1
|
Machida A, Suzuki K, Nakayama T, Miyagi S, Maekawa Y, Murakami R, Uematsu M, Kitaoka T, Oishi A. Glucagon-Like Peptide 1 Receptor Agonist Stimulation Inhibits Laser-Induced Choroidal Neovascularization by Suppressing Intraocular Inflammation. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 40332908 PMCID: PMC12061060 DOI: 10.1167/iovs.66.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose The glucagon-like peptide-1 receptor (GLP-1R), a diabetes therapy target, is expressed in multiple organs and is associated with neuroprotective, anti-inflammatory, and antitumor effects, particularly in cardiac and cerebral tissues. Although GLP-1's role in diabetic and ischemic retinopathies is well-studied, its influence on choroidal neovascularization (CNV) in exudative age-related macular degeneration (AMD) remains unclear. This study explored the effects of GLP-1 on CNV using a laser-induced mouse model. Methods The anti-angiogenic effects of GLP-1 were tested using ex vivo sprouting assays in 3-week-old C57BL/6J mice. In 6-week-old mice, GLP-1R localization in laser-induced CNV lesions was analyzed via immunohistochemistry. Liraglutide, a GLP-1R agonist, was administered subcutaneously for 7 days or by single intravitreal injection post-laser. Eyeballs collected on days 1 to 7 post-laser were analyzed using RT-qPCR for GLP-1R expression and inflammatory cytokines. Results GLP-1R-positive cells were detected in CNV lesions and were expressed in Iba-1-positive activated microglia or macrophages. They also expressed in abnormal retinal pigment epithelial cells and surrounding normal endothelial cells. NOD-like receptor protein 3 (NLRP3) inflammasome signaling was observed near CNV. Liraglutide inhibited angiogenesis in ex vivo assays and significantly reduced CNV formation with both subcutaneous and intravitreal administration. Additionally, Liraglutide inhibited expression of NLRP3, IL-1β, IL-6, and TNF expression compared with healthy controls. Intravitreal GLP-1R antagonist reduced subcutaneous effects. Conclusions Liraglutide suppresses CNV formation, likely via NLRP3 inflammasome inhibition. Intraocular GLP-1R appears to mediate anti-CNV effects, supporting GLP-1R agonists as potential adjunctive therapy for exudative AMD and warranting further investigation into its safety and clinical feasibility.
Collapse
Affiliation(s)
- Akira Machida
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Takafumi Nakayama
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Sugao Miyagi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Yuki Maekawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
- Department of Ophthalmology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Nagasaki Prefecture, Japan
| | - Ryuya Murakami
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| | - Takashi Kitaoka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
- Department of Ophthalmology, Syunkai-kai Inoue Hospital Eye Center, Nagasaki, Nagasaki Prefecture, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki Prefecture, Japan
| |
Collapse
|
2
|
Ribeiro FM, Arnaldo L, P Milhomem L, S Aguiar S, Franco OL. The intricate relationship between circadian rhythms and gastrointestinal peptides in obesity. Peptides 2025; 185:171356. [PMID: 39929256 DOI: 10.1016/j.peptides.2025.171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
There are different molecular pathways that regulate appetite, particularly the role of the hypothalamus, circadian rhythms, and gastrointestinal peptides. The hypothalamus integrates signals from orexigenic peptides like neuropeptide Y (NPY) and agouti-related protein (AgRP), which stimulate appetite, and anorexigenic peptides such as pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART), which promote satiety. These signals are influenced by peripheral hormones like leptin, ghrelin, insulin, and cortisol, as well as gut peptides including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK). The circadian rhythm, regulated by proteins like circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), modulates the secretion of these peptides, aligning feeding behaviors with the sleep-wake cycle. In obesity, these regulatory systems are disrupted, leading to leptin resistance, increased ghrelin sensitivity, and altered gut peptide secretion. This results in heightened appetite and impaired satiety, contributing to overeating and metabolic dysfunction. Additionally, circadian disruptions further impair metabolic processes, exacerbating obesity. The present article underscores the importance of understanding the molecular interplay between circadian rhythms and gastrointestinal peptides, particularly in the context of obesity. While some molecular interactions, such as the regulation of GLP-1 and PYY by reverberation of circadian rhythm α (REV-ERBα) and retinoic acid-related orphan receptor α (RORα), are well-established, clinical studies are scarce. Future research is expected to explore these pathways in obesity management, especially with the rise of incretin-based treatments like semaglutide. A deeper understanding of hypothalamic molecular mechanisms could lead to novel pharmacological and non-pharmacological therapies for obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Luiz Arnaldo
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil
| | - Lana P Milhomem
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Samuel S Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Octavio L Franco
