1
|
Yasuda T, Nakazawa T, Hirakawa K, Matsumoto I, Nagata K, Mori S, Igarashi K, Sagara H, Oda S, Mitani H. Retinal regeneration after injury induced by gamma-ray irradiation during early embryogenesis in medaka, Oryzias latipes. Int J Radiat Biol 2023; 100:131-138. [PMID: 37555698 DOI: 10.1080/09553002.2023.2242932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Takuya Nakazawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kei Hirakawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Ikumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunta Mori
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Applied Pharmacology, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
2
|
Pradhoshini KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, Musthafa MS, Alam L, Falco F, Faggio C. Biological effects of ionizing radiation on aquatic biota - A critical review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104091. [PMID: 36870406 DOI: 10.1016/j.etap.2023.104091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamat Hanifa Shafeeka Parveen
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mehraj Ud Din War
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Franscesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
3
|
Yasuda T, Li D, Sha E, Kakimoto F, Mitani H, Yamamoto H, Ishikawa-Fujiwara T, Todo T, Oda S. 3D reconstructed brain images reveal the possibility of the ogg1 gene to suppress the irradiation-induced apoptosis in embryonic brain in medaka (Oryzias latipes). JOURNAL OF RADIATION RESEARCH 2022; 63:319-330. [PMID: 35276012 PMCID: PMC9124622 DOI: 10.1093/jrr/rrac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The accumulation of oxidative DNA lesions in neurons is associated with neurodegenerative disorders and diseases. Ogg1 (8-oxoG DNA glycosylase-1) is a primary repair enzyme to excise 7,8-dihydro-8-oxoguanine (8-oxoG), the most frequent mutagenic base lesion produced by oxidative DNA damage. We have developed ogg1-deficient medaka by screening with a high resolution melting (HRM) assay in Targeting-Induced Local Lesions In Genomes (TILLING) library. In this study, we identified that ogg1-deficient embryos have smaller brains than wild-type during the period of embryogenesis and larvae under normal conditions. To reveal the function of ogg1 when brain injury occurs during embryogenesis, we examined the induction of apoptosis in brains after exposure to gamma-rays with 10 Gy (137Cs, 7.3 Gy/min.) at 24 h post-irradiation both in wild-type and ogg1-deficient embryos. By acridine orange (AO) assay, clustered apoptosis in irradiated ogg1-deficient embryonic brains were distributed in a similar manner to those of irradiated wild-type embryos. To evaluate possible differences of gamma-ray induced apoptosis in both types of embryonic brains, we constructed 3D images of the whole brain based on serial histological sections. This analysis identified that the clustered apoptotic volume was about 3 times higher in brain of irradiated ogg1-deficient embryos (n = 3) compared to wild-type embryos (n = 3) (P = 0.04), suggesting that irradiation-induced apoptosis in medaka embryonic brain can be suppressed in the presence of functional ogg1. Collectively, reconstruction of 3D images can be a powerful approach to reveal slight differences in apoptosis induction post-irradiation.
Collapse
Affiliation(s)
- Takako Yasuda
- Corresponding author: Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan/tel 029-850-2864/Fax 029-850-2870, E-mail address: ;
| | | | | | - Fumitaka Kakimoto
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Mitani
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Yamamoto
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Oda
- Laboratory of Genome Stability, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
4
|
Wagle R, Song YH. Sensitive-stage embryo irradiation affects embryonic neuroblasts and adult motor function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development.
Objective
Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated.
Result
Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults.
Conclusion
Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.
Collapse
|
5
|
Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S, Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. Cognitive effects of low dose of ionizing radiation - Lessons learned and research gaps from epidemiological and biological studies. ENVIRONMENT INTERNATIONAL 2021; 147:106295. [PMID: 33341586 DOI: 10.1016/j.envint.2020.106295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.
