1
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
2
|
Guo M, Zhang J, Han J, Hu Y, Ni H, Yuan J, Sun Y, Liu M, Gao L, Liao W, Ma C, Liu Y, Li S, Li N. VEGFR2 blockade inhibits glioblastoma cell proliferation by enhancing mitochondrial biogenesis. J Transl Med 2024; 22:419. [PMID: 38702818 PMCID: PMC11067099 DOI: 10.1186/s12967-024-05155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Junhao Zhang
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Han
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingyue Hu
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hao Ni
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Juan Yuan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yang Sun
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Meijuan Liu
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lifen Gao
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhong Ma
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Nailin Li
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden.
| |
Collapse
|
3
|
Ren X, Deng D, Xiang S, Feng J. Promoter hypomethylated PDZK1 acts as a tumorigenic gene in glioma by interacting with AKT1. Aging (Albany NY) 2024; 16:7174-7187. [PMID: 38669103 PMCID: PMC11087087 DOI: 10.18632/aging.205750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Glioma is the most frequently diagnosed primary brain tumor and typically has a poor prognosis because of malignant proliferation and invasion. It is urgent to elucidate the mechanisms driving glioma tumorigenesis and develop novel treatments to address this deadly disease. Here, we first revealed that PDZK1 is expressed at high levels in gliomas. Promoter hypomethylation may cause high expression of PDZK1 in glioma. Knockdown of PDZK1 inhibits glioma cell proliferation and invasion in vitro. Mechanistically, further investigations revealed that the loss of PDZK1 expression by siRNA inhibited the activation of the AKT/mTOR signaling pathway, leading to cell cycle arrest and apoptosis. Clinically, high expression of PDZK1 predicts a poorer prognosis for glioma patients than low expression of PDZK1. Overall, our study revealed that PDZK1 acts as a novel oncogene in glioma by binding to AKT1 and maintaining the activation of the AKT/mTOR signaling pathway. Thus, PDZK1 may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xing Ren
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Dan Deng
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Shasha Xiang
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Jianbo Feng
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| |
Collapse
|
4
|
Ortega Quesada BA, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:25. [PMID: 38370397 PMCID: PMC10873338 DOI: 10.1038/s41378-024-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, an estrogen receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 s enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118 USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
5
|
Di Filippo LD, de Carvalho SG, Duarte JL, Luiz MT, Paes Dutra JA, de Paula GA, Chorilli M, Conde J. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas. Mater Today Bio 2023; 20:100671. [PMID: 37273792 PMCID: PMC10238751 DOI: 10.1016/j.mtbio.2023.100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.
Collapse
Affiliation(s)
| | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway. Front Med 2022; 17:143-155. [PMID: 36414916 DOI: 10.1007/s11684-022-0929-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
Collapse
|
7
|
Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Golbourn B, Feng Z, Rutka JT, Sun H. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions
in vivo. Eur J Neurosci 2022; 55:1483-1491. [DOI: 10.1111/ejn.15647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Haitao Wang
- Departments of Surgery
- Departments of Surgery Physiology
| | | | - Zhengwei Luo
- Departments of Surgery
- Departments of Surgery Physiology
| | - Brian Golbourn
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children Toronto Canada
| | | | | | - Hong‐Shuo Sun
- Departments of Surgery
- Departments of Surgery Physiology
- Pharmacology, Temerty Faculty of Medicine
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
| |
Collapse
|
8
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
9
|
Matyśniak D, Chumak V, Nowak N, Kukla A, Lehka L, Oslislok M, Pomorski P. P2X7 receptor: the regulator of glioma tumor development and survival. Purinergic Signal 2021; 18:135-154. [PMID: 34964926 PMCID: PMC8850512 DOI: 10.1007/s11302-021-09834-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.
Collapse
Affiliation(s)
- Damian Matyśniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Regenerative Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kukla
- Silesian University of Technology, Gliwice, Poland
| | - Lilya Lehka
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Magdalena Oslislok
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
A System Bioinformatics Approach Predicts the Molecular Mechanism Underlying the Course of Action of Radix Salviae Reverses GBM Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1218969. [PMID: 35154340 PMCID: PMC8825271 DOI: 10.1155/2021/1218969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Objective This study used in vitro techniques to investigate the therapeutic effect of Radix Salviae on human glioblastoma and decode its underlying molecular mechanism. Methods The active components and targets of the Radix Salviae were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The targets of human glioblastoma were obtained from the GeneCards Database. The Radix Salviae-mediated antiglioblastoma was evaluated by Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, mechanism of action of Radix Salviae against human glioblastoma was deduced by molecular docking and experiments. Results We screened 66 active ingredients and 45 targets of the Radix Salviae. The enrichment analysis based on the targets mentioned above suggested a possible role in protein phosphorylation, cell transcription, apoptosis, and inflammatory factor signaling pathways. Further study demonstrated that cryptotanshinone, an essential component of Radix Salviae, played a significant role in killing human glioblastoma cells and protecting the body by inhibiting the AKT, IKB, and STAT3 signaling pathways. Conclusions Radix Salviae could inhibit the proliferation and invasion of human glioblastoma by regulating STAT3, Akt, and IKB signaling pathways. Radix Salviae has potential therapeutic value in the future for human glioblastoma.
Collapse
|
11
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
12
|
Noor H, Zaman A, Teo C, Sughrue ME. PODNL1 Methylation Serves as a Prognostic Biomarker and Associates with Immune Cell Infiltration and Immune Checkpoint Blockade Response in Lower-Grade Glioma. Int J Mol Sci 2021; 22:ijms222212572. [PMID: 34830454 PMCID: PMC8625785 DOI: 10.3390/ijms222212572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Lower-grade glioma (LGG) is a diffuse infiltrative tumor of the central nervous system, which lacks targeted therapy. We investigated the role of Podocan-like 1 (PODNL1) methylation in LGG clinical outcomes using the TCGA-LGG transcriptomics dataset. We identified four PODNL1 CpG sites, cg07425555, cg26969888, cg18547299, and cg24354933, which were associated with unfavorable overall survival (OS) and disease-free survival (DFS) in univariate and multivariate analysis after adjusting for age, gender, tumor-grade, and IDH1-mutation. In multivariate analysis, the OS and DFS hazard ratios ranged from 0.44 to 0.58 (p < 0.001) and 0.62 to 0.72 (p < 0.001), respectively, for the four PODNL1 CpGs. Enrichment analysis of differential gene and protein expression and analysis of 24 infiltrating immune cell types showed significantly increased infiltration in LGGs and its histological subtypes with low-methylation levels of the PODNL1 CpGs. High PODNL1 expression and low-methylation subgroups of the PODNL1 CpG sites were associated with significantly increased PD-L1, PD-1, and CTLA4 expressions. PODNL1 methylation may thus be a potential indicator of immune checkpoint blockade response, and serve as a biomarker for determining prognosis and immune subtypes in LGG.
