and emersed life. The mechanisms of ABA signal perception and transduction appear to be conserved throughout the evolution of basal plants to angiosperms and from terrestrial to aquatic plants. This review summarizes the interplay of environmental factors that act through ABA to orchestrate adaptation of plants to their aquatic environment.
Collapse
Affiliation(s)
- Dierk Wanke
- ZMBP-Plant Physiology, Tübingen University, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Wissler L, Dattolo E, Moore AD, Reusch TBH, Olsen JL, Migliaccio M, Bornberg-Bauer E, Procaccini G. Dr. Zompo: an online data repository for Zostera marina and Posidonia oceanica ESTs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2009; 2009:bap009. [PMID: 20157482 PMCID: PMC2790305 DOI: 10.1093/database/bap009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/23/2009] [Accepted: 06/29/2009] [Indexed: 11/12/2022]
Abstract
As ecosystem engineers, seagrasses are angiosperms of paramount ecological importance in shallow shoreline habitats around the globe. Furthermore, the ancestors of independent seagrass lineages have secondarily returned into the sea in separate, independent evolutionary events. Thus, understanding the molecular adaptation of this clade not only makes significant contributions to the field of ecology, but also to principles of parallel evolution as well. With the use of Dr. Zompo, the first interactive seagrass sequence database presented here, new insights into the molecular adaptation of marine environments can be inferred. The database is based on a total of 14 597 ESTs obtained from two seagrass species, Zostera marina and Posidonia oceanica, which have been processed, assembled and comprehensively annotated. Dr. Zompo provides experimentalists with a broad foundation to build experiments and consider challenges associated with the investigation of this class of non-domesticated monocotyledon systems. Our database, based on the Ruby on Rails framework, is rich in features including the retrieval of experimentally determined heat-responsive transcripts, mining for molecular markers (SSRs and SNPs), and weighted key word searches that allow access to annotation gathered on several levels including Pfam domains, GeneOntology and KEGG pathways. Well established plant genome sites such as The Arabidopsis Information Resource (TAIR) and the Rice Genome Annotation Project are interfaced by Dr. Zompo. With this project, we have initialized a valuable resource for plant biologists in general and the seagrass community in particular. The database is expected to grow together with more data to come in the near future, particularly with the recent initiation of the Zostera genome sequencing project.The Dr. Zompo database is available at http://drzompo.uni-muenster.de/
Collapse
Affiliation(s)
- L Wissler
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D48149 Münster, Germany, Stazione Zoologica A Dohrn, Villa Comunale, 80121 Naples, Dipartimento di Ecologia, Universita della Calabria, Rende (CS), Italy, Leibniz-Institut für Meereswissenschaften IFM-Geomar, Düsternbrooker Weg 20, D24105 Kiel, Germany and Department of Marine Benthic Ecology and Evolution, Centre for Ecological and Evolutionary Studies, University of Groningen, Biological Centre, 9750 AA Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Iida S, Miyagi A, Aoki S, Ito M, Kadono Y, Kosuge K. Molecular adaptation of rbcL in the heterophyllous aquatic plant Potamogeton. PLoS One 2009; 4:e4633. [PMID: 19247501 PMCID: PMC2646136 DOI: 10.1371/journal.pone.0004633] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 12/31/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Heterophyllous aquatic plants show marked phenotypic plasticity. They adapt to environmental changes by producing different leaf types: submerged, floating and terrestrial leaves. By contrast, homophyllous plants produce only submerged leaves and grow entirely underwater. Heterophylly and submerged homophylly evolved under selective pressure modifying the species-specific optima for photosynthesis, but little is known about the evolutionary outcome of habit. Recent evolutionary analyses suggested that rbcL, a chloroplast gene that encodes a catalytic subunit of RuBisCO, evolves under positive selection in most land plant lineages. To examine the adaptive evolutionary process linked to heterophylly or homophylly, we analyzed positive selection in the rbcL sequences of ecologically diverse aquatic plants, Japanese Potamogeton. PRINCIPAL FINDINGS Phylogenetic and maximum likelihood analyses of codon substitution models indicated that Potamogeton rbcL has evolved under positive Darwinian selection. The positive selection has operated specifically in heterophyllous lineages but not in homophyllous ones in the branch-site models. This suggests that the selective pressure on this chloroplast gene was higher for heterophyllous lineages than for homophyllous lineages. The replacement of 12 amino acids occurred at structurally important sites in the quaternary structure of RbcL, two of which (residue 225 and 281) were identified as potentially under positive selection. CONCLUSIONS/SIGNIFICANCE Our analysis did not show an exact relationship between the amino acid replacements and heterophylly or homophylly but revealed that lineage-specific positive selection acted on the Potamogeton rbcL. The contrasting ecological conditions between heterophyllous and homophyllous plants have imposed different selective pressures on the photosynthetic system. The increased amino acid replacement in RbcL may reflect the continuous fine-tuning of RuBisCO under varying ecological conditions.
Collapse
Affiliation(s)
- Satoko Iida
- Research Center for Environmental Genomics, Kobe University, Kobe, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Lindqvist C, De Laet J, Haynes RR, Aagesen L, Keener BR, Albert VA. Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 2006; 22:568-588. [DOI: 10.1111/j.1096-0031.2006.00124.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Linder HP, Hardy CR, Rutschmann F. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Mol Phylogenet Evol 2005; 35:569-82. [PMID: 15878126 DOI: 10.1016/j.ympev.2004.12.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 11/27/2022]
Abstract
Three commonly used molecular dating methods for correction of variable rates (non-parametric rate smoothing, penalized likelihood, and Bayesian rate correction) as well as the assumption of a global molecular clock were tested for sensitivity to taxon sampling. The test dataset of 6854 basepairs for 300 terminals includes a nearly complete sample of the Restio-clade of the African Restionaceae (272 of the 288 species), as well as 26 outgroup species. Of this, nested subsets of 35, 51, 80, 120, 150, and the full 300 species were used. Molecular dating experiments with these datasets showed that all methods are sensitive to undersampling, but that this effect is more severe in analyses that use more extreme rate smoothing. Additionally, the undersampling effect is positively related to distance from the calibration node. The combined effect of undersampling and distance from the calibration node resulted in up to threefold differences in the age estimation of nodes from the same dataset with the same calibration point. We suggest that the most suitable methods are penalized likelihood and Bayesian when a global clock assumption has been rejected, as these methods are more successful at finding optimal levels of smoothing to correct for rate heterogeneity, and are less sensitive to undersampling.
Collapse
Affiliation(s)
- H Peter Linder
- Institute for Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | | | | |
Collapse
|