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Lin CP, Chung CH, Lu CH, Su SC, Kuo FC, Liu JS, Li PF, Huang CL, Ho LJ, Chen KC, Chang CY, Lin MS, Liu YC, Cheng AC, Lin HH, Kuo SW, Lee CH, Hsieh CH, Hung YJ, Liu HY, Guo LY, Chien WC. Glucagon-like peptide-1 receptor agonists therapy to attenuate the risk of knee osteoarthritis and total knee replacement in type 2 diabetes mellitus: A nation-wide population-based cohort study. Medicine (Baltimore) 2025; 104:e41243. [PMID: 39928811 PMCID: PMC11813052 DOI: 10.1097/md.0000000000041243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 02/12/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an independent risk factor of knee osteoarthritis (KOA). This study was mainly based on data from the Taiwan National Health Insurance Database. Using big data analysis, we showed that glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment is helpful for patients with T2DM who have a lower risk of KOA or total knee replacement (TKR). A total of 35,762 patients with T2DM were included in this study. We divided these patients into 988 patients with T2DM without KOA and 372 patients with T2DM with KOA who received GLP-1RA treatment and those who did not receive GLP-1RA treatment. The patients were matched for sex, age, and inclusion date by 1:1 propensity score, which was included in the control group. Cox proportional hazards analyses were performed to compare KOA risk and TKR rate during a maximum follow-up period of 5 years. There were 1976/744 patients with T2DM without/with KOA who received and did not receive GLP-1RA treatment, including 1052/322 men (53.24/43.28%) and 924/422 women (46.76/56.72%). At the end of follow-up, there were 46/39 (4.66/10.48%) patients with T2DM without/with KOA who received GLP-1RA treatment and underwent KOA/TKR were lower than those without GLP-1RA treatment 87/70 (8.81/18.82%). Cox proportional hazard regression analysis showed a lower rate of KOA/TKR among patients with GLP-1RA treatment (adjusted hazard ratio [HR] = .852; 95% confidence interval [CI] = .784-.930, P < .001/ adjusted HR = .913; 95% CI = .885-.977, P = .015, respectively). Kaplan-Meier analysis showed that the cumulative risk of KOA/TKR in patient with/without GLP-1RA was significantly different (log-rank test, P < .001/P < .001, respectively). This study aimed to provide clinicians with the option of GLP-1RA as a treatment for patients with T2DM with or without KOA to reduce the risk of KOA or TKR among such patients.
Collapse
Affiliation(s)
- Chih-Ping Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Chieh-Hua Lu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Feng-Chih Kuo
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jhih-Syuan Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Peng-Fei Li
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Luen Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Ju Ho
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuan-Chan Chen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Yung Chang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
| | - Ming-Shiun Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Chen Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - An-Che Cheng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hong-Han Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shi-Wen Kuo
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Taipei Tzu Chi Hospital, Taipei, Taiwan, ROC
| | - Chien-Hsing Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Hsun Hsieh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Ya Liu
- BeYoung Research Institute, Taipei, Taiwan, ROC
| | - Lan-Yuen Guo
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Lu J, Williams G, Fanning S. Reconsidering Semaglutide Use for Chronic Obesity in Patients of Asian Descent: A Critical Review. Cureus 2024; 16:e73111. [PMID: 39650923 PMCID: PMC11622169 DOI: 10.7759/cureus.73111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Semaglutide is a glucagon-like peptide 1 (GLP-1) receptor agonist. It is the first approved drug for chronic weight management in adults who are overweight or obese since 2014. Its increasing popularity has garnered significant media attention and led to a drug shortage, resulting in limited access for its intended use - patients with type 2 diabetes. Numerous studies have demonstrated its effectiveness in promoting weight loss. This review seeks to explain the use of semaglutide, a GLP-1 receptor agonist, to treat metabolic syndrome in the Asian American population. It raises concerns about the existing diagnostic and treatment approaches and stresses the necessity of integrating visceral fat and other ethnicity-specific risk predictors for the diagnosis of metabolic syndrome. The objective of this review is to examine the eligibility criteria for the prescription of semaglutide critically and determine whether Asians are being unfairly excluded and denied access to this medication due to ineffective prescription guidelines.
Collapse
Affiliation(s)
- Jenny Lu
- Medicine, Touro College of Osteopathic Medicine, New York, USA
| | - Grace Williams
- Medicine, Touro College of Osteopathic Medicine, New York, USA
| | - Stacey Fanning
- Immunology, Touro College of Osteopathic Medicine, New York, USA
| |
Collapse
|
5
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
6
|
Reed J, Higginbotham V, Bain S, Kanamarlapudi V. Comparative Analysis of Orthosteric and Allosteric GLP-1R Agonists' Effects on Insulin Secretion from Healthy, Diabetic, and Recovered INS-1E Pancreatic Beta Cells. Int J Mol Sci 2024; 25:6331. [PMID: 38928038 PMCID: PMC11203424 DOI: 10.3390/ijms25126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.
Collapse
Affiliation(s)
| | | | | | - Venkateswarlu Kanamarlapudi
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (J.R.); (V.H.); (S.B.)