Collapse
Affiliation(s)
- Humaira Noor
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia
- Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia;
- Correspondence:
| | - Ashraf Zaman
- Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia;
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| | - Michael E. Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| |
Collapse
|
13
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
14
|
McKenna M, Balasuriya N, Zhong S, Li SSC, O'Donoghue P. Phospho-Form Specific Substrates of Protein Kinase B (AKT1). Front Bioeng Biotechnol 2021; 8:619252. [PMID: 33614606 PMCID: PMC7886700 DOI: 10.3389/fbioe.2020.619252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3β (GSK-3β). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at −5, −4, −3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at −5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.
Collapse
Affiliation(s)
- McShane McKenna
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shanshan Zhong
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada.,Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
TSG101 Promotes the Proliferation, Migration, and Invasion of Human Glioma Cells by Regulating the AKT/GSK3β/β-Catenin and RhoC/Cofilin Pathways. Mol Neurobiol 2021; 58:2118-2132. [PMID: 33411238 DOI: 10.1007/s12035-020-02231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion. Publicly available data revealed that TSG101 mRNA was significantly upregulated in glioma tissues, and high levels of TSG101 were associated with poor prognosis in glioma patients. Western blot and immunohistochemistry experiments further showed that the expression level of TSG101 protein was significantly upregulated in glioma patients, especially in the patients with high-grade glioma. The functional studies showed that knockdown of TSG101 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression of TSG101 facilitated them. Mechanistic studies indicated that the proliferation, migration, and invasion induced by TSG101 in human glioma were related to AKT/GSK3β/β-catenin and RhoC/Cofilin signaling pathways. In conclusion, the above results suggest that the expression of TSG101 is elevated in glioma patients, which accelerates the proliferation, migration, and invasion of glioma cells by regulating the AKT/GSK3β/β-catenin and RhoC/Cofilin pathways.
Collapse
|
16
|
Duggan MR, Weaver M, Khalili K. PAM (PIK3/AKT/mTOR) signaling in glia: potential contributions to brain tumors in aging. Aging (Albany NY) 2021; 13:1510-1527. [PMID: 33472174 PMCID: PMC7835031 DOI: 10.18632/aging.202459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Despite a growing proportion of aged individuals at risk for developing cancer in the brain, the prognosis for these conditions remains abnormally poor due to limited knowledge of underlying mechanisms and minimal treatment options. While cancer metabolism in other organs is commonly associated with upregulated glycolysis (i.e. Warburg effect) and hyperactivation of PIK3/AKT/mTOR (PAM) pathways, the unique bioenergetic demands of the central nervous system may interact with these oncogenic processes to promote tumor progression in aging. Specifically, constitutive glycolysis and PIK3/AKT/mTOR signaling in glia may be dysregulated by age-dependent alterations in neurometabolic demands, ultimately contributing to pathological processes otherwise associated with PIK3/AKT/mTOR induction (e.g. cell cycle entry, impaired autophagy, dysregulated inflammation). Although several limitations to this theoretical model exist, the consideration of aberrant PIK3/AKT/mTOR signaling in glia during aging elucidates several therapeutic opportunities for brain tumors, including non-pharmacological interventions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Neuroscience Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| | - Michael Weaver
- Department of Neurosurgery Temple University Hospital Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Department of Neuroscience Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Biqi Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
18
|
Lai SW, Lin HJ, Liu YS, Yang LY, Lu DY. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel) 2020; 12:cancers12020380. [PMID: 32045997 PMCID: PMC7073205 DOI: 10.3390/cancers12020380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is characterized by severe hypoxic and acidic stress in an abnormal microenvironment. Monocarboxylate transporter (MCT)4, a pH-regulating protein, plays an important role in pH homeostasis of the glycolytic metabolic pathways in cancer cells. The present study showed that GBM exposure to hypoxic conditions increased MCT4 expression. We further analyzed the glioma patient database and found that MCT4 was significantly overexpressed in patients with GBM, and the MCT4 levels positively correlated with the clinico-pathological grades of gliomas. We further found that MCT4 knockdown abolished the hypoxia-enhanced of GBM cell motility and monocyte adhesion. However, the overexpression of MCT4 promoted GBM cell migration and monocyte adhesion activity. Our results also revealed that MCT4-regulated GBM cell motility and monocyte adhesion are mediated by activation of the serine/threonine-specific protein kinase (AKT), focal adhesion kinase (FAK), and epidermal growth factor receptor (EGFR) signaling pathways. Moreover, hypoxia mediated the acetylated signal transducer and activator of transcription (STAT)3 expression and regulated the transcriptional activity of hypoxia inducible factor (HIF)-1α in GBM cell lines. In a GBM mouse model, MCT4 was significantly increased in the tumor necrotic tissues. These findings raise the possibility for the development of novel therapeutic strategies targeting MCT4.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan;
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair and Research Center for Biotechnology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| |
Collapse
|
19
|
Chang CY, Li JR, Wu CC, Wang JD, Liao SL, Chen WY, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributes to Indomethacin-Induced Glioma Apoptosis. Int J Mol Sci 2020; 21:557. [PMID: 31952288 PMCID: PMC7013513 DOI: 10.3390/ijms21020557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The dormancy of cellular apoptotic machinery has been highlighted as a crucial factor in therapeutic resistance, recurrence, and poor prognosis in patients with malignancy, such as malignant glioma. Increasing evidence indicates that nonsteroidal anti-inflammatory drugs (NSAIDs) confer chemopreventive effects, and indomethacin has been shown to have a novel chemotherapeutic application targeting glioma cells. To extend these findings, herein, we studied the underlying mechanisms of apoptosis activation caused by indomethacin in human H4 and U87 glioma cells. We found that the glioma cell-killing effects of indomethacin involved both death receptor- and mitochondria-mediated apoptotic cascades. Indomethacin-induced glioma cell apoptosis was accompanied by a series of biochemical changes, including reactive oxygen species generation, endoplasmic reticulum (ER) stress, apoptosis signal-regulating kinase-1 (Ask1) activation, p38 hyperphosphorylation, protein phosphatase 2A (PP2A) activation, Akt dephosphorylation, Mcl-1 and FLICE-inhibiting protein (FLIP) downregulation, Bax mitochondrial distribution, and caspases 3/caspase 8/caspase 9 activation. Data on pharmacological inhibition related to oxidative stress, ER stress, free Ca2+, and p38 revealed that the axis of oxidative stress/ER stress/Ask1/p38/PP2A/Akt comprised an apoptotic cascade leading to Mcl-1/FLIP downregulation and glioma apoptosis. Since indomethacin is an emerging choice in chemotherapy and its antineoplastic effects have been demonstrated in glioma tumor-bearing models, the findings further strengthen the argument for turning on the aforementioned axis in order to activate the apoptotic machinery of glioma cells.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
