1
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
2
|
Li W, Li Z, Yan Y, Zhang J, Zhou Q, Jia C, Xu Y, Cui H, Xie S, Liu Q, Guan Y, Liu Y, He M. Urinary arsenic metabolism, genetic susceptibility, and their interaction on type 2 diabetes. CHEMOSPHERE 2023; 345:140536. [PMID: 37890798 DOI: 10.1016/j.chemosphere.2023.140536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Growing studies investigated the association of arsenic metabolism with type 2 diabetes (T2D), however, the epidemiological evidence is inconsistent. In addition, the interaction of arsenic metabolism-related genetic risk score (GRS)-arsenic on T2D risk was unclear. The present study aimed to evaluate the association of arsenic metabolism efficiency [inorganic arsenic (iAs)%, monomethylarsonic acid (MMA)%, and dimethylarsinic acid (DMA%)] with T2D risk. Moreover, the relationship of GRS and arsenic metabolism efficiency and the interaction of GRS-arsenic on T2D were investigated. Age- and sex-matched new-onset diabetes case-control study derived from the Dongfeng-Tongji cohort was conducted and 996 pairs participants were included in this study. The leave-one-out approach was used to evaluate the association of arsenic metabolism efficiency with T2D risk. The GRS and weight GRS (wGRS) were calculated based on 79 candidate SNPs. We estimated the relationship of GRS with arsenic metabolism efficiency by linear regression model. The interaction of GRS-arsenic on T2D was assessed by adding a multiplicative interaction term (GRS × arsenic) in the logistic regression models. Urinary iAs% was positively associated with T2D risk, and the OR (95% CI) was 1.06 (1.01, 1.12). MMA% and PMI were negatively associated with T2D risk, and the ORs (95% CI) were 0.87 (0.78, 0.97) and 0.64 (0.47, 0.86), respectively. Urinary DMA, As3+, and As5+ were positively associated with T2D risk. Similar relationships were found between arsenic metabolites and levels of FPG and HbA1c. Moreover, arsenic metabolism-related GRS/wGRS was positively associated with MMA% but negatively associated with DMA%. Genetic predisposition to arsenic metabolism modified the association of inorganic arsenic with T2D risk (Pinteraction = 0.033). Taken together, lower arsenic primary metabolism efficiency (higher iAs% and lower MMA%) may increase T2D risk. Genetic predisposition to arsenic metabolism was associated with arsenic metabolism efficiency, and might modify the association of inorganic arsenic with T2D risk.
Collapse
Affiliation(s)
- Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Xu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongsheng Cui
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Xie
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youbing Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Rahimi Kakavandi N, Mousavi T, Asadi T, Moradi A, Esmaeili M, Habibian Sezavar A, Nikfar S, Abdollahi M. An updated systematic review and dose-response meta-analysis on the relation between exposure to arsenic and risk of type 2 diabetes. Toxicol Lett 2023; 384:115-127. [PMID: 37562716 DOI: 10.1016/j.toxlet.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Arsenic is among the most critical environmental toxicants associated with many human disorders. However, its effect on type 2 diabetes mellitus (T2DM) is contradictory. This systematic review and dose-response meta-analysis aim to update information on the association between arsenic exposure and the risk of T2DM. The sample type (drinking water, urine, blood, and nails) conducted the subgroup analysis. Evaluation of the high vs. low arsenic concentrations showed a significant association between drinking water arsenic (OR: 1.58, 95% CI: 1.20-2.08) and urinary arsenic (OR: 1.37, 95% CI: 1.24-1.51) with the risk of T2DM. The linear dose-response meta-analysis showed that each 1 μg/L increase in levels of drinking water arsenic (OR: 1.01, 95% CI: 1.00-1.01) and urinary arsenic (OR: 1.01, 95% CI: 1.00-1.02) was associated with a 1% increased risk of T2DM. The non-linear dose-response analysis indicated that arsenic in urine was associated with the risk of T2DM (Pnon-linearity<0.001). However, this effect was not statistically significant for arsenic in drinking water (Pnon-linearity=0.941). Our findings suggest that blood arsenic was not significantly linked to the increased risk of T2DM in high vs. low (OR: 1.21, 95% CI: 0.85-1.71), linear (OR: 1.04, 95% CI: 0.99-1.09), and non-linear (Pnon-linearity=0.365) analysis. Also, nail arsenic was not associated with the risk of T2DM in this meta-analysis (OR: 1.33, 95% CI: 0.69-2.59). This updated dose-response meta-analysis indicated that arsenic exposure was significantly correlated with the risk of T2DM.
Collapse
Affiliation(s)
- Nader Rahimi Kakavandi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Taraneh Mousavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Asadi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ayda Moradi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Esmaeili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Habibian Sezavar
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sánchez-Rodríguez BL, Castillo-Maldonado I, Pedroza-Escobar D, Delgadillo-Guzmán D, Soto-Jiménez MF. Association of obesity, diabetes, and hypertension with arsenic in drinking water in the Comarca Lagunera province (north-central Mexico). Sci Rep 2023; 13:9244. [PMID: 37286701 DOI: 10.1038/s41598-023-36166-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Chronic endemic regional hydroarsenicism (CERHA) is a global issue that affects over 200 million people exposed to arsenic (As) in drinking water. This includes 1.75 million individuals residing in La Comarca Lagunera, a region in north-central Mexico. Arsenic levels in this region typically exceeds the WHO guideline of 10 µg L-1. Biochemical alterations related to the human As metabolism may increase the risk of overweight and obesity (O&O), type 2 diabetes (T2D), and hypertension (AHT). In our study, we investigated the role of As in drinking water as a risk factor for these metabolic diseases. We focused on populations with historically moderate (San Pedro) and low (Lerdo) drinking water As levels and people with no historical evidence of As water contamination. The exposure assessment to As was based on measurements of the drinking water (medians 67.2, 21.0, 4.3 µg L-1) and urinary As concentrations in women (9.4, 5.3, 0.8 µg L-1) and men (18.1, 4.8, 1.0 µg L-1). A significant correlation between As in drinking water and urine evidenced the As exposure in the population (R2 = 0.72). Adjusted odds ratios with 95% confidence intervals evidenced higher chances of being diagnosed with T2D (1.7, 1.2-2.0) and AHT (1.8, 1.7-1.9) in individuals living in San Pedro than those in Lerdo. Still, there was no significant association with obesity. Individuals living in CERHA towns were found to have a higher risk of obesity (1.3-1.9), T2D (1.5 to 3.3), and AHT (1.4 to 2.4) compared to those residing in non-CERHA towns. Finally, obesity is more probable in women [inverse of OR and 95%CI 0.4 (0.2-0.7)] compared to men, while men is more likely to be diagnosed with T2D [OR = 2.0 (1.4-2.3)] and AHT [OR = 2.0 (1.5-2.3)] than women, independently of the municipality.
Collapse
Affiliation(s)
- B L Sánchez-Rodríguez
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - I Castillo-Maldonado
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - D Pedroza-Escobar
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - D Delgadillo-Guzmán
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreón, Mexico
| | - M F Soto-Jiménez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Av. Joel Montes Camarena, 82040, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
5
|
Zhang Y, Zhou M, Liang R, Yu L, Cheng M, Wang X, Wang B, Chen W. Arsenic exposure incurs hyperglycemia mediated by oxidative damage in urban adult population: A prospective cohort study with three repeated measures. ENVIRONMENTAL RESEARCH 2023; 229:116009. [PMID: 37119843 DOI: 10.1016/j.envres.2023.116009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The associations and potential mechanisms of low to moderate arsenic exposure with fasting plasma glucose (FPG) and type 2 diabetes mellitus (T2DM) are still unclear. To assess the effects of short-term and long-term arsenic exposure on hyperglycemia and the mediating effect of oxidative damage on such association, three repeated-measures studies with 9938 observations were conducted in the Wuhan-Zhuhai cohort. The levels of urinary total arsenic, FPG, urinary 8-iso-prostaglandin F2alpha (8-iso-PGF2α), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and plasma protein carbonyls (PCO) were measured. Generalized linear mixed models were used to evaluate the exposure-response relationships of urinary total arsenic with FPG and the prevalent risks of impaired fasting glucose (IFG), T2DM, and abnormal glucose regulation (AGR). Cox regression models were applied to assess the associations of arsenic exposure with incident risks of IFG, T2DM, and AGR. Mediation analyses were performed to assess the mediating effects of 8-iso-PGF2α, 8-OHdG, and PCO. In cross-sectional analyses, each one-unit increase in natural log-transformed urinary total arsenic was associated with a 0.082 (95% CI: 0.047 to 0.118) mmol/L increase in FPG, as well as a 10.3% (95% CI: 1.4%-20.0%), 4.4% (95% CI: 5.3%-15.2%), and 8.7% (95% CI: 1.2%-16.6%) increase in prevalent risks of IFG, T2DM, and AGR, respectively. In longitudinal analyses, arsenic exposure was further associated with the annual increased rate of FPG with a β (95% CI) of 0.021 (95% CI: 0.010 to 0.033). The incident risks of IFG, T2DM, and AGR were increased without statistical significance when arsenic levels increased. Mediation analyses showed that 8-iso-PGF2α and PCO mediated 30.04% and 10.02% of the urinary total arsenic-associated FPG elevation, respectively. Our study indicated that arsenic exposure was associated with elevated level and progression rate of FPG among general Chinese adults, where lipid peroxidation and oxidative protein damage might be the potential mechanisms.
Collapse
Affiliation(s)
- Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
He Z, Xu Y, Ma Q, Zhou C, Yang L, Lin M, Deng P, Yang Z, Gong M, Zhang H, Lu M, Li Y, Gao P, Lu Y, He M, Zhang L, Pi H, Zhang K, Qin S, Yu Z, Zhou Z, Chen C. SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128942. [PMID: 35468398 DOI: 10.1016/j.jhazmat.2022.128942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metabolic disorders induced by arsenic exposure have attracted great public concern. However, it remains unclear whether hypothalamus-based central regulation mechanisms are involved in this process. Here, we exposed mice to 100 μg/L arsenic in drinking water and established a chronic arsenic exposure model. Our study revealed that chronic arsenic exposure caused metabolic disorders in mice including impaired glucose metabolism and decreased energy expenditure. Arsenic exposure also impaired glucose sensing and the activation of proopiomelanocortin (POMC) neurons in the hypothalamus. In particular, arsenic exposure damaged the plasticity of hypothalamic astrocytic process. Further research revealed that arsenic exposure inhibited the expression of sex-determining region Y-Box 2 (SOX2), which decreased the expression level of insulin receptors (INSRs) and the phosphorylation of AKT. The conditional deletion of astrocytic SOX2 exacerbated arsenic-induced effects on metabolic disorders, the impairment of hypothalamic astrocytic processes, and the inhibition of INSR/AKT signaling. Furthermore, the arsenic-induced impairment of astrocytic processes and inhibitory effects on INSR/AKT signaling were reversed by SOX2 overexpression in primary hypothalamic astrocytes. Together, we demonstrated here that chronic arsenic exposure caused metabolic disorders by impairing SOX2-modulated hypothalamic astrocytic process plasticity in mice. Our study provides evidence of novel central regulatory mechanisms underlying arsenic-induced metabolic disorders and emphasizes the crucial role of SOX2 in regulating the process plasticity of adult astrocytes.