Collapse
Affiliation(s)
- Elisa Pasqual
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - François Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, 53 Illenko str., Kyiv, Ukraine
| | - Arvid Nordenskjold
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation. Institut of Radiation Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Florent de Vathaire
- Radiation Epidemiology Teams, INSERM Unit 1018, University Paris Saclay, Gustave Roussy, 94800 Villejuif, France
| | | | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
6
|
Yasuda T, Funayama T, Nagata K, Li D, Endo T, Jia Q, Suzuki M, Ishikawa Y, Mitani H, Oda S. Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka ( Oryzias latipes) Embryos. BIOLOGY 2020; 9:E447. [PMID: 33291358 PMCID: PMC7762064 DOI: 10.3390/biology9120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Duolin Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Takuya Endo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Qihui Jia
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Yuji Ishikawa
- National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| |
Collapse
|
7
|
Yasuda T, Ishikawa Y, Shioya N, Itoh K, Kamahori M, Nagata K, Takano Y, Mitani H, Oda S. Radical change of apoptotic strategy following irradiation during later period of embryogenesis in medaka (Oryzias latipes). PLoS One 2018; 13:e0201790. [PMID: 30075024 PMCID: PMC6075778 DOI: 10.1371/journal.pone.0201790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
Induction of apoptosis in response to various genotoxic stresses could block transmission of teratogenic mutations to progeny cells. The severity of biological effects following irradiation depends on the stage at which embryos are irradiated during embryogenesis. We reported previously that irradiation of medaka embryos 3 days post fertilization (dpf) with 10 Gy of gamma rays induced high incidence of apoptotic cells in the mid-brain, however, the embryos hatched normally and developed without apparent malformations. To determine the severity of biological effects following irradiation during a later period of embryogenesis, embryos of various developmental stages were irradiated with 15 Gy of gamma rays and examined for apoptotic induction at 24 h after irradiation in the brain, eyes and pharyngeal epithelium tissues, which are actively proliferating and sensitive to irradiation. Embryos irradiated at 3 dpf exhibited many apoptotic cells in these tissues, and all of them died due to severe malformations. In contrast, embryos irradiated at 5 dpf showed no apoptotic cells and subsequently hatched without apparent malformations. Embryos irradiated at 4 dpf had relatively low numbers of apoptotic cells compared to those irradiated at 3 dpf, thereafter most of them died within 1 week of hatching. In adult medaka, apoptotic cells were not found in these tissues following irradiation, suggesting that apoptosis occurs during a restricted time period of medaka embryogenesis throughout the life. No apoptotic cells were found in irradiated intestinal tissue, which is known to be susceptible to radiation damage in mammals, whereas many apoptotic cells were found in proliferating spermatogonial cells in the mature testis following irradiation. Taken together, with the exception of testicular tissue, the results suggest a limited period during medaka embryogenesis in which irradiation-induced apoptosis can occur.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuta Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Noriko Shioya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazusa Itoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Miyuki Kamahori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshiro Takano
- Section of Biostructural Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
8
|
Praveen Kumar MK, Shyama SK, Kashif S, Dubey SK, Avelyno D, Sonaye BH, Kadam Samit B, Chaubey RC. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:95-101. [PMID: 28395206 DOI: 10.1016/j.ecoenv.2017.03.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure.
Collapse
Affiliation(s)
| | - S K Shyama
- Department of Zoology, Goa University, Goa 403 206, India.
| | - Shamim Kashif
- Department of Microbiology, Goa University, Goa 403 206, India
| | - S K Dubey
- Department of Microbiology, Goa University, Goa 403 206, India
| | | | - B H Sonaye
- Department of Radiation Oncology, Goa Medical College, Goa, India
| | - B Kadam Samit
- Department of Zoology, Goa University, Goa 403 206, India
| | - R C Chaubey
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
9
|
Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int J Mol Sci 2017; 18:ijms18071428. [PMID: 28677658 PMCID: PMC5535919 DOI: 10.3390/ijms18071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 μm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.
