1
|
Chen X, Wu D, Tan Y, Song X, Chen J, Li Q. Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:668-678. [PMID: 39730302 DOI: 10.1021/acs.est.4c11256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM2.5) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion. EC contributes approximately 1 order of magnitude less to PM2.5 toxicity than PAHs, despite its positive associations with PM2.5-induced toxic potency (p < 0.0001). Furthermore, PAHs contribute 71.9 ± 12.2% and 61.9 ± 32.8% of the overall toxic potency of PM2.5 emitted from typical incomplete burning of solid and liquid fuels, respectively, while the PM2.5 toxicity significantly correlates with PAHs content (r = 0.94, p = 0.002). Hence, EC is not a cause of inducing acute toxicity, likely attributed to coemitted PAHs. These findings provide causal evidence for understanding the respiratory health risks associated with exposure to PM2.5 and further benefit to establishing efficient air pollution control policies.
Collapse
Affiliation(s)
- Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yifei Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Qureshi M, Ishaq K, Daniyal M, Iftikhar H, Rehman MZ, Salar SAA. Forecasting cardiovascular disease mortality using artificial neural networks in Sindh, Pakistan. BMC Public Health 2025; 25:34. [PMID: 39754102 PMCID: PMC11699765 DOI: 10.1186/s12889-024-21187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death and disability worldwide, and its incidence and prevalence are increasing in many countries. Modeling of CVD plays a crucial role in understanding the trend of CVD death cases, evaluating the effectiveness of interventions, and predicting future disease trends. This study aims to investigate the modeling and forecasting of CVD mortality, specifically in the Sindh province of Pakistan. The civil hospital in the Nawabshah area of Sindh province, Pakistan, provided the data set used in this study. It is a time series dataset with actual cardiovascular disease (CVD) mortality cases from 1999 to 2021 included. This study analyzes and forecasts the CVD deaths in the Sindh province of Pakistan using classical time series models, including Naïve, Holt-Winters, and Simple Exponential Smoothing (SES), which have been adopted and compared with a machine learning approach called the Artificial Neural Network Auto-Regressive (ANNAR) model. The performance of both the classical time series models and the ANNAR model has been evaluated using key performance indicators such as Root Mean Square Deviation Error, Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). After comparing the results, it was found that the ANNAR model outperformed all the selected models, demonstrating its effectiveness in predicting CVD mortality and quantifying future disease burden in the Sindh province of Pakistan. The study concludes that the ANNAR model is the best-selected model among the competing models for predicting CVD mortality in the Sindh province. This model provides valuable insights into the impact of interventions aimed at reducing CVD and can assist in formulating health policies and allocating economic resources. By accurately forecasting CVD mortality, policymakers can make informed decisions to address this public health issue effectively.
Collapse
Affiliation(s)
- Moiz Qureshi
- Govt Degree College TangoJam, Hyderabad 70060, Sindh, Pakistan
- Department of Statistics, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Khushboo Ishaq
- Ibn-e-Sina Medical University Mirpurkhas, Sindh, Pakistan
| | - Muhammad Daniyal
- Department of Statistics, Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hasnain Iftikhar
- Department of Statistics, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
- Al-Barkaat Institute of Management Studies, Aligarh 202122, Dr. A. P. J. Abdul Kalam Technical University, Lucknow 226010, India.
| | - Mohd Ziaur Rehman
- Department of Finance, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabia
| | - S A Atif Salar
- Al-Barkaat Institute of Management Studies, Aligarh 202122, Dr. A. P. J. Abdul Kalam Technical University, Lucknow 226010, India
| |
Collapse
|
3
|
Chung CS, Johnson GT, Rohr AC. Meta-analysis of the association between low concentration PM 2.5 and cardiovascular mortality in the United States and Canada. Inhal Toxicol 2025; 37:41-57. [PMID: 39916349 DOI: 10.1080/08958378.2025.2457639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/19/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES The adverse effects of fine particulate matter (PM2.5), including cardiovascular outcomes, are well established. This review and meta-analysis investigates the association between long-term exposure to low concentration PM2.5 (<12 µg/m3) and CVD mortality in U.S. and Canadian populations. METHODS We conducted a literature search and completed random effect meta-analyses. RESULTS Twenty-four studies were reviewed, with 12 from each of the U.S. and Canada. Fifteen of eighteen studies that reported hazard ratios (HRs) for total CVD mortality reported statistically significant positive associations with low concentration PM2.5. For cause-specific CVD mortality, more consistent results were shown for ischemic heart disease (IHD) mortality, with all eleven studies reporting statistically significant associations (HR = 1.09 to 2.48). Only three of 12 studies evaluating cerebrovascular mortality reported statistically significant associations (HR = 1.10 to 1.27). Studies that restricted analyses to participants with mean exposures <12 µg/m3 found statistically significant associations between PM2.5 and at least some of the CVD mortality outcomes of interest. However, the shape of the concentration-response functions varied widely. Only six studies controlled for at least one additional air pollutant, and multi-pollutant models generally showed an attenuated impact of PM2.5. Despite existing gaps in understanding the association between low concentrations of PM2.5 and cardiovascular mortality, this review highlights the critical importance of ongoing efforts to improve air quality for public health benefits. CONCLUSIONS Continued focus on understanding the shape of the concentration-response function for PM2.5, the impact of co-pollutants on observed effects, and how particle composition may impact effect estimates, is recommended.
Collapse
Affiliation(s)
- Chloe S Chung
- Electric Power Research Institute (EPRI), Palo Alto, CA, USA
| | - Giffe T Johnson
- National Council for Air and Stream Improvement (NCASI), Cary, NC, USA
| | - Annette C Rohr
- Electric Power Research Institute (EPRI), Palo Alto, CA, USA
| |
Collapse
|
4
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Amubieya O, Weigt S, Shino MY, Jackson NJ, Belperio J, Ong MK, Norris K. Ambient Air Pollution Exposure and Outcomes in Patients Receiving Lung Transplant. JAMA Netw Open 2024; 7:e2437148. [PMID: 39418024 PMCID: PMC11581506 DOI: 10.1001/jamanetworkopen.2024.37148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024] Open
Abstract
Importance Elevated ambient fine particulate matter (PM2.5) air pollution exposure has been associated with poor health outcomes across several domains, but its associated outcomes among lung transplant recipients are poorly understood. Objective To investigate whether greater PM2.5 exposure at the zip code of residence is associated with a higher hazard for mortality and graft failure in patients with lung transplants. Design, Setting, and Participants This retrospective cohort study used panel data provided by the United Network for Organ Sharing, which includes patients receiving transplants across all active US lung transplant programs. Adult patients who received lung transplants between May 2005 and December 2016 were included, with a last follow-up of September 10, 2020. Data were analyzed from September 2022 to May 2023. Exposure Zip code-level annual PM2.5 exposure was constructed using previously published North American estimates. Main Outcomes and Measures The primary outcome was time to death or lung allograft failure after lung transplant. A gamma shared frailty Cox proportional hazards model was used to produce unadjusted and adjusted hazard ratios (HRs) to estimate the association of zip code PM2.5 exposure at the time of transplant with graft failure or mortality. Results Among 18 265 lung transplant recipients (mean [SD] age, 55.3 [13.2] years; 7328 female [40.2%]), the resident zip code's annual PM2.5 exposure level was greater than or equal to the Environmental Protection Agency (EPA) standard of 12μg/m3 for 1790 patients (9.8%) and less than the standard for 16 475 patients (90.2%). In unadjusted analysis, median graft survival was 4.87 years (95% CI, 4.57-5.23 years) for recipients living in high PM2.5 areas and 5.84 years (95% CI, 5.71-5.96 years) for recipients in the low PM2.5 group. Having an annual PM2.5 exposure level greater than or equal to the EPA standard 12 μg/m3 was associated with an increase in the hazard of death or graft failure (HR, 1.11; 95% CI, 1.05-1.18; P < .001) in the unadjusted analysis and after adjusting for covariates (HR, 1.08; 95% CI, 1.01-1.15; P = .02). Each 1 μg/m3 increase in exposure was associated with an increase in the hazard of death or graft failure (adjusted HR, 1.01; 95% CI, 1.00-1.02; P = .004) when treating PM2.5 exposure as a continuous variable. Conclusions and Relevance In this study, elevated zip code-level ambient PM2.5 exposure was associated with an increased hazard of death or graft failure in lung transplant recipients. Further study is needed to better understand this association, which may help guide risk modification strategies at individual and population levels.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Sam Weigt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael Y. Shino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Nicholas J. Jackson