Collapse
Affiliation(s)
- Zhixin He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Chao Zhou
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China; Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse 857099, China
| | - Lingling Yang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Huijie Zhang
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Muxue Lu
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yanqi Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Rangel-Moreno K, Gamboa-Loira B, López-Carrillo L, Cebrián ME. Prevalence of type 2 diabetes mellitus in relation to arsenic exposure and metabolism in Mexican women. ENVIRONMENTAL RESEARCH 2022; 210:112948. [PMID: 35189103 DOI: 10.1016/j.envres.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Experimental studies have shown the diabetogenic potential of inorganic arsenic (iAs); however, the epidemiological evidence is still inconclusive. This could be explained by differences in exposure, metabolism efficiency, nutritional and genetic factors. OBJECTIVE To evaluate the association between type 2 diabetes mellitus (T2DM) prevalence with arsenic exposure and metabolism, considering one-carbon metabolism nutrient intake and arsenite methyltransferase (AS3MT) polymorphisms. METHODS From healthy controls of a case control study for female breast cancer in northern Mexico, 227 self-reported diabetic women were age-matched with 454 non-diabetics. Participants were interviewed about dietary, sociodemographic and clinical characteristics. Urinary iAs metabolites were determined by HPLC-ICP-MS, methylation efficiency parameters were calculated, and AS3MT c.860 T > C and c.529-56G > C genotypes were determined. Unconditional logistic regression models were used to evaluate associations. RESULTS Total arsenic in urine (TAs) ranged from 0.73 to 248.12 μg/L with a median of 10.48 μg/L. In unadjusted analysis, TAs (μg/g) was significantly higher in cases than controls, but not when expressed as TAs (μg/L). Cases had significantly lower urinary monomethylarsonic acid percentage (%MMA), first methylation ratio (FMR), creatinine, and choline and selenium intakes. In multi-adjusted models and in women without HTA history T2DM showed significant positive associations with %iAs and FMR, respectively, and a significant negative association with %DMA. In participants with HTA history there was a marginal positive association (p = 0.08) between T2DM and TAs concentrations (μg/g) without other significant associations. CONCLUSIONS Our results support an association between T2DM prevalence and iAs metabolism but not with urinary arsenic levels. However, elucidation of the interplay among iAs metabolism, T2DM and HTA merit further studies.
Collapse
Affiliation(s)
- Karla Rangel-Moreno
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P. 07360, Mexico.
| |
Collapse
|
8
|
Research for type 2 diabetes mellitus in endemic arsenism areas in central China: role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism. Arch Toxicol 2022; 96:1673-1683. [PMID: 35420349 DOI: 10.1007/s00204-022-03279-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the major public health problems worldwide; both genetic and environmental factors are its risk factors. Arsenic, an environmental pollutant, might be a risk factor for T2DM, but the association of low-to-moderate level arsenic exposure with the risk of T2DM is still inconsistent. Single nucleotide polymorphisms (SNPs) can affect the development of T2DM, but the study on KEAP1 rs11545829 (G>A) SNP is few. In this paper, we explored the effect of KEAP1 rs11545829 (G>A) SNP and low-to-moderate level arsenic exposure on risk of T2DM in a cross-sectional case-control study conducted in Shanxi, China. Total of 938 participants, including 318 T2DM cases and 618 controls, were enrolled. Blood glycosylated haemoglobin (HbA1c) was detected by Automatic Biochemical Analyzer, and participants with HbA1c≧6.5% were diagnosed as T2DM. Urinary total arsenic (tAs, mg/L), as the indicator of arsenic exposure, was detected by liquid chromatography-atomic fluorescence spectrometry (LC-AFS). Genomic DNA was extracted and the genotypes of KEAP1 rs11545829 SNP were examined by multiplex polymerase chain reaction (PCR). The urinary tAs concentration in recruited participants was 0.075 (0.03-0.15) mg/L, and was associated with an increased risk of T2DM (OR = 8.45, 95% CI 2.63-27.17); rs11545829 mutation homozygote AA genotype had a protective effect on risk of T2DM (OR = 0.42, 95 % CI 0.25-0.73). Although this protective effect of AA genotype was found in participants with higher urinary tAs level (>0.032 mg/L) (OR = 0.48, 95% CI 0.26-0.86), there was no interaction effect for arsenic exposure and rs11545829 SNP on risk of T2DM. In addition, BMI modified the association between rs11545829 SNP and the risk of T2DM (RERI = -1.11, 95% CI -2.18-0.04). The present study suggest that low-to-moderate level arsenic exposure may be a risk factor, while KEAP1 rs11545829 SNP mutation homozygote AA genotype may be a protective factor for risk of T2DM, especially for T2DM patients with urinary tAs level>0.032 mg/L.
Collapse
|
9
|
Nie H, Hu H, Li Z, Wang R, He J, Li P, Li W, Cheng X, An J, Zhang Z, Bi J, Yao J, Guo H, Zhang X, He M. Associations of plasma metal levels with type 2 diabetes and the mediating effects of microRNAs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118452. [PMID: 34737026 DOI: 10.1016/j.envpol.2021.118452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to determine the associations of multiple plasma metal levels and plasma microRNAs (miRNAs) with diabetes risk, and further explore the mediating effects of plasma miRNAs on the associations of plasma metal with diabetes risk. We detected plasma levels of 23 metals by inductively coupled plasma mass spectrometry (ICP-MS) among 94 newly diagnosed and untreated diabetic cases and 94 healthy controls. The plasma miRNAs were examined by microRNA Array screening and Taqman real-time PCR validation among the same study population. The multivariate logistic regression models were employed to explore the associations of plasma metal and miRNAs levels with diabetes risk. Generalized linear regression models were utilized to investigate the relationships between plasma metal and plasma miRNAs, and mediation analysis was used to assess the mediating effects of plasma miRNAs on the relationships between plasma metals and diabetes risk. Plasma aluminum (Al), titanium (Ti), copper (Cu), zinc (Zn), selenium (Se), rubidium (Rb), strontium (Sr), barium (Ba), and Thallium (Tl) levels were correlated with elevated diabetic risk while molybdenum (Mo) with decreased diabetic risk (P < 0.05 after FDR multiple correction). MiR-122-5p and miR-3141 were positively associated with diabetes risk (all P < 0.05). Ti, Cu, and Zn were positively correlated with miR-122-5p (P = 0.001, 0.028 and 0.004 respectively). Ti, Cu, and Se were positively correlated with miR-3141 (P = 0.003, 0.015, and 0.031 respectively). In addition, Zn was positively correlated with miR-193b-3p (P = 0.002). Ti was negatively correlated with miR-26b-3p (P = 0.016), while Mo and miR-26b-3p were positively correlated (P = 0.042). In the mediation analysis, miR-122-5p mediated 48.0% of the association between Ti and diabetes risk. The biological mechanisms of the association are needed to be explored in further studies.
Collapse
Affiliation(s)
- Hongli Nie
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, Xinjiang, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Wu F, Chen Y, Navas-Acien A, Garabedian ML, Coates J, Newman JD. Arsenic Exposure, Arsenic Metabolism, and Glycemia: Results from a Clinical Population in New York City. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3749. [PMID: 33916749 PMCID: PMC8038318 DOI: 10.3390/ijerph18073749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
Little information is available regarding the glycemic effects of inorganic arsenic (iAs) exposure in urban populations. We evaluated the association of total arsenic and the relative proportions of arsenic metabolites in urine with glycemia as measured by glycated blood hemoglobin (HbA1c) among 45 participants with prediabetes (HbA1c ≥ 5.7-6.4%), 65 with diabetes (HbA1c ≥ 6.5%), and 36 controls (HbA1c < 5.7%) recruited from an academic medical center in New York City. Each 10% increase in the proportion of urinary dimethylarsinic acid (DMA%) was associated with an odds ratio (OR) of 0.59 (95% confidence interval (CI): 0.28-1.26) for prediabetes, 0.46 (0.22-0.94) for diabetes, and 0.51 (0.26-0.99) for prediabetes and diabetes combined. Each 10% increase in the proportion of urinary monomethylarsonic acid (MMA%) was associated with a 1.13% (0.39, 1.88) increase in HbA1c. In contrast, each 10% increase in DMA% was associated with a 0.76% (0.24, 1.29) decrease in HbA1c. There was no evidence of an association of total urinary arsenic with prediabetes, diabetes, or HbA1c. These data suggest that a lower arsenic methylation capacity indicated by higher MMA% and lower DMA% in urine is associated with worse glycemic control and diabetes. Prospective, longitudinal studies are needed to evaluate the glycemic effects of low-level iAs exposure in urban populations.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; (F.W.); (Y.C.)
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; (F.W.); (Y.C.)
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA;
| | - Michela L. Garabedian
- Division of Cardiology and the Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; (M.L.G.); (J.C.)
| | - Jane Coates
- Division of Cardiology and the Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; (M.L.G.); (J.C.)
| | - Jonathan D. Newman
- Division of Cardiology and the Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; (M.L.G.); (J.C.)
| |
Collapse
|
11
|
Zhang Q, Hou Y, Wang D, Xu Y, Wang H, Liu J, Xia L, Li Y, Tang N, Zheng Q, Sun G. Interactions of arsenic metabolism with arsenic exposure and individual factors on diabetes occurrence: Baseline findings from Arsenic and Non-Communicable disease cohort (AsNCD) in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114968. [PMID: 32806398 DOI: 10.1016/j.envpol.2020.114968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The interaction between arsenic metabolism and potential modifiers on the risk of diabetes is unclear. This research aimed to investigate arsenic metabolism and diabetes prevalence and to identify the interactive effects of arsenic metabolism with some risk factors on diabetes in a Chinese population. A baseline cross-sectional survey was performed in two areas with groundwater arsenic contamination in China. Arsenic levels in water and arsenic metabolites in urine were analyzed. The proportions of each arsenic metabolite (inorganic arsenic [iAs%], monomethylarsonic acid [MMA%], and dimethylarsinic acid [DMA%]) were computed to evaluate arsenic metabolism. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between arsenic and diabetes. Interaction on the additive scale between arsenic methylation index and effect modifier was evaluated by calculating the relative excess risk due to interaction (RERI). Compared with participants in the lower tertile of MMA%, participants in the middle and upper tertiles of MMA% were less prone to diabetes (OR: 0.47 and 0.31, respectively). However, participants in the upper tertiles of urinary DMA% (OR: 3.18) were more likely to have diabetes than those participants in the lower tertiles. The stratified analyses revealed that a one-unit increase in DMA% was associated with higher odds of diabetes in females (OR: 1.06, 95% CI: 1.01, 1.11), older people (OR: 1.05, 95% CI: 1.00, 1.10), and subjects with body mass index (BMI) under 25 kg/m2 (OR: 1.07, 95% CI: 1.01, 1.14). The additive interactions between DMA% and female gender (RERI: 0.40, 95% CI: 0.01, 11.88), DMA% and age (RERI: 0.02, 95% CI: 0.01, 8.85), as well as DMA% and BMI (RERI: 0.49, 95% CI: 0.01, 9.62), were statistically significant. In conclusion, efficient arsenic metabolism is associated with higher odds of diabetes. Urinary DMA% and individual factors interact to synergistically influence diabetes occurrence in the Chinese population.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Da Wang
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Juan Liu
- Department of Biomedical Information and Library, Tianjin Medical University, Tianjin, 300070 China
| | - Liting Xia
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yongfang Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Quanmei Zheng
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Guifan Sun
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
12
|
Misra BB, Misra A. The chemical exposome of type 2 diabetes mellitus: Opportunities and challenges in the omics era. Diabetes Metab Syndr 2020; 14:23-38. [PMID: 31838434 DOI: 10.1016/j.dsx.2019.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a global silent killer, with > 450 million affected adults worldwide. A diverse array of non-modifiable risk factors such as family history, age (> 45 yrs), race/ethnicity, genetics, and history of gestational diabetes and modifiable risk factors such as physical inactivity, high body fat, body weight, high blood pressure, and high cholesterol for progression of prediabetes to T2DM. Given, that the modern world human population is constantly exposed to multiple stressors in the form of physical (i.e., sound, weather etc.) and chemical environment (i.e., diet, pollutants etc.), industrialization, and modernization has led to form a basis for exposomal correlation with T2DM incidence. Over the past decade, there have been emerging reports on association of levels of persistent organic pollutants (POPs), phthalates, antibiotics, drugs, air pollution, pesticides, and heavy metals with T2DM. In this review, we discuss the well known chemical exposome that has been associated with T2DM; the tools and approaches to capture this chemical exposome, and future opportunities and challenges in this exciting area of research. We further provide a window of thoughts, whether omics technologies can help fill in the gaps to help provide high throughput exposomics datasets in an unbiased manner to help understand T2DM pathophysiology in the context of industrialization, drastic lifestyle changes, urbanization, and pollution. We also discuss and provide guidelines/call to action for future exposomics studies investigating the association of T2DM with exposomes in the context of both epidemiological and experimental approaches.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, NC, USA
| | - Anoop Misra
- Diabetes Foundation (India), Safdarjung Development Area, New Delhi, India; Fortis C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Chirag Enclave, Nehru Place, New Delhi, India.