20
|
Valdebenito S, D'Amico D, Eugenin E. Novel approaches for glioblastoma treatment: Focus on tumor heterogeneity, treatment resistance, and computational tools. Cancer Rep (Hoboken) 2019; 2:e1220. [PMID: 32729241 PMCID: PMC7941428 DOI: 10.1002/cnr2.1220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor. Currently, the suggested line of action is the surgical resection followed by radiotherapy and treatment with the adjuvant temozolomide, a DNA alkylating agent. However, the ability of tumor cells to deeply infiltrate the surrounding tissue makes complete resection quite impossible, and, in consequence, the probability of tumor recurrence is high, and the prognosis is not positive. GBM is highly heterogeneous and adapts to treatment in most individuals. Nevertheless, these mechanisms of adaption are unknown. RECENT FINDINGS In this review, we will discuss the recent discoveries in molecular and cellular heterogeneity, mechanisms of therapeutic resistance, and new technological approaches to identify new treatments for GBM. The combination of biology and computer resources allow the use of algorithms to apply artificial intelligence and machine learning approaches to identify potential therapeutic pathways and to identify new drug candidates. CONCLUSION These new approaches will generate a better understanding of GBM pathogenesis and will result in novel treatments to reduce or block the devastating consequences of brain cancers.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and AnatomyUniversity of Texas Medical Branch (UTMB)GalvestonTexas
| | - Daniela D'Amico
- Department of Neuroscience, Cell Biology, and AnatomyUniversity of Texas Medical Branch (UTMB)GalvestonTexas
- Department of Biomedicine and Clinic NeuroscienceUniversity of PalermoPalermoItaly
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and AnatomyUniversity of Texas Medical Branch (UTMB)GalvestonTexas
| |
Collapse
|
21
|
Marina D, Arnaud L, Paul Noel L, Felix S, Bernard R, Natacha C. Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential. Cells 2019; 8:E1542. [PMID: 31795417 PMCID: PMC6953081 DOI: 10.3390/cells8121542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation. The different translation initiation protagonists will be described in normal conditions and then in gliomas. In addition, their gene expression in gliomas will systematically be examined using two freely available datasets. Finally, we will discuss different pathways regulating translation initiation and current drugs targeting the translational machinery and their potential for the treatment of gliomas.
Collapse
Affiliation(s)
- Digregorio Marina
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Lombard Arnaud
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Lumapat Paul Noel
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| | - Scholtes Felix
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Rogister Bernard
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Coppieters Natacha
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; (D.M.); (L.A.); (L.P.N.); (S.F.); (R.B.)
| |
Collapse
|
22
|
Yu Y, Xiong Y, Ladeiras D, Yang Z, Ming XF. Myosin 1b Regulates Nuclear AKT Activation by Preventing Localization of PTEN in the Nucleus. iScience 2019; 19:39-53. [PMID: 31349190 PMCID: PMC6660601 DOI: 10.1016/j.isci.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Insulin-induced AKT activation is dependent on phosphoinositide 3-kinase and opposed by tumor suppressor phosphatase and tensin homolog (PTEN). Our previous study demonstrates that myosin 1b (MYO1B) mediates arginase-II-induced activation of mechanistic target of rapamycin complex 1 that is regulated by AKT. However, the role of MYO1B in AKT activation is unknown. Here we show that silencing MYO1B in mouse embryonic fibroblasts (MEF) inhibits insulin-induced nuclear but not cytoplasmic AKT activation accompanied by elevated nuclear PTEN level. Co-immunoprecipitation, co-immunostaining, and proximity ligation assay show an interaction of MYO1B and PTEN resulting in reduced nuclear PTEN. Moreover, the elevated nuclear PTEN upon silencing MYO1B promotes apoptosis of MEFs and melanoma B16F10 cells. Taken together, we demonstrate that MYO1B, by interacting with PTEN, prevents nuclear localization of PTEN contributing to nuclear AKT activation and suppression of cell apoptosis. This may present a therapeutic approach for cancer treatment such as melanoma. MYO1B, by interacting with PTEN, prevents PTEN localization in the nucleus MYO1B prevents nuclear localization of PTEN depending on its motor activity This contributes to nuclear AKT activation and suppression of cell apoptosis Targeting MYO1B may represent a therapeutic approach for cancer treatment
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Diogo Ladeiras
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| |
Collapse
|
23
|
Chen Y, Deng X, Chen W, Shi P, Lian M, Wang H, Wang K, Qian D, Xiao D, Long H. Silencing of microRNA-708 promotes cell growth and epithelial-to-mesenchymal transition by activating the SPHK2/AKT/β-catenin pathway in glioma. Cell Death Dis 2019; 10:448. [PMID: 31171769 PMCID: PMC6554356 DOI: 10.1038/s41419-019-1671-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/22/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023]
Abstract
Aberrant microRNA-708 (miR-708) expression is frequently reported in cancer studies; however, its role in glioma has not been examined in detail. We investigated miR-708 function in glioma and revealed that miR-708 expression was significantly down-regulated in glioma tissues and cell lines. Restoration of miR-708 inhibited glioma cell growth and invasion both in vitro and in vivo. The oncogene SPHK2 (sphingosine kinase 2) was identified as a downstream target of miR-708 using luciferase and western blot assays. miR-708 inhibited AKT/β-catenin signaling, which is activated by SPHK2. In addition, we revealed that miR-708 was transcriptionally repressed by EZH2 (enhancer of zeste homolog 2)-induced histone H3 lysine 27 trimethylation and promoter methylation. In summary, our findings revealed that miR-708 is a glioma tumor suppressor and suggest that miR-708 is a potential therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Xubin Deng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | | | - Pengwei Shi
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Lian
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Hongxiao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dadi Qian
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China.
