1
|
Morelli KH, Jin W, Shathe S, Madrigal AA, Jones KL, Schwartz JL, Bridges T, Mueller JR, Shankar A, Chaim IA, Day JW, Yeo GW. MECP2-related pathways are dysregulated in a cortical organoid model of myotonic dystrophy. Sci Transl Med 2022; 14:eabn2375. [PMID: 35767654 PMCID: PMC9645119 DOI: 10.1126/scitranslmed.abn2375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem, autosomal-dominant inherited disorder caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene. Despite its prominence as the most common adult-onset muscular dystrophy, patients with congenital to juvenile-onset forms of DM1 can present with debilitating neurocognitive symptoms along the autism spectrum, characteristic of possible in utero cortical defects. However, the molecular mechanism by which CTG MREs lead to these developmental central nervous system (CNS) manifestations is unknown. Here, we showed that CUG foci found early in the maturation of three-dimensional (3D) cortical organoids from DM1 patient-derived induced pluripotent stem cells (iPSCs) cause hyperphosphorylation of CUGBP Elav-like family member 2 (CELF2) protein. Integrative single-cell RNA sequencing and enhanced cross-linking and immunoprecipitation (eCLIP) analysis revealed that reduced CELF2 protein-RNA substrate interactions results in misregulation of genes critical for excitatory synaptic signaling in glutamatergic neurons, including key components of the methyl-CpG binding protein 2 (MECP2) pathway. Comparisons to MECP2(y/-) cortical organoids revealed convergent molecular and cellular defects such as glutamate toxicity and neuronal loss. Our findings provide evidence suggesting that early-onset DM1 might involve neurodevelopmental disorder-associated pathways and identify N-methyl-d-aspartic acid (NMDA) antagonists as potential treatment avenues for neuronal defects in DM1.
Collapse
Affiliation(s)
- Kathryn H. Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Shashank Shathe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Assael A. Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Krysten L. Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Joshua L. Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Tristan Bridges
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Isaac A. Chaim
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - John W. Day
- Stanford University School of Medicine, Palo Alto, CA 94375, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
2
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Brain-enriched microRNAs circulating in plasma as novel biomarkers for Rett syndrome. PLoS One 2019; 14:e0218623. [PMID: 31291284 PMCID: PMC6619658 DOI: 10.1371/journal.pone.0218623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Minimally invasive and accurate biomarkers of disease progression and treatment response could facilitate screening of therapeutic compounds in animal models, enrollment of better-defined participants into clinical trials, and treatment monitoring. In this study, we used a targeted approach based on analysis of brain-enriched microRNAs (miRNAs) circulating in plasma to identify miRNA biomarkers of RTT using Mecp2-mutant mice as a model system and human plasma samples. An “miRNA pair” approach, i.e. the ratio between two miRNAs, was used for data normalization. Specific miRNA pairs and their combinations (classifiers) analyzed in plasma differentiated wild-type from Mecp2 male and female mice with >90% accuracy. Individual miRNA pairs were more effective in distinguishing male (homozygous) animals than female (heterozygous) animals, suggesting that disease severity correlated with the levels of the miRNA biomarkers. In the human study, 30 RTT patients were compared with age-matched controls. The results of this study showed that miRNA classifiers were able to differentiate RTT patients from controls with 85–100% sensitivity. In addition, a comparison of various age groups demonstrated that the dynamics in levels of miRNAs appear to be associated with disease development (involvement of liver, muscle and lipid metabolism in the pathology). Importantly, certain miRNA biomarker pairs were common to both the animal models and human subjects, indicating the similarity between the underlying pathological processes. The data generated in this feasibility study suggest that circulating miRNAs have the potential to be developed as markers of RTT progression and treatment response. Larger clinical studies are needed to further evaluate the findings presented here.
Collapse
|
4
|
Scheller U, Pfisterer K, Uebe S, Ekici AB, Reis A, Jamra R, Ferrazzi F. Integrative bioinformatics analysis characterizing the role of EDC3 in mRNA decay and its association to intellectual disability. BMC Med Genomics 2018; 11:41. [PMID: 29685133 PMCID: PMC5914069 DOI: 10.1186/s12920-018-0358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Decapping of mRNA is an important step in the regulation of mRNA turnover and therefore of gene expression, which is a key process controlling development and homeostasis of all organisms. It has been shown that EDC3 plays a role in mRNA decapping, however its function is not well understood. Previously, we have associated a homozygous variant in EDC3 with autosomal recessive intellectual disability. Here, we investigate the functional role of EDC3. METHODS We performed transcriptome analyses in patients' samples. In addition, we established an EDC3 loss-of-function model using siRNA-based knockdown in the human neuroblastoma cell line SKNBE and carried out RNA sequencing. Integrative bioinformatics analyses were performed to identify EDC3-dependent candidate genes and/or pathways. RESULTS Our analyses revealed that 235 genes were differentially expressed in patients versus controls. In addition, AU-rich element (ARE)-containing mRNAs, whose degradation in humans has been suggested to involve EDC3, had higher fold changes than non-ARE-containing genes. The analysis of RNA sequencing data from the EDC3 in vitro loss-of-function model confirmed the higher fold changes of ARE-containing mRNAs compared to non-ARE-containing mRNAs and further showed an upregulation of long non-coding and coding RNAs. In total, 764 genes were differentially expressed. Integrative bioinformatics analyses of these genes identified dysregulated candidate pathways, including pathways related to synapses/coated vesicles and DNA replication/cell cycle. CONCLUSION Our data support the involvement of EDC3 in mRNA decay, including ARE-containing mRNAs, and suggest that EDC3 might be preferentially involved in the degradation of long coding and non-coding RNAs. Furthermore, our results associate ECD3 loss-of-function with synapses-related pathways. Collectively, our data provide novel information that might help elucidate the molecular mechanisms underlying the association of intellectual disability with the dysregulation of mRNA degradation.