| |
Collapse
|
13
|
Li Z, Xu Y, Huang Z, Wei Y, Hou J, Long T, Wang F, Hu H, Duan Y, Guo H, Zhang X, Chen X, Yuan H, Wu T, Shen M, He M. Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113325. [PMID: 31614327 DOI: 10.1016/j.envpol.2019.113325] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 05/18/2023]
Abstract
Associations between single metal and fasting blood glucose (FBG) levels have been reported in previous studies. However, the association between multi-metals exposure and FBG level are little known. To assess the joints of arsenic (As), nickel (Ni), cadmium (Cd), selenium (Se), and zinc (Zn) co-exposure on FBG levels, Bayesian kernel machine regression (BKMR) statistical method was used to estimate the potential joint associations between As, Ni, Cd, Se, and Zn co-exposure and FBG levels among 1478 community-based Chinese adults from two counties, Shimen (n = 696) and Huayuan (n = 782), with different exposure profiles in Hunan province of China. The metals levels were measured in spot urine (As, Ni, and Cd) and plasma (Se and Zn) using inductively coupled plasma-mass spectrometry, respectively. The exposure levels of all the five metals were significantly higher in Shimen area (median: As = 57.76 μg/L, Cd = 2.75 μg/L, Ni = 2.73 μg/L, Se = 112.67 μg/L, Zn = 905.68 μg/L) than those in Huayuan area (As = 41.14 μg/L, Cd = 2.22 μg/L, Ni = 1.88 μg/L, Se = 65.59 μg/L, Zn = 819.18 μg/L). The BKMR analyses showed a significantly positive over-all effect of the five metals on FBG levels when metals concentrations were all above the 50th percentile while a statistically negative over-all effect when metals concentrations were all under the 50th percentile in Shimen area. However, a totally opposite over-all effect of the mixture of the five metals on FBG levels was found in Huayuan area. BKMR also revealed a non-linear exposure-effect of Zn on FBG levels in Huayuan area. In addition, interaction effects of As and Se on FBG level were observed. The relationship between single or combined metals exposure and FBG was different against different exposure profiles. Potential interaction effects of As and Se on FBG levels may exist.
Collapse
Affiliation(s)
- Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Hou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Chen Y, Wu F, Liu X, Parvez F, LoIacono NJ, Gibson EA, Kioumourtzoglou MA, Levy D, Shahriar H, Uddin MN, Islam T, Lomax A, Saxena R, Sanchez T, Santiago D, Ellis T, Ahsan H, Wasserman GA, Graziano JH. Early life and adolescent arsenic exposure from drinking water and blood pressure in adolescence. ENVIRONMENTAL RESEARCH 2019; 178:108681. [PMID: 31520830 PMCID: PMC7010462 DOI: 10.1016/j.envres.2019.108681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Evidence of the association between inorganic arsenic (As) exposure, especially early-life exposure, and blood pressure (BP) in adolescence is limited. We examined the association of As exposure during early childhood, childhood, and adolescence with BP in adolescence. METHODS We conducted a cross-sectional study of 726 adolescents aged 14-17 (mean 14.75) years whose mothers were participants in the Bangladesh Health Effects of Arsenic Longitudinal Study (HEALS). Adolescents' BP was measured at the time of their recruitment between December 2012 and December 2016. We considered maternal urinary As (UAs), repeatedly measured during childhood, as proxy measures of early childhood (<5 years old, A1) and childhood (5-12 years old, A2) exposure. Adolescents' current UAs was collected at the time of recruitment (14-17 years of age, A3). RESULTS Every doubling of UAs at A3 and maternal UAs at A1 was positively associated with a difference of 0.7-mmHg (95% confidence interval [CI]: 0.1, 1.3) and a 0.7-mmHg (95% CI: 0.05, 1.4) in SBP, respectively. These associations were stronger in adolescents with a BMI above the median (17.7 kg/m2) than those with a BMI below the median (P for interaction = 0.03 and 0.03, respectively). There was no significant association between any of the exposure measures and DBP. The Weighted Quantile Sum (WQS) regression confirmed that adolescents' UAs at A3 and maternal UAs at A1 contributed the most to the overall effect of As exposure at three life stages on SBP. Mixture analyses using Bayesian Kernel Machine Regression identified UAs at A3 as a significant contributor to SBP and DBP independent of other concurrent blood levels of cadmium, lead, manganese, and selenium. CONCLUSION Our findings suggest an association of current exposure and early childhood exposure to As with higher BP in adolescents, which may be exacerbated by higher BMI at adolescence.
Collapse
Affiliation(s)
- Yu Chen
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| | - Fen Wu
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, New York, NY, USA
| | - Faruque Parvez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nancy J LoIacono
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Gibson
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Diane Levy
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Taruqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Angela Lomax
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Roheeni Saxena
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tiffany Sanchez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David Santiago
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Gail A Wasserman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Joseph H Graziano
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M. The role of arsenic in obesity and diabetes. J Cell Physiol 2019; 234:12516-12529. [PMID: 30667058 DOI: 10.1002/jcp.28112] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
16
|
Rehman K, Fatima F, Akash MSH. Biochemical investigation of association of arsenic exposure with risk factors of diabetes mellitus in Pakistani population and its validation in animal model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:511. [PMID: 31346790 DOI: 10.1007/s10661-019-7670-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is one of the naturally occurring heavy metal that has been reported to cause damaging effects on different body organs. This study was aimed to determine the arsenic level in different water sources and investigate the effect of arsenic exposure on risk factors of diabetes mellitus (DM) in human participants and experimental animals. We recruited 150 participants to investigate the arsenic exposure in their urine and from drinking water. We found that males contained significantly higher (P < 0.001) concentrations of urinary arsenic as compared with that of their female counterparts. Similarly, urinary arsenic concentration was high and showed significant association in the age of ≥ 60 years (P < 0.05), illiterate (P < 0.001), smokers (P < 0.0001), and diabetic (P < 0.0001) participants. Moreover, urinary arsenic exposure was also associated with higher levels of fasting (P < 0.001) and random blood glucose (P < 0.001), HbA1c (P < 0.001), AST, ALT, MDA, IL-6, CRP, blood urea nitrogen, and creatinine in arsenic-exposed diabetics as compared with that of unexposed diabetics. Further, we also exposed the white albino rats with arsenic in drinking water for 30 days and their blood glucose was measured at 15th and 30th days of treatment that was significantly higher (P < 0.001) in arsenic-exposed animals as compared with that of unexposed animals. Similarly, arsenic-exposed animals failed to tolerate exogenously administered glucose (P < 0.001) as compared with that of unexposed animals. Likewise, insulin and glutathione concentrations were also significantly decreased (P < 0.001) in arsenic-exposed animals as compared with that of unexposed animals. The alterations in normal values of glucose, insulin, and glutathione exhibited the damaging effects of arsenic exposure in experimental rats. This study showed that arsenic exposed to human beings and animals through drinking water resulted in the disruption of pancreatic β-cell functioning that provoked the risk factor for development of DM. This study also suggested that long-term arsenic exposure induces hyperglycemia, inflammation, and oxidative stress that may lead to the onset of development of DM.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Fiza Fatima
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
17
|
Paul SK, Islam MS, Hasibuzzaman MM, Hossain F, Anjum A, Saud ZA, Haque MM, Sultana P, Haque A, Andric KB, Rahman A, Karim MR, Siddique AE, Karim Y, Rahman M, Miyataka H, Xin L, Himeno S, Hossain K. Higher risk of hyperglycemia with greater susceptibility in females in chronic arsenic-exposed individuals in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1004-1012. [PMID: 31018442 PMCID: PMC6560360 DOI: 10.1016/j.scitotenv.2019.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 04/15/2023]
Abstract
Arsenic (As) toxicity and diabetes mellitus (DM) are emerging public health concerns worldwide. Although exposure to high levels of As has been associated with DM, whether there is also an association between low and moderate As exposure and DM remains unclear. We explored the dose-dependent association between As exposure levels and hyperglycemia, with special consideration of the impact of demographic variables, in 641 subjects from rural Bangladesh. The total study participants were divided into three groups depending on their levels of exposure to As in drinking water (low, moderate and high exposure groups). Prevalence of hyperglycemia, including impaired glucose tolerance (IGT) and DM was significantly associated with the subjects' drinking water arsenic levels. Almost all exposure metrics (As levels in the subjects' drinking water, hair and nails) showed dose-dependent associations with the risk of hyperglycemia, IGT and DM. Among the variables considered, sex, age, and BMI were found to be associated with higher risk of hyperglycemia, IGT and DM. In sex-stratified analyses, As exposure showed a clearer pattern of dose-dependent risk for hyperglycemia in females than males. Finally, drinking water containing low-to-moderate levels of As (50.01-150 μg/L) was found to confer a greater risk of hyperglycemia than safe drinking water (As ≤10 μg/L). Thus the results suggested that As exposure was dose-dependently associated with hyperglycemia, especially in females.
Collapse
Affiliation(s)
- Sudip Kumar Paul
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Md Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh
| | - M M Hasibuzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Faruk Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Adiba Anjum
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Mominul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Papia Sultana
- Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Aminur Rahman
- The Life Science Center, School of Science and Technology, Örebro University, SE 701 82, Örebro, Sweden
| | - Md Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Yeasir Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mizanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Lian Xin
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
18
|
Gong Y, Liu J, Xue Y, Zhuang Z, Qian S, Zhou W, Li X, Qian J, Ding G, Sun Z. Non-monotonic dose-response effects of arsenic on glucose metabolism. Toxicol Appl Pharmacol 2019; 377:114605. [PMID: 31170414 DOI: 10.1016/j.taap.2019.114605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread environmental toxin. In addition to being a human carcinogen, its effect on diabetes has started to gain recognition recently. Insulin is the key hormone regulating systemic glucose metabolism. The in vivo effect of iAs on insulin sensitivity has not been directly addressed. OBJECTIVES Here we use mouse models to dissect the dose-dependent effects of iAs on glucose metabolism in vivo. METHODS We performed hyperinsulinemic-euglycemic clamp, the gold standard analysis of systemic insulin sensitivity. We also performed dynamic metabolic testings and RNA-seq analysis. RESULTS We found that a low-dose exposure (0.25 ppm iAs in drinking water) caused glucose intolerance in adult male C57BL/6 mice, likely by disrupting glucose-induced insulin secretion without affecting peripheral insulin sensitivity. However, a higher-dose exposure (2.5 ppm iAs) had diminished effects on glucose tolerance despite disrupted pancreatic insulin secretion. Insulin Clamp analysis showed that 2.5 ppm iAs actually enhanced systemic insulin sensitivity by simultaneously enhancing insulin-stimulated glucose uptake in skeletal muscles and improved insulin-mediated suppression of endogenous glucose production. RNA-seq analysis of skeletal muscles revealed that 2.5 ppm iAs regulated expression of many genes involved in the metabolism of fatty acids, pyruvate, and amino acids. CONCLUSION These findings suggest that iAs has opposite glycemic effects on distinct metabolic tissues at different dose thresholds. Such non-monotonic dose-response effects of iAs on glucose tolerance shed light on the complex interactions between iAs and the systemic glucose metabolism, which could potentially help reconcile some of the conflicting results in human epidemiological studies.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Jidong Liu
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yanfeng Xue
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zhong Zhuang
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sichong Qian
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Wenjun Zhou
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Xin Li
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin Qian
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Guolian Ding
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America; The International Peace Maternity and Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zheng Sun
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
19
|
Scannell Bryan M, Sofer T, Mossavar-Rahmani Y, Thyagarajan B, Zeng D, Daviglus ML, Argos M. Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- and diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Int J Epidemiol 2019; 48:876-886. [PMID: 30929011 PMCID: PMC6659367 DOI: 10.1093/ije/dyz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Hypertension and diabetes have been associated with inefficient arsenic metabolism, primarily through studies undertaken in populations exposed through drinking water. Recently, rice has been recognized as a source of arsenic exposure, but it remains unclear whether populations with high rice consumption but no known water exposure are at risk for the health problems associated with inefficient arsenic metabolism. METHODS The relationships between arsenic metabolism efficiency (% inorganic arsenic, % monomethylarsenate and % dimethylarsinate in urine) and three hypertension- and seven diabetes-related traits were estimated among 12 609 participants of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). A two-sample Mendelian randomization approach incorporated genotype-arsenic metabolism relationships from literature, and genotype-trait relationships from HCHS/SOL, with a mixed-effect linear model. Analyses were stratified by rice consumption and smoking. RESULTS Among never smokers with high rice consumption, each percentage point increase in was associated with increases of 1.96 mmHg systolic blood pressure (P = 0.034) and 1.85 mmHg inorganic arsenic diastolic blood pressure (P = 0.003). Monomethylarsenate was associated with increased systolic (1.64 mmHg/percentage point increase; P = 0.021) and diastolic (1.33 mmHg/percentage point increase; P = 0.005) blood pressure. Dimethylarsinate, a marker of efficient metabolism, was associated with lower systolic (-0.92 mmHg/percentage point increase; P = 0.025) and diastolic (-0.79 mmHg/percentage point increase; P = 0.004) blood pressure. Among low rice consumers and ever smokers, the results were consistent with no association. Evidence for a relationship with diabetes was equivocal. CONCLUSIONS Less efficient arsenic metabolism was associated with increased blood pressure among never smokers with high rice consumption, suggesting that arsenic exposure through rice may contribute to high blood pressure in the Hispanic/Latino community.