| |
Collapse
|
7
|
Xu XY, Wang JX, Chen JL, Dai M, Wang YM, Chen Q, Li YH, Zhu GQ, Chen AD. GLP-1 in the Hypothalamic Paraventricular Nucleus Promotes Sympathetic Activation and Hypertension. J Neurosci 2024; 44:e2032232024. [PMID: 38565292 PMCID: PMC11112640 DOI: 10.1523/jneurosci.2032-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Ming Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Ehsasatvatan M, Baghban Kohnehrouz B. A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. J Biomol Struct Dyn 2024:1-16. [PMID: 38468545 DOI: 10.1080/07391102.2024.2329290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are increasingly used in clinical practice for the management of type 2 diabetes mellitus. However, the extremely short half-life of GLP-1 and the need for subcutaneous administration limit its clinical application. Thus, half-life extension and alternative delivery methods are highly desired. DARPin domains with high affinity for human serum albumin (HSA) have been selected for the half-life extension of therapeutic peptides and proteins. In the present study, novel trivalent fusion proteins as long-acting GLP-1 receptor agonists with potential for oral delivery were computationally engineered by incorporating a protease-resistant modified GLP-1, an anti-human serum albumin DARPin, and an approved cell-penetrating peptide (Penetratin, Tat, and Polyarginine) linked either by rigid or flexible linkers. Theoretical studies and molecular dynamics simulation results suggested that mGLP1-DARPin-Pen has acceptable quality and stability. Moreover, the potential affinity of the selected fusion proteins for GLP-1 receptor and human serum albumin was explored by molecular docking. The recombinant construct was cloned into the pET28a vector and expressed in Escherichia coli. SDS-PAGE analysis of the purified fusion protein matched its molecular size and was confirmed by western blot analysis. The results demonstrated that the engineered fusion protein could bind HSA with high affinity. Importantly, insulin secretion assays using a mouse pancreatic β-cell line (β-TC6) revealed that the engineered trivalent fusion protein retained the ability to stimulate cellular insulin secretion. Immunofluorescence microscopy analysis indicated the CPP-dependent cellular uptake of mGLP1-DARPin-Pen. These findings demonstrated that mGLP1-DARPin-Pen is a highly potent oral drug candidate that could be particularly useful in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Zhou Y, Li J, Gao G, Li Y, Zhang C. Exploring a novel long-acting glucagon-like peptide-1 receptor agonist built on the albumin-binding domain and XTEN scaffolds. Heliyon 2024; 10:e24340. [PMID: 38293540 PMCID: PMC10826136 DOI: 10.1016/j.heliyon.2024.e24340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
In recent years, glucagon-like peptide-1 (GLP-1) has demonstrated considerable potential in the treatment of type 2 diabetes (T2D) and obesity. However, the half-life of naturally occurring GLP-1 is quite short in vivo. Two common strategies employed for half-life extension are the use of the Albumin-binding domain (ABD) and XTEN polypeptide, which operate through different mechanisms. In this study, we designed an innovative GLP-1 receptor agonist with an extended duration of action. This new construct incorporated an albumin binding domain (ABD) and an XTEN sequence (either XTEN144 or XTEN288) as carriers. We referred to these fusion proteins as GLP-ABD-XTEN144 and GLP-ABD-XTEN288. In an E. coli system, the said constructs were efficaciously produced in substantial quantity. It was observed from in vitro studies that the fusion protein GLP-ABD-XTEN144 demonstrated a five times stronger affinity towards human serum albumin (HSA), boasting a binding affinity (Kd) of 5.50 nM. This was in contrast to GLP-ABD-XTEN288, whose Kd value was registered at 27.78 nM. Moreover, GLP-ABD-XTEN144 presented a half-life of 12.9 h in mice, thus exceeding the corresponding value for GLP-ABD-XTEN288, 7.32 h in mice. Both these fusion proteins significantly mitigated non-fasting blood sugar levels and overall food consumption for 48 h subsequent to a one-time injection in mice. Notably, GLP-ABD-XTEN144 exhibited more pronounced hypoglycemic activity and food inhibitory effects than GLP-ABD-XTEN288. The designed GLP-ABD-XTEN144 fusion protein shows promising prospects for clinical application in T2D treatment. Our findings also suggest that ABD and XTEN polypeptides synergistically contribute to half-life extension, further enhancing the pharmacokinetic characteristics of a payload.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Yafeng Li
- Department of Pharmacology, Duchuangsanzhong Biotech Co., Ltd., Jiaxing, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
10
|
Tashiro H, Kurihara Y, Kuwahara Y, Takahashi K. Impact of obesity in asthma: Possible future therapies. Allergol Int 2024; 73:48-57. [PMID: 37659887 DOI: 10.1016/j.alit.2023.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023] Open
Abstract
Obesity is one of the factors associated with the severity of asthma. Obesity is associated with aggravation of the pathophysiology of asthma, including exacerbations, airway inflammation, decreased pulmonary function, and airway hyperresponsiveness. The present review addresses the characteristics of asthma with obesity, focusing especially on the heterogeneity caused by the degree of type 2 inflammation, sex differences, the onset of asthma, and race differences. To understand the severity mechanisms in asthma and obesity, such as corticosteroid resistance, fatty acids, gut microbiome, and cytokines, several basic research studies are evaluated. Finally, possible future therapies, including weight reduction, microbiome-targeted therapies, and other molecular targeted therapies are addressed. We believe that the present review will contribute to better understanding of the severity mechanisms and the establishment of novel treatments for severe asthma patients with obesity.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
11
|
Boudry G, Mennella I, Menard O, Janvier R, Nogret I, Madadlou A, Cahu A, Le Normand L, Bobillier-Chaumont E, Ferracane R, Vitaglione P, Dupont D, Val-Laillet D. Development of a functional dairy snack containing oleoylethanolamide that reduces food intake in normal-weight and obese minipigs. J Funct Foods 2023; 111:105916. [DOI: 10.1016/j.jff.2023.105916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
12
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
13
|
Liu J, Zhang D, Yang Z, Hao Y, Wang Z, Wang J, Wang Z. Wheat Alkylresorcinols Modulate Glucose Homeostasis through Improving GLP-1 Secretion in High-Fat-Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16125-16136. [PMID: 37857386 DOI: 10.1021/acs.jafc.3c04664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Wheat alkylresorcinols (ARs) consumption has been evidenced to improve obesity and its associated insulin resistance. However, the effect of ARs on glucagon-like peptide 1 (GLP-1) secretion and the underlying mechanism of action are still unclear. In this study, C57BL/6J mice were fed low-fat diet (LFD), high-fat diet (HFD), and HFD supplemented with 0.4% (w/w) ARs separately for 9 weeks. The results showed that ARs intervention significantly improved glucose homeostasis and restored the serum level of GLP-1 compared with the HFD control group. Moreover, ARs treatment alleviated HFD-induced ileal epithelium damage according to TUNEL staining, immunofluorescence, and transmission electron microscopy observation. The alleviative effect was further verified by apoptosis analysis and mitochondrial function evaluation. Furthermore, palmitic acid (PA) was administered to the intestinal secretin tumor cell line (STC-1) to clarify the protective effect of ARs on GLP-1 secretion in vitro. In consistence with the results of animal studies, ARs treatment could significantly improve GLP-1 secretion in STC-1 cells compared with PA treatment alone in a dose-dependent manner, accompanied by a reduction in apoptosis and mitochondrial dysfunction. In addition, ARs treatment notably enhanced the abundance of SCFA (short-chain fatty acid)-producing bacteria, such as Bacteroides, Bifidobacterium, and Akkermansia. The increased levels of intestinal SCFAs, such as acetic acid, propionic acid, and butyric acid, improved the expression of short-chain fatty acid receptors (FFAR3) and glucagon-like peptide-1 receptor (GLP-1R), enhancing the secretion of the intestinal hormones GLP-1. Thus, this study provides potential clinical implications of whole wheat as a dietary strategy to improve glucose homeostasis for obese populations.
