1
|
Jaisupa N, Ashton M, Birgersson S. Cannabidiol metabolism in vitro: the role of antiseizure medications and CYP2C19 genotypes. Xenobiotica 2025:1-10. [PMID: 40315023 DOI: 10.1080/00498254.2025.2498696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/16/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
1. Cannabidiol (CBD) can be used as add-on antiseizure medication. We aimed to investigate CBD depletion kinetics when combined with antiseizure medications, further the effect of intermediate-activity CYP2C19 genotype on CBD metabolism. 2. CBD depletion in pooled human liver microsomes (HLMs) was studied at varying concentrations (400-6000 nM) in the absence and presence of valproic acid, clobazam, stiripentol and topiramate. In addition, CBD metabolism in HLMs from CYP2C19 *1/*2 or *1/*4 donors was investigated. Incubation samples were analysed for CBD and metabolites 7-OH-CBD and 7-COOH-CBD using LC-MS/MS. CBD in vitro intrinsic clearance (CLint) was calculated using estimated Vmax and Km values and further extrapolated to in vivo CLint. 3. In vitro CLint values were reduced by approximately 25-85% in the presence of antiseizure medication(s) with the largest effect observed for the combination of four antiseizure drugs. There was no discernible difference for HLMs with CYP2C19 *1/*2 or *1/*4 genotype. Increases in CBD depletion half-lives at higher concentrations indicated substrate inhibition and/or metabolic saturation. 4. Projected decreases in CBD CLint values when combined with several antiseizure medications suggest a potential for clinically relevant drug-drug interactions. A 1.3- to 4.8-fold increased exposure to unbound systemic CBD concentrations was predicted when combined with these antiseizure medications.
Collapse
Affiliation(s)
- Nattapon Jaisupa
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Ashton
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Birgersson
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
V A S, Nayak UY, Sathyanarayana MB, Chaudhari BB, Bhat K. Formulation Strategy of BCS-II Drugs by Coupling Mechanistic In-Vitro and Nonclinical In-Vivo Data with PBPK: Fundamentals of Absorption-Dissolution to Parameterization of Modelling and Simulation. AAPS PharmSciTech 2025; 26:106. [PMID: 40244539 DOI: 10.1208/s12249-025-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BCS class II candidates pose challenges in drug development due to their low solubility and permeability. Researchers have explored various techniques; co-amorphous and solid dispersion are major approaches to enhance in-vitro drug solubility and dissolution. However, in-vivo oral bioavailability remains challenging. Physiologically based pharmacokinetic (PBPK) modeling with a detailed understanding of drug absorption, distribution, metabolism, and excretion (ADME) using a mechanistic approach is emerging. This review summarizes the fundamentals of the PBPK, dissolution-absorption models, parameterization of oral absorption for BCS class II drugs, and provides information about newly emerging artificial intelligence/machine learning (AI/ML) linked PBPK approaches with their advantages, disadvantages, challenges and areas of further exploration. Additionally, the fully integrated workflow for formulation design for investigational new drugs (INDs) and virtual bioequivalence for generic molecules falling under BCS-II are discussed.