Collapse
|
10
|
Yang B, Ren BX, Tang FR. Prenatal irradiation-induced brain neuropathology and cognitive impairment. Brain Dev 2017; 39:10-22. [PMID: 27527732 DOI: 10.1016/j.braindev.2016.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
Embryo/fetus is much more radiosensitive than neonatal and adult human being. The main potential effects of pre-natal radiation exposure on the human brain include growth retardation, small head/brain size, mental retardation, neocortical ectopias, callosal agenesis and brain tumor which may result in a lifetime poor quality of life. The patterns of prenatal radiation-induced effects are dependent not only on the stages of fetal development, the sensitivity of tissues and organs, but also on radiation sources, doses, dose rates. With the increased use of low dose radiation for diagnostic or radiotherapeutic purposes in recent years, combined with postnatal negative health effect after prenatal radiation exposure to fallout of Chernobyl nuclear power plant accident, the great anxiety and unnecessary termination of pregnancies after the nuclear disaster, there is a growing concern about the health effect of radiological examinations or therapies in pregnant women. In this paper, we reviewed current research progresses on pre-natal ionizing irradiation-induced abnormal brain structure changes. Subsequent postnatal neuropsychological and neurological diseases were provided. Relationship between irradiation and brain aging was briefly mentioned. The relevant molecular mechanisms were also discussed. Future research directions were proposed at the end of this paper. With limited human data available, we hoped that systematical review of animal data could relight research interests on prenatal low dose/dose rate irradiation-induced brain microanatomical changes and subsequent neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Medical School of Yangtze University, People's Republic of China
| | - Bo Xu Ren
- Medical School of Yangtze University, People's Republic of China.
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore.
| |
Collapse
|
11
|
Sayed AEDH, Mitani H. The notochord curvature in medaka (Oryzias latipes) embryos as a response to ultraviolet A irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:132-140. [PMID: 27668833 DOI: 10.1016/j.jphotobiol.2016.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
In the present work, the destructive effects of ultraviolet A (UVA; 366nm) irradiation on the developmental stages of Japanese medaka (Oryzias latipes) are revealed in terms of hatching success, mortality rate, and morphological malformations (yolk sac edema, body curvature, fin blistering, and dwarfism). Fertilized eggs in stage 4 were exposed to 15, 30, and 60min/day UVA for 3days in replicates. Fish were staged and aged following the stages established by Iwamatsu [1]. We observed and recorded the hatching time and deformed and dead embryos continuously. The hatching time was prolonged and the deformed and dead embryos numbers were increased by UVA dose increase. At stage 40, samples from each group were fixed to investigate their morphology and histopathology. Some morphological malformations were recorded after UVA exposure in both strains. Histopathological changes were represented as different shapes of curvature in notochord with collapse. The degree of collapsation was depended on the dose and time of UVA exposure. Our findings show that exposure to UVA irradiation caused less vertebral column curvature in medaka fry. Moreover, p53-deficient embryos were more tolerant than those of wild-type (Hd-rR) Japanese medaka. This study indicated the dangerous effects of the UVA on medaka.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
12
|
Yasuda T, Kimori Y, Nagata K, Igarashi K, Watanabe-Asaka T, Oda S, Mitani H. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo. JOURNAL OF RADIATION RESEARCH 2016; 57:9-15. [PMID: 26410759 PMCID: PMC4708913 DOI: 10.1093/jrr/rrv054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Tokyo University, Bioscience Building 102, Kashiwa, Chiba 277–8562, Japan
| |
Collapse
|
13
|
Oujifard A, Amiri R, Shahhosseini G, Davoodi R, Moghaddam JA. Effect of gamma radiation on the growth, survival, hematology and histological parameters of rainbow trout (Oncorhynchus mykiss) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:259-265. [PMID: 26141584 DOI: 10.1016/j.aquatox.2015.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
Effects of low (1, 2.5 and 5Gy) and high doses (10, 20 and 40Gy) of gamma radiation were examined on the growth, survival, blood parameters and morphological changes of the intestines of rainbow trout (Oncorhynchus mykiss) larvae (103±20mg) after 12 weeks of exposure. Negative effects of gamma radiation on growth and survival were observed as radiation level and time increased. Changes were well documented at 10 and 20Gy. All the fish were dead at the dose of 40Gy. In all the treatments, levels of red blood cells (RBC), hematocrit (HCT) and hemoglobin (HB) were significantly (P<0.05) declined as the irradiation levels increased, whereas the amount of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) did not change. No significant differences (P>0.05) were found in the levels of white blood cells (WBC), lymphocytes and monocytes. Destruction of the intestinal epithelium cells was indicated as the irradiation levels increased to 1Gy and above. The highest levels of growth, survival, specific growth rate (SGR), condition factor (CF) and protein efficiency rate (PER) were obtained in the control treatment. The results showed that gamma rays can be a potential means for damaging rainbow trout cells.