Collapse
Affiliation(s)
- Jie Liu
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University, Beijing 100048, China
| | - Dandan Zhang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
| | - Zihui Yang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
| | - Yiming Hao
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
| | - Zongwei Wang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University, Beijing 100048, China
| | - Ziyuan Wang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible Byproducts), Beijing Technology & Business University, Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
14
|
Wu H, Wei J, Zhao X, Liu Y, Chen Z, Wei K, Lu J, Chen W, Jiang M, Li S, Chen T. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson's disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng Transl Med 2023; 8:e10351. [PMID: 37693045 PMCID: PMC10487327 DOI: 10.1002/btm2.10351] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 09/12/2023] Open
Abstract
Considerable evidence suggests that insulin resistance is closely linked to Parkinson's disease (PD), leading to agents aiming at treating diabetes can be regarded as new neuroprotective strategies in PD, notably glucagon-like peptide-1 (GLP-1). However, the extremely short half-life of GLP-1 due to degradation by the ubiquitous proteolytic enzyme limits its clinical application. In this study, we engineered the recombinant integrant probiotic strain Escherichia coli Nissle 1917 (EcN) to create a strain EcN-GLP-1 that effectively delivers the heterologous GLP-1 molecule. Subsequently, we assessed its neuroprotective effects on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. We demonstrated that EcN-GLP-1 treatment could improve motor deficits, increase tyrosine hydroxylase-positive neurons, suppress microglia and astrocyte activation, reduce brain and colon inflammation, and ameliorate colonic barrier function damaged by MPTP induction. Meanwhile, we confirmed that the oral administration of EcN-GLP-1 could restore the disturbance of gut microbiota in the MPTP-induced PD mice, by reducing the relative abundances of Akkermansia and Oscillospira, and increasing the level of Prevotella in the gut. These results support further development of an engineered probiotic platform in which production of GLP-1 for gut-brain disorders, such as PD.
Collapse
Affiliation(s)
- Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Xiumiao Zhao
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Ying Liu
- Institute of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Zhihang Chen
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Kehong Wei
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Jiachen Lu
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Wenjie Chen
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Meixiu Jiang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
15
|
Pandey S, Mangmool S, Parichatikanond W. Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals (Basel) 2023; 16:836. [PMID: 37375783 DOI: 10.3390/ph16060836] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
16
|
Wang R, Wang Y, Song J, Tan H, Tian C, Zhao D, Xu S, Zhao P, Xia Q. A Novel Approach for Screening Sericin-Derived Therapeutic Peptides Using Transcriptomics and Immunoprecipitation. Int J Mol Sci 2023; 24:ijms24119425. [PMID: 37298379 DOI: 10.3390/ijms24119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
With the demand for more efficient and safer therapeutic drugs, targeted therapeutic peptides are well received due to their advantages of high targeting (specificity), low immunogenicity, and minimal side effects. However, the conventional methods of screening targeted therapeutic peptides in natural proteins are tedious, time-consuming, less efficient, and require too many validation experiments, which seriously restricts the innovation and clinical development of peptide drugs. In this study, we established a novel method of screening targeted therapeutic peptides in natural proteins. We also provide details for library construction, transcription assays, receptor selection, therapeutic peptide screening, and biological activity analysis of our proposed method. This method allows us to screen the therapeutic peptides TS263 and TS1000, which have the ability to specifically promote the synthesis of the extracellular matrix. We believe that this method provides a reference for screening other drugs in natural resources, including proteins, peptides, fats, nucleic acids, and small molecules.