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Hyare H, Rice L, Thust S, Nachev P, Jha A, Milic M, Brandner S, Rees J. Modelling MR and clinical features in grade II/III astrocytomas to predict IDH mutation status. Eur J Radiol 2019; 114:120-127. [DOI: 10.1016/j.ejrad.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023]
|
25
|
Fan HW, Ni Q, Fan YN, Ma ZX, Li YB. C-type lectin domain family 5, member A (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by regulating PI3K/Akt signalling. Cell Prolif 2019; 52:e12584. [PMID: 30834619 PMCID: PMC6536598 DOI: 10.1111/cpr.12584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/04/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Glioblastoma is the most common malignant glioma of all brain tumours. It is difficult to treat because of its poor response to chemotherapy and radiotherapy and high recurrence rate after treatment. The aetiology of glioblastoma is a result of disorders of multiple factors. Depending on cell signal transduction, these glioblastoma-associated factors lead to cell proliferation, differentiation and apoptosis. Therefore, investigation of the potential factors which involved in the development of glioblastoma could provide a new target for the treatment of glioblastoma. MATERIALS AND METHODS We analysed the transcript expression of CLEC5A in glioblastoma by accessing The Cancer Genome Atlas (TCGA). qRT-PCR was performed to detect the RNA expression of genes in cells and tissues, and Western blot was used to measure the protein levels (Cyclin D1, Bcl-2, BAX, PCNA, MMP2, MMP9, Akt and Akt phosphorylation) in tissues and cells. Cell proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8, transwell and flow cytometry assays, respectively. Ki67 level and lung metastasis were determined by immunochemistry and H&E staining. RESULTS In this study, we found that CLEC5A was highly upregulated in glioblastoma compared to normal brain tissues, which had an opposite relation with the overall patient survival. Downregulation of CLEC5A could inhibit cell proliferation, migration and invasion via promoting apoptosis and G1 arrest. In contrast, overexpression of CLEC5A stimulated cell proliferation, migration and invasion. In addition, we found that CLEC5A level was positively correlated with Akt phosphorylation level. Akt inhibitor or agonist could reverse the modulation effects of CLEC5A in glioblastoma. Moreover, In vivo results suggested that inhibition of CLEC5A significantly reduced tumour size, weight, cell proliferation ability and lung metastasis via inhibition of phosphorylation Akt. CONCLUSION Both in vitro and in vivo evidences supported that CLEC5A was involved in glioblastoma pathogenesis via regulation of PI3K/Akt pathway. Thus, CLEC5A might serve as a potential therapeutic target in the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Ni
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Ni Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Xiang Ma
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying-Bin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Arcuri C, Monarca L, Ragonese F, Mecca C, Bruscoli S, Giovagnoli S, Donato R, Bereshchenko O, Fioretti B, Costantino F. Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E867. [PMID: 30360511 PMCID: PMC6267206 DOI: 10.3390/nano8110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023]
Abstract
The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20⁻30 nm size. The NP have a BET surface area of 700 m²/g with an external surface area of 300 m²/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Oxana Bereshchenko
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
27
|
Phosphorylation-Dependent Inhibition of Akt1. Genes (Basel) 2018; 9:genes9090450. [PMID: 30205513 PMCID: PMC6162393 DOI: 10.3390/genes9090450] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
Protein kinase B (Akt1) is a proto-oncogene that is overactive in most cancers. Akt1 activation requires phosphorylation at Thr308; phosphorylation at Ser473 further enhances catalytic activity. Akt1 activity is also regulated via interactions between the kinase domain and the N-terminal auto-inhibitory pleckstrin homology (PH) domain. As it was previously difficult to produce Akt1 in site-specific phosphorylated forms, the contribution of each activating phosphorylation site to auto-inhibition was unknown. Using a combination of genetic code expansion and in vivo enzymatic phosphorylation, we produced Akt1 variants containing programmed phosphorylation to probe the interplay between Akt1 phosphorylation status and the auto-inhibitory function of the PH domain. Deletion of the PH domain increased the enzyme activity for all three phosphorylated Akt1 variants. For the doubly phosphorylated enzyme, deletion of the PH domain relieved auto-inhibition by 295-fold. We next found that phosphorylation at Ser473 provided resistance to chemical inhibition by Akti-1/2 inhibitor VIII. The Akti-1/2 inhibitor was most effective against pAkt1T308 and showed four-fold decreased potency with Akt1 variants phosphorylated at Ser473. The data highlight the need to design more potent Akt1 inhibitors that are effective against the doubly phosphorylated and most pathogenic form of Akt1.
Collapse
|
28
|
Xu J, Fang J, Cheng Z, Fan L, Hu W, Zhou F, Shen H. Overexpression of the Kininogen-1 inhibits proliferation and induces apoptosis of glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:180. [PMID: 30068373 PMCID: PMC6090912 DOI: 10.1186/s13046-018-0833-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
Background Glioma is the most common primary central nervous system tumor derived from glial cells. Kininogen-1 (KNG1) can exert antiangiogenic properties and inhibit proliferation of endothelial cells. The effect of KNG1 on the glioma is rarely reported, so our purpose in to explore its mechanism in glioma cells. Methods The differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) database. The KNG1-vector was transfected into the two glioma cells. The viability, apoptosis and cell cycle of glioma cells and microvessel density (MVD) were detected by cell counting kit-8 assay, flow cytometry and immunohistochemistry, respectively. The expression were measured by quantitative real-time PCR and Western blot, respectively. A tumor mouse model was established to determine apoptosis rate of brain tissue by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. Results KNG1 was identified as the core gene and lowly expressed in the glioma cells. Overexpression of KNG1 inhibited cell viability and angiogenesis of glioma cells. Overexpression of KNG1 promoted the apoptosis and G1 phase cell cycle arrest of glioma cells. Moreover, the expressions of VEGF, cyclinD1, ki67, caspase-3/9 and XIAP were regulated by overexpression of KNG1. In addition, overexpression of KNG1 inhibited the activity of PI3K/Akt. Furthermore, overexpression of KNG1 decreased the tumor growth and promoted the apoptosis of decreased by overexpression of KNG1 in vivo. . Conclusions Overexpression of KNG1 suppresses glioma progression by inhibiting the proliferation and promoting apoptosis of glioma cells, providing a therapeutic strategy for the malignant glioma.
Collapse
Affiliation(s)
- Jinfang Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Jun Fang
- Department of Radiotherapy, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang Province, 310022, China
| | - Zhonghao Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Longlong Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Weiwei Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China.