- Statistics Core, Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles
| | - John Belperio
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael K. Ong
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
- Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles
| | - Keith Norris
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
6
|
Debelu D, Mengistu DA, Aschalew A, Mengistie B, Deriba W. Global Public Health Implications of Traffic Related Air Pollution: Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241272403. [PMID: 39192968 PMCID: PMC11348364 DOI: 10.1177/11786302241272403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
Background Traffic-related air pollution (TRAP) has significant public health implications and a wide range of adverse health effects, including cardiovascular, respiratory, pulmonary, and other health problems. This study aimed to determine the public health impacts of traffic-related air pollution across the world that can be used as an input for protecting human health. Methods This study considered studies conducted across the world and full-text articles written in English. The articles were searched using a combination of Boolean logic operators (AND, OR, and NOT), MeSH, and keywords from the included electronic databases (SCOPUS, PubMed, EMBASE, Web of Science, CINAHL, and Google Scholars). The quality assessment of the articles was done using JBI tools to determine the relevance of each included article to the study. Results In this study, 1 282 032 participants ranging from 19 to 452 735 were included in 30 articles published from 2010 to 2022. About 4 (13.3%), 9 (30.0%), 12 (40.0%), 8 (26.7%), 2 (6.7%), 15 (50.0%), 3 (10.0%), 3 (10.0%) 1 (3.3%), and 3 (10.0%) of articles reported the association between human health and exposure to CO, PM10, PM2.5, NOx, NO, NO2, black carbon, O3, PAH, and SO2, respectively. Respiratory diseases, cancer, cognitive function problems, preterm birth, blood pressure and hypertension, diabetes, allergies and sensitization, coronary heart disease, dementia incidence, and hemorrhagic stroke were associated with exposure to TRAP. Conclusions Exposure to nitrogen dioxide, nitrogen oxide, sulfur dioxide, and fine particulate matter was associated with various health effects. This revealed that there is a need for the concerned organizations to respond appropriately.
Collapse
Affiliation(s)
- Desi Debelu
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| | - Dechasa Adare Mengistu
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| | - Alemayehu Aschalew
- Institutional Development and Facility Management, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Bizatu Mengistie
- Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Wegene Deriba
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| |
Collapse
|
7
|
Belachsen I, Broday DM. Decomposing PM 2.5 concentrations in urban environments into meaningful factors 2. Extracting the contribution of traffic-related exhaust emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173715. [PMID: 38852869 DOI: 10.1016/j.scitotenv.2024.173715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Vehicle-emitted fine particulate matter (PM2.5) has been associated with significant health outcomes and environmental risks. This study estimates the contribution of traffic-related exhaust emissions (TREE) to observed PM2.5 using a novel factorization framework. Specifically, co-measured nitrogen oxides (NOx) concentrations served as a marker of vehicle-tailpipe emissions and were integrated into the optimization of a Non-negative Matrix Factorization (NMF) analysis to guide the factor extraction. The novel TREE-NMF approach was applied to long-term (2012-2019) PM2.5 observations from air quality monitoring (AQM) stations in two urban areas. The extracted TREE factor was evaluated against co-measured black carbon (BC) and PM2.5 species to which the TREE-NMF optimization was blind. The contribution of the TREE factor to the observed PM2.5 concentrations at an AQM station from the first location showed close agreement (R2=0.79) with monitored BC data. In the second location, a comparison of the extracted TREE factor with measurements at a nearby Surface PARTiculate mAtter Network (SPARTAN) station revealed moderate correlations with PM2.5 species commonly associated with fuel combustion, and a good linear regression fit with measured equivalent BC concentrations. The estimated concentrations of the TREE factor at the second location accounted for 7-11 % of the observed PM2.5 in the AQM stations. Moreover, analysis of specific days known to be characterized by little traffic emissions suggested that approximately 60-78 % of the traffic-related PM2.5 concentrations could be attributed to particulate traffic-exhaust emissions. The methodology applied in this study holds great potential in areas with limited monitoring of PM2.5 speciation, in particular BC, and its results could be valuable for both future environmental health research, regional radiative forcing estimates, and promulgation of tailored regulations for traffic-related air pollution abatement.
Collapse
Affiliation(s)
- Idit Belachsen
- Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - David M Broday
- Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
9
|
Weichenthal S, Lloyd M, Ganji A, Simon L, Xu J, Venuta A, Schmidt A, Apte J, Chen H, Lavigne E, Villeneuve P, Olaniyan T, Tjepkema M, Burnett RT, Hatzopoulou M. Long-Term Exposure to Outdoor Ultrafine Particles and Black Carbon and Effects on Mortality in Montreal and Toronto, Canada. Res Rep Health Eff Inst 2024; 2024:1-63. [PMID: 39392111 PMCID: PMC11480997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Numerous studies support an important relationship between long-term exposure to outdoor fine particulate air pollution (PM2.5) and both nonaccidental and cause-specific mortality. Less is known about the long-term health consequences of other traffic pollutants, including ultrafine particles (UFPs, <0.1 μm) and black carbon (BC), which are often present at elevated concentrations in urban areas but are not currently regulated. Knowledge is lacking largely because these pollutants generally are not monitored by governments and vary greatly over small spatial scales, hindering the evaluation of long-term exposures in population-based studies. METHODS We aimed to estimate associations between long-term exposures to outdoor UFPs and BC and nonaccidental and cause-specific mortality in Canada's two largest cities, Montreal and Toronto. We considered several approaches to exposure assessment: (1) land use regression (LUR) models based on large-scale year-long mobile monitoring campaigns combined with detailed land use and traffic information; (2) machine learning (i.e., convolutional neural networks [CNN]) models trained by combining mobile monitoring data with aerial images; and (3) the combined use of these two approaches. We also examined exposure models with and without backcasting based on historical trends in vehicle emissions (to capture potential trends in pollutant concentrations over time) and with and without accounting for neighborhood-level mobility patterns (based on travel demand surveys). These exposure models were linked to members of the Canadian Census Health and Environment Cohorts (CanCHEC) residing in Montreal or Toronto (including census years 1991, 1996, 2001, and 2006) with mortality follow-up from 2001 (or cohort entry for the 2006 cohort) to 2016. Cox proportional hazard models were used to estimate associations between long-term exposures to outdoor UFPs and BC, adjusting for sociodemographic factors and co-pollutants identified as potential confounding factors. Concentration-response relationships for outdoor UFPs and BC were also examined for nonaccidental and cause-specific mortality using smoothing splines. RESULTS Our cohort study included approximately 1.5 million people with 174,200 nonaccidental deaths observed during the follow-up period. Combined LUR and machine learning model predictions performed slightly better than LUR models alone and were used as the main exposure models in all epidemiological analyses. Long-term exposures to outdoor UFP number concentrations were consistently positively associated with nonaccidental and cause-specific mortality. Importantly, hazard ratios (HRs) for outdoor UFP number concentrations were sensitive to adjustment for UFP size: UFP size was inversely related to number concentrations and independently associated with mortality, resulting in underestimation of mortality risk for outdoor UFP number concentrations when UFP size was excluded. HRs for outdoor UFP number concentrations were robust to backcasting and mobility weighting but varied slightly in analyses using LUR and machine learning models alone, with stronger associations typically observed for the machine learning models. Associations between outdoor BC concentrations and mortality were generally weak or null, but a positive association was observed for cardiovascular mortality. CONCLUSIONS Outdoor UFP number concentrations were consistently associated with increased risks of nonaccidental and cause-specific mortality in Montreal and Toronto. Our results suggest that UFP size should be considered in epidemiological analyses of outdoor UFP number concentrations, as excluding size can lead to an underestimation of health risks. Our results suggest that outdoor UFP number concentrations are positively associated with mortality independent of other outdoor air pollutants, including PM2.5 mass concentrations and oxidant gases (i.e., nitrogen dioxide [NO2] and ozone [O3]). As outdoor UFPs are currently unregulated, interventions targeting these pollutants could significantly affect population health.