Collapse
Affiliation(s)
- Shriya V A
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Kim A, Shin D, Seo Y, Kang D, Min YW, Kim IH, Kim J. Phase I Study to Evaluate the Effect of Hepatic Impairment on Pharmacokinetics and Safety of Tegoprazan, a Potassium Competitive Acid Blocker. Adv Ther 2025; 42:1570-1581. [PMID: 39932678 DOI: 10.1007/s12325-025-03127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Tegoprazan is a potassium-competitive acid blocker, and its systemic exposure is presumably affected by hepatic clearance and bioavailability. This study aimed to investigate the effect of hepatic impairment (HI) on the safety and pharmacokinetics of tegoprazan and metabolite. METHODS An open-label, multicenter, parallel-group study was conducted in patients with mild (n = 8), moderate (n = 8) and severe (n = 1) HI according to the Child-Pugh classification as well as controls. Healthy subjects (n = 8) were matched to patients with the moderate category based on age, body mass index and sex. Blood and urine samples were obtained to evaluate the concentrations of tegoprazan and metabolite (M1) until 48 h after a single oral administration of 50 mg of tegoprazan. RESULTS The geometric mean ratio with a 90% confidence interval of maximum plasma concentration and area under the plasma concentration-time curve for tegoprazan in patients with impaired hepatic function compared to controls were 0.8228 (0.4997-1.3550) and 1.2264 (0.7447-2.0197) in the mild category, 1.0332 (0.6274-1.7015) and 1.7676 (1.0733-2.9109) in the moderate category, and 1.0699 (0.3713-3.0823) and 1.9567 (0.6792-5.6377) in the severe category. The half-life, apparent clearance, renal clearance, and fraction unbound to plasma protein were comparable across study groups. The plasma concentration of M1 increased and decreased faster in the normal group. Tegoprazan was generally well tolerated in patients with HI. CONCLUSIONS Systemic exposure to tegoprazan tended to be increased in subjects with HI. The difference between patients with mild HI and the controls was deemed not to require dose adjustment for tegoprazan. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT04494269 (31 Jul 2020).
Collapse
Affiliation(s)
- Anhye Kim
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
- Department of Pharmacology, CHA University School of Medicine, Pocheon, Republic of Korea
| | - Dongseong Shin
- Department of Clinical Pharmacology and Therapeutics, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Youlim Seo
- Clinical Research Center, HK inno.N Corp, Seoul, Republic of Korea
| | - Deborah Kang
- Clinical Research Center, HK inno.N Corp, Seoul, Republic of Korea
| | - Yang Won Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jungryul Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
4
|
Himstedt A, Rapp H, Stopfer P, Lotz R, Scheuerer S, Arnhold T, Sauer A, Borghardt JM. Beyond CL and V SS: A comprehensive approach to human pharmacokinetic predictions. Drug Discov Today 2024; 29:104238. [PMID: 39521329 DOI: 10.1016/j.drudis.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This article presents a comprehensive examination of processes related to the prediction of human pharmacokinetics (PK), a crucial task of clinical drug candidate selection. By systematically incorporating in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo PK data with expert judgement, the study achieves high-quality human PK predictions for 40 orally administered compounds from Boehringer Ingelheim's new chemical entity (NCE) portfolio. Overall, the article provides a detailed evaluation of and guidance for a structured process to predict full concentration-time profiles beyond single-parameter predictions, using state-of-the-art methodologies. Furthermore, it discusses future challenges and improvements, and aims to provide valuable insights for scientists working in drug metabolism and PK (DMPK) or PK/pharmacodynamics (PK/PD) modelling.
Collapse
Affiliation(s)
- Anneke Himstedt
- Global Research DMPK, Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Hermann Rapp
- Global Research DMPK, Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Peter Stopfer
- Clinical Pharmacology, Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Lotz
- Nonclinical Pharmacokinetics, Global Nonclinical Safety and DMPK, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan Scheuerer
- Nonclinical Pharmacokinetics, Global Nonclinical Safety and DMPK, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Arnhold
- Clinical Pharmacology, Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Achim Sauer
- Global Research DMPK, Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| | - Jens Markus Borghardt
- Global Research DMPK, Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
5
|