| | - Hong Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
29
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [PMID: 29470962 DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are increasingly implicated in the prevention and treatment of cancers apart from their known inhibitory effects on eicosanoid production. One of the NSAIDs, indomethacin, in particular shows promising antineoplastic outcome against glioma. To extend such finding, we here studied in human H4 and U87 glioma cells the possible involvement of the ceramide/protein phosphatase 2 A (PP2A)/Akt axis in the indomethacin-induced apoptosis. We found that the induced apoptosis was accompanied by a series of biochemical events, including intracellular ceramide generation, PP2A activation, Akt dephosphorylation, Mcl-1 and FLICE inhibiting protein (FLIP) transcriptional downregulation, Bax mitochondrial distribution, and caspase 3 activation. Such events were also duplicated with a cell-permeable C2-ceramide and Akt inhibitor LY294002. Pharmacological inhibition of ceramide synthase by fumonisin B1 and PP2A by okadaic acid moderately attenuated indomethacin-induced Akt dephosphorylation along with the apoptosis. Results suggested that the ceramide/PP2A/Akt axis is involved in the apoptosis and a possible cyclooxygenase-independent target for indomethacin. Furthermore, apoptosis regulatory proteins such as Mcl-1 and FLIP are potential downstream effectors of this axis and their downregulation could turn on the apoptotic program.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Jiaan-Der Wang
- Department of Pediatrics & Child Health Care, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Boulevard, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Boulevard, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
30
|
Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis. Eur Radiol 2018; 28:3779-3788. [PMID: 29572636 PMCID: PMC6096613 DOI: 10.1007/s00330-018-5351-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/26/2017] [Accepted: 01/23/2018] [Indexed: 01/02/2023]
Abstract
Objectives To investigate if quantitative apparent diffusion coefficient (ADC) measurements can predict genetic subtypes of non-gadolinium-enhancing gliomas, comparing whole tumour against single slice analysis. Methods Volumetric T2-derived masks of 44 gliomas were co-registered to ADC maps with ADC mean (ADCmean) calculated. For the slice analysis, two observers placed regions of interest in the largest tumour cross-section. The ratio (ADCratio) between ADCmean in the tumour and normal appearing white matter was calculated for both methods. Results Isocitrate dehydrogenase (IDH) wild-type gliomas showed the lowest ADC values throughout (p < 0.001). ADCmean in the IDH-mutant 1p19q intact group was significantly higher than in the IDH-mutant 1p19q co-deleted group (p < 0.01). A volumetric ADCmean threshold of 1201 × 10−6 mm2/s identified IDH wild-type with a sensitivity of 83% and a specificity of 86%; a volumetric ADCratio cut-off value of 1.65 provided a sensitivity of 80% and a specificity of 92% (area under the curve (AUC) 0.9–0.94). A slice ADCratio threshold for observer 1 (observer 2) of 1.76 (1.83) provided a sensitivity of 80% (86%), specificity of 91% (100%) and AUC of 0.95 (0.96). The intraclass correlation coefficient was excellent (0.98). Conclusions ADC measurements can support the distinction of glioma subtypes. Volumetric and two-dimensional measurements yielded similar results in this study. Key Points • Diffusion-weighted MRI aids the identification of non-gadolinium-enhancing malignant gliomas • ADC measurements may permit non-gadolinium-enhancing glioma molecular subtyping • IDH wild-type gliomas have lower ADC values than IDH-mutant tumours • Single cross-section and volumetric ADC measurements yielded comparable results in this study
Collapse
|
31
|
Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Long Y, Chen S, Su H, Yuan Z, Xu M, Chen J. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway. Oncotarget 2018; 7:75394-75406. [PMID: 27683117 PMCID: PMC5342749 DOI: 10.18632/oncotarget.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Objective To examine the association between fragile X mental retardation protein (FMRP) expression and astrocytoma characteristics. Methods Pathologic grade and expressions of glial fibrillary acidic protein (GFAP), Ki67 (proliferation marker), and FMRP were determined in astrocytoma specimens from 74 patients. Kaplan-Meier survival analysis was undertaken. Pathologic grade and protein levels of FMRP were determined in 24 additional patients with astrocytoma and 6 controls (cerebral trauma). In cultured U251 and U87 cell lines, the effects of FMRP knock-down on cell proliferation, AKT/mTOR/GSK-3β and MEK/ERK signaling were studied. The effects of FMRP knock-down on the volumes and weights of U251 cell-derived orthotopic tumors in mice were investigated. Results In patients, FMRP expression was increased in grade IV (5.1-fold, P<0.01) and grade III (3.2-fold, P<0.05) astrocytoma, compared with controls. FMRP and Ki67 expressions were positively correlated (R2=0.877, P<0.001). Up-regulation of FMRP was associated with poorer survival among patients with FMRP integrated optical density >30 (P<0.01). In astrocytoma cell lines, FMRP knock-down slowed proliferation (P<0.05), inhibited total MEK levels P<0.05, and reduced phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204) (P<0.05). In mice with orthotopic tumors, FMRP knock-down decreased FMRP and Ki67 expressions, and reduced tumor volume and weight (36.3% or 61.5% on day 15, both P<0.01). Also, phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204), and total MEK in xenografts were decreased in sh-FMRP xenografts compared with non-transfected ones (all P<0.05). Conclusion Enhanced FMRP expression in astrocytoma may promote proliferation through activation of MEK/ERK signaling.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Minling Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Huixian Hu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hui Zhang
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhuofang Hao
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Yuesheng Long
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Shengqiang Chen
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hang Su
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jingqi Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| |
Collapse
|
32
|
Mao Y, Li L, Liu J, Wang L, Zhou Y. MiR-495 inhibits esophageal squamous cell carcinoma progression by targeting Akt1. Oncotarget 2018; 7:51223-51236. [PMID: 27323412 PMCID: PMC5239471 DOI: 10.18632/oncotarget.9981] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are involved in tumor initiation and progression by regulating oncogenes and tumor suppressor genes. Here we found that miR-495 are lower in clinical ESCC tissues than in adjacent non-tumor tissues. Moreover, the lower miR-495 expression correlated with increased lymph node metastasis (LNM), invasion and TNM stage. miR-495 overexpression predicted a favorable outcome in ESCC patients. miR-495 targeted a site in the 3'-UTR of Akt1, and miR-495 levels correlated inversely with Akt1 protein levels in ESCC tissue samples. Overexpression of miR-495 suppressed cell proliferation, blocked G1/S phase transition, and decreased migration and invasion by two ESCC cell lines in vitro and in vivo. Restoration of Akt1 protein levels in miR-495-overexpressing ESCC cells attenuated the inhibitory effects of miR-495. In addition, miR-495 suppressed cell cycle transition and the EMT signaling pathway through targeting Akt1, thereby inhibiting ESCC cell proliferation, migration, and invasion. Our results suggest that miR-495 may act as a tumor suppressor by targeting Akt1 in ESCC.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liang Li
- Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Le Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute and Laboratory of Neuro-Oncology, Tianjin, China
| | - Yan Zhou
- Department of Radiotherapy, Tianjin General Hospital, Tianjin, China
| |
Collapse
|
33
|
5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins. Sci Rep 2017; 7:15593. [PMID: 29142297 PMCID: PMC5688093 DOI: 10.1038/s41598-017-15849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and suggesting that therapeutic efforts should be focused there. To identify signaling networks and potential druggable targets across tumor microenvironments (TMEs), we utilized 5-ALA fluorescence-guided neurosurgical resection and sampling, followed by proteomic analysis of specific TMEs. Reverse phase protein array (RPPA) was performed on 205 proteins isolated from the tumor margin, tumor bulk, and perinecrotic regions of 13 previously untreated, clinically-annotated and genetically-defined high grade gliomas. Differential protein and pathway signatures were established and then validated using western blotting, immunohistochemistry, and comparable TCGA RPPA datasets. We identified 37 proteins differentially expressed across high-grade glioma TMEs. We demonstrate that tumor margins were characterized by pro-survival and anti-apoptotic proteins, whereas perinecrotic regions were enriched for pro-coagulant and DNA damage response proteins. In both our patient cohort and TCGA cases, the data suggest that TMEs possess distinct protein expression profiles that are biologically and therapeutically relevant.