Collapse
Affiliation(s)
- Riyuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuancheng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Jianxin Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Chi Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning 530021, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
18
|
Bulushova NV, Zalunin IA, Asrarkulova AS, Kozlov DG. Incretin Analogues in the Therapy of Type 2 Diabetes and Obesity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
20
|
Tsai WH, Sung FC, Chiu LT, Shih YH, Tsai MC, Wu SI. Decreased Risk of Anxiety in Diabetic Patients Receiving Glucagon-like Peptide-1 Receptor Agonist: A Nationwide, Population-Based Cohort Study. Front Pharmacol 2022; 13:765446. [PMID: 35281896 PMCID: PMC8904427 DOI: 10.3389/fphar.2022.765446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Previous findings on using Glucagon-like peptide-1 receptor agonist (GLP1-RA) as an antidepressant were conflicting, lacking large-scale studies. We used population-based data to investigate depression and anxiety risk in diabetic patients receiving the medication. Methods: From claims records of the National Health Insurance Research Database (NHIRD) of Taiwan, we identified cohorts of 10,690 GLP1-RA users and 42,766 propensity score-matched patients without GLP1-RA use from patients with diabetes mellitus (DM) diagnosed in 2011–2017, matched by age, gender, index year, occupation, urbanization, comorbidities, and medications. Incidence, hazard ratios (HR) and 95% confidence interval (CI) of depression and/or anxiety were estimated by the end of 2017. Results: The overall combined incidence of anxiety and/or depression was lower in GLP1-RA users than in non-users (6.80 versus 9.36 per 1,000 person-years), with an adjusted HR adjusted hazard ratio (aHR) of 0.8 (95% CI: 0.67–0.95) after controlling for covariates. The absolute incidence reduction was greater in anxiety (2.13 per 1,000 person-years) than in depression (0.41 per 1,000 person-years). The treatment effectiveness was significant for women. Patients taking GLP1-RA for longer than 180 days had the incidence of anxiety reduced to 2.93 per 1,000 person-years, with an aHR of 0.41 (95%CI: 0.27–0.61), compared to non-users. Dulaglutide could significantly decrease risks of both anxiety and depression. Conclusion: Patients with DM receiving GLP1-RA therapy have a greater reduction of the risk of anxiety than that of depression. Our findings strengthen previous research that advocated possible anti-depressant or anxiolytic effects of GLP1-RA and may lead to improved treatment adherence among patients with DM.
Collapse
Affiliation(s)
- Wen-Hsuan Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Fung-Chang Sung
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Ying-Hsiu Shih
- Management Office for Health Data (DryLab), Clinical Trial Research Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Ming-Chieh Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan
- *Correspondence: Shu-I Wu,
| |
Collapse
|
21
|
Kay E, Stulz R, Becquart C, Lovric J, Tängemo C, Thomen A, Baždarević D, Najafinobar N, Dahlén A, Pielach A, Fernandez-Rodriguez J, Strömberg R, Ämmälä C, Andersson S, Kurczy M. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution. Pharmaceutics 2022; 14:pharmaceutics14020463. [PMID: 35214195 PMCID: PMC8876276 DOI: 10.3390/pharmaceutics14020463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic β-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.
Collapse
Affiliation(s)
- Emma Kay
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Rouven Stulz
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Cécile Becquart
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Jelena Lovric
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Carolina Tängemo
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Aurélien Thomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Dženita Baždarević
- Bioscience, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Anna Pielach
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
| | - Carina Ämmälä
- Bioscience, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Michael Kurczy
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Correspondence:
| |
Collapse
|
22
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 819] [Impact Index Per Article: 273.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
23
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Dulaglutide Ameliorates Palmitic Acid-Induced Hepatic Steatosis by Activating FAM3A Signaling Pathway. Endocrinol Metab (Seoul) 2022; 37:74-83. [PMID: 35144334 PMCID: PMC8901965 DOI: 10.3803/enm.2021.1293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP-1RA), has been shown to reduce body weight and liver fat content in patients with type 2 diabetes. Family with sequence similarity 3 member A (FAM3A) plays a vital role in regulating glucose and lipid metabolism. The aim of this study was to determine the mechanisms by which dulaglutide protects against hepatic steatosis in HepG2 cells treated with palmitic acid (PA). METHODS HepG2 cells were pretreated with 400 μM PA for 24 hours, followed by treatment with or without 100 nM dulaglutide for 24 hours. Hepatic lipid accumulation was determined using Oil red O staining and triglyceride (TG) assay, and the expression of lipid metabolism-associated factor was analyzed using quantitative real time polymerase chain reaction and Western blotting. RESULTS Dulaglutide significantly decreased hepatic lipid accumulation and reduced the expression of genes associated with lipid droplet binding proteins, de novo lipogenesis, and TG synthesis in PA-treated HepG2 cells. Dulaglutide also increased the expression of proteins associated with lipolysis and fatty acid oxidation and FAM3A in PA-treated cells. However, exendin-(9-39), a GLP-1R antagonist, reversed the expression of FAM3A, and fatty acid oxidation-associated factors increased due to dulaglutide. In addition, inhibition of FAM3A by siRNA attenuated the reducing effect of dulaglutide on TG content and its increasing effect on regulation of fatty acid oxidation. CONCLUSION These results suggest that dulaglutide could be used therapeutically for improving nonalcoholic fatty liver disease, and its effect could be mediated in part via upregulation of FAM3A expression through a GLP-1R-dependent pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Xiao Y, Tan C, Nie X, Li B, You M, Lan Y, Tang L. Rise in Postprandial GLP-1 Levels After Roux-en-Y Gastric Bypass: Involvement of the Vagus Nerve-Spleen Anti-inflammatory Axis in Type 2 Diabetic Rats. Obes Surg 2022; 32:1077-1085. [PMID: 35044600 DOI: 