Shen C, Yang H, Shao W, Zheng L, Zhang W, Xie H, Jiang X, Wang L. Physiologically Based Pharmacokinetic Modeling to Unravel the Drug-gene Interactions of Venlafaxine: Based on Activity Score-dependent Metabolism by CYP2D6 and CYP2C19 Polymorphisms. Pharm Res 2024; 41:731-749. [PMID: 38443631 DOI: 10.1007/s11095-024-03680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Venlafaxine (VEN) is a commonly utilized medication for alleviating depression and anxiety disorders. The presence of genetic polymorphisms gives rise to considerable variations in plasma concentrations across different phenotypes. This divergence in phenotypic responses leads to notable differences in both the efficacy and tolerance of the drug. PURPOSE A physiologically based pharmacokinetic (PBPK) model for VEN and its metabolite O-desmethylvenlafaxine (ODV) to predict the impact of CYP2D6 and CYP2C19 gene polymorphisms on VEN pharmacokinetics (PK). METHODS The parent-metabolite PBPK models for VEN and ODV were developed using PK-Sim® and MoBi®. Leveraging prior research, derived and implemented CYP2D6 and CYP2C19 activity score (AS)-dependent metabolism to simulate exposure in the drug-gene interactions (DGIs) scenarios. The model's performance was evaluated by comparing predicted and observed values of plasma concentration-time (PCT) curves and PK parameters values. RESULTS In the base models, 91.1%, 94.8%, and 94.6% of the predicted plasma concentrations for VEN, ODV, and VEN + ODV, respectively, fell within a twofold error range of the corresponding observed concentrations. For DGI scenarios, these values were 81.4% and 85% for VEN and ODV, respectively. Comparing CYP2D6 AS = 2 (normal metabolizers, NM) populations to AS = 0 (poor metabolizers, PM), 0.25, 0.5, 0.75, 1.0 (intermediate metabolizers, IM), 1.25, 1.5 (NM), and 3.0 (ultrarapid metabolizers, UM) populations in CYP2C19 AS = 2.0 group, the predicted DGI AUC0-96 h ratios for VEN were 3.65, 3.09, 2.60, 2.18, 1.84, 1.56, 1.34, 0.61, and for ODV, they were 0.17, 0.35, 0.51, 0.64, 0.75, 0.83, 0.90, 1.11, and the results were similar in other CYP2C19 groups. It should be noted that PK differences in CYP2C19 phenotypes were not similar across different CYP2D6 groups. CONCLUSIONS In clinical practice, the impact of genotyping on the in vivo disposition process of VEN should be considered to ensure the safety and efficacy of treatment.
Collapse
Affiliation(s)
- Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China.
| |
Collapse
|
6
|
Choi HI, Kim T, Kim JW, Lee GJ, Choi J, Chae YJ, Kim E, Koo TS. Rat Pharmacokinetics and In Vitro Metabolite Identification of KM-819, a Parkinson's Disease Candidate, Using LC-MS/MS and LC-HRMS. Molecules 2024; 29:1004. [PMID: 38474516 DOI: 10.3390/molecules29051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
FAF1 (FAS-associated factor 1) is involved in the activation of Fas cell surface death receptors and plays a role in apoptosis and necrosis. In patients with Parkinson's disease, FAF1 is overexpressed in dopaminergic neurons in the substantia nigra. KM-819, an FAF1 inhibitor, has shown potential for preventing dopaminergic neuronal cell death, promoting the degradation of α-synuclein and preventing its accumulation. This study aimed to develop and validate a quantitative analytical method for determining KM-819 levels in rat plasma using liquid chromatography-tandem mass spectrometry. This method was then applied to pharmacokinetic (PK) studies in rats. The metabolic stability of KM-819 was assessed in rat, dog, and human hepatocytes. In vitro metabolite identification and metabolic pathways were investigated in rat, dog, and human hepatocytes. The structural analog of KM-819, namely N-[1-(4-bromobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl]-2-(phenylsulfanyl) acetamide, served as the internal standard (IS). Proteins were precipitated from plasma samples using acetonitrile. Analysis was carried out using a reverse-phase C18 column with a mobile phase consisting of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile. The analytical method developed for KM-819 exhibited linearity within the concentration range of 0.002-10 μg/mL in rat plasma. The precision and accuracy of the intra- and inter-day measurements were <15% for the lower limit of quantification (LLOQ) and all quality control samples. KM-819 demonstrated stability under various sample storage conditions (6 h at room temperature (25 °C), four weeks at -20 °C, three freeze-thaw cycles, and pretreated samples in the autosampler). The matrix effect and dilution integrity met the criteria set by the Food and Drug Administration and the European Medicines Agency. This sensitive, rapid, and reliable analytical method was successfully applied in pharmacokinetic studies in rats. Pharmacokinetic analysis revealed the dose-independent kinetics of KM-819 at 0.5-5 mg/kg, with a moderate oral bioavailability of ~20% in rats. The metabolic stability of KM-819 was also found to be moderate in rat, dog, and human hepatocytes. Metabolite identification in rat, dog, and human hepatocytes resulted in the discovery of six, six, and eight metabolites, respectively. Glucuronidation and mono-oxidation have been proposed as the major metabolic pathways. Overall, these findings contribute to a better understanding of the pharmacokinetic characteristics of KM-819, thereby aiding future clinical studies.