Collapse
Affiliation(s)
- Ute Scheller
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Kathrin Pfisterer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Rami Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
- Institute of Human Genetics, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Riikonen R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int J Mol Sci 2017; 18:E2056. [PMID: 28954393 PMCID: PMC5666738 DOI: 10.3390/ijms18102056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factors play a key role for neuronal growth, differentiation, the survival of neurons and synaptic formation. The action of IGF-1 is most pronounced in the developing brain. In this paper we will try to give an answer to the following questions: Why are studies in children important? What clinical studies in neonatal asphyxia, infantile spasms, progressive encephalopathy-hypsarrhythmia-optical atrophy (PEHO) syndrome, infantile ceroid lipofuscinosis (INCL), autistic spectrum disorders (ASD) and subacute sclerosing encephalopathy (SSPE) have been carried out? What are IGF-based therapeutic strategies? What are the therapeutic approaches? We conclude that there are now great hopes for the therapeutic use of IGF-1 for some neurological disorders (particularly ASD).
Collapse
Affiliation(s)
- Raili Riikonen
- Child Neurology, Children's Hospital, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
6
|
de Souza JS, Carromeu C, Torres LB, Araujo BHS, Cugola FR, Maciel RM, Muotri AR, Giannocco G. IGF1 neuronal response in the absence of MECP2 is dependent on TRalpha 3. Hum Mol Genet 2017; 26:270-281. [PMID: 28007906 PMCID: PMC6075524 DOI: 10.1093/hmg/ddw384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.
Collapse
Affiliation(s)
- Janaina S. de Souza
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cassiano Carromeu
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Laila B. Torres
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bruno H. S. Araujo
- Department of Neurobiology and Neurosurgery, Laboratory of Neuroscience, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | - Fernanda R. Cugola
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rui M.B. Maciel
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | - Alysson R. Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gisele Giannocco
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
- Departament of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
7
|
Yeh E, Weiss LA. If genetic variation could talk: What genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Mol Cell Probes 2016; 30:346-356. [PMID: 27751841 DOI: 10.1016/j.mcp.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) has been long known to have substantial genetic etiology. Much research has attempted to identify specific genes contributing to ASD risk with the goal of tying gene function to a molecular pathological explanation for ASD. A unifying molecular pathology would potentially increase understanding of what is going wrong during development, and could lead to diagnostic biomarkers or targeted preventative or therapeutic directions. We review past and current genetic mapping approaches and discuss major results, leading to the hypothesis that global dysregulation of gene or protein expression may be implicated in ASD rather than disturbance of brain-specific functions. If substantiated, this hypothesis might indicate the need for novel experimental and analytical approaches in order to understand this neurodevelopmental disorder, develop biomarkers, or consider treatment approaches.
Collapse
Affiliation(s)
- Erika Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Ehrhart F, Coort SLM, Cirillo E, Smeets E, Evelo CT, Curfs LMG. Rett syndrome - biological pathways leading from MECP2 to disorder phenotypes. Orphanet J Rare Dis 2016; 11:158. [PMID: 27884167 PMCID: PMC5123333 DOI: 10.1186/s13023-016-0545-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6-18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands. .,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Susan L M Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric Smeets
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris T Evelo
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
10
|
New insights in Rett syndrome using pathway analysis for transcriptomics data. Wien Med Wochenschr 2016; 166:346-52. [PMID: 27517371 PMCID: PMC5005393 DOI: 10.1007/s10354-016-0488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/30/2016] [Indexed: 01/06/2023]
Abstract
The analysis of transcriptomics data is able to give an overview of cellular processes, but requires sophisticated bioinformatics tools and methods to identify the changes. Pathway analysis software, like PathVisio, captures the information about biological pathways from databases and brings this together with the experimental data to enable visualization and understanding of the underlying processes. Rett syndrome is a rare disease, but still one of the most abundant causes of intellectual disability in females. Cause of this neurological disorder is mutation of one single gene, the methyl-CpG-binding protein 2 (MECP2) gene. This gene is responsible for many steps in neuronal development and function. Although the genetic mutation and the clinical phenotype are well described, the molecular pathways linking them are not yet fully elucidated. In this study we demonstrate a workflow for the analysis of transcriptomics data to identify biological pathways and processes which are changed in a Mecp2-/y mouse model.
Collapse
|