10.1007/s11695-021-05877-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The mechanism underlying postprandial glucagon-like peptide-1 (GLP-1) changes after metabolic surgery remains mostly unclarified. This investigation aimed to address whether the vagus nerve-spleen anti-inflammatory axis is involved in the rise in postprandial GLP-1 levels in type 2 diabetes mellitus (T2DM) rats following metabolic surgery. MATERIALS AND METHODS T2DM rat model was established with a high-fat diet and a low dose of streptozotocin and subjected to Roux-en-Y gastric bypass (RYGB) and splenic denervation. A mixed-meal tolerance test for postprandial GLP-1 response was performed. TNF-α in the plasma, spleen, and ileum was measured by ELISA, and alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in the spleen was analyzed by Western blot. RESULTS Postprandial GLP-1 improvement by RYGB was accompanied by the reduction of TNF-α levels in spleen and ileum and up-regulation of splenic α7nAChR in T2DM rats. Splenic denervation abrogates a rise in postprandial GLP-1 levels in response to the mixed-meal challenge, along with higher TNF-α levels in spleen and ileum and down-regulation of splenicα7nAChR, compared with denervated sham rats. CONCLUSION Our results reveal that the vagus nerve-spleen anti-inflammatory axis mediates the rise of postprandial GLP-1 response after RYGB through lowering TNF-α contents in the intestinal tissue in T2DM rats.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Chang Tan
- Department of Gynecology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Xiaoya Nie
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China
| | - Baifeng Li
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Miao You
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yunyun Lan
- Department of Intensive Care Unit, Zhuzhou Central Hospital, No.116 Changjiang Road, Zhuzhou, 412000, China.
| | - Liang Tang
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China.
| |
Collapse
|
25
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
26
|
Bai C, Wang Y, Niu Z, Guan Y, Huang J, Nian X, Zuo F, Zhao J, Kazumi T, Wu B. Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue. Front Endocrinol (Lausanne) 2022; 13:1012904. [PMID: 36246878 PMCID: PMC9558273 DOI: 10.3389/fendo.2022.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is resulted from energy surplus and is characterized by abnormal adipose tissue accumulation and/or distribution. Adipokines secreted by different regional adipose tissue can induce changes in key proteins of the insulin signaling pathway in hepatocytes and result in impaired hepatic glucose metabolism. This study aimed to investigate whether exenatide affects key proteins of IRS2/PI3K/Akt2 signaling pathway in hepatocytes altered by the different regional fat depots. Six non-obese patients without endocrine diseases were selected as the research subjects. Their subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)were co-cultured with HepG2 cells in the transwell chamber. In the presence or absence of exenatide, adipokines content in the supernatant of each experimental group was detected by ELISA. In addition, HepG2 cells in each co-culture group with and without insulin were collected, and the expression of key proteins IRS2, p-IRS2(S731), PI3K-p85, Akt2, and p-Akt2(S473) was detected by western blotting (WB). The results showed that the adipokines IL-8, MCP-1, VEGF, and sTNFR2 in the supernatant of HepG2 cells induced by different regional adipose tissue were significantly higher than those in the HepG2 group, and VAT released more adipokines than SAT. Furthermore, these adipokines were significantly inhibited by exenatide. Importantly, the different regional fat depot affects the IRS2/PI3K/Akt2 insulin signaling pathway of hepatocytes. Exenatide can up-regulate the expression of hepatocyte proteins IRS2, PI3K-p85, p-Akt2(S731) inhibited by adipose tissue, and down-regulate the expression of hepatocyte proteins p-IRS2(S731) promoted by adipose tissue. The effect of VAT on the expression of these key proteins in hepatocytes is more significant than that of SAT. But there was no statistical difference in the expression of Akt2 protein among each experimental group, suggesting that exenatide has no influence on the expression of Akt2 protein in hepatocytes. In conclusion, exenatide may improve hepatic insulin resistance (IR) by inhibiting adipokines and regulating the expression of key proteins in the IRS2/PI3K/Akt2 pathway.
Collapse
Affiliation(s)
- Chuanmin Bai
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yujun Wang
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi Niu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, United States
| | - Xin Nian
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Juan Zhao
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Tsutomu Kazumi
- Open Research Center for Studying of Lifestyle−Related Diseases, Mukogawa Women’s University, Nishinomiya, Japan
- Research Institute for Nutrition Sciences, Mukogawa Women’s University, Nishinomiya, Japan
- Department of Medicine, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Bin Wu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Bin Wu,
| |
Collapse
|
27
|
Meurot C, Jacques C, Martin C, Sudre L, Breton J, Rattenbach R, Bismuth K, Berenbaum F. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat 2022; 32:121-129. [PMID: 35280931 PMCID: PMC8888891 DOI: 10.1016/j.jot.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease affecting millions of people worldwide. In OA, chondrocytes, synovial cells and other joint cells become activated when exposed to an abnormal environment, including mechanical stress, inflammatory cytokines or disorganization of matrix proteins. Several analogues of the hormones called incretins have been developed and are used notably for treating type 2 diabetes mellitus. Data has accumulated to suggest that incretinomimetics, which bind to the glucagon-like peptide-1 receptor (GLP-1R), have beneficial pleiotropic effects such as immunomodulation, anti-inflammation and neuronal protection. Thus, because of their anti-inflammatory properties, GLP-1-based therapies could benefit OA patients. This review focuses on the GLP-1R pathway, molecular mechanisms and phenotypes related to OA pathogenesis. The translational potential of this article The search for new therapeutic targets to treat people suffering from OA remains urgent as there is currently no disease-modifyingtherapy available for this disease. This review discusses how GLP-1 analogues could be potential DMOADs for treating OA thanks to their anti-inflammatory, immunoregulatory and differentiation properties.