Collapse
Affiliation(s)
- Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Tamar Sofer
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Einstein College of Medicine, Bronx, New York, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Ourshalimian S, Naser AM, Rahman M, Doza S, Stowell J, Narayan KMV, Shamsudduha M, Gribble MO. Arsenic and fasting blood glucose in the context of other drinking water chemicals: a cross-sectional study in Bangladesh. ENVIRONMENTAL RESEARCH 2019; 172:249-257. [PMID: 30818234 PMCID: PMC6744838 DOI: 10.1016/j.envres.2018.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 05/25/2023]
Abstract
GOAL The goal of this study was to evaluate the association between groundwater arsenic and fasting blood glucose in the context of other groundwater chemicals, in Bangladesh. METHODS Fasting blood glucose, gender, body mass index, sociodemographic variables, and diabetes medication use were measured among adults ≥ 35 years of age (n = 6587) participating in the Bangladesh Demographic and Health Survey (BDHS) 2011. Groundwater chemicals in 3534 well water samples were measured in the British Geological Survey (BGS) and Department of Public Health Engineering (DPHE) 1998-99 survey. We assigned the nearest BGS-DPHE well's chemical exposure to each BDHS participant. We used survey-estimation linear regression methods to model natural log-transformed fasting blood glucose, among those using groundwater as their primary drinking-water source, as a function of groundwater arsenic. We considered possible interactions between categorical arsenic exposure and each of 14 other groundwater chemicals dichotomized at their medians. The chemicals considered as possible effect modifiers included: aluminum, barium, calcium, iron, potassium, lithium, magnesium, manganese, sodium, phosphorous, silicon, sulfate, strontium, and zinc. RESULTS Compared to persons exposed to groundwater arsenic ≤ 10 μg/L, the adjusted geometric mean ratio (GMR) of fasting blood glucose was 1.01 (95% confidence interval: 0.98, 1.04) for individuals exposed to groundwater arsenic concentrations > 10 μg/L and ≤ 50 μg/L, and was 1.01 (0.97, 1.03) for those with > 50 μg/L arsenic. There were no Bonferroni-significant interactions with other chemicals, after accounting for the large number of chemicals tested as modifiers. CONCLUSIONS In our analysis of groundwater chemistry data from 1998/99 and fasting blood glucose outcomes measured in nearby populations approximately a decade later, there was no overall association of fasting blood glucose with nearby historical groundwater arsenic. This null association was not significantly modified by the historical levels of other groundwater chemicals. These null results are inconclusive regarding shorter-term potential toxicity of arsenic for glucose regulation, if there are differences between the historical concentrations measured in nearby groundwater and the actual drinking water chemical exposures in the population during the etiologically relevant period for more acute phenotypes like fasting blood glucose. Drinking water supply-relevant, longitudinal exposure assessment with less measurement error is needed to more precisely evaluate the joint impacts of drinking water chemicals and establish if there is a sensitive time window for glycemic outcomes.
Collapse
Affiliation(s)
| | - Abu Mohd Naser
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Mahbubur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | - Solaiman Doza
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | - Jennifer Stowell
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - K M Venkat Narayan
- Emory Global Diabetes Research Center, Hubert Department of Global Health, Emory University, Atlanta, GA, USA
| | - Mohammad Shamsudduha
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Matthew O Gribble
- Department of Environmental Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Yang JJ, Yu D, Wen W, Saito E, Rahman S, Shu XO, Chen Y, Gupta PC, Gu D, Tsugane S, Xiang YB, Gao YT, Yuan JM, Tamakoshi A, Irie F, Sadakane A, Tomata Y, Kanemura S, Tsuji I, Matsuo K, Nagata C, Chen CJ, Koh WP, Shin MH, Park SK, Wu PE, Qiao YL, Pednekar MS, He J, Sawada N, Li HL, Gao J, Cai H, Wang R, Sairenchi T, Grant E, Sugawara Y, Zhang S, Ito H, Wada K, Shen CY, Pan WH, Ahn YO, You SL, Fan JH, Yoo KY, Ashan H, Chia KS, Boffetta P, Inoue M, Kang D, Potter JD, Zheng W. Association of Diabetes With All-Cause and Cause-Specific Mortality in Asia: A Pooled Analysis of More Than 1 Million Participants. JAMA Netw Open 2019; 2:e192696. [PMID: 31002328 PMCID: PMC6481439 DOI: 10.1001/jamanetworkopen.2019.2696] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Asia is home to the largest diabetic populations in the world. However, limited studies have quantified the association of diabetes with all-cause and cause-specific mortality in Asian populations. OBJECTIVES To evaluate the association of diabetes with all-cause and cause-specific mortality in Asia and to investigate potential effect modifications of the diabetes-mortality associations by participants' age, sex, education level, body mass index, and smoking status. DESIGN, SETTING, AND PARTICIPANTS This pooled analysis incorporated individual participant data from 22 prospective cohort studies of the Asia Cohort Consortium conducted between 1963 and 2006. A total of 1 002 551 Asian individuals (from mainland China, Japan, South Korea, Singapore, Taiwan, India, and Bangladesh) were followed up for more than 3 years. Cohort-specific hazard ratios and 95% confidence intervals for all-cause and cause-specific mortality were estimated using Cox regression models and then pooled using random-effects meta-analysis. Analysis was conducted between January 10, 2018, and August 31, 2018. EXPOSURES Doctor-diagnosed diabetes, age, sex, education level, body mass index, and smoking status. MAIN OUTCOMES AND MEASURES All-cause and cause-specific mortality. RESULTS Of 1 002 551 participants (518 537 [51.7%] female; median [range] age, 54.0 [30.0-98.0] years), 148 868 deaths were ascertained during a median (range) follow-up of 12.6 (3.0-38.9) years. The overall prevalence of diabetes reported at baseline was 4.8% for men and 3.6% for women. Patients with diabetes had a 1.89-fold risk of all-cause death compared with patients without diabetes (hazard ratio [HR], 1.89; 95% CI, 1.74-2.04), with the highest relative risk of death due to diabetes itself (HR, 22.8; 95% CI, 18.5-28.1), followed by renal disease (HR, 3.08; 95% CI, 2.50-3.78), coronary heart disease (HR, 2.57; 95% CI, 2.19-3.02), and ischemic stroke (HR, 2.15; 95% CI, 1.85-2.51). The adverse diabetes-mortality associations were more evident among women (HR, 2.09; 95% CI, 1.89-2.32) than among men (HR, 1.74; 95% CI, 1.62-1.88) (P for interaction < .001) and more evident among adults aged 30 to 49 years (HR, 2.43; 95% CI, 2.08-2.84) than among adults aged 70 years and older (HR, 1.51; 95% CI, 1.40-1.62) (P for interaction < .001). A similar pattern of association was found between diabetes and cause-specific mortality, with significant variations noted by sex and age. CONCLUSIONS AND RELEVANCE This study found that diabetes was associated with increased risk of death from several diseases among Asian populations. Development and implementation of diabetes management programs are urgently needed to reduce the burden of diabetes in Asia.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eiko Saito
- Division of Cancer Statistics Integration, Center for Cancer Control and Information Services, National Cancer Center, Tokyo, Japan
| | - Shafiur Rahman
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York
- Department of Environmental Medicine, New York University School of Medicine, New York
| | - Prakash C. Gupta
- Healis-Sekhsaria Institute for Public Health, Mahape, Navi Mumbai, India
| | - Dongfeng Gu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Jian-Min Yuan
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akiko Tamakoshi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fujiko Irie
- Department of Health and Welfare, Ibaraki Prefectural Office, Mito, Japan
| | | | - Yasutake Tomata
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiki Kanemura
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Tsuji
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keitaro Matsuo
- Division of Molecular & Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chisato Nagata
- Graduate School of Medicine, Gifu University, Gifu City, Japan
| | | | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Republic of Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Myung-Hee Shin
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Pei-Ei Wu
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei city, Taiwan
| | - You-Lin Qiao
- National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | | | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renwei Wang
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Toshimi Sairenchi
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Eric Grant
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yumi Sugawara
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shu Zhang
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidemi Ito
- Division of Molecular & Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Wada
- Graduate School of Medicine, Gifu University, Gifu City, Japan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- College of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - San-Lin You
- School of Medicine & Big Data Research Center, Fu Jen Catholic University, Taipei City, Taiwan
| | - Jin-Hu Fan
- National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Armed Forces Capital Hospital, Seongnam, South Korea
| | - Habibul Ashan
- Department of Health Studies, University of Chicago, Chicago, Illinois
- Department of Medicine, University of Chicago, Chicago, Illinois
- Department of Human Genetics, University of Chicago, Chicago, Illinois
- Cancer Research Center, University of Chicago, Chicago, Illinois
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - John D. Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Centre for Public Health Research, Massey University, Wellington, New Zealand
- Department of Epidemiology, University of Washington, Seattle
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
22
|
McLeod L, Bharadwaj L, Epp TY, Waldner CL. Bayesian Hierarchical Models as Tools to Evaluate the Association Between Groundwater Quality and the Occurrence of Type 2 Diabetes in Rural Saskatchewan, Canada. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:375-393. [PMID: 30617606 DOI: 10.1007/s00244-018-00588-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
There is growing interest in the role of environmental exposures in the development of diabetes. Previous studies in rural Saskatchewan have raised concerns over drinking water contaminants, including arsenic, which has been identified as a possible risk factor for diabetes. Using administrative health and water-quality surveillance data from rural Saskatchewan, an ecological study design was used to investigate associations between concentrations of arsenic, water health standards and aesthetic objectives, and the incidence and prevalence of diabetes. Mixtures of contaminants measured as health standards or as aesthetic objectives were summarized using principal component (PC) analysis. Associations were modeled using Bayesian hierarchical models incorporating both spatial and unstructured random effects, standardized for age and sex, and adjusted for socioeconomic factors and a surrogate measure for smoking rates. Arsenic was not associated with an increased risk of diabetes. For private wells, having groundwater arsenic concentrations in the highest quintile was associated with decreased cumulative diabetes incidence for 2010-2012 (risk ratio [RR] = 0.854, 95% credible interval [CrI] 0.761-0.958) compared with the lowest quintile, a result inconsistent with other studies. For public water supplies, having a first PC score for health standards (primarily summarized selenium, nitrate, and lead) in the third quintile (RR = 1.101, 95% CrI 1.019-1.188), fourth quintile (RR = 1.088, 95% CrI 1.003-1.180), or fifth quintile (RR = 1.115, 95% CrI 1.026-1.213) was associated with an increase in 2010 diabetes prevalence compared with the first quintile. An increase in the PC scores for the third aesthetic objective in private wells (characterized primarily by iron and manganese) was associated with decreased diabetes incidence, although a meaningful dose-response relationship was not evident. No other associations between PC scores for health standards or aesthetic objectives from public or private water supplies and diabetes were identified.