Collapse
Affiliation(s)
- S Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - M Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - A Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Ontario, Canada
| | - L Simon
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - J Xu
- Department of Civil and Mineral Engineering, University of Toronto, Ontario, Canada
| | - A Venuta
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - A Schmidt
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - J Apte
- Department of Civil & Environmental Engineering, University of California, Berkeley, USA
- School of Public Health, University of California, Berkeley, USA
| | - H Chen
- Health Canada, Ottawa, Ontario, Canada
| | - E Lavigne
- Health Canada, Ottawa, Ontario, Canada
| | - P Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - T Olaniyan
- Statistics Canada, Ottawa, Ontario, Canada
| | - M Tjepkema
- Statistics Canada, Ottawa, Ontario, Canada
| | | | - M Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
10
|
Karim N, Hod R, Wahab MIA, Ahmad N. Projecting non-communicable diseases attributable to air pollution in the climate change era: a systematic review. BMJ Open 2024; 14:e079826. [PMID: 38719294 PMCID: PMC11086555 DOI: 10.1136/bmjopen-2023-079826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Climate change is a major global issue with significant consequences, including effects on air quality and human well-being. This review investigated the projection of non-communicable diseases (NCDs) attributable to air pollution under different climate change scenarios. DESIGN This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. A population-exposure-outcome framework was established. Population referred to the general global population of all ages, the exposure of interest was air pollution and its projection, and the outcome was the occurrence of NCDs attributable to air pollution and burden of disease (BoD) based on the health indices of mortality, morbidity, disability-adjusted life years, years of life lost and years lived with disability. DATA SOURCES The Web of Science, Ovid MEDLINE and EBSCOhost databases were searched for articles published from 2005 to 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES The eligible articles were evaluated using the modified scale of a checklist for assessing the quality of ecological studies. DATA EXTRACTION AND SYNTHESIS Two reviewers searched, screened and selected the included studies independently using standardised methods. The risk of bias was assessed using the modified scale of a checklist for ecological studies. The results were summarised based on the projection of the BoD of NCDs attributable to air pollution. RESULTS This review included 11 studies from various countries. Most studies specifically investigated various air pollutants, specifically particulate matter <2.5 µm (PM2.5), nitrogen oxides and ozone. The studies used coupled-air quality and climate modelling approaches, and mainly projected health effects using the concentration-response function model. The NCDs attributable to air pollution included cardiovascular disease (CVD), respiratory disease, stroke, ischaemic heart disease, coronary heart disease and lower respiratory infections. Notably, the BoD of NCDs attributable to air pollution was projected to decrease in a scenario that promotes reduced air pollution, carbon emissions and land use and sustainable socioeconomics. Contrastingly, the BoD of NCDs was projected to increase in a scenario involving increasing population numbers, social deprivation and an ageing population. CONCLUSION The included studies widely reported increased premature mortality, CVD and respiratory disease attributable to PM2.5. Future NCD projection studies should consider emission and population changes in projecting the BoD of NCDs attributable to air pollution in the climate change era. PROSPERO REGISTRATION NUMBER CRD42023435288.
Collapse
Affiliation(s)
- Norhafizah Karim
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Rozita Hod
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Muhammad Ikram A Wahab
- Center of Toxicology and Health Risk Studies (CORE), Universiti Kebangsaan Malaysia Fakulti Sains Kesihatan, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Norfazilah Ahmad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| |
Collapse
|
11
|
Wei Y, Amini H, Qiu X, Castro E, Jin T, Yin K, Vu BN, Healy J, Feng Y, Zhang J, Coull B, Schwartz J. Grouped mixtures of air pollutants and seasonal temperature anomalies and cardiovascular hospitalizations among U.S. Residents. ENVIRONMENT INTERNATIONAL 2024; 187:108651. [PMID: 38648692 PMCID: PMC11234894 DOI: 10.1016/j.envint.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Air pollution is a recognized risk factor for cardiovascular disease (CVD). Temperature is also linked to CVD, with a primary focus on acute effects. Despite the close relationship between air pollution and temperature, their health effects are often examined separately, potentially overlooking their synergistic effects. Moreover, fewer studies have performed mixture analysis for multiple co-exposures, essential for adjusting confounding effects among them and assessing both cumulative and individual effects. METHODS We obtained hospitalization records for residents of 14 U.S. states, spanning 2000-2016, from the Health Cost and Utilization Project State Inpatient Databases. We used a grouped weighted quantile sum regression, a novel approach for mixture analysis, to simultaneously evaluate cumulative and individual associations of annual exposures to four grouped mixtures: air pollutants (elemental carbon, ammonium, nitrate, organic carbon, sulfate, nitrogen dioxide, ozone), differences between summer and winter temperature means and their long-term averages during the entire study period (i.e., summer and winter temperature mean anomalies), differences between summer and winter temperature standard deviations (SD) and their long-term averages during the entire study period (i.e., summer and winter temperature SD anomalies), and interaction terms between air pollutants and summer and winter temperature mean anomalies. The outcomes are hospitalization rates for four prevalent CVD subtypes: ischemic heart disease, cerebrovascular disease, heart failure, and arrhythmia. RESULTS Chronic exposure to air pollutant mixtures was associated with increased hospitalization rates for all CVD subtypes, with heart failure being the most susceptible subtype. Sulfate, nitrate, nitrogen dioxide, and organic carbon posed the highest risks. Mixtures of the interaction terms between air pollutants and temperature mean anomalies were associated with increased hospitalization rates for all CVD subtypes. CONCLUSIONS Our findings identified critical pollutants for targeted emission controls and suggested that abnormal temperature changes chronically affected cardiovascular health by interacting with air pollution, not directly.
Collapse
Affiliation(s)
- Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tingfan Jin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kanhua Yin
- Department of Surgery, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Bryan N Vu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James Healy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yijing Feng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiangshan Zhang
- Department of Statistics, University of California, Davis, CA, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Ekhator OC, Orish FC, Nnadi EO, Ogaji DS, Isuman S, Orisakwe OE. Impact of black soot emissions on public health in Niger Delta, Nigeria: understanding the severity of the problem. Inhal Toxicol 2024; 36:314-326. [PMID: 38145546 DOI: 10.1080/08958378.2023.2297698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Rivers State, Niger Delta, Nigeria often referred to as the 'treasure bed of the nation' is the seat of crude oil production activities with the accompanying environmental degradation. The severity of the environmental pollution and contaminated air quality took a new turn for the worse in November 2016, when the residents of Port Harcourt city, Rivers State, a major oil producing State experienced for the first time, aerosol deposition of plumes of black soot. This systematic review paper is aimed at quantifying the severity of this public health challenge. Using appropriate search words, the following databases SCOPUS, PUBMED, Google Scholar, and AJOL were searched from 1990 to 2022 to enable comparative analyses of data before and after the emergence of black soot deposition. Air-related morbidities and mortalities such as cerebrospinal meningitis (CSM), chronic bronchitis, measles, pertussis, hemoptysis, cough, pulmonary tuberculosis, pneumonia, and upper respiratory tract infection (URTI), pneumonia, eye irritation, conjunctivitis, traumatic skin outgrowth, cancers, cardiovascular diseases, and child deformities were compared with levels of air pollutants and particulate matter. The results showed that Port Harcourt city's ambient air quality data were above the standard National Ambient Air Quality data and that of other regulatory agencies having higher levels of both inorganic and organic pollutants. There were significant relationships between air pollutants concentration with morbidities. These correlations were significant in the period covering 2016-2022. Consequently, it is concluded that the black soot emissions in Port Harcourt city, Nigeria has worsened the public health situation in the city.