Collapse
Affiliation(s)
- Amin Oujifard
- Fisheries Department, Faculty of Agriculture and Natural Resources, Persian Gulf University, Borazjan, Bushehr, Iran.
| | - Roghayeh Amiri
- Department of Veterinary, Agricultural Medical and Industrial Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj, Iran
| | - Gholamreza Shahhosseini
- Fisheries Department, Faculty of Natural Resources and Marine Sciences, TarbiatModares University, Noor, Mazandaran, Iran
| | - Reza Davoodi
- Fisheries Department, Faculty of Agriculture and Natural Resources, Persian Gulf University, Borazjan, Bushehr, Iran
| | - Jamshid Amiri Moghaddam
- Fisheries Department, Faculty of Natural Resources and Marine Sciences, TarbiatModares University, Noor, Mazandaran, Iran
| |
Collapse
|
14
|
Embryonic Medaka Model of Microglia in the Developing CNS Allowing In Vivo Analysis of Their Spatiotemporal Recruitment in Response to Irradiation. PLoS One 2015; 10:e0127325. [PMID: 26061282 PMCID: PMC4465025 DOI: 10.1371/journal.pone.0127325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/13/2015] [Indexed: 11/29/2022] Open
Abstract
Radiation therapy (RT) is pivotal in the treatment of many central nervous system (CNS) pathologies; however, exposure to RT in children is associated with a higher risk of secondary CNS tumors. Although recent research interest has focused on the reparative and therapeutic role of microglia, their recruitment following RT has not been elucidated, especially in the developing CNS. Here, we investigated the spatiotemporal dynamics of microglia during tissue repair in the irradiated embryonic medaka brain by whole-mount in situ hybridization using a probe for Apolipoprotein E (ApoE), a marker for activated microglia in teleosts. Three-dimensional imaging of the distribution of ApoE-expressing microglia in the irradiated embryonic brain clearly showed that ApoE-expressing microglia were abundant only in the late phase of phagocytosis during tissue repair induced by irradiation, while few microglia expressed ApoE in the initial phase of phagocytosis. This strongly suggests that ApoE has a significant function in the late phase of phagocytosis by microglia in the medaka brain. In addition, the distribution of microglia in p53-deficient embryos at the late phase of phagocytosis was almost the same as in wild-type embryos, despite the low numbers of irradiation-induced apoptotic neurons, suggesting that constant numbers of activated microglia were recruited at the late phase of phagocytosis irrespective of the extent of neuronal injury. This medaka model of microglia demonstrated specific recruitment after irradiation in the developing CNS and could provide a useful potential therapeutic strategy to counteract the detrimental effects of RT.
Collapse
|
15
|
Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N, Adam-Guillermin C. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 2014; 9:e92974. [PMID: 24667817 PMCID: PMC3965492 DOI: 10.1371/journal.pone.0092974] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.