Collapse
Affiliation(s)
- Lianne McLeod
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Lalita Bharadwaj
- School of Public Health, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK, S7N 2Z4, Canada
| | - Tasha Y Epp
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Cheryl L Waldner
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
23
|
Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, Goessler W, Bottiglieri T, Gamble MV, Cole SA, Zhao J, Navas-Acien A. Targeted metabolomics to understand the association between arsenic metabolism and diabetes-related outcomes: Preliminary evidence from the Strong Heart Family Study. ENVIRONMENTAL RESEARCH 2019; 168:146-157. [PMID: 30316100 PMCID: PMC6298442 DOI: 10.1016/j.envres.2018.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/02/2018] [Accepted: 09/25/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes. This profile, however, has also been associated with increased risk for diabetes-related outcomes. OBJECTIVES The mechanism behind these conflicting associations is unclear; we hypothesized the one-carbon metabolism (OCM) pathway may play a role. METHODS We evaluated the influence of OCM on the relationship between arsenic metabolism and diabetes-related outcomes (HOMA2-IR, waist circumference, fasting plasma glucose) using metabolomic data from an OCM-specific and P180 metabolite panel measured in plasma, arsenic metabolism measured in urine, and HOMA2-IR and FPG measured in fasting plasma. Samples were drawn from baseline visits (2001-2003) in 59 participants from the Strong Heart Family Study, a family-based cohort study of American Indians aged ≥14 years from Arizona, Oklahoma, and North/South Dakota. RESULTS In unadjusted analyses, a 5% increase in DMA% was associated with higher HOMA2-IR (geometric mean ratio (GMR)= 1.13 (95% CI: 1.03, 1.25)) and waist circumference (mean difference=3.66 (0.95, 6.38). MMA% was significantly associated with lower HOMA2-IR and waist circumference. After adjustment for OCM-related metabolites (SAM, SAH, cysteine, glutamate, lysophosphatidylcholine 18.2, and three phosphatidlycholines), associations were attenuated and no longer significant. CONCLUSIONS These preliminary results indicate that the association of lower MMA% and higher DMA% with diabetes-related outcomes may be influenced by OCM status, either through confounding, reverse causality, or mediation.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Fundación Investigación Clínico de Valencia-INCLIVA, Area of Cardiometabolic and Renal Risk, Valencia, Valencia, Spain; University of Valencia, Department of Statistics and Operational Research, Valencia, Valencia, Spain
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Kevin Francesconi
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | | | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jinying Zhao
- College of Public Health and Health Professions and the College of Medicine at the University of Florida, Gainesville, FL, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
24
|
Chat V, Wu F, Demmer RT, Parvez F, Ahmed A, Eunus M, Hasan R, Nahar J, Shaheen I, Sarwar G, Desvarieux M, Ahsan H, Chen Y. Association between number of children and carotid intima-media thickness in Bangladesh. PLoS One 2018; 13:e0208148. [PMID: 30481229 PMCID: PMC6258552 DOI: 10.1371/journal.pone.0208148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies on the association between number of children and carotid intima-media thickness (cIMT) were limited to Western populations. Pregnancy in women is associated with physiologic changes that may influence the risk of cardiovascular disease. Comparing the association between number of children and cIMT in men and women can provide insights on whether the association may be due to pregnancy. We investigated the association between number of children and cIMT among 718 female (mean age 37.5 years) and 417 male participants (mean age 41.3 years), randomly selected from the Health Effect of Arsenic Longitudinal Study (HEALS), a population-based cohort study in Bangladesh. Multivariate linear regression was used to assess the association and to control for education attainment, history of diabetes, age, smoking, betel use, BMI, systolic blood pressure, and diastolic blood pressure. The average number of children was 4.43 for women and 3.74 for men. There were no nulliparous women. We observed a positive association between number of children and cIMT in women. Mean cIMT increased by 4.5 μm (95% CI, 0.8–8.1) per increment of one birth (P = 0.02). Compared to women with two children, cIMT in women with 4 children and ≥5 children was 23.6μm (95%CI, 2.6–44.7; P = 0.03) and 25.1 μm (95%CI, 3.5–46.6; P = 0.02) greater, respectively. The association was not modified by BMI, SBP, betel use or age. Data in men showed no evidence of association (P = 0.4). The finding suggests a role of high parity in atherosclerosis in women of a low-income, high parity population.
Collapse
Affiliation(s)
- Vylyny Chat
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Fen Wu
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Ryan T. Demmer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Mahbub Eunus
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Rabiul Hasan
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Jabun Nahar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Moise Desvarieux
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- INSERM UMR 1153, Centre de Recherche Epidemiologie et Statistique Paris Sorbonne Cité (CRESS), METHODS Core, Paris France
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, Illinois, United States of America
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Spratlen MJ, Grau-Perez M, Best LG, Yracheta J, Lazo M, Vaidya D, Balakrishnan P, Gamble MV, Francesconi KA, Goessler W, Cole SA, Umans JG, Howard BV, Navas-Acien A. The Association of Arsenic Exposure and Arsenic Metabolism With the Metabolic Syndrome and Its Individual Components: Prospective Evidence From the Strong Heart Family Study. Am J Epidemiol 2018; 187:1598-1612. [PMID: 29554222 DOI: 10.1093/aje/kwy048] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Inorganic arsenic exposure is ubiquitous, and both exposure and interindividual differences in its metabolism have been associated with cardiometabolic risk. However, the associations of arsenic exposure and arsenic metabolism with the metabolic syndrome (MetS) and its individual components are relatively unknown. We used Poisson regression with robust variance to evaluate the associations of baseline arsenic exposure (urinary arsenic levels) and metabolism (relative percentage of arsenic species over their sum) with incident MetS and its individual components (elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, hypertension, and elevated fasting plasma glucose) in 1,047 participants from the Strong Heart Family Study, a prospective family-based cohort study in American Indian communities (baseline visits were held in 1998-1999 and 2001-2003, follow-up visits in 2001-2003 and 2006-2009). Over the course of follow-up, 32% of participants developed MetS. An interquartile-range increase in arsenic exposure was associated with a 1.19-fold (95% confidence interval: 1.01, 1.41) greater risk of elevated fasting plasma glucose concentration but not with other individual components of the MetS or MetS overall. Arsenic metabolism, specifically lower percentage of monomethylarsonic acid and higher percentage of dimethylarsinic acid, was associated with higher risk of overall MetS and elevated waist circumference but not with any other MetS component. These findings support the hypothesis that there are contrasting and independent associations of arsenic exposure and arsenic metabolism with metabolic outcomes which may contribute to overall diabetes risk.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Clinical Research Foundation of Valencia, Valencia, Spain
- Department of Statistics and Operational Research, Faculty of Mathematics, University of Valencia, Valencia, Spain
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, South Dakota
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, South Dakota
| | - Mariana Lazo
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Dhananjay Vaidya
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Kevin A Francesconi
- Department of Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | - Walter Goessler
- Department of Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, Maryland
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, Maryland
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC
| | - Ana Navas-Acien
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
26
|
Muñoz MP, Valdés M, Muñoz-Quezada MT, Lucero B, Rubilar P, Pino P, Iglesias V. Urinary Inorganic Arsenic Concentration and Gestational Diabetes Mellitus in Pregnant Women from Arica, Chile. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071418. [PMID: 29976896 PMCID: PMC6069383 DOI: 10.3390/ijerph15071418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Abstract
Introduction: The association of total arsenic exposure with impaired glucose tolerance and gestational diabetes has been shown; however, evidence regarding urinary inorganic arsenic in pregnant women is still limited. Our aim was to evaluate the association between urinary inorganic arsenic concentration and gestational diabetes among pregnant women living in Arica, Chile. Methods: Cross-sectional study of pregnant women receiving care at primary health centers in urban Arica. The exposure was urinary inorganic arsenic concentration, while gestational diabetes was the outcome. The association was evaluated using multiple logistic regression models adjusted by age, education level, ethnicity, and pre-pregnancy body mass index. Results: 244 pregnant women were surveyed. The median urinary inorganic arsenic was 14.95 μg/L, and the prevalence of gestational diabetes was 8.6%. After adjusting, we did not find a significant association between gestational diabetes and inorganic arsenic exposure tertiles (Odds ratio (OR) 2.98, 95% CI = 0.87–10.18), (OR 1.07, 95% CI = 0.26–4.33). Conclusion: This study did not provide evidence on the relationship between urinary inorganic arsenic concentration and gestational diabetes. Further research is needed to elucidate the factors underlying this association.
Collapse
Affiliation(s)
- María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Macarena Valdés
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | | | - Boris Lucero
- Facultad de Ciencias de la Salud, Universidad Católica del Maule, 3480112 Talca, Chile.
| | - Paola Rubilar
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paulina Pino
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Verónica Iglesias
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| |
Collapse
|
27
|
Lampron-Goulet É, Gagnon F, Langlois MF. Association between consumption of private well water contaminated by low levels of arsenic and dysglycemia in a rural region of Quebec, Canada. ENVIRONMENTAL RESEARCH 2017; 159:232-238. [PMID: 28818805 DOI: 10.1016/j.envres.2017.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/21/2023]
Abstract
The association between arsenic (As) exposure and diabetes is not clearly defined for populations exposed to low or moderate levels of inorganic As (iAs) in drinking water (< 150µg/L). In the present study, the relationship between iAs concentration in drinking water (contaminated at a median level of 10.5µg/L) or As biomarkers (ie, urine and nails) and diabetes or prediabetes (defined as level of glycosylated hemoglobin - HbA1c - higher than 6%, self-reported diagnosis of diabetes by a physician, or the use of insulin or oral hypoglycemic drugs) was evaluated in 257 adults from Canada. For that we used logistic regression models and reported the odds ratio (OR) comparing participants in the 80th vs 20th percentile of iAs exposure indicators. The association between iAs exposure indicators and HbA1c was also explored for 234 adults and 35 children not taking insulin or oral hypoglycemic drugs using a linear regression analysis. All models were controlled for confounding variables (age, gender, first-degree family history of diabetes, obesity or overweight in adults' model). We attempted to exclude adults with organic arsenic of marine origin in their urine by removing participants with detectable arsenobetaine or arsenocholine in urinary models. iAs biomarkers (toenail and urine) were not associated with diabetes or prediabetes in adults. iAs in well water was associated with a borderline significantly increased odds of diabetes or prediabetes (OR = 2.39; 95% CI: 0.99-5.72). Higher well water iAs concentrations were significantly associated with increased HbA1c in both adults and children (β: 0.002; p = 0.041 and β: 0.003; p < 0.0001 respectively). In children, HbA1c was also associated with toenail As concentration (β: 0.18; p = 0.016). These results suggest low-level iAs exposure is associated with a continuum of dysglycemia.