Collapse
Affiliation(s)
| | | | - Ernest O Nnadi
- School of Energy, Construction & Environment (ECE), Coventry University, Coventry, UK
| | - Daprim Samuel Ogaji
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Success Isuman
- Department of Science Laboratory Technology, University of Benin, Benin City, Nigeria
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
13
|
Guo T, Chen S, Wang Y, Zhang Y, Du Z, Wu W, Chen S, Ju X, Li Z, Jing Q, Hao Y, Zhang W. Potential causal links of long-term air pollution with lung cancer incidence: From the perspectives of mortality and hospital admission in a large cohort study in southern China. Int J Cancer 2024; 154:251-260. [PMID: 37611179 DOI: 10.1002/ijc.34699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Evidence on the potential causal links of long-term air pollution exposure with lung cancer incidence (reflected by mortality and hospital admission) was limited, especially based on large cohorts. We examined the relationship between lung cancer and long-term exposure to particulate matter (PM, including PM2.5 , PM10 and PM10-2.5 ) and nitrogen dioxide (NO2 ) among a large cohort of general Chinese adults using causal inference approaches. The study included 575 592 participants who were followed up for an average of 8.2 years. The yearly exposure of PM and NO2 was estimated through satellite-based random forest approaches and the ordinary kriging method, respectively. Marginal structural Cox models were used to examine hazard ratios (HRs) of mortality and hospital admission due to lung cancer following air pollution exposure, adjusting for potential confounders. The HRs of mortality due to lung cancer were 1.042 (95% confidence interval [CI]: 1.033-1.052), 1.032 (95% CI:1.024-1.041) and 1.052 (95% CI:1.041-1.063) for each 1 μg/m3 increase in PM2.5 , PM10 and NO2 , respectively. In addition, we observed statistically significant effects of PMs on hospital admission due to lung cancer. The HRs (95%CI) were 1.110 (1.027-1.201), 1.067 (1.020-1.115) and 1.079 (1.010-1.153) for every 1 μg/m3 increase in PM2.5 , PM10 , PM10-2.5 , respectively. Furthermore, we found larger effect estimates among the elderly and those who exercised more frequently. We provided the most comprehensive evidence of the potential causal links between two outcomes of lung cancer and long-term air pollution exposure. Relevant policies should be developed, with special attention to protecting the vulnerable groups of the population.
Collapse
Affiliation(s)
- Tong Guo
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shimin Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Ju
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiqiang Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinlong Jing
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Ma X, Zou B, Deng J, Gao J, Longley I, Xiao S, Guo B, Wu Y, Xu T, Xu X, Yang X, Wang X, Tan Z, Wang Y, Morawska L, Salmond J. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. ENVIRONMENT INTERNATIONAL 2024; 183:108430. [PMID: 38219544 DOI: 10.1016/j.envint.2024.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans' exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.
Collapse
Affiliation(s)
- Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China; College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Bin Zou
- School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China.
| | - Jun Deng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jay Gao
- School of Environment, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Ian Longley
- National Institute of Water and Atmospheric Research, Auckland 1010, New Zealand
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bin Guo
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yarui Wu
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tingting Xu
- School of Software Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, China
| | - Xin Xu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Xiaosha Yang
- Shandong Nova Fitness Co., Ltd., Baoji, Shaanxi 722404, China
| | - Xiaoqi Wang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zelei Tan
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yifan Wang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Jennifer Salmond
- School of Environment, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Wang Q, Cao J. Atmospheric PM 2.5 exposure and risk of ischemic heart disease: A systematic review and meta-analysis of observational studies. Perfusion 2024; 39:210-222. [PMID: 36342821 DOI: 10.1177/02676591221131485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Fine particulate matter <2.5 μm in diameter (PM2.5) has been validated to associate with cardiovascular diseases (CVD) incidence and mortality. So far, no study has quantitatively evaluated the relationship between the atmospheric PM2.5 exposure and ischemic heart disease (IHD). We conducted a meta-analysis to illustrate the relationship between PM2.5 and IHD. Published articles were systematically searched (until June 2022) from PubMed, EMBASE, Cochrane Library. A random-effect model was performed to summarize the total relative risks (RRs) and 95% confidence intervals (CIs). Meta-analysis was performed using Stata 12.0 software. A total of 28 studies among 23 cohorts (23.38 million individuals and 256256 IHD cases) were included. With PM2.5 increasing 10 μg/m3, the total RRs of IHD incidence and mortality were 1.07 (95% CI: 0.99-1.17), 1.21 (95% CI: 1.15-1.28), respectively. In sub-analyses, our study revealed that the combined RRs of exposure to PM2.5 on IHD mortality in Asian and European population [1.11 (95% CI: 0.93-1.33); 1.06 (95% CI: 1.02-1.11)] were much lower compared with American and Canadian people [1.27 (95% CI: 1.17-1.37); 1.30 (95% CI: 1.24-1.35)]. Furthermore, study duration, size and some adjustments were related with the total RR. Our findings indicated that exposure of an increase in the concentration of atmospheric PM2.5 may increase the risk of IHD incidence and mortality. Further evidence is needed to confirmed the association.
Collapse
Affiliation(s)
- Qingli Wang
- Department of Cardiology, Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Jingyan Cao
- Department of Cardiology, Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| |
Collapse
|
16
|
Zhang X, Zhang Y, Xiu M, Zhang Y, Zhu B, Ou Y, Wang S, Zheng C. Independent risk evaluation associated with short-term black carbon exposure on mortality in two megacities of Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163273. [PMID: 37028672 DOI: 10.1016/j.scitotenv.2023.163273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The adverse health effects of PM2.5 have been well demonstrated by many studies. However, as a component of PM2.5, evidence on the mortality risk of black carbon (BC) is still limited. In this study, based on the data of daily mean PM2.5 concentration, BC concentration, meteorological factors, total non-accidental (all-cause) and cardiovascular mortality in Shanghai and Nanjing during 2015-2016, a semi-parameter generalized additive model (GAM) in the time series and the constituent residual approach were employed to explore the exposure-response relationship between BC and human mortality in these two megacities of Yangtze River Delta, China. The main objective was to separate the health effects of BC from total PM2.5, and compare the difference of mortality ER related to BC original concentration and adjusted concentration after controlling PM2.5. Results showed that there were all significantly associated with daily mortality for PM2.5 and BC. The percentage excess risk (ER) increases in all-cause and cardiovascular categories were 1.68 % (95 % s 1.28, 2.08) and 2.16 % (95 % CI: 1.54, 2.79) with 1 μg/m3 increment in original BC concentration in Shanghai. And the ER in Nanjing was smaller than that in Shanghai. After eliminating PM2.5 confounding effects by a constituent residual approach, the BC residual concentration still had a strong significant ER. The ER for BC residual in Shanghai got an obvious increase, and ER of the cardiovascular mortality for all, females and males increased by 0.55 %, 1.46 % and 0.62 %, respectively, while the ER in Nanjing decreased slightly. It also revealed that females were more sensitive to the health risk associated with short-term BC exposure than males. Our findings provide additional important evidence and ER for mortality related to independent BC exposure. Therefore, BC emission reduction should be paid more attention in air pollution control strategies to reduce BC-related health burdens.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China.