Collapse
Affiliation(s)
| | - C. Jacques
- Sorbonne University, INSERM UMRS_938 and Labex Transimmunom, CDR St-Antoine Paris, Paris, France
| | | | | | | | - R. Rattenbach
- 4P-Pharma, Lille, France
- 4Moving Biotech, Lille, France
| | | | - F. Berenbaum
- 4Moving Biotech, Lille, France
- APHP, Sorbonne University, Rheumatology Department, INSERM UMRS_938, CDR St-Antoine Paris, Paris, France
| |
Collapse
|
28
|
Tian MM, Li YX, Liu S, Zhu CH, Lan XB, Du J, Ma L, Yang JM, Zheng P, Yu JQ, Liu N. Glycosides for Peripheral Neuropathic Pain: A Potential Medicinal Components. Molecules 2021; 27:255. [PMID: 35011486 PMCID: PMC8746348 DOI: 10.3390/molecules27010255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain is a refractory disease that occurs across the world and pharmacotherapy has limited efficacy and/or safety. This disease imposes a significant burden on both the somatic and mental health of patients; indeed, some patients have referred to neuropathic pain as being 'worse than death'. The pharmacological agents that are used to treat neuropathic pain at present can produce mild effects in certain patients, and induce many adverse reactions, such as sedation, dizziness, vomiting, and peripheral oedema. Therefore, there is an urgent need to discover novel drugs that are safer and more effective. Natural compounds from medical plants have become potential sources of analgesics, and evidence has shown that glycosides alleviated neuropathic pain via regulating oxidative stress, transcriptional regulation, ion channels, membrane receptors and so on. In this review, we summarize the epidemiology of neuropathic pain and the existing therapeutic drugs used for disease prevention and treatment. We also demonstrate how glycosides exhibit an antinociceptive effect on neuropathic pain in laboratory research and describe the antinociceptive mechanisms involved to facilitate the discovery of new drugs to improve the quality of life of patients experiencing neuropathic pain.
Collapse
Affiliation(s)
- Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China;
| | - Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
29
|
Ding Y, Zhang H, Zhu X, Wu M, Yang L, Yao Z, Xie Q, Liu X, Li C. Safety, tolerability, pharmacodynamics, and pharmacokinetics of CJC-1134-PC in healthy Chinese subjects and type-2 diabetic subjects. Expert Opin Investig Drugs 2021; 30:1241-1248. [PMID: 34793265 DOI: 10.1080/13543784.2021.2008906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) mimetics are widely used for treating type 2 diabetes (T2D) with pleiotropic effects on heart and kidneys. The safety/tolerability and pharmacokinetics/pharmacodynamics ((PK/PD) of CJC-1134-PC (a long-acting GLP-1) were investigated in Chinese. METHOD Two randomized, double-blind, placebo-controlled phase I studies were conducted. Study A: 30 healthy subjects received (subcutaneously injected) a single dose (2 mg) or titrate doses (2 + 3 and 2 + 3 + 4 mg at weekly intervals) of CJC-1134-PC. Study B: 49 T2D subjects received 10 weekly doses (1, 2, 3, and 4 mg). RESULT CJC-1134-PC was well tolerated with gastrointestinal (GI) side effects. Higher doses increased the adverse events risk. CJC-1134-PC was steadily absorbed, with maximum plasma concentrations(Cmax) occurring at 36-72 h and 48 h after administration in healthy and T2D subjects, respectively. The steady-state exposures in T2D subjects increased more than the dose-proportionality(1-3 mg). The mean t1/2 ranged from 111.6 to 127.6 h. After four- five weeks of targeting doses, steady state was reached in T2D subjects with apparent accumulation effect. At week 11 for T2D subjects, HbA1c mean baseline change was significantly different than that of the placebo, and the fasting plasma glucose (FPG) was not significantly altered. CONCLUSION The safety and PK/PD profiles of weekly CJC-1134-PC doses support Phase II studies with guidance on optimal-dose selection. Clinical trial registration: ChiCTR-IPC-15007190.