Collapse
|
34
|
Emery IF, Gopalan A, Wood S, Chow KH, Battelli C, George J, Blaszyk H, Florman J, Yun K. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol 2017; 133:47-57. [PMID: 28432589 PMCID: PMC5627495 DOI: 10.1007/s11060-017-2422-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/09/2017] [Indexed: 12/16/2022]
Abstract
Despite multimodal treatment that includes surgery, radiation and chemotherapy, virtually all glioblastomas (GBM) recur, indicating that these interventions are insufficient to eradicate all malignant cells. To identify potential new therapeutic targets in GBMs, we examined the expression and function of proteins that are associated with therapy resistance and cancer cell survival. We measured the expression of eight such proteins in 50 GBM samples by immunohistochemistry and analyzed patient survival. We report that GBM patients with high expression of ABCG2 (also called BCRP) or XIAP at the protein level had worse survival than those with low expression. The adjusted hazard ratio for ABCG2 was 2.35 and for XIAP was 2.65. Since glioma stem cells (GSCs) have been shown to be more resistant than bulk tumor cells to anti-cancer therapies and to express high levels of these proteins, we also sought to determine if ABCG2 and XIAP have functional roles in GSCs. We used small molecule inhibitors to treat patient-derived GBM tumorspheres in vitro and observed that inhibitors of ABCG2, Ko143 and fumitremorgin, significantly reduced self-renewal. These results suggest that ABCG2 and XIAP proteins may be useful indicators of patient survival and that inhibition of ABCG2 may be a promising therapeutic strategy in GBMs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/radiotherapy
- Cells, Cultured
- Dacarbazine/analogs & derivatives
- Dacarbazine/therapeutic use
- Diketopiperazines/pharmacology
- Female
- Follow-Up Studies
- Glioblastoma/drug therapy
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/radiotherapy
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Indoles/pharmacology
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Temozolomide
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Ivette F Emery
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
| | - Archana Gopalan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Stephanie Wood
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kin-Hoe Chow
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chiara Battelli
- New England Cancer Specialists, 100 Campus Drive, Suite 108, Scarborough, ME, 04074, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hagen Blaszyk
- Maine Medical Center Department of Pathology, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Jeffrey Florman
- Maine Medical Center Neuroscience Institute, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Kyuson Yun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Peak Center for Brain and Pituitary Tumors, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Hu B, Wang Q, Wang YA, Hua S, Sauvé CEG, Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, Lu X, Zhong Y, Zhang J, Deng P, Tan Z, Wang G, Liao WT, Corley LJ, Yan H, Zhang J, You Y, Liu N, Cai L, Finocchiaro G, Phillips JJ, Berger MS, Spring DJ, Hu J, Sulman EP, Fuller GN, Chin L, Verhaak RGW, DePinho RA. Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell 2017; 167:1281-1295.e18. [PMID: 27863244 DOI: 10.1016/j.cell.2016.10.039] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/11/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.
Collapse
Affiliation(s)
- Baoli Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qianghu Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Sujun Hua
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Derrick Ong
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng D Lan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Chang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wing Ho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta Moreno Monasterio
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Lu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Ting Liao
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynda J Corley
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Linbo Cai
- Department of Oncology, Guangdong 999 Brain Hospital, Guangzhou 510510, China
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mitchel S Berger
- Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Denise J Spring
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P Sulman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roeland G W Verhaak
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Kim BS, Seol HJ, Nam DH, Park CK, Kim IH, Kim TM, Kim JH, Cho YH, Yoon SM, Chang JH, Kang SG, Kim EH, Suh CO, Jung TY, Lee KH, Kim CY, Kim IA, Hong CK, Yoo H, Kim JH, Kang SH, Kang MK, Kim EY, Kim SH, Chung DS, Hwang SC, Song JH, Cho SJ, Lee SI, Lee YS, Ahn KJ, Kim SH, Lim DH, Gwak HS, Lee SH, Hong YK. Concurrent Chemoradiotherapy with Temozolomide Followed by Adjuvant Temozolomide for Newly Diagnosed Glioblastoma Patients: A Retrospective Multicenter Observation Study in Korea. Cancer Res Treat 2017; 49:193-203. [PMID: 27384161 PMCID: PMC5266397 DOI: 10.4143/crt.2015.473] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the feasibility and survival benefits of combined treatment with radiotherapy and adjuvant temozolomide (TMZ) in a Korean sample. MATERIALS AND METHODS A total of 750 Korean patients with histologically confirmed glioblastoma multiforme, who received concurrent chemoradiotherapy with TMZ (CCRT) and adjuvant TMZ from January 2006 until June 2011, were analyzed retrospectively. RESULTS After the first operation, a gross total resection (GTR), subtotal resection (STR), partial resection (PR), biopsy alone were achieved in 388 (51.7%), 159 (21.2%), 96 (12.8%), and 107 (14.3%) patients, respectively. The methylation status of O6-methylguanine-DNA methyltransferase (MGMT) was reviewed retrospectively in 217 patients. The median follow-up period was 16.3 months and the median overall survival (OS) was 17.5 months. The actuarial survival rates at the 1-, 3-, and 5-year OS were 72.1%, 21.0%, and 9.0%, respectively. The median progression-free survival (PFS) was 10.1 months, and the actuarial PFS at 1-, 3-, and 5-year PFS were 42.2%, 13.0%, and 7.8%, respectively. The patients who received GTR showed a significantly longer OS and PFS than those who received STR, PR, or biopsy alone, regardless of the methylation status of the MGMT promoter. Patients with a methylated MGMT promoter also showed a significantly longer OS and PFS than those with an unmethylated MGMT promoter. Patients who received more than six cycles of adjuvant TMZ had a longer OS and PFS than those who received six or fewer cycles. Hematologic toxicity of grade 3 or 4 was observed in 8.4% of patients during the CCRT period and in 10.2% during the adjuvant TMZ period. CONCLUSION Patients treated with CCRT followed by adjuvant TMZ had more favorable survival rates and tolerable toxicity than those who did not undergo this treatment.
Collapse
Affiliation(s)
- Byung Sup Kim
- Department of Neurosurgery, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hyun Cho
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Yonsei University Health System, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Yonsei University Health System, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Yonsei University Health System, Seoul, Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Brain Tumor Center, Yonsei University Health System, Seoul, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Health Science, Seoul, Korea
| | - Heon Yoo
- Department of Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Kyu Kang
- Department of Radiation Oncology, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Eun-Young Kim
- Department of Neurosurgery, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Sun-Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong-Sup Chung
- Department of Neurosurgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Sun-Chul Hwang
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Joon-Ho Song
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sung Jin Cho
- Department of Neurosurgery, Soonchunhyang University Hospital, Seoul, Korea
| | - Sun-Il Lee
- Department of Neurosurgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Youn-Soo Lee
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kook-Jin Ahn
- Department of Radiation, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do Hun Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho-Shin Gwak
- Department of Systemic Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Se-Hoon Lee
- Division of Hematotology/Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
37
|
Abstract
Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.