| | - Yuanrui Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Meng Xiu
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China
| | - Ying Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Bin Zhu
- Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
| | - Yihan Ou
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Shigong Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Canjun Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
17
|
Gan W, Manning KJ, Cleary EG, Fortinsky RH, Brugge D. Exposure to ultrafine particles and cognitive decline among older people in the United States. ENVIRONMENTAL RESEARCH 2023; 227:115768. [PMID: 36965813 PMCID: PMC10246447 DOI: 10.1016/j.envres.2023.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Some studies suggest that ambient particulate air pollution is associated with cognitive decline. However, the findings are mixed, and there is no relevant research examining the influences of ultrafine particles (UFP), which may have more toxicity than larger particles. We therefore conducted this study to investigate whether residential UFP exposure is associated with cognitive decline using data from the Alzheimer's Disease Research Centers in the United States. METHODS This is a longitudinal study of participants who were aged 65 years and older and had normal cognitive status at baseline. Residential UFP exposure, expressed as particle number concentrations (PNC), was assessed in 2016-2017 using a nationwide land use regression model, and was assigned to each participant using their 3-digit residential ZIP codes. Cognitive functions including memory, attention, language, executive function, and global function were assessed annually using 15 neuropsychological tests from March 2015 to February 2022. Linear mixed-effects models were used to examine the associations after adjustment for covariates including baseline age, sex, APOE ε4 status, race, education, smoking status, history of diabetes, quartiles of neighborhood median household income, and interaction terms of follow-up time with each covariate. RESULTS This study included 5646 participants (mean age 76 years, 65% female). On average, each participant had 4 annual visits. When PNC was treated as a continuous variable, there were no statistically or clinically significant changes in annual decline of each cognitive function in relation to an interquartile range elevation in PNC (4026 particles/cm3). Similarly, when PNC was treated as a categorical variable including five exposure groups, there were no linear exposure-response trends in annual decline of each cognitive function across the five exposure groups. CONCLUSIONS This study found no meaningful associations between residential UFP exposure and cognitive decline in global and domain-specific functions. There is a need for further research that assigns UFP exposure at a finer geographic scale.
Collapse
Affiliation(s)
- Wenqi Gan
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Richard H Fortinsky
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA; UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
18
|
Buteau S, Yankoty LI, Letellier N, Benmarhnia T, Gamache P, Plante C, Goudreau S, Blais C, Perron S, Fournier M, Ragettli MS, Smargiassi A. Associations between environmental noise and myocardial infarction and stroke: Investigating the potential mediating effects of hypertension. ENVIRONMENTAL RESEARCH 2023; 231:116092. [PMID: 37172682 DOI: 10.1016/j.envres.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND We investigated whether hypertension may be a mediator in the pathway linking environmental noise exposure to incident MI and stroke. METHODS Separately for MI and stroke, we built two population-based cohorts from linked health administrative data. Participants were residents of Montreal (Canada) between 2000 and 2014, aged 45 years and older who were free of hypertension and MI or stroke at time of entry. MI, stroke and hypertension were ascertained from validated case definitions. Residential long-term environmental noise exposure, expressed as the annual mean level acoustic equivalent 24 h (LAeq24h), was estimated from a land use regression model. We performed mediation analysis based on the potential outcomes framework. We used a Cox proportional hazards model for the exposure-outcome model and a logistic regression for the exposure-mediator model. In sensitivity analysis we applied a marginal structural approach to estimate the natural direct and indirect effects. RESULTS Each cohort included approximately 900 000 individuals, with 26 647 incident cases of MI and 16 656 incident cases of stroke. 36% of incident MI and 40% of incident stokes had previously developed hypertension. The estimated total effect per interquartile range increase (from 55.0 to 60.5 dB A) in the annual mean LAeq24h was 1.073 (95% confidence interval (CI): 1.070-1.077) for both MI for stroke. We found no evidence of exposure-mediator interaction for both outcomes. The relationships between environmental noise and MI and stroke was not mediated by hypertension. CONCLUSIONS This population-based cohort study suggests that the main route by which environmental noise exposure may cause MI or stroke is not through hypertension.
Collapse
Affiliation(s)
- Stéphane Buteau
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada; Quebec National Institute of Public Health, Montreal, Canada
| | - Larisa I Yankoty
- School of Public Health, Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
| | - Noémie Letellier
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | | | - Céline Plante
- Montreal Regional Department of Public Health, Montreal, Canada
| | - Sophie Goudreau
- Montreal Regional Department of Public Health, Montreal, Canada
| | - Claudia Blais
- Quebec National Institute of Public Health, Montreal, Canada; Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Stéphane Perron
- Quebec National Institute of Public Health, Montreal, Canada
| | - Michel Fournier
- Montreal Regional Department of Public Health, Montreal, Canada
| | - Martina S Ragettli
- Swiss Tropical and Public Health Institute, Basel, Switzerland, University of Basel, Basel, Switzerland
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada; Quebec National Institute of Public Health, Montreal, Canada; School of Public Health, Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada.
| |
Collapse
|
19
|
Zhu X, Liu B, Guo C, Li Z, Cheng M, Zhu X, Wei Y. Short and long-term association of exposure to ambient black carbon with all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121086. [PMID: 36649881 DOI: 10.1016/j.envpol.2023.121086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is a product of incomplete or inefficient combustion and may be associated with a variety of adverse effects on human health. The objective of this study was to analyze the association between various mortalities and long-/short-term exposure to BC as an independent pollutant. In this systematic review, we searched 4 databases for original research in English up to 6th October 2022, that investigated population-wide mortality due to BC exposure. We pooled mortality estimates and expressed them as relative risk (RR) per 10 μg/m3 increase in BC. We used a random-effect model to derive the pooled RRs. Of the 3186 studies identified, 29 articles met the eligibility criteria, including 18 long-term exposure studies and 11 short-term exposure studies. In the major meta-analysis and sensitivity analysis, positive associations were found between BC and total mortality and cause-specific disease mortalities. Among them, the short-term effects of BC on total mortality, cardiovascular disease mortality, respiratory disease mortality, and the long-term effects of BC on total mortality, ischemic heart disease mortality, respiratory disease mortality and lung cancer mortality were found to be statistically significant. The heterogeneity of the meta-analysis results was much lower for short-term studies than for long-term. Few studies were at a high risk of bias in any domain. The certainty of the evidence for most of the exposure-outcome pairs was moderate. Our study showed a significantly positive association between short-/long-term BC exposure and various mortalities. We speculate that BC has a higher adverse health effect on the respiratory system than on the cardiovascular system. This is different from the effect of PM2.5. Therefore, more studies are needed to consider BC as a separate pollutant, and not just as a component of PM2.5.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingqian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoyan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
20
|
Morales-Betancourt R, Wilches-Mogollon MA, Sarmiento OL, Mendez Molano D, Angulo D, Filigrana P, Arellana J, Guzman LA, Garzon G, Gouveia N, Levy P, Diez-Roux AV. Commuter's personal exposure to air pollutants after the implementation of a cable car for public transport: Results of the natural experiment TrUST. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:160880. [PMID: 36516922 PMCID: PMC7616957 DOI: 10.1016/j.scitotenv.2022.160880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Commuters in urban settlements are frequently exposed to high concentrations of air pollutants due to their proximity to mobile sources, making exposure to traffic-related air pollutants an important public health issue. Recent trends in urban transport towards zero- and low-tailpipe emission alternatives will likely result in decreased exposure to air pollutants. The TrUST (Urban transformations and health) study offers a unique opportunity to understand the impacts of a new cable car (TransMiCable) in underserved communities within Bogotá, Colombia. The aims of this study are to assess the personal exposure to fine particulate matter (PM2.5), equivalent Black Carbon (eBC), and Carbon Monoxide (CO) in transport micro-environments and to estimate the inhaled dose per trip during mandatory multimodal trips before and after the implementation of the TransMiCable. We collected personal exposure data for Bus-Rapid-Transit (BRT) feeder buses, regular buses, informal transport, pedestrians, and TransMiCable. TransMiCable showed lower exposure concentration compared to BRT feeder and regular buses (PM2.5: 23.6 vs. 87.0 μg m-3 (P ≤ 0.001) and eBC: 5.2 vs. 28.2 μg m-3 (P ≤ 0.001), respectively). The mean concentration of PM2.5 and eBC inside the TransMiCable cabins were 62 % and 82 % lower than the mean concentrations in buses. Furthermore, using a Monte Carlo simulation model, we found that including the TransMiCable as a feeder is related to a 54.4 μg/trip reduction in PM2.5 inhaled dose and 35.8 μg/trip in eBC per trip. Those changes represent a 27 % and 34 % reduction in an inhaled dose per trip, respectively. Our results show that PM2.5, eBC, and CO inhaled dose for TransMiCable users is reduced due to lower exposure concentration inside its cabins and shorter travel time. The implementation of a cable car in Bogotá is likely to reduce air pollution exposure in transport micro-environments used by vulnerable populations living in semi-informal settlements.