Collapse
Affiliation(s)
- Éric Lampron-Goulet
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Fabien Gagnon
- Institut national de santé publique du Québec, Montréal, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Marie-France Langlois
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
28
|
Baek K, Lee N, Chung I. Association of arsenobetaine with beta-cell function assessed by homeostasis model assessment (HOMA) in nondiabetic Koreans: data from the fourth Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2009. Ann Occup Environ Med 2017; 29:31. [PMID: 28702205 PMCID: PMC5504790 DOI: 10.1186/s40557-017-0181-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/29/2023] Open
Abstract
Background Arsenic is known as an endocrine disruptor that people are exposed to through various sources such as drinking water and indigestion of marine products. Although some epidemiological and animal studies have reported a correlation between arsenic exposure and diabetes development, there are limited studies regarding the toxic effects of organic arsenic including arsenobetaine on the human body. Here, we analyzed the association between urine arsenobetaine and the homeostasis model assessment of β-cell function (HOMA-β), which is an index for predicting diabetes development and reflecting the function of pancreatic β-cells. Methods In the fourth Korea National Health and Nutrition Examination Survey (KNHANES), health and nutrition surveys and screening tests were performed. Of the total survey population, people with confirmed values for urine total arsenic and arsenobetaine were included, and known diabetic patients were excluded. A total 369 participants were finally included in the study. We collected surveys on health, height, body weight, body mass index, blood mercury level, fasting glucose level, and serum insulin level and calculated HOMA index. Owing to sexual discrepancy, we performed sexually stratified analysis. Results Urine total arsenic and total arsenic minus arsenobetaine was not associated with HOMA-IR and HOMA-β in univariate analysis or in sexually stratified analysis. However, urine arsenobetaine showed a statistically significant relationship with HOMA-β in univariate analysis, and only male participants showed a significant correlation in sexually stratified analysis. In the analysis adjusted for age, BMI, smoking, alcohol drinking, physical activity and blood mercury, the HOMA-β value in the group below the 25th percentile of arsenobetaine was significantly higher than the group between 50 and 75th percentile, while no difference was shown for HOMA-IR. In sexually stratified analysis, The value of HOMA-β was significantly higher in male participants with below the 25th percentile urine arsenobetaine than the group between 25 and 50th and between 50 and 75th, while no difference was shown for HOMA-IR. However, female participants did not demonstrate a relationship between HOMA–IR, HOMA-β and urine arsenobetaine. Conclusion This study revealed the association between urine arsenobetaine and pancreatic β-cell function assessed by HOMA-β in the normal population (without diabetes), especially in males, despite adjusting for factors affecting pancreatic β-cell function and diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s40557-017-0181-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiook Baek
- Division of Occupational and Environmental Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Namhoon Lee
- Division of Occupational and Environmental Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Insung Chung
- Division of Occupational and Environmental Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea.,Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
29
|
Chen Y, Wu F, Saito E, Lin Y, Song M, Luu HN, Gupta PC, Sawada N, Tamakoshi A, Shu XO, Koh WP, Xiang YB, Tomata Y, Sugiyama K, Park SK, Matsuo K, Nagata C, Sugawara Y, Qiao YL, You SL, Wang R, Shin MH, Pan WH, Pednekar MS, Tsugane S, Cai H, Yuan JM, Gao YT, Tsuji I, Kanemura S, Ito H, Wada K, Ahn YO, Yoo KY, Ahsan H, Chia KS, Boffetta P, Zheng W, Inoue M, Kang D, Potter JD. Association between type 2 diabetes and risk of cancer mortality: a pooled analysis of over 771,000 individuals in the Asia Cohort Consortium. Diabetologia 2017; 60:1022-1032. [PMID: 28265721 PMCID: PMC5632944 DOI: 10.1007/s00125-017-4229-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS The aims of the study were to evaluate the association between type 2 diabetes and the risk of death from any cancer and specific cancers in East and South Asians. METHODS Pooled analyses were conducted of 19 prospective population-based cohorts included in the Asia Cohort Consortium, comprising data from 658,611 East Asians and 112,686 South Asians. HRs were used to compare individuals with diabetes at baseline with those without diabetes for the risk of death from any cancer and from site-specific cancers, including cancers of the oesophagus, stomach, colorectum, colon, rectum, liver, bile duct, pancreas, lung, breast, endometrium, cervix, ovary, prostate, bladder, kidney and thyroid, as well as lymphoma and leukaemia. RESULTS During a mean follow-up of 12.7 years, 37,343 cancer deaths (36,667 in East Asians and 676 in South Asians) were identified. Baseline diabetes status was statistically significantly associated with an increased risk of death from any cancer (HR 1.26; 95% CI 1.21, 1.31). Significant positive associations with diabetes were observed for cancers of the colorectum (HR 1.41; 95% CI 1.26, 1.57), liver (HR 2.05; 95% CI 1.77, 2.38), bile duct (HR 1.41; 95% CI 1.04, 1.92), gallbladder (HR 1.33; 95% CI 1.10, 1.61), pancreas (HR 1.53; 95% CI 1.32, 1.77), breast (HR 1.72; 95% CI 1.34, 2.19), endometrium (HR 2.73; 95% CI 1.53, 4.85), ovary (HR 1.60; 95% CI 1.06, 2.42), prostate (HR 1.41; 95% CI 1.09, 1.82), kidney (HR 1.84; 95% CI 1.28, 2.64) and thyroid (HR 1.99; 95% CI 1.03, 3.86), as well as lymphoma (HR 1.39; 95% CI 1.04, 1.86). Diabetes was not statistically significantly associated with the risk of death from leukaemia and cancers of the bladder, cervix, oesophagus, stomach and lung. CONCLUSIONS/INTERPRETATION Diabetes was associated with a 26% increased risk of death from any cancer in Asians. The pattern of associations with specific cancers suggests the need for better control (prevention, detection, management) of the growing epidemic of diabetes (as well as obesity), in order to reduce cancer mortality.
Collapse
Affiliation(s)
- Yu Chen
- Department of Population Health, New York University School of Medicine, 650 First Avenue, Room 510, New York, NY, 10016, USA.
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY, 10987, USA.
| | - Fen Wu
- Department of Population Health, New York University School of Medicine, 650 First Avenue, Room 510, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY, 10987, USA
| | - Eiko Saito
- AXA Department of Health and Human Security, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hung N Luu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Prakash C Gupta
- Healis Sekhsaria Institute for Public Health, Navi Mumbai, India
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Akiko Tamakoshi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School Singapore, Singapore, Republic of Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Yong-Bing Xiang
- Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yasutake Tomata
- Tohoku University Graduate School of Medicine, Miyagi Prefecture, Japan
| | - Kemmyo Sugiyama
- Tohoku University Graduate School of Medicine, Miyagi Prefecture, Japan
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chisato Nagata
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yumi Sugawara
- Tohoku University Graduate School of Medicine, Miyagi Prefecture, Japan
| | - You-Lin Qiao
- Cancer Foundation of China, Beijing, People's Republic of China
| | - San-Lin You
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
- Big Data Research Centre, Fu-Jen Catholic University, Taipei, Taiwan
| | - Renwei Wang
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Myung-Hee Shin
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian-Min Yuan
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Division of Cancer Control and Population Science, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Ichiro Tsuji
- Tohoku University Graduate School of Medicine, Miyagi Prefecture, Japan
| | - Seiki Kanemura
- Tohoku University Graduate School of Medicine, Miyagi Prefecture, Japan
| | - Hidemi Ito
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keiko Wada
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keun-Young Yoo
- Armed Forces Capital Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manami Inoue
- AXA Department of Health and Human Security, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Centre for Public Health Research, Massey University, Wellington, New Zealand
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Sripaoraya K, Siriwong W, Pavittranon S, Chapman RS. Environmental arsenic exposure and risk of diabetes type 2 in Ron Phibun subdistrict, Nakhon Si Thammarat Province, Thailand: unmatched and matched case-control studies. Risk Manag Healthc Policy 2017; 10:41-48. [PMID: 28442938 PMCID: PMC5396935 DOI: 10.2147/rmhp.s128277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background There are inconsistent findings on associations between low-to-moderate level of arsenic in water and diabetes risk from previous epidemiological reports. In Ron Phibun subdistrict, Nakhon Si Thammarat Province, Thailand, a low level of arsenic exposure among population was observed and increased diabetes mellitus (DM) rate was identified. Objectives We aimed to investigate the association between determinants (including low-level water arsenic exposure) of DM type 2 risk among residents of three villages of Ron Phibun subdistrict, Nakhon Si Thammarat Province. Materials and methods Secondary data from two previous community based-studies, conducted in 2000 and 2008, were utilized. Data on independent variables relating to arsenic exposure and sociodemographic characteristics were taken from questionnaires and worksheets for health-risk screening. Water samples collected during household visit were sent for analysis of arsenic level at certified laboratories. Diabetes cases (N=185) were those who had been diagnosed with DM type 2. Two groups of controls, one unmatched to cases (n=200) and one pair matched on age and gender (n=200), were selected for analysis as unmatched and matched case–control studies, respectively. A multiple imputation technique was used to impute missing values of independent variables. Multivariable logistic regression models, with independent variables for arsenic exposure and sociodemographic characteristics, were constructed. The unmatched and matched data sets were analyzed using unconditional and conditional logistic analyses, respectively. Results Older age, body mass index (BMI), having a history of illness in siblings and parents, and drinking were associated with increased DM type 2 risk. We found no convincing association between DM type 2 risk and water arsenic concentration in either study. Conclusion We did not observe meaningful association between diabetes risk and the low-to-moderate arsenic levels observed in this study. Further research is needed to confirm this finding in the study area and elsewhere in Thailand.
Collapse
Affiliation(s)
- Kwanyuen Sripaoraya
- College of Public Health Sciences, Chulalongkorn University, Bangkok.,Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok
| | - Sumol Pavittranon
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Robert S Chapman
- College of Public Health Sciences, Chulalongkorn University, Bangkok
| |
Collapse
|
31
|
Feseke SK, St-Laurent J, Anassour-Sidi E, Ayotte P, Bouchard M, Levallois P. Arsenic exposure and type 2 diabetes: results from the 2007-2009 Canadian Health Measures Survey. HEALTH PROMOTION AND CHRONIC DISEASE PREVENTION IN CANADA-RESEARCH POLICY AND PRACTICE 2016; 35:63-72. [PMID: 26083521 DOI: 10.24095/hpcdp.35.4.01] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Inorganic arsenic and its metabolites are considered dangerous to human health. Although several studies have reported associations between low-level arsenic exposure and diabetes mellitus in the United States and Mexico, this association has not been studied in the Canadian population. We evaluated the association between arsenic exposure, as measured by total arsenic concentration in urine, and the prevalence of type 2 diabetes (T2D) in 3151 adult participants in Cycle 1 (2007-2009) of the Canadian Health Measures Survey (CHMS). METHODS All participants were tested to determine blood glucose and glycated hemoglobin. Urine analysis was also performed to measure total arsenic. In addition, participants answered a detailed questionnaire about their lifestyle and medical history. We assessed the association between urinary arsenic levels and T2D and prediabetes using multivariate logistic regression while adjusting for potential confounders. RESULTS Total urinary arsenic concentration was positively associated with the prevalence of T2D and prediabetes: adjusted odds ratios were 1.81 (95% CI: 1.12-2.95) and 2.04 (95% CI: 1.03-4.05), respectively, when comparing the highest (fourth) urinary arsenic concentration quartile with the lowest (first) quartile. Total urinary arsenic was also associated with glycated hemoglobin levels in people with untreated diabetes. CONCLUSION We found significant associations between arsenic exposure and the prevalence of T2D and prediabetes in the Canadian population. Causal inference is limited due to the cross-sectional design of the study and the absence of long-term exposure assessment.
Collapse
Affiliation(s)
- S K Feseke
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| | - J St-Laurent
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada
| | - E Anassour-Sidi
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada
| | - P Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada.,Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, Québec, Quebec, Canada
| | - M Bouchard
- Département de santé environnementale et santé au travail, Chaire d'analyse et de gestion des risques toxicologiques, École de santé publique, Université de Montréal, Montréal, Quebec, Canada
| | - P Levallois
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec, Québec, Quebec, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec, Quebec, Canada.,Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, Québec, Quebec, Canada
| |
Collapse
|
32
|
Ditzel EJ, Nguyen T, Parker P, Camenisch TD. Effects of Arsenite Exposure during Fetal Development on Energy Metabolism and Susceptibility to Diet-Induced Fatty Liver Disease in Male Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:201-9. [PMID: 26151952 PMCID: PMC4749082 DOI: 10.1289/ehp.1409501] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 07/02/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic exposure to arsenicals at various life stages and across a range of exposures has been implicated in cardiometabolic and liver disease, but disease predisposition from developmental exposures remains unclear. OBJECTIVES In utero and post-weaning exposure to trivalent arsenic (AsIII) was examined on the background of a Western-style diet to determine whether AsIII exposure affects metabolic disease. METHODS Male Swiss Webster mice were exposed to 100 ppb AsIII in utero, after weaning, or both. Ad libitum access to a Western-style diet was provided after weaning, and the plasma metabolome, liver histopathology, liver enzyme activity, and gene expression were analyzed. RESULTS Hepatic lipid composition and histopathology revealed that developmental AsIII exposure exacerbated Western-style diet-induced fatty liver disease. Continuous AsIII exposure increased cardiometabolic risk factors including increased body weight, insulin resistance, hyperglycemia, and plasma triglycerides. AsIII exposure produced a decrease in the intermediates of glycolysis and the TCA cycle while increasing ketones. Hepatic isocitrate dehydrogenase activity was also decreased, which confirmed disruption of the TCA cycle. Developmental AsIII exposure increased the expression of genes involved in fatty acid synthesis, lipogenesis, inflammation, and packaging of triglycerides, suggesting an increased acetyl coenzyme A (acetyl-CoA) load. CONCLUSIONS In utero and continuous early-life exposure to AsIII disrupted normal metabolism and elevated the risk for fatty liver disease in mice maintained on a high-fat diet. Our findings suggest that individuals exposed to AsIII during key developmental periods and who remain exposed to AsIII on the background of a Western-style diet may be at increased risk for metabolic disease later in life.