Collapse
Affiliation(s)
- Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
- * E-mail:
| | - Véronique Malard
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, INAC/Scib UMR E3 CEA-UJF, CEA Grenoble, Grenoble, France
| | - Anne-Hélène Davin
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Nicolas Foray
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
| |
Collapse
|
16
|
Rhee JS, Kim BM, Kang CM, Lee YM, Lee JS. Gamma irradiation-induced oxidative stress and developmental impairment in the hermaphroditic fish, Kryptolebias marmoratus embryo. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1745-1753. [PMID: 22553164 DOI: 10.1002/etc.1873] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/02/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
This study investigated the effects of gamma radiation on the early developmental stages in hermaphroditic fish embryos of Kryptolebias marmoratus. The authors measured reactive oxygen species (ROS) level and antioxidant enzyme activities with the endpoint hatching rate after gamma irradiation of different embryonic stages. Then, the transcriptional changes of antioxidant enzyme-coding genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction in response to gamma radiation on embryonic stages. Gamma radiation inhibited hatching rate and caused developmental impairment in a dose-dependent manner. Embryos showed tolerances in a developmental stage-dependent manner, indicating that early embryonic stages were more sensitive to the negative effects of gamma radiation than were later stages. After 5 Gy rate of radiation, the ROS level increased significantly at embryonic stages 2, 3, and 4 with a significant induction of all antioxidant enzyme activities. The expressions of glutathione S-transferase isoforms, catalase, superoxide dismutase (Mn-SOD, Cu/Zn-SOD), glutathione reductase, and glutathione peroxidase mRNA were upregulated in a dose-and-developmental stage-dependent manner. This finding indicates that gamma radiation can induce oxidative stress and subsequently modulates the expression of antioxidant enzyme-coding genes as one of the defense mechanisms. Interestingly, embryonic stage 1 exposed to gamma radiation showed a decreased expression in most antioxidant enzyme-coding genes, suggesting that this is also related to a lower hatching rate and developmental impairment. The results of this study provide a better understanding of the molecular mode of action of gamma radiation in aquatic organisms.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- The Research Institute for Natural Science, Hanyang University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
17
|
Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, Adam-Guillermin C. Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2831-2837. [PMID: 21954072 DOI: 10.1002/etc.695] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/11/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
The effects of radiation on biological systems have been studied for many years, and it is now accepted that direct damage to DNA from radiation is the triggering event leading to biological effects. In the present study, DNA damage induced by acute or chronic irradiation was compared at the cellular (zebrafish [Danio rerio] cell line ZF4) and developmental (embryo) levels. Zebrafish ZF4 cells and embryos (at 3 h postfertilization) were exposed within ranges of acute doses (0.3-2 Gy/d) or chronic dose rates (0.1-0.75 Gy/d). DNA damage was assessed by immunodetection of γ-H2AX and DNA-PK (DNA double-strand breaks) and the alkaline comet assay (DNA single-strand breaks). Zebrafish embryo development and DNA damage were examined after 120 h. At low doses, chronic irradiation induced more residual DNA damage than acute irradiation, but embryo development was normal. From 0.3 Gy, a hyper-radiosensitivity phenomenon compared to other species was shown for acute exposure with an increase of DNA damage, an impairment of hatching success, and larvae abnormalities. These results suggest a dose-dependent correlation between unrepaired DNA damage and abnormalities in embryo development, supporting the use of DNA repair proteins as predictive biomarkers of ionizing radiation exposure. This could have important implications for environmental protection.
Collapse
Affiliation(s)
- Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire, DEI/SECRE/LRE, Cadarache, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Simon O, Massarin S, Coppin F, Hinton TG, Gilbin R. Investigating the embryo/larval toxic and genotoxic effects of γ irradiation on zebrafish eggs. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:1039-1044. [PMID: 21741137 DOI: 10.1016/j.jenvrad.2011.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 04/08/2011] [Accepted: 06/04/2011] [Indexed: 05/31/2023]
Abstract
Eggs/larval of freshwater fish (Danio rerio) were exposed to low dose rates of external gamma radiation (from 1 to 1000 mGy d(-1)) over a 20-day period, with the objective of testing the appropriateness of the 10 mGy d(-1) guideline suggested by the IAEA. The present study examines different endpoints, mortality and hatching time and success of embryos as well as the genotoxicity of γ-irradiations (after 48 h). The 20-day embryo-larval bioassay showed an enhanced larval resistance to starvation after chronic exposure to γ irradiation (from low 1 mGy d(-1) to high dose rate 1000 mGy d(-1)) and an acceleration in hatching time. Gamma irradiation led to increased genotoxic damage Ito zebrafish egg (40-50% DNA in tail in Comet assay) from the lowest dose rate (1 mGy d(-1)). Possible mechanisms of γ radiotoxicity and implications for radioprotection are discussed.