Collapse
Affiliation(s)
- Ricardo Morales-Betancourt
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia.
| | - Maria A Wilches-Mogollon
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Olga L Sarmiento
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Daniela Mendez Molano
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia; Universidad Manuela Beltrán, Unidad de Ingenieria Ambiental, Cra. 1 #No. 60-00, Bogotá, Colombia
| | - Daniela Angulo
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Paola Filigrana
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Julian Arellana
- Department of Civil and Environmental Engineering, College of Engineering, Universidad del Norte, Barranquilla, Colombia
| | - Luis A Guzman
- Department of Civil and Environmental Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Gabriela Garzon
- Department of Industrial Engineering, School of Engineering, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Nelson Gouveia
- Department of Preventive Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Paul Levy
- School of Medicine, Universidad de Los Andes, Cra 1 18ª-12, Bogotá, Colombia
| | - Ana V Diez-Roux
- Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States; Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Assessment of Low-Level Air Pollution and Cardiovascular Incidence in Gdansk, Poland: Time-Series Cross-Sectional Analysis. J Clin Med 2023; 12:jcm12062206. [PMID: 36983207 PMCID: PMC10054494 DOI: 10.3390/jcm12062206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
(1) Background: More than 1.8 million people in the European Union die every year as a result of CVD, accounting for 36% of all deaths with a large proportion being premature (before the age of 65). There are more than 300 different risk factors of CVD, known and air pollution is one of them. The aim of this study was to investigate whether daily cardiovascular mortality was associated with air pollutants and meteorological conditions in an urban environment with a low level of air pollution. (2) Methods: Data on daily incidence of strokes and myocardial infarctions in the city of Gdansk were obtained from the National Health Fund (NHF) and covered the period from 1 January 2014 to 31 December 2018. Data on the level of pollution, i.e., SO2, NO, NO2, NOx, CO, PM10, PM2.5, CO2, O3 and meteorological conditions came from the foundation: Agency of Regional Air Quality Monitoring in the Gdańsk metropolitan area (ARMAG). Using these data, we calculated mean values with standard deviation (SD) and derived the minimum and maximum values and interquartile range (IQR). Time series regression with Poisson distribution was used in statistical analysis. (4) Results: Stroke incidence is significantly affected by an increase in concentrations of NO, NO2 and NOx with RRs equal to 1.019 (95%CI: 1.001–1.036), 1.036 (95%CI: 1.008–1.064) and 1.017 (95%CI: 1.000–1.034) for every increase in IQR by 14.12, 14.62 and 22.62 μg/m3, respectively. Similarly, myocardial infarction incidence is significantly affected by an increase in concentrations of NO, NO2 and NOx with RRs equal to 1.030 (95%CI: 1.011–1.048), 1.053 (95%CI: 1.024–1.082) and 1.027 (95%CI: 1.010–1.045) for every increase in IQR by 14.12, 14.62 and 22.62 μg/m3, respectively. Both PM10 and PM2.5 were positively associated with myocardial infarction incidence. (5) Conclusions: In this time-series cross-sectional study, we found strong evidence that support the hypothesis that transient elevations in ambient PM2.5, PM10, NO2, SO2 and CO are associated with higher relative risk of ischemic stroke and myocardial infarction incidents.
Collapse
|
22
|
Crowley R, Mathew S, Hilden D. Environmental Health: A Position Paper From the American College of Physicians. Ann Intern Med 2022; 175:1591-1593. [PMID: 36279541 DOI: 10.7326/m22-1864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Environmental health refers to the health effects associated with environmental factors, such as air pollution, water contamination, and climate change. Environmental hazards are associated with poor outcomes in common diseases, including diabetes and heart disease. In this position paper, the American College of Physicians (ACP) seeks to inform physicians about environmental health and offers policymakers recommendations to reduce the adverse health consequences of climate change, improve air and water quality, reduce exposure to toxic substances, and address environmental injustice. ACP affirms that all communities, including people of color, people with low income, and marginalized populations, deserve to live in a healthy environment.
Collapse
Affiliation(s)
- Ryan Crowley
- American College of Physicians, Washington, DC (R.C.)
| | - Suja Mathew
- Atlantic Health System, Morristown, New Jersey (S.M.)
| | - David Hilden
- Hennepin Healthcare, Minneapolis, Minnesota (D.H.)
| | | | | |
Collapse
|
23
|
Xu Y, Yi L, Cabison J, Rosales M, O'Sharkey K, Chavez TA, Johnson M, Lurmann F, Pavlovic N, Bastain TM, Breton CV, Wilson JP, Habre R. The impact of GPS-derived activity spaces on personal PM 2.5 exposures in the MADRES cohort. ENVIRONMENTAL RESEARCH 2022; 214:114029. [PMID: 35932832 PMCID: PMC11905758 DOI: 10.1016/j.envres.2022.114029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In-utero exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is associated with low birth weight and health risks later in life. Pregnant women are mobile and locations they spend time in contribute to their personal PM2.5 exposures. Therefore, it is important to understand how mobility and exposures encountered within activity spaces contribute to personal PM2.5 exposures during pregnancy. METHODS We collected 48-h integrated personal PM2.5 samples and continuous geolocation (GPS) data for 213 predominantly Hispanic/Latina pregnant women in their 3rd trimester in Los Angeles, CA. We also collected questionnaires and modeled outdoor air pollution and meteorology in their residential neighborhood. We calculated three GPS-derived activity space measures of exposure to road networks, greenness (NDVI), parks, traffic volume, walkability, and outdoor PM2.5 and temperature. We used bivariate analyses to screen variables (GPS-extracted exposures in activity spaces, individual characteristics, and residential neighborhood exposures) based on their relationship with personal, 48-h integrated PM2.5 concentrations. We then built a generalized linear model to explain the variability in personal PM2.5 exposure and identify key contributing factors. RESULTS Indoor PM2.5 sources, parity, and home ventilation were significantly associated with personal exposure. Activity-space based exposure to roads was associated with significantly higher personal PM2.5 exposure, while greenness was associated with lower personal PM2.5 exposure (β = -3.09 μg/m3 per SD increase in NDVI, p-value = 0.018). The contribution of outdoor PM2.5 to personal exposure was positive but relatively lower (β = 2.05 μg/m3 per SD increase, p-value = 0.016) than exposures in activity spaces and the indoor environment. The final model explained 34% of the variability in personal PM2.5 concentrations. CONCLUSIONS Our findings highlight the importance of activity spaces and the indoor environment on personal PM2.5 exposures of pregnant women living in Los Angeles, CA. This work also showcases the multiple, complex factors that contribute to total personal PM2.5 exposure.