Collapse
Affiliation(s)
- Hae-In Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taeheon Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Woo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ju Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinyoung Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Eunhee Kim
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
- Biopharmaceutical Division, Kainos Medicine Inc., Seongnam 13488, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Shenkoya B, Yellepeddi V, Mark K, Gopalakrishnan M. Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2023; 15:2467. [PMID: 37896227 PMCID: PMC10610403 DOI: 10.3390/pharmaceutics15102467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
A knowledge gap exists in infant tetrahydrocannabinol (THC) data to guide breastfeeding recommendations for mothers who use cannabis. In the present study, a paired lactation and infant physiologically based pharmacokinetic (PBPK) model was developed and verified. The verified model was used to simulate one hundred virtual lactating mothers (mean age: 28 years, body weight: 78 kg) who smoked 0.32 g of cannabis containing 14.14% THC, either once or multiple times. The simulated breastfeeding conditions included one-hour post smoking and subsequently every three hours. The mean peak concentration (Cmax) and area under the concentration-time curve (AUC(0-24 h)) for breastmilk were higher than in plasma (Cmax: 155 vs. 69.9 ng/mL; AUC(0-24 h): 924.9 vs. 273.4 ng·hr/mL) with a milk-to-plasma AUC ratio of 3.3. The predicted relative infant dose ranged from 0.34% to 0.88% for infants consuming THC-containing breastmilk between birth and 12 months. However, the mother-to-infant plasma AUC(0-24 h) ratio increased up to three-fold (3.4-3.6) with increased maternal cannabis smoking up to six times. Our study demonstrated the successful development and application of a lactation and infant PBPK model for exploring THC exposure in infants, and the results can potentially inform breastfeeding recommendations.
Collapse
Affiliation(s)
- Babajide Shenkoya
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Katrina Mark
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 11 S Paca, Suite 400, Baltimore, MD 21042, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Pan C, Cheng Y, He Q, Li M, Bu F, Zhu X, Li X, Xiang X. Evaluating the impact of co-administered drug and disease on ripretinib exposure: A physiologically-based pharmacokinetic modeling approach. Chem Biol Interact 2023; 373:110400. [PMID: 36773833 DOI: 10.1016/j.cbi.2023.110400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Ripretinib, as an oral kinase inhibitor, has been approved to treat advanced gastrointestinal stromal tumors (GIST) and is often used in combination with other drugs to slow disease progression, thus potential drug-drug Interactions (DDIs) and drug-disease interactions (DDZIs) have received much attention. To guide clinical rational drug use, this study assessed the effect of co-administered drugs and diseases on ripretinib exposure. Simcyp® Simulator was used to develop the physiologically-based pharmacokinetic (PBPK) model of ripretinib, which was validated and refined with clinical data. We then examined the impact of several CYP3A4 inhibitors and inducers as well as different diseases on ripretinib exposure using the validated model. In the DDI simulation, moderate CYP3A4 inhibitors and inducers changed the exposure of ripretinib by 1.25-2 fold. In hepatic impairment (HI), the simulation showed that ripretinib's AUC increased by 32%, 100%, and 152% for Child-Pugh A, B, and C classification while Cmax increased by 2%, 10%, and 15%, respectively. In renal impairment (RI), the model-simulated AUC in moderate and severe RIs increased by 27% and 20%. In conclusion, PBPK models demonstrated quantitative prediction of ripretinib's pharmacokinetic changes under varying conditions that might be useful for its rational use.