Collapse
Affiliation(s)
- O Simon
- Laboratoire de Radioécologie et d'Ecotoxicologie, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex, France.
| | | | | | | | | |
Collapse
|
19
|
Yasuda T, Oda S, Yasuda H, Hibi Y, Anzai K, Mitani H. Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model. Int J Radiat Biol 2011; 87:915-22. [PMID: 21770703 PMCID: PMC3169016 DOI: 10.3109/09553002.2011.584944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/02/2022]
Abstract
PURPOSE Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). MATERIALS AND METHODS Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histologically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. RESULTS The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. CONCLUSION Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba.
| | | | | | | | | | | |
Collapse
|
20
|
Fuma S, Ban-nai T, Doi M, Fujimori A, Ishii N, Ishikawa Y, Kawaguchi I, Kubota Y, Maruyama K, Miyamoto K, Nakamori T, Takeda H, Watanabe Y, Yanagisawa K, Yasuda T, Yoshida S. Environmental protection: researches in National Institute of Radiological Sciences. RADIATION PROTECTION DOSIMETRY 2011; 146:295-298. [PMID: 21502302 DOI: 10.1093/rpd/ncr174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Some studies for radiological protection of the environment have been made at the National Institute of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day(-1) and were likely to arise from interspecies interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries.
Collapse
Affiliation(s)
- Shoichi Fuma
- National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morales-Suárez-Varela M, Kaerlev L, Zhu JL, Llopis-González A, Gimeno-Clemente N, Nohr EA, Bonde JP, Olsen J. Risk of infection and adverse outcomes among pregnant working women in selected occupational groups: A study in the Danish National Birth Cohort. Environ Health 2010; 9:70. [PMID: 21078155 PMCID: PMC2994842 DOI: 10.1186/1476-069x-9-70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Exposure to infectious pathogens is a frequent occupational hazard for women who work with patients, children, animals or animal products. The purpose of the present study is to investigate if women working in occupations where exposure to infections agents is common have a high risk of infections and adverse pregnancy outcomes. METHODS We used data from the Danish National Birth Cohort, a population-based cohort study and studied the risk of Infection and adverse outcomes in pregnant women working with patients, with children, with food products or with animals. The regression analysis were adjusted for the following covariates: maternal age, parity, history of miscarriage, socio-occupational status, pre-pregnancy body mass index, smoking habit, alcohol consumption. RESULTS Pregnant women who worked with patients or children or food products had an excess risk of sick leave during pregnancy for more than three days. Most of negative reproductive outcomes were not increased in these occupations but the prevalence of congenital anomalies (CAs) was slightly higher in children of women who worked with patients. The prevalence of small for gestational age infants was higher among women who worked with food products. There was no association between occupation infections during pregnancy and the risk of reproductive failures in the exposed groups. However, the prevalence of CAs was slightly higher among children of women who suffered some infection during pregnancy but the numbers were small. CONCLUSION Despite preventive strategies, working in specific jobs during pregnancy may impose a higher risk of infections, and working in some of these occupations may impose a slightly higher risk of CAs in their offspring. Most other reproductive failures were not increased in these occupations.