Collapse
|
38
|
Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades. Tumour Biol 2015; 37:2709-19. [PMID: 26408176 DOI: 10.1007/s13277-015-3990-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most palindromic and malignant central nervous system neoplasms, and the current treatment is not effectual for GBM. Research of specific medicine for GBM is significant. Fangchinoline possesses a wide range of pharmacological activities and attracts more attentions due to its anti-tumor effects. In this study, two WHO grade IV human GBM cell lines (U87 MG and U118 MG) were exposed to fangchinoline, and we found that fangchinoline specifically inhibits the kinase activity of Akt and markedly suppresses the phosphorylation of Thr308 and Ser473 of Akt in human GBM cells. We also observed that fangchinoline inhibits tumor cell proliferation and invasiveness and induces apoptosis through suppressing the Akt-mediated signaling cascades, including Akt/p21, Akt/Bad, and Akt/matrix metalloproteinases (MMPs). These data demonstrated that fangchinoline exerts its anti-tumor effects in human glioblastoma cells, at least partly by inhibiting the kinase activity of Akt and suppressing Akt-mediated signaling cascades.
Collapse
|
39
|
Xavier-Magalhães A, Nandhabalan M, Jones C, Costa BM. Molecular prognostic factors in glioblastoma: state of the art and future challenges. CNS Oncol 2015; 2:495-510. [PMID: 25054820 DOI: 10.2217/cns.13.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gliomas account for the majority of primary tumors of the CNS, of which glioblastoma (GBM) is the most common and malignant, and for which survival is very poor. Despite significant inter- and intra-tumor heterogeneity, all patients are treated with a standardized therapeutic approach. While some clinical features of GBM patients have already been established as classic prognostic factors (e.g., patient age at diagnosis and Karnofsky performance status), one of the most important research fields in neuro-oncology today is the identification of novel molecular determinants of patient survival and tumor response to therapy. Here, we aim to review and discuss some of the most relevant and novel prognostic biomarkers in adult and pediatric GBM patients that may aid in stratifying subgroups of GBMs and rationalizing treatment decisions.
Collapse
Affiliation(s)
- Ana Xavier-Magalhães
- Life & Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
40
|
Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep 2015; 12:1050-8. [PMID: 25777142 PMCID: PMC4438970 DOI: 10.3892/mmr.2015.3492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) was previously shown to exhibit low expression in glioma tissue as compared with that in normal brain tissue; however, the role of NDRG1 in human glioma cells has remained to be elucidated. The present study used the U87 MG and SHG-44 human glioma cell lines as well as the normal human astrocyte cell line 1800, which are known to have differential NDRG1 expression. Small interfering (si)RNA targeting NDRG1, and NDRG1 overexpression vectors were transfected into the SHG-44 and U87 MG glioma cells, respectively. Cell proliferation, invasion, apoptosis and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model was used to investigate the effects of NDRG1 on the growth of glioma cells in vivo. Overexpression of NDRG1 was shown to inhibit cell proliferation and invasion, and induce apoptosis in the U87 MG glioma cells, whereas NDRG1 downregulation increased proliferation, suppressed apoptosis and promoted invasion of the SHG-44 glioma cells. In addition, in the subcutaneous tumor mouse model, overexpression of NDRG1 in U-87 MG cells suppressed tumorigenicity in vivo. The findings of the present study indicated that NDRG1 is required for the inhibition of gliomagenesis; therefore, targeting NDRG1 and its downstream targets may represent novel therapies for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
41
|
Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 2015; 34:4952-63. [PMID: 25597410 DOI: 10.1038/onc.2014.419] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/01/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022]
Abstract
Although increasing evidence indicated that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the role of miR-637 in human gliomas. In the present study, we found that the expression level of miR-637 was significantly reduced in clinical glioma tissues compared with normal brain tissues. Moreover, we revealed that the introduction of miR-637 dramatically suppressed glioma cell growth, migration and invasion in vitro and in vivo. Further studies revealed that Akt1 is a direct target gene of miR-637. Silencing of Akt1 inhibited the growth and invasion of glioma cells by decreasing phosphorylated Akt, β-catenin, phosphorylated Foxo1 and Cyclin D1 and inducing the expression of Foxo1, which was consistent with the effect of miR-637 overexpression. Suppressed expression of miR-637 and increased Akt1 protein levels were correlated with unfavorable progression and poor prognosis, respectively, and a negative relationship between the miR-637 expression and Akt1 protein levels was observed in gliomas. Our findings provide new insights into the role of miR-637 in the development of gliomas, and implicate the potential application of miR-637 in cancer therapy.
Collapse
|
42
|
KURNIA IIN, SIREGAR BUDININGSIH, SOETOPO SETIAWAN, RAMLI IRWAN, KURJANA TJAHYA, ANDRIONO, TOBING MARINGANDIAPARILUMBAN, SURYAWATHI BETHY, KISNANTO TEJA, TETRIANA DEVITA. Correlation Between Akt and p53 Protein Expression and Chemoradiotherapy Response in Cervical Cancer Patients. HAYATI JOURNAL OF BIOSCIENCES 2014. [DOI: 10.4308/hjb.21.4.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
43
|
Chautard E, Ouédraogo ZG, Biau J, Verrelle P. Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J Neurooncol 2014; 117:205-15. [PMID: 24477623 DOI: 10.1007/s11060-014-1382-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
Gathering evidence has revealed that Akt signaling pathway plays an important role in glioma progression and aggressiveness. Among Akt kinases the most studied, Akt1, has been involved in many cellular processes that are in favor of cell malignancy. More recently, the actions of the two other isoforms, Akt2 and Akt3 have emerged in glioma. After a description of Akt pathway activation, we will explore the role of each isoform in malignant glioma that strengthens the current preclinical and clinical studies evaluating the impact of Akt pathway targeting in glioblastomas.
Collapse
Affiliation(s)
- Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA7283 CREaT, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France,
| | | | | | | |
Collapse
|
44
|
Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results. PLoS One 2013; 8:e78943. [PMID: 24265731 PMCID: PMC3827088 DOI: 10.1371/journal.pone.0078943] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023] Open
Abstract
This study was conducted to investigate the feasibility and survival benefits of combined treatment with radiotherapy and temozolomide (TMZ), which has been covered by the national health insurance in Japanese patients with glioblastoma since September 2006. Between September 2006 and December 2011, 47 patients with newly diagnosed and histologically confirmed glioblastoma received radiotherapy for 60 Gy in 30 fractions. Among them, 45 patients (TMZ group) received concomitant TMZ (75 mg/m2/day, every day) and adjuvant TMZ (200 mg/m2/day, 5 days during each 28-days). All 36 of the glioblastoma patients receiving radiotherapy between January 1988 and August 2006 were analyzed as historical controls (control group). All patients were followed for at least 1 year or until they died. The median survival was 15.8 months in the TMZ group and 12.0 months in the control group after a median follow-up of 14.0 months. The hazard ratio for death in the TMZ group relative to the control group was 0.52 (P<0.01); the 2-year survival rate was 27.7% in the TMZ group and 14.6% in the control group. Hematologic toxicity of grade 3 and higher was observed in 20.4% in the TMZ group. Multivariate analysis showed that extent of surgery had the strongest impact on survival (P<0.01), while the use of TMZ had the second largest impact on survival (P = 0.035). The results indicate that combined treatment with radiotherapy and TMZ has a significant survival benefit for Japanese patients with newly diagnosed glioblastoma with slightly higher toxicities than previously reported.