Collapse
Affiliation(s)
- Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Min Wu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| | - Lizhi Yang
- Department of pharmacy, Maternal and Child Health and Family Planning Service Center of Changchun, Changchun, China
| | | | | | | | - Cuiyun Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
30
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
32
|
Eliaschewitz FG, Canani LH. Advances in GLP-1 treatment: focus on oral semaglutide. Diabetol Metab Syndr 2021; 13:99. [PMID: 34526121 PMCID: PMC8442336 DOI: 10.1186/s13098-021-00713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is currently a large arsenal of antidiabetic drugs available to treat type 2 diabetes (T2D). However, this is a serious chronic disease that affects millions of adults worldwide and is responsible for severe complications, comorbidities, and low quality of life when uncontrolled due mainly to delays in initiating treatment or inadequate therapy. This review article aims to clarify the therapeutic role of the oral formulation of the glucagon-like peptide 1 receptor agonist (GLP-1 RA) semaglutide in treating typical T2D patients. The discussion focused on metabolic, glycemic, and weight alteration effects and the safety of the therapy with this drug. MAIN TEXT Therapy with glucagon-like peptide 1 receptor agonist (GLP-1 RA) promotes strategic changes in the pathophysiological pathway of T2D and improves the secretion of glucagon and insulin, which results in a reduction in blood glucose levels and the promotion of weight loss. Until recently, the only route for semaglutide administration was parenteral. However, an oral formulation of GLP-1 RA was recently developed and approved by the Brazilian Health Regulatory Agency (ANVISA) and the Food and Drug Administration (FDA) based on the Peptide Innovation for Early Diabetes Treatment (PIONEER) program results. A sequence of 10 clinical studies compared oral semaglutide with placebo or active standard-of-care medications (empagliflozin 25 mg, sitagliptin 100 mg, or liraglutide 1.8 mg) in different T2D populations. CONCLUSIONS Oral semaglutide effectively reduces glycated hemoglobin (HbA1c) levels and body weight in a broad spectrum of patients with T2D and shows cardiovascular safety. Oral semaglutide broadens therapy options and facilitates the adoption of earlier GLP-1 RA treatment once T2D patients present low rates of treatment discontinuation. The main adverse events reported were related to the gastrointestinal tract, common to GLP-1 RA class drugs.
Collapse
Affiliation(s)
- Freddy G Eliaschewitz
- CPClin/DASA Clinical Research Center, Avenida Angélica, 2162, São Paulo, CEP 01228-200, Brazil.
| | - Luis Henrique Canani
- Endocrinology Division of Hospital de Clínicas de Porto Alegre and Department of Internal Medicine, Medical School of Federal, University of Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
34
|
Tashiro H, Shore SA. The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 2021; 64:283-291. [PMID: 33091322 DOI: 10.1165/rcmb.2020-0288tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, several new asthma therapeutics have been developed. Although many of these agents show promise in treating allergic asthma, they are less effective against nonallergic forms of asthma. The gut microbiome has important roles in human health and disease, and a growing body of evidence indicates a link between the gut microbiome and asthma. Here, we review those data focusing on the role of the microbiome in mouse models of nonallergic asthma including obese asthma and asthma triggered by exposure to air pollutants. We describe the impact of antibiotics, diet, and early life events on airway responses to the air pollutant ozone, including in the setting of obesity. We also review potential mechanisms responsible for gut-lung interactions focusing on bacterial-derived metabolites, the immune system, and hormones. Finally, we discuss future prospects for gut microbiome-targeted therapies such as fecal microbiome transplantation, prebiotics, probiotics, and prudent use of antibiotics. Better understanding of the role of the microbiome in airway responses may lead to exploration of new microbiome-targeted therapies to control asthma, especially nonallergic forms of asthma.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; and.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephanie A Shore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
35
|
Circulating GLP-1 Levels as a Potential Indicator of Metabolic Syndrome Risk in Adult Women. Nutrients 2021; 13:nu13030865. [PMID: 33800785 PMCID: PMC8001839 DOI: 10.3390/nu13030865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone, plays an important role in regulating glucose homeostasis. In this study, the applicability of circulating GLP-1 levels as an early indicator of metabolic syndrome (MetS) risk was examined. Women without diagnosed diseases were grouped according to their number of MetS risk factors (MetS RFs) (no RFs as Super-healthy, n = 61; one or two RFs as MetS risk carriers, n = 60; 3 ≤ RFs as MetS, n = 19). The circulating GLP-1 levels and homeostasis model assessment insulin resistance (HOMA-IR) scores were significantly higher in the MetS group than in the other two groups. The GLP-1 levels correlated positively with adiposity, HOMA-IR, blood pressure, and high sensitivity C-reactive protein (hs-CRP), but not with fasting glucose and lipid profiles, whose significances were maintained after adjustments for age, smoking and drinking habits, menopausal status, and total calorie intake. The GLP-1 levels also increased proportionally with the number of MetS RFs. In the MetS group, the GLP-1 levels were much higher in individuals with obesity (body mass index ≥ 25 kg/m2). In conclusion, the circulating GLP-1 level may be applicable as a potential early indicator of MetS risk in women without diagnosed diseases. Further study with a large population is needed to confirm the conclusion.
Collapse
|
36
|
Kim YK, Kim OY, Song J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front Pharmacol 2020; 11:1270. [PMID: 32922295 PMCID: PMC7456867 DOI: 10.3389/fphar.2020.01270] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Depression has emerged as a major cause of mortality globally. Many studies have reported risk factors and mechanisms associated with depression, but it is as yet unclear how these findings can be applied to the treatment and prevention of this disorder. The onset and recurrence of depression have been linked to diverse metabolic factors, including hyperglycemia, dyslipidemia, and insulin resistance. Recent studies have suggested that depression is accompanied by memory loss as well as depressive mood. Thus, many researchers have highlighted the relationship between depressive behavior and metabolic alterations from various perspectives. Glucagon-like peptide-1 (GLP-1), which is secreted from gut cells and hindbrain areas, has been studied in metabolic diseases such as obesity and diabetes, and was shown to control glucose metabolism and insulin resistance. Recently, GLP-1 was highlighted as a regulator of diverse pathways, but its potential as the therapeutic target of depressive disorder was not described comprehensively. Therefore, in this review, we focused on the potential of GLP-1 modulation in depression.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, South Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, South Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, South Korea
| |
Collapse
|