Collapse
Affiliation(s)
- Maria Morales-Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, Valencia, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Spain
- Center for Public Health Research (CSISP), Valencia, Spain
| | - Linda Kaerlev
- The Danish Epidemiology Science Centre. University of Aarhus, Aarhus, Denmark
- Centre for National Clinical Databases South, Dept. of Research and HTA, Odense University Hospital, Denmark
| | - Jin Liang Zhu
- The Danish Epidemiology Science Centre. University of Aarhus, Aarhus, Denmark
| | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, Valencia, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Spain
- Center for Public Health Research (CSISP), Valencia, Spain
| | - Natalia Gimeno-Clemente
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, Valencia, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Spain
- Center for Public Health Research (CSISP), Valencia, Spain
| | - Ellen A Nohr
- The Danish Epidemiology Science Centre. University of Aarhus, Aarhus, Denmark
| | - Jens P Bonde
- Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jorn Olsen
- Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Epidemiology, School of Public Health, UCLA, Los Angeles, USA
| |
Collapse
|
22
|
Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:160-7. [PMID: 20034681 DOI: 10.1016/j.aquatox.2009.11.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 05/02/2023]
Abstract
Silver nanoparticles (AgNPs) have emerged as an important class of nanomaterials and are currently used in a wide range of industrial and commercial applications. This has caused increasing concern about their effects on the environment and to human health. Using Japanese medaka (Oryzias latipes) at early-life stages as experimental models, the developmental toxicity of silver nanoparticles was investigated following exposure to 100-1000 μg/L homogeneously dispersed AgNPs for 70 days, and developmental endpoints were evaluated by microscopy during embryonic, larval and juvenile stages of development in medaka. Meanwhile, histopathological changes in the larval eye were evaluated. Retarded development and reduced pigmentation were observed in the treated embryos by AgNPs at high concentrations (≥ 400 μg/L). Maximum width of the optic tectum, as an indicator of midbrain development, decreased significantly in a dose-related manner. Furthermore, silver nanoparticles exposure at all concentrations induced a variety of morphological malformations such as edema, spinal abnormalities, finfold abnormalities, heart malformations and eye defects. Histopathological observations also confirmed the occurrence of abnormal eye development induced by AgNPs. The data showed non-linear or U-shaped dose-response patterns for growth retardation at 5 days of postfertilization, as well as the incidence of abnormalities. Preliminary results suggested that the developmental process of medaka may be affected by exposure to silver nanoparticles. Morphological abnormalities in early-life stages of medaka showed the potential developmental toxicities of silver nanoparticles. Further research should be focused on the mechanisms of developmental toxicity in fish exposed to silver nanoparticles.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, China
| | | | | | | | | | | |
Collapse
|
23
|
Yasuda T, Oda S, Ishikawa Y, Watanabe-Asaka T, Hidaka M, Yasuda H, Anzai K, Mitani H. Live imaging of radiation-induced apoptosis by yolk injection of Acridine Orange in the developing optic tectum of medaka. JOURNAL OF RADIATION RESEARCH 2009; 50:487-494. [PMID: 19680012 DOI: 10.1269/jrr.09043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To observe the sequential radiation-induced apoptosis in a living embryo, we injected Acridine Orange (AO) solution into the yolk of embryo and visualized radiation-induced apoptosis in developing optic tectum (OT). Medaka embryos at stage 28, when neural cells proliferate rapidly in the OT, were irradiated with 5 Gy X-rays which is a non-lethal dose for irradiated embryos at hatching. The irradiated embryos hatched normally without morphological abnormalities in their brains, even though a large number of apoptotic cells were induced transiently in OT. By yolk injection, apoptotic cells in OT were distinguished as AO-positive small nuclei at 3 h after irradiation. At 8-10 h after irradiation, AO-positive rosette-shaped clusters were obviously distinguished in marginal tectal regions of OT where cells are proliferating intensely. The AO-positive clusters became bigger and more obvious, but the number did not increase up to 24 h after irradiation and completely disappeared up to 49 h after irradiation. This characteristic appearance of the AO-positive nuclei/clusters is in good agreement with our previous results, based on the examination of fixed specimens stained with AO by injection into the peri-vitelline space, suggesting that the AO-yolk injection method is highly reliable for detecting apoptotic cells in living embryos. The live imaging of apoptotic cells in developing Medaka embryos by AO-yolk injection method is expected to reveal more of the details of the dynamics of apoptotic responses in the irradiated brain and other tissues.