Collapse
Affiliation(s)
- Yan Xu
- Spatial Sciences Institute, University of Southern California, USA.
| | - Li Yi
- Spatial Sciences Institute, University of Southern California, USA.
| | - Jane Cabison
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Marisela Rosales
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Karl O'Sharkey
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Thomas A Chavez
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Mark Johnson
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | | | | | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - John P Wilson
- Spatial Sciences Institute, University of Southern California, USA; Department of Population and Public Health Sciences, University of Southern California, USA; Department of Civil & Environmental Engineering, Computer Science, and Sociology, University of Southern California, USA.
| | - Rima Habre
- Spatial Sciences Institute, University of Southern California, USA; Department of Population and Public Health Sciences, University of Southern California, USA.
| |
Collapse
|
24
|
Jin T, Amini H, Kosheleva A, Danesh Yazdi M, Wei Y, Castro E, Di Q, Shi L, Schwartz J. Associations between long-term exposures to airborne PM 2.5 components and mortality in Massachusetts: mixture analysis exploration. Environ Health 2022; 21:96. [PMID: 36221093 PMCID: PMC9552465 DOI: 10.1186/s12940-022-00907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mahdieh Danesh Yazdi
- Department of Family, Population, & Preventive Medicine, Program in Public Health, Stony Brook University, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Matthaios VN, Lawrence J, Martins MAG, Ferguson ST, Wolfson JM, Harrison RM, Koutrakis P. Quantifying factors affecting contributions of roadway exhaust and non-exhaust emissions to ambient PM 10-2.5 and PM 2.5-0.2 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155368. [PMID: 35460767 DOI: 10.1016/j.scitotenv.2022.155368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Traffic-related particulate matter (PM) plays an important role in urban air pollution. However, sources of urban pollution are difficult to distinguish. This study utilises a mobile particle concentrator platform and statistical tools to investigate factors affecting roadway ambient coarse particle (PM10-2.5) and fine particle (PM2.5-0.2) concentrations in greater Boston, USA. Positive matrix factorization (PMF) identified six PM10-2.5 sources (exhaust, road salt, brake wear, regional pollution, road dust resuspension and tyre-road abrasion) and seven fine particle sources. The seven PM2.5-0.2 sources include the six PM10-2.5 sources and a source rich in Cr and Ni. Non- exhaust traffic-related sources together accounted for 65.6% and 29.1% of the PM10-2.5 and PM2.5-0.2 mass, respectively. While the respective contributions of exhaust sources were 10.4% and 20.7%. The biggest non-exhaust contributor in the PM10-2.5 was road dust resuspension, accounting for 29.6%, while for the PM2.5-0.2, the biggest non-exhaust source was road-tyre abrasion, accounting for 12.3%. We used stepwise general additive models (sGAMs) and found statistically significant (p < 0.05) effects of temperature, number of vehicles and rush hour periods on exhaust, brake wear, road dust resuspension and road-tyre abrasion with relative importance between 19.1 and 62.2%, 12.5-42.1% and 4.4-42.2% of the sGAM model's explained variability. Speed limit and road type were also important factors for exhaust, road-tyre and brake wear sources. Meteorological variables of wind speed and relative humidity were significantly associated with both coarse and fine road dust resuspension and had a combined relative importance of 38% and 48%. The quantifying results of the factors that influence traffic-related sources can offer key insights to policies aiming to improve near-road air quality.
Collapse
Affiliation(s)
- Vasileios N Matthaios
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK.
| | - Joy Lawrence
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marco A G Martins
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen T Ferguson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roy M Harrison
- School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK; Department of Environmental Sciences, Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Bustaffa E, Curzio O, Donzelli G, Gorini F, Linzalone N, Redini M, Bianchi F, Minichilli F. Risk Associations between Vehicular Traffic Noise Exposure and Cardiovascular Diseases: A Residential Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610034. [PMID: 36011669 PMCID: PMC9408081 DOI: 10.3390/ijerph191610034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/28/2023]
Abstract
Environmental noise can induce detrimental health effects such as cardiovascular disease (CVD). The relationship between vehicular traffic noise pollution and CVD was investigated through a retrospective residential cohort study in the city of Pisa. Four exposure classes were defined for noise pollution, using noise propagation maps. The association between noise exposures and cause-specific mortality or hospitalization of the subjects of the cohort was calculated using the hazard ratio (HR) for night and day through a multiple time-dependent and sex-specific Cox regression adjusting for age, the socio-economic deprivation index, and traffic air pollution. Mortality excess for CVD and risk trends for a 1 decibel noise increment were observed among the most exposed women (mortality: HRnightclass4 1.15 (1.03-1.28); Trendnight 1.007 (1.002-1.012); HRdayclass4 1.14 (1.02-1.27); Trendday 1.008 (1.003-1.013)), particularly for ischaemic disease (mortality: Trendnight 1.008 (0.999-1.017); Trendday 1.009 (0.999-1.018)) and cerebrovascular disease (mortality: HRnightclass3 1.23 (1.02-1.48), HRdayclass3 1.24 (1.03-1.49)). Hospitalization analyses confirm mortality results. A decreased risk for hospitalization was also observed among the most exposed men (HRdayclass4 0.94 (0.88-1.01), particularly for ischaemic disease (HRnightclass4 0.90 (0.80-1.02); HRdayclass4 0.86 (0.77-0.97)) and cerebrovascular disease (HRnightclass4 0.89 (0.78-1.01)). Authors recommend the adoption of prevention measures aimed at mitigating noise and the activation of a monitoring of the risk profile in the Pisa population updating both the residential cohort and health data.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Olivia Curzio
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Donzelli
- Unit of Environmental Epidemiology and Biocomplexity Laboratory, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Gorini
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Nunzia Linzalone
- Unit of Environmental Epidemiology and Biocomplexity Laboratory, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marco Redini
- Municipality of Pisa, Via degli Uffizi 1, 56100 Pisa, Italy
| | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology and Disease Registries, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
27
|
Zhang Q, Du X, Li H, Jiang Y, Zhu X, Zhang Y, Niu Y, Liu C, Ji J, Chillrud SN, Cai J, Chen R, Kan H. Cardiovascular effects of traffic-related air pollution: A multi-omics analysis from a randomized, crossover trial. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129031. [PMID: 35523096 DOI: 10.1016/j.jhazmat.2022.129031] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
A system-wide cardiovascular response to traffic-related air pollution (TRAP) has been rarely described. To systemically understand the mechanisms underlying cardiovascular effects of TRAP, we conducted a randomized, crossover trial in 56 young adults, who engaged in two 4-hour exposure sessions on a main road and in a park, alternately. We measured personal exposures to traffic-related air pollutants (TRAPs), including fine and ultrafine particulate matter, black carbon, nitrogen dioxide, and carbon monoxide. Lipidomics, targeted proteomics, urine metabolomics, targeted biomarkers, ambulatory blood pressure and electrocardiogram were measured. We used linear mixed-effects models to estimate the associations. The exposures to TRAPs except for fine particulate matter in the road session were 2-3 times higher. We observed elevated blood pressure and decreased heart rate variability (HRV) after TRAP exposure, accompanied by dozens of molecular alterations involving systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and lipid metabolism. Pathways like vascular smooth muscle cell proliferation and biomarkers like trimethylamine N-Oxide might also be disturbed. Some of these TRAP-related molecular biomarkers were also associated with changes of blood pressure or HRV. Our results provided systematical mechanistic profiling for the cardiovascular effects of TRAP using multi omics, which may have implications in TRAP control.