Collapse
|
45
|
Millet P, Granotier C, Etienne O, Boussin FD. Radiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines. Int J Oncol 2013; 43:375-82. [PMID: 23727752 PMCID: PMC3775596 DOI: 10.3892/ijo.2013.1970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/19/2013] [Indexed: 02/07/2023] Open
Abstract
Tumor relapse after radiotherapy is a great concern in the treatment of high-grade gliomas. Inhibition of the PI3-kinase/AKT pathway is known to radiosensitize cancer cells and to delay their DNA repair after irradiation. In this study, we show that the radiosensitization of CB193 and T98G, two high-grade glioma cell lines, by the PI3K inhibitor LY294002, correlates with the induction of G1 and G2/M arrest, but is inconsistently linked to a delayed DNA double-strand break (DSBs) repair. The PI3K/AKT pathway has been shown to activate radioprotective factors such as telomerase, whose inhibition may contribute to the radiosensitization of cancer cells. However, we show that radiation upregulates telomerase activity in LY-294002-treated glioma cells as well as untreated controls, demonstrating a PI3K/AKT-independent pathway of telomerase activation. Our study suggests that radiosensitizing strategies based on PI3-kinase inhibition in high-grade gliomas may be optimized by additional treatments targeting either telomerase activity or telomere maintenance.
Collapse
Affiliation(s)
- P Millet
- CEA, DSV-IRCM-SCSR, Laboratory of Radiopathology, UMR 967, F-92260 Fontenay‑aux‑Roses, France.
| | | | | | | |
Collapse
|
46
|
Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW. Diacylglycerol kinase α is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 2013; 3:782-97. [PMID: 23558954 DOI: 10.1158/2159-8290.cd-12-0215] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.
Collapse
Affiliation(s)
- Charli L Dominguez
- Division of Neuro-Oncology, Department of Neurology, College of Nursing and Health Professions, University of Southern Indiana, Evansville, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu H, Han D, Liu Y, Hou X, Wu J, Li H, Yang J, Shen C, Yang G, Fu C, Li X, Che H, Ai J, Zhao S. Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J Neurooncol 2013; 112:39-48. [PMID: 23392846 DOI: 10.1007/s11060-012-1034-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Harmine hydrochloride (Har-hc), a derivative from Harmine which is a natural extractive from plants, has been considered for treatment of kinds of cancers and cerebral diseases. In this study, we found that Har-hc clearly decreased cell viability, induced apoptosis and inhibited Akt phosphorylation in glioblastoma cell lines. Moreover, Har-hc had the ability to inhibit self-renewal and promote differentiation of glioblastoma stem like cells (GSLCs) accompanied by inhibition of Akt phosphorylation. Especially, we demonstrated that Har-hc inhibited neurosphere formation of human primary GSLCs. In vivo test also confirmed Har-hc decreased the tumorigenicity of GSLCs. Thus we conclude that Har-hc has potent anti-cancer effects in glioblastoma cells, which is at least partially via inhibition of Akt phosphorylation. Administration of Har-hc may act as a new approach to glioblastoma treatment.
Collapse
Affiliation(s)
- Huailei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Watanabe T, Ohtani T, Aihara M, Ishiuchi S. Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models. J Neurosurg 2013; 118:838-45. [PMID: 23311938 DOI: 10.3171/2012.11.jns12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECT Blockade of Ca(++)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) inhibits the proliferation of human glioblastoma by inhibiting Akt phosphorylation, which is independent of the phosphatidylinositol 3-kinase pathway. Inhibiting platelet-derived growth factor receptor (PDGFR)-mediated phosphorylation causes growth inhibition in glioblastoma cells. The authors of this study investigated the effects of YM872 and AG1296, singly and in combination and targeting different pathways upstream of Akt, on Akt-mediated tumor growth in glioblastoma cells in vivo and in vitro. METHODS The expression of AMPAR, PDGFR, and c-kit in glioblastoma cells was analyzed via immunofluorescence. Glioblastoma cells, both in culture and in xenografts grown in mice, were treated with YM872 and AG1296, singly or in combination. Inhibition of tumor growth was observed after treatment in the xenograft model. Cell proliferation assays were performed using anti-Ki 67 antibody in vivo and in vitro. The CD34-positive tumor vessel counts within the vascular hot spots of tumor specimens were evaluated. Phosphorylation of Akt was studied using Western blot analysis. RESULTS Combined administration of YM872 and AG1296 had a significant enhanced effect on the inhibition of cell proliferation and reduction of tumor vascularity in the xenograft model. These agents singly and in combination demonstrated a significant reduction of Akt phosphorylation at Ser473 and inhibition of tumor proliferation in vitro, although combined administration had no enhanced antitumor effects. CONCLUSIONS The strongly enhanced antitumor effect of this combination therapy in vivo rather than in vitro may be attributable to disruption of the aberrant vascular niche. This combination therapy might provide substantial benefits to patients with glioblastoma.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Neurosurgery, Faculty of Clinical Medicine, University of the Ryukyus, Okinawa, Japan.
| | | | | | | |
Collapse
|
49
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
50
|
Masui K, Cloughesy TF, Mischel PS. Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 2012; 38:271-91. [PMID: 22098029 PMCID: PMC4104813 DOI: 10.1111/j.1365-2990.2011.01238.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of malignant gliomas is moving from a morphology-based guide to a system built on molecular criteria. The development of a genomic landscape for gliomas and a better understanding of its functional consequences have led to the development of internally consistent molecular classifiers. However, development of a biologically insightful classification to guide therapy is still a work in progress. Response to targeted treatments is based not only on the presence of drugable targets, but rather on the molecular circuitry of the cells. Further, tumours are heterogeneous and change and adapt in response to drugs. Therefore, the challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. In this review, we examine the potential role of MGMT methylation, IDH1/2 mutations, 1p/19q deletions, aberrant epidermal growth factor receptor and PI3K pathways, abnormal p53/Rb pathways, cancer stem-cell markers and microRNAs as prognostic and predictive molecular markers in the setting of adult high-grade gliomas and we outline the clinically relevant subtypes of glioblastoma with genomic, transcriptomic and proteomic integrated analyses. Furthermore, we describe how these advances, especially in epidermal growth factor receptor/PI3K/mTOR signalling pathway, affect our approaches towards targeted therapy, raising new challenges and identifying new leads.
Collapse
Affiliation(s)
- K Masui
- Department of Pathology and Laboratory Medicine, David Geffen University of California at Los Angeles School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|