Collapse
Affiliation(s)
- Takako Yasuda
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yasuda T, Yoshimoto M, Maeda K, Matsumoto A, Maruyama K, Ishikawa Y. Rapid and simple method for quantitative evaluation of neurocytotoxic effects of radiation on developing medaka brain. JOURNAL OF RADIATION RESEARCH 2008; 49:533-540. [PMID: 18654045 DOI: 10.1269/jrr.08030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a novel method for rapid and quantitative evaluation of the degree of radiation-induced apoptosis in the developing brain of medaka (Oryzias latipes). Embryos at stage 28 were irradiated with 1, 2, 3.5, and 5 Gy x-ray. Living embryos were stained with a vital dye, acridine orange (AO), for 1-2 h, and whole-mount brains were examined under an epifluorescence microscope. From 7 to 10 h after irradiation with 5 Gy x-ray, we found two morphologically different types of AO-stained structures, namely, small single nuclei and rosette-shaped nuclear clusters. Electron microscopy revealed that these two distinct types of structures were single apoptotic cells with condensed nuclei and aggregates of apoptotic cells, respectively. From 10 to 30 h after irradiation, a similar AO-staining pattern was observed. The numbers of AO-stained rosette-shaped nuclear clusters and AO-stained single nuclei increased in a dose-dependent manner in the optic tectum. We used the number of AO-stained rosette-shaped nuclear clusters/optic tectum as an index of the degree of radiation-induced brain cell death at 20-24 h after irradiation. The results showed that the number of rosette-shaped nuclear clusters/optic tectum in irradiated embryos exposed to 2 Gy or higher doses was highly significant compared to the number in nonirradiated control embryos, whereas no difference was detected at 1 Gy. Thus, the threshold dose for brain cell death in medaka embryos was taken as being between 1-2 Gy, which may not be so extraordinarily large compared to those for rodents and humans. The results show that medaka embryos are useful for quantitative evaluation of developmental neurocytotoxic effects of radiation.
Collapse
Affiliation(s)
- Takako Yasuda
- Environmental Radiation Effects Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Uemura T, Nakayama T, Kusaba T, Yakata Y, Yamazumi K, Matsuu-Matsuyama M, Shichijo K, Sekine I. The protective effect of interleukin-11 on the cell death induced by X-ray irradiation in cultured intestinal epithelial cell. JOURNAL OF RADIATION RESEARCH 2007; 48:171-7. [PMID: 17380044 DOI: 10.1269/jrr.06047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Interleukin-11 (IL-11) is a well known anti-inflammatory cytokine that is associated with cell growth, and also participates in limiting X-ray irradiation induced intestinal mucosal injury. The aim of this study was to evaluate the protective effect of IL-11 on the cell injury induced by X-ray irradiation in rat intestinal epithelial IEC-18 cells. Recombinant human IL-11 (rhIL-11) treated cells were irradiated and then examined for cell viability. To evaluate irradiation injury, trypan blue staining was used to detect the dead cells. The viability of irradiated cells was up-regulated by rhIL-11 treatment and also resulted in the activation of p90 ribosomal S6 kinase (p90RSK) and S6 ribosomal protein (S6Rp). Wortmannin, a specific inhibitor of PI3K, suppressed the activation of S6Rp in rhIL-11 treated cells, and decreased the up-regulation of viability by rhIL-11 treatment in irradiated cells. The TUNEL assay was also perfomed to estimate the rate of apoptosis in X-ray induced cell death. There was no difference in the results between trypan blue staining and the TUNEL assay. Further, rhIL-11 down-regulated the expression of cleaved caspase-3 in irradiated cells. These results suggest that rhIL-11 may play an important role in protection from radiation injury.
Collapse
Affiliation(s)
- Takashi Uemura
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|