Collapse
Affiliation(s)
- Chunyang Pan
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yifan Cheng
- GeneScience Pharmaceuticals Co., Ltd., ChangChun, 130012, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Min Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fengjiao Bu
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaoyu Li
- GeneScience Pharmaceuticals Co., Ltd., ChangChun, 130012, China.
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
9
|
Choi S, Han S, Lee SJ, Lim B, Bae SH, Han S, Yim DS. DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106662. [PMID: 35151112 DOI: 10.1016/j.cmpb.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES In silico experiments and simulations using physiologically based pharmacokinetic (PBPK) and allometric approaches have played an important role in pharmaceutical research and drug development. These methods integrate diverse data from preclinical and clinical development, and have been widely applied to in vitro-in vivo extrapolation (IVIVE) of absorption, distribution, metabolism, and excretion (ADME). METHODS To develop a user-friendly open tool predicting human PK, we assessed various references on PBPK and allometric methods published so far. They were integrated into a software system named "DallphinAtoM" (Drugs with ALLometry and PHysiology Inside-Animal to huMan), which has a user-friendly platform that can handle complex PBPK models and allometric models with a relatively small amount of essential information of the drug. The models of DallphinAtoM support the integration of data gained during the nonclinical development phase, enable translation from animal to human, and allow the prediction of concentration-time profiles with predicted PK parameters. RESULTS We presented two illustrative applications using DallphinAtoM: (1) human PK simulation of an orally administered drug using PBPK method; and (2) simulation of intravenous infusion following a two-compartment model using the allometric scaling method. CONCLUSIONS We conclude that this is a straightforward and transparent tool allowing fast and reliable human PK simulation based on the latest knowledge on biochemical processes and physiology and provides valuable information for decision making during the early-phase drug development.
Collapse
Affiliation(s)
- Suein Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sungpil Han
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - So Jin Lee
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Q-fitter Inc., Seoul 06578, Republic of Korea
| | - Byunghee Lim
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | | | - Seunghoon Han
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong-Seok Yim
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|
10
|
Rogdakis T, Charou D, Latorrata A, Papadimitriou E, Tsengenes A, Athanasiou C, Papadopoulou M, Chalikiopoulou C, Katsila T, Ramos I, Prousis KC, Wade RC, Sidiropoulou K, Calogeropoulou T, Gravanis A, Charalampopoulos I. Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines 2022; 10:614. [PMID: 35327415 PMCID: PMC8945229 DOI: 10.3390/biomedicines10030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.
Collapse
Affiliation(s)
- Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alessia Latorrata
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Eleni Papadimitriou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Constantina Chalikiopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Theodora Katsila
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160 Bizkaia, Spain;
| | - Kyriakos C. Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Kyriaki Sidiropoulou
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 71113 Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| |
Collapse
|
11
|
Choi S, Yim DS, Bae SH. Prediction of metabolizing enzyme-mediated clinical drug interactions using in vitro information. Transl Clin Pharmacol 2022; 30:1-12. [PMID: 35419310 PMCID: PMC8979758 DOI: 10.12793/tcp.2022.30.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Evaluation of drug interactions is an essential step in the new drug development process. Regulatory agencies, including U.S. Food and Drug Administrations and European Medicines Agency, have been published documents containing guidelines to evaluate potential drug interactions. Here, we have streamlined in vitro experiments to assess metabolizing enzyme-mediated drug interactions and provided an overview of the overall process to evaluate potential clinical drug interactions using in vitro data. An experimental approach is presented when an investigational drug (ID) is either a victim or a perpetrator, respectively, and the general procedure to obtain in vitro drug interaction parameters is also described. With the in vitro inhibitory and/or inductive parameters of the ID, basic, static, and/or dynamic models were used to evaluate potential clinical drug interactions. In addition to basic and static models which assume the most conservative conditions, such as the concentration of perpetrators as Cmax, dynamic models including physiologically-based pharmacokinetic models take into account changes in in vivo concentrations and metabolizing enzyme levels over time.
Collapse
Affiliation(s)
- Suein Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Dong-Seok Yim
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | |
Collapse
|