Collapse
Affiliation(s)
- Eric J. Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Thu Nguyen
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Patricia Parker
- Department of Pharmacology and Toxicology, College of Pharmacy,
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy,
- Steele Children’s Research Center,
- Southwest Environmental Health Sciences Center,
- Sarver Heart Center, and
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
- Address correspondence to T.D. Camenisch, 1703 E. Mabel St., P.O. Box 210207, Tucson, AZ 85721 USA. Telephone: (520) 626-0240. E-mail:
| |
Collapse
|
33
|
Barrett JR. Arsenic Exposure and the Western Diet: A Recipe for Metabolic Disorders? ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A39. [PMID: 26829820 PMCID: PMC4749074 DOI: 10.1289/ehp.124-a39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
34
|
Abdul KSM, Jayasinghe SS, Chandana EPS, Jayasumana C, De Silva PMCS. Arsenic and human health effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:828-46. [PMID: 26476885 DOI: 10.1016/j.etap.2015.09.016] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 05/18/2023]
Abstract
Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Channa Jayasumana
- Department of Pharmacology, Faculty of Medicine, Rajarata University, Anuradhapura 50008, Sri Lanka
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
35
|
Wu F, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Argos M, Levy D, Sarwar G, Ahsan H, Chen Y. Betel quid use and mortality in Bangladesh: a cohort study. Bull World Health Organ 2015; 93:684-692. [PMID: 26600610 PMCID: PMC4645429 DOI: 10.2471/blt.14.149484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To evaluate the potential effects of betel quid chewing on mortality. (A quid consists of betel nut, wrapped in betel leaves; tobacco is added to the quid by some users). METHODS Prospective data were available on 20 033 individuals aged 18-75 years, living in Araihazar, Bangladesh. Demographic and exposure data were collected at baseline using a standardized questionnaire. Cause of death was defined by verbal autopsy questionnaires administered to next of kin. We estimated hazard ratios (HR) and their 95% confidence intervals (CI) for associations between betel use and mortality from all causes and from specific causes, using Cox proportional hazards models. We adjusted for age, sex, body mass index, educational attainment and tobacco smoking history. FINDINGS There were 1072 deaths during an average of 10 years of follow-up. Participants who had ever used betel were significantly more likely to die from all causes (HR: 1.26; 95% CI: 1.09-1.44) and cancer (HR: 1.55; 95% CI: 1.09-2.22); but not cardiovascular disease (HR: 1.16; 95% CI: 0.93-1.43). These findings were robust to adjustment for potential confounders. There was a dose-response relationship between mortality from all causes and both the duration and the intensity of betel use. The population attributable fraction for betel use was 14.1% for deaths from all causes and 24.2% for cancer. CONCLUSION Betel quid use was associated with mortality from all causes and from cancer in this cohort.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, 650 First Avenue, New York, NY 10016, United States of America (USA)
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University, New York, USA
| | - Tariqul Islam
- U-Chicago Research Bangladesh Ltd., Dhaka, Bangladesh
| | | | | | - Rabiul Hasan
- U-Chicago Research Bangladesh Ltd., Dhaka, Bangladesh
| | - Maria Argos
- Department of Health Studies, University of Chicago, Chicago, USA
| | - Diane Levy
- Department of Environmental Health Sciences, Columbia University, New York, USA
| | - Golam Sarwar
- U-Chicago Research Bangladesh Ltd., Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, 650 First Avenue, New York, NY 10016, United States of America (USA)
| |
Collapse
|
36
|
Farzan SF, Karagas MR, Jiang J, Wu F, Liu M, Newman JD, Jasmine F, Kibriya MG, Paul-Brutus R, Parvez F, Argos M, Scannell Bryan M, Eunus M, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Slavkovich V, Graziano J, Ahsan H, Chen Y. Gene-arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 2015. [PMID: 26220686 DOI: 10.1016/j.taap.2015.1007.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jieying Jiang
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Newman
- The Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Farzana Jasmine
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Rachelle Paul-Brutus
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria Argos
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Molly Scannell Bryan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Mahbub Eunus
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Alauddin Ahmed
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Tariqul Islam
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Muhammad Rakibuz-Zaman
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Rabiul Hasan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Golam Sarwar
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Jiang J, Liu M, Parvez F, Wang B, Wu F, Eunus M, Bangalore S, Newman JD, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Levy D, Slavkovich V, Argos M, Scannell Bryan M, Farzan SF, Hayes RB, Graziano JH, Ahsan H, Chen Y. Association between Arsenic Exposure from Drinking Water and Longitudinal Change in Blood Pressure among HEALS Cohort Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:806-12. [PMID: 25816368 PMCID: PMC4529016 DOI: 10.1289/ehp.1409004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/25/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cross-sectional studies have shown associations between arsenic exposure and prevalence of high blood pressure; however, studies examining the relationship of arsenic exposure with longitudinal changes in blood pressure are lacking. METHOD We evaluated associations of arsenic exposure in relation to longitudinal change in blood pressure in 10,853 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Arsenic was measured in well water and in urine samples at baseline and in urine samples every 2 years after baseline. Mixed-effect models were used to estimate the association of baseline well and urinary creatinine-adjusted arsenic with annual change in blood pressure during follow-up (median, 6.7 years). RESULT In the HEALS population, the median water arsenic concentration at baseline was 62 μg/L. Individuals in the highest quartile of baseline water arsenic or urinary creatinine-adjusted arsenic had a greater annual increase in systolic blood pressure compared with those in the reference group (β = 0.48 mmHg/year; 95% CI: 0.35, 0.61, and β = 0.43 mmHg/year; 95% CI: 0.29, 0.56 for water arsenic and urinary creatinine-adjusted arsenic, respectively) in fully adjusted models. Likewise, individuals in the highest quartile of baseline arsenic exposure had a greater annual increase in diastolic blood pressure for water arsenic and urinary creatinine-adjusted arsenic, (β = 0.39 mmHg/year; 95% CI: 0.30, 0.49, and β = 0.45 mmHg/year; 95% CI: 0.36, 0.55, respectively) compared with those in the lowest quartile. CONCLUSION Our findings suggest that long-term arsenic exposure may accelerate age-related increases in blood pressure. These findings may help explain associations between arsenic exposure and cardiovascular disease.
Collapse
Affiliation(s)
- Jieying Jiang
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gene-arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 2015. [PMID: 26220686 DOI: 10.1016/j.taap.2015.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.
Collapse
|
39
|
Sung TC, Huang JW, Guo HR. Association between Arsenic Exposure and Diabetes: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:368087. [PMID: 26000288 PMCID: PMC4427062 DOI: 10.1155/2015/368087] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Studies on the association between arsenic exposure and diabetes mellitus (DM) yielded inconsistent results. Epidemiologic data on the associations between arsenic exposures via inhalation and DM are limited. Therefore, we conducted a meta-analysis to evaluate the risk of DM associated with arsenic exposure. We searched the related literature through a systematic approach and analyzed the data according to the exposure route (inhalation and ingestion). We used random-effect models to estimate the summary relative risks (RRs) for DM associated with arsenic exposure and used I (2) statistics to assess the heterogeneity of studies. We identified 38 relevant studies, of which the 32 on the ingestion route showed a significant association between arsenic exposure and DM (RR = 1.57; 95% CI 1.27-1.93). Focusing on the 24 studies in which the diagnosis of DM was confirmed using laboratory tests or medical records, we found that the summary RR was 1.71 (95% CI 1.32-2.23), very close to the overall estimates. We concluded that ingested arsenic is associated with the development of DM, but the heterogeneity among the studies may affect the results.
Collapse
Affiliation(s)
- Tzu-Ching Sung
- Department of Health Care Management, University of Kang Ning, 188 Anjhong Road, Section 5, Tainan 70970, Taiwan
- Center for Occupational and Environmental Health and Preventive Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | - Jhih-Wei Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | - How-Ran Guo
- Center for Occupational and Environmental Health and Preventive Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan 70428, Taiwan
| |
Collapse
|
40
|
Huang L, Wu H, van der Kuijp TJ. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:432-452. [PMID: 25365079 DOI: 10.1080/09603123.2014.958139] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Collapse
Affiliation(s)
- Lei Huang
- a State Key Laboratory of Pollution Control & Resource Reuse , School of the Environment, Nanjing University , Nanjing , China
| | | | | |
Collapse
|
41
|
Colín-Torres CG, Murillo-Jiménez JM, Del Razo LM, Sánchez-Peña LC, Becerra-Rueda OF, Marmolejo-Rodríguez AJ. Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:845-854. [PMID: 24737417 DOI: 10.1007/s10653-014-9603-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Gold has been mined at San Antonio-El Triunfo, (Baja California Sur, Mexico) since the 18th century. This area has approximately 5,700 inhabitants living in the San Juan de Los Planes and El Carrizal hydrographic basins, close to more than 100 abandoned mining sites containing tailings contaminated with potentially toxic elements such as arsenic. To evaluate the arsenic exposure of humans living in the surrounding areas, urinary arsenic species, such as inorganic arsenic (iAs) and the metabolites mono-methylated (MMA) and di-methylated arsenic acids (DMA), were evaluated in 275 residents (18-84 years of age). Arsenic species in urine were analyzed by hydride generation-cryotrapping-atomic absorption spectrometry, which excludes the non-toxic forms of arsenic such as those found in seafood. Urinary samples contained a total arsenic concentration (sum of arsenical species) which ranged from 1.3 to 398.7 ng mL(-1), indicating 33% of the inhabitants exceeded the biological exposition index (BEI = 35 ng mL(-1)), the permissible limit for occupational exposure. The mean relative urinary arsenic species were 9, 11 and 80% for iAs, MMA and DMA, respectively, in the Los Planes basin, and 17, 10 and 73%, respectively, in the El Carrizal basin. These data indicated that environmental intervention is required to address potential health issues in this area.
Collapse
Affiliation(s)
- Carlos G Colín-Torres
- Secretaría de Salud, Hospital Juan María de Salvatierra, Blvd. Paseo de los Deportistas 5115, 23085, La Paz, BCS, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Tsuji JS, Perez V, Garry MR, Alexander DD. Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology 2014; 323:78-94. [PMID: 24953689 DOI: 10.1016/j.tox.2014.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 02/02/2023]
Abstract
The U.S. Environmental Protection Agency (EPA) is developing an integrated assessment of non-cancer and cancer risk assessment of inorganic arsenic (iAs). Cardiovascular disease (CVD) in association with iAs exposure has been examined in a number of studies and provides a basis for evaluating a reference dose (RfD) for assessing potential non-cancer health risks of arsenic exposure. In this systematic review of low-level iAs exposure (i.e., <100-150μg/L arsenic water concentration) and CVD in human populations, 13 cohort and case-control studies from the United States, Taiwan, Bangladesh, and China were identified and critically examined for evidence for derivation of a RfD. Eight cross-sectional and ecological studies from the United States were also examined for additional information. Prospective cohort data from Bangladesh provided the strongest evidence for determining the point of departure in establishing a candidate RfD based on a combined endpoint of mortality from "ischemic heart disease and other heart diseases." This study as well as the overall literature supported a no-observed-adverse-effect level of 100μg/L for arsenic in water, which was equivalent to an iAs dose of 0.009mg/kg-day (based on population-specific water consumption rates and dietary iAs intake). The study population was likely sensitive to arsenic toxicity because of nutritional deficiencies affecting arsenic methylation and one-carbon metabolism, as well as increasing CVD risk. Evidence is less clear on the interaction of CVD risk factors in the United States (e.g., diabetes, obesity, and hypertension) with arsenic at low doses. Potential uncertainty factors up to 3 resulted in a RfD for CVD in the range of 0.003-0.009mg/kg-day. Although caution should be exercised in extrapolating these results to the U.S. general population, these doses allow a margin of exposure that is 10-30 times the current RfD derived by EPA (based on skin lesions in Southwest Taiwan). These findings suggest that the current EPA RfD is protective of CVD.