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - John Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Steven N Chillrud
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
28
|
Liang N, Emami S, Patten KT, Valenzuela AE, Wallis CD, Wexler AS, Bein KJ, Lein PJ, Taha AY. Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103875. [PMID: 35550873 PMCID: PMC9353974 DOI: 10.1016/j.etap.2022.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Kelley T Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Anthony S Wexler
- Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA; Air Quality Research Center, University of California, Davis, Davis, CA, USA
| | - Keith J Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, USA; Center for Health and the Environment, University of California, Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
29
|
An Evaluation of Risk Ratios on Physical and Mental Health Correlations due to Increases in Ambient Nitrogen Oxide (NOx) Concentrations. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrogen oxides (NOx) are gaseous pollutants contributing to pollution in their primary form and are also involved in reactions forming ground-level ozone and fine particulate matter. Thus, NOx is of great interest for targeted pollution reduction because of this cascade effect. Primary emissions originate from fossil fuel combustion making NOx a common outdoor and indoor air pollutant. Numerous studies documenting the observed physical health impacts of NOx were reviewed and, where available, were summarized using risk ratios. More recently, the literature has shifted to focus on the mental health implications of NOx exposure, and a review of the current literature found five main categories of mental health-related conditions with respect to NOx exposure: common mental health disorders, sleep, anxiety, depression, and suicide. All the physical and mental health effects with available risk ratios were organized in order of increasing risk. Mental health concerns emerged as those most influenced by NOx exposure, with physical health impacts, such as asthma, only beginning to surface as the fourth highest risk. Mental health conditions occupied seven of the top ten highest risk health ailments. The results summarized in this narrative review show that there are clear positive correlations between NOx and negative physical and mental health manifestations, thus strengthening the argument in support of the reduction in ambient NOx levels.
Collapse
|
30
|
Liu L, Luo S, Zhang Y, Yang Z, Zhou P, Mo S, Zhang Y. Longitudinal Impacts of PM 2.5 Constituents on Adult Mortality in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7224-7233. [PMID: 35089703 DOI: 10.1021/acs.est.1c04152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Limited evidence exists for long-term effects of PM2.5 constituents on mortality. Hence, we aimed to assess associations between all-cause mortality and long-term exposure to PM2.5 constituents in China. We designed a nationwide cohort study of 30524 adults from 162 prefectural areas across mainland China with follow-ups through years 2010-2017. Cox proportional hazards models with time-varying exposures were employed to quantify associations between all-cause mortality and long-term exposure to PM2.5 and constituents. A total of 1210 deaths occurred during 172297.7 person-years. A multiadjusted Cox model estimated an hazard ratio (HR) of 1.125 (95% confidence interval: 1.058-1.197) for all-cause mortality, associated with an interquartile range (IQR = 26.7 μg/m3) rise in exposure to PM2.5. Comparable or stronger associations were found among PM2.5 constituents with the mortality risk increased by 11.3-14.1% per IQR increase in exposure concentrations. After adjustment for the collinearity between total PM2.5 and constituents, effect estimates for nitrate, ammonium, and sulfate remained significant and became larger. Urban residents, alcohol drinkers, smokers, and men were more susceptible to chronic impacts from ambient PM2.5 constituents. This cohort study added the novel longitudinal evidence for elevated mortality linked with long-term exposure to PM2.5 constituents among Chinese adults.
Collapse
Affiliation(s)
- Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| |
Collapse
|
31
|
Spatio-Temporal Variation-Induced Group Disparity of Intra-Urban NO 2 Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105872. [PMID: 35627409 PMCID: PMC9141847 DOI: 10.3390/ijerph19105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Previous studies on exposure disparity have focused more on spatial variation but ignored the temporal variation of air pollution; thus, it is necessary to explore group disparity in terms of spatio-temporal variation to assist policy-making regarding public health. This study employed the dynamic land use regression (LUR) model and mobile phone signal data to illustrate the variation features of group disparity in Shanghai. The results showed that NO2 exposure followed a bimodal, diurnal variation pattern and remained at a high level on weekdays but decreased on weekends. The most critical at-risk areas were within the central city in areas with a high population density. Moreover, women and the elderly proved to be more exposed to NO2 pollution in Shanghai. Furthermore, the results of this study showed that it is vital to focus on land-use planning, transportation improvement programs, and population agglomeration to attenuate exposure inequality.
Collapse
|
32
|
Song X, Hu Y, Ma Y, Jiang L, Wang X, Shi A, Zhao J, Liu Y, Liu Y, Tang J, Li X, Zhang X, Guo Y, Wang S. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022; 12:e049516. [PMID: 35504636 PMCID: PMC9066484 DOI: 10.1136/bmjopen-2021-049516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adverse health effects of fine particles (particulate matter2.5) have been well documented by a series of studies. However, evidences on the impacts of black carbon (BC) or elemental carbon (EC) on health are limited. The objectives were (1) to explored the effects of BC and EC on cardiovascular and respiratory morbidity and mortality, and (2) to verified the reliability of the meta-analysis by drawing p value plots. DESIGN The systematic review and meta-analysis using adapted Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and p value plots approach. DATA SOURCES PubMed, Embase and Web of Science were searched from inception to 19 July 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Time series, case cross-over and cohort studies that evaluated the associations between BC/EC on cardiovascular or respiratory morbidity or mortality were included. DATA EXTRACTION AND SYNTHESIS Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcomes were analysed via a random effects model and reported as relative risk (RR) with 95% CI. The certainty of evidences was assessed by adapted GRADE. The reliabilities of meta-analyses were analysed by p value plots. RESULTS Seventy studies met our inclusion criteria. (1) Short-term exposure to BC/EC was associated with 1.6% (95% CI 0.4% to 2.8%) increase in cardiovascular diseases per 1 µg/m3 in the elderly; (2) Long-term exposure to BC/EC was associated with 6.8% (95% CI 0.4% to 13.5%) increase in cardiovascular diseases and (3) The p value plot indicated that the association between BC/EC and respiratory diseases was consistent with randomness. CONCLUSIONS Both short-term and long-term exposures to BC/EC were related with cardiovascular diseases. However, the impact of BC/EC on respiratory diseases did not present consistent evidence and further investigations are required. PROSPERO REGISTRATION NUMBER CRD42020186244.
Collapse
Affiliation(s)
- Xuping Song
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Hu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Liangzhen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Wang
- Second Clinical College, Lanzhou University, Lanzhou, Gansu, China
| | - Anchen Shi
- Department of General Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Junxian Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxu Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yafei Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Tang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiayang Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Zhang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yong Guo
- Department of Civil Affairs in Guizhou Province, Guizhou Province People's Government, Guiyang, Guizhou, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Han C, Xu R, Wei X, Zhang Y, Liu J, Zhang Y, Ye T, Wang S, Yu W, Guo S, Han K, Ding Y, Wang J, Guo Y, Li S. Surrounding road density of child care centers in Australia. Sci Data 2022; 9:140. [PMID: 35361783 PMCID: PMC8971508 DOI: 10.1038/s41597-022-01172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
High surrounding road density could increase traffic-related air pollution, noise and the risk of traffic injuries, which are major public health concerns for children. We collected geographical data for all childcare centers (16,146) in Australia and provided the data on the road density surrounding them. The road density was represented by the child care center's nearest distance to main road and motorway, and the length of main road/motor way within 100~1000-meter buffer zone surrounding the child care center. We also got the data of PM2.5 concentration from 2013 to 2018 and standard Normalized Difference Vegetation Index (NDVI) data from 2013 to 2019 according to the longitude and latitude of the child care centers. This data might help researchers to evaluate the health impacts of road density on child health, and help policy makers to make