Collapse
|
43
|
Harper KN, Liu X, Hall MN, Ilievski V, Oka J, Calancie L, Slavkovich V, Levy D, Siddique A, Alam S, Mey JL, van Geen A, Graziano JH, Gamble MV. A dose-response study of arsenic exposure and markers of oxidative damage in Bangladesh. J Occup Environ Med 2014; 56:652-8. [PMID: 24854259 PMCID: PMC4050339 DOI: 10.1097/jom.0000000000000166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate the dose-response relationship between arsenic (As) exposure and markers of oxidative damage in Bangladeshi adults. METHODS We recruited 378 participants drinking water from wells assigned to five water As exposure categories; the distribution of subjects was as follows: (1) less than 10 μg/L (n=76); (2) 10 to 100 μg/L (n=104); (3) 101 to 200 μg/L (n=86); (4) 201 to 300 μg/L (n=67); and (5) more than 300 μg/L (n=45). Arsenic concentrations were measured in well water, as well as in urine and blood. Urinary 8-oxo-2'-deoxyguanosine and plasma protein carbonyls were measured to assess oxidative damage. RESULTS None of our measures of As exposure were significantly associated with protein carbonyl or 8-oxo-2'-deoxyguanosine levels. CONCLUSIONS We found no evidence to support a significant relationship between long-term exposure to As-contaminated drinking water and biomarkers of oxidative damage among Bangladeshi adults.
Collapse
Affiliation(s)
- Kristin N. Harper
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Julie Oka
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Larissa Calancie
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Abu Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Shafiul Alam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Jacob L. Mey
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964
- Kingsbridge Community College, New York, NY 11235
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
44
|
Becker A, Axelrad D. Arsenic and type 2 diabetes: commentary on association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis by Wanget al. J Epidemiol Community Health 2014; 68:393-5. [DOI: 10.1136/jech-2013-203463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Yinon L, Chen Y, Parvez F, Bangalore S, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G, Ahsan H. A prospective study of variability in systolic blood pressure and mortality in a rural Bangladeshi population cohort. Prev Med 2013; 57:807-12. [PMID: 24051264 PMCID: PMC4314716 DOI: 10.1016/j.ypmed.2013.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Limited studies suggest that blood pressure variability over time is a risk factor of long-term cardiovascular outcomes. However, most of these were in populations with pre-existing cardiovascular diseases (CVD) and studies in general population are lacking. METHODS The study included 11,153 participants in a population-based, prospective cohort study in Araihazar, Bangladesh. Resting blood pressure was measured at baseline and every two years thereafter. Participants were followed up for an average of 6.5 years (2002-2009). RESULTS Male gender, older age, baseline systolic blood pressure (SBP), and absence of betel leaf use were independently positively associated with greater SBP variability over time. There was a significant association between SBP variability and the risk of death from overall CVD, especially from major CVD events. The positive association with the risk of death from any cause and stroke in age- and sex-adjusted models was attenuated in fully-adjusted models. In addition, the hazard ratio (HR) of stroke mortality was greater for individuals with both high baseline and high SBP variability. Similar patterns of HRs were observed for all-cause and CVD mortalities. CONCLUSION In this rural Bangladeshi population, variability in SBP contributes to the risk of death from CVD and may further potentiate the increased mortality risk associated with high SBP.
Collapse
Affiliation(s)
- Lital Yinon
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pan WC, Seow WJ, Kile ML, Hoffman EB, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Lu Q, Christiani DC. Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 2013; 178:1563-70. [PMID: 24049161 PMCID: PMC3888275 DOI: 10.1093/aje/kwt195] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 07/18/2013] [Indexed: 11/14/2022] Open
Abstract
Chronic exposure to high levels of arsenic in drinking water is associated with increased risk of type 2 diabetes mellitus (T2DM), but the association between lower levels of arsenic and T2DM is more controversial. Therefore, this study evaluated the association between low to moderate arsenic exposure and T2DM. In 2009-2011, we conducted a study of 957 Bangladeshi adults who participated in a case-control study of skin lesions in 2001-2003. The odds ratio of T2DM was evaluated in relationship to arsenic exposure measured in drinking water and in subjects' toenails (in 2001-2003) prior to the diagnosis of T2DM (in 2009-2011). Compared with those exposed to the lowest quartile of arsenic in water (≤ 1.7 µg/L), the adjusted odds ratio for T2DM was 1.92 (95% confidence interval (CI): 0.82, 4.35) for those in the second quartile, 3.07 (95% CI: 1.38, 6.85) for those in the third quartile, and 4.51 (95% CI: 2.01, 10.09) for those in the fourth quartile. The relative excess risk of T2DM was 4.78 for individuals who smoked and 8.93 for people who had a body mass index (weight (kg)/height (m)(2)) greater than 25. These findings suggest that exposure to modest levels of arsenic in drinking water was associated with increased risk of T2DM in Bangladesh. Being overweight or smoking was also associated with increased risk of T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David C. Christiani
- Correspondence to Dr. David C. Christiani, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (e-mail: )
| |
Collapse
|
47
|
Li X, Li B, Xi S, Zheng Q, Lv X, Sun G. Prolonged environmental exposure of arsenic through drinking water on the risk of hypertension and type 2 diabetes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8151-8161. [PMID: 23649600 DOI: 10.1007/s11356-013-1768-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Prolonged exposure to inorganic arsenic has been a severe environmental public health issue worldwide in the recent decades. Increasing evidence has suggested a possible role of prolonged arsenic exposure through drinking water in the development of arsenic-induced chronic noncancer diseases, among which hypertension and type 2 diabetes (T2D) are the focus of concern. Although exposure to high levels of arsenic has been reported to be associated with excess risk of hypertension or T2D in a dose-dependent manner, the association has yet to be established, especially low-level exposure. This cross-sectional study was designed to evaluate the potential association between prolonged environmental arsenic exposure through drinking water and the prevalence of hypertension and T2D in Inner Mongolia, China, with emphasis on the assessment of low-level exposure. In this study (a total of 669 men and women), we found that the blood pressure levels were significantly correlated with cumulative arsenic exposure and that the systolic blood pressure of the subjects with arsenic exposure>50 μg/L was significantly higher than those of the subjects with <10 and 10-50 μg/L exposure. Significant prevalence of hypertension was found in the subjects of the >50 μg/L group both before and after adjustment for confounders. In addition, a significant negative relationship was found between urinary arsenic percentage of dimethylated arsenic (DMA%) and the prevalence of hypertension in the >50 μg/L group. However, low-level arsenic exposure (10-50 μg/L) was not statistically associated with hypertension. No significant difference of blood glucose was found among the groups with different arsenic exposure levels. No statistical association was found between arsenic exposure and T2D. Our findings suggested that prolonged arsenic exposure might play a role in the development of hypertension; however, only high-level arsenic was associated with the risk of hypertension. Our findings also indicated that lower DMA% might be related with the increased susceptibility of arsenic-induced hypertension.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 92 Bei Er Road, Heping District, Shenyang, Liaoning Province, 110001, China
| | | | | | | | | | | |
Collapse
|
48
|
Wang W, Xie Z, Lin Y, Zhang D. Association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis. J Epidemiol Community Health 2013; 68:176-84. [PMID: 24133074 DOI: 10.1136/jech-2013-203114] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The association of long-term effects of inorganic arsenic (iAs) exposure with type 2 diabetes mellitus (T2DM) risk remains controversial. METHODS A literature search was performed in PubMed, China National Knowledge Infrastructure and Web of Knowledge for relevant available articles published in English or Chinese from 1 January 1990 to 5 June 2013. Case-control, cohort or cross-sectional studies evaluating iAs and T2DM were included. The DerSimonian and Laird random effect model was adopted as the pooling method. Dose-response relationship was assessed by restricted cubic spline model and multivariate random-effect meta-regression. RESULTS Of the 569 articles identified through searching databases, 17 published articles with 2,243,745 participants for iAs in drinking water and 21 083 participants for total arsenic (tAs) in urine were included for this meta-analysis. The pooled relative risk with 95% CI of T2DM for the highest versus lowest category of iAs exposure level in drinking water was 1.75 (1.20 to 2.54). After removing three studies that had a strong effect on heterogeneity, the pooled relative risk was 1.23 (1.12 to 1.36). Dose-response analysis suggested T2DM risk increased by 13% (1.13 (1.00 to 1.27)) for every 100 µg/L increment of iAs in drinking water. Significant association of T2DM risk with tAs in urine was also found 1.28 (1.14 to 1.44). CONCLUSIONS This meta-analysis indicates that long-term iAs exposure might be positively associated with T2DM risk.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, , Qingdao, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Hsu LI, Wang YH, Chiou HY, Wu MM, Yang TY, Chen YH, Tseng CH, Chen CJ. The association of diabetes mellitus with subsequent internal cancers in the arsenic-exposed area of Taiwan. JOURNAL OF ASIAN EARTH SCIENCES 2013; 73:452-459. [DOI: 10.1016/j.jseaes.2013.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
50
|
Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Eunus M, Ahmed A, Argos M, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Levy D, Graziano J, Ahsan H. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:832-8. [PMID: 23665672 PMCID: PMC3701993 DOI: 10.1289/ehp.1205797] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Few prospective studies have evaluated the influence of arsenic methylation capacity on cardiovascular disease (CVD) risk. OBJECTIVE We evaluated the association of arsenic exposure from drinking water and arsenic methylation capacity with CVD risk. METHOD We conducted a case-cohort study of 369 incident fatal and nonfatal cases of CVD, including 211 cases of heart disease and 148 cases of stroke, and a subcohort of 1,109 subjects randomly selected from the 11,224 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). RESULTS The adjusted hazard ratios (aHRs) for all CVD, heart disease, and stroke in association with a 1-SD increase in baseline well-water arsenic (112 µg/L) were 1.15 (95% CI: 1.01, 1.30), 1.20 (95% CI: 1.04, 1.38), and 1.08 (95% CI: 0.90, 1.30), respectively. aHRs for the second and third tertiles of percentage urinary monomethylarsonic acid (MMA%) relative to the lowest tertile, respectively, were 1.27 (95% CI: 0.85, 1.90) and 1.55 (95% CI: 1.08, 2.23) for all CVD, and 1.65 (95% CI: 1.05, 2.60) and 1.61 (95% CI: 1.04, 2.49) for heart disease specifically. The highest versus lowest ratio of urinary dimethylarsinic acid (DMA) to MMA was associated with a significantly decreased risk of CVD (aHR = 0.54; 95% CI: 0.34, 0.85) and heart disease (aHR = 0.54; 95% CI: 0.33, 0.88). There was no significant association between arsenic metabolite indices and stroke risk. The effects of incomplete arsenic methylation capacity--indicated by higher urinary MMA% or lower urinary DMA%--with higher levels of well-water arsenic on heart disease risk were additive. There was some evidence of a synergy of incomplete methylation capacity with older age and cigarette smoking. CONCLUSIONS Arsenic exposure from drinking water and the incomplete methylation capacity of arsenic were adversely associated with heart disease risk.
Collapse
Affiliation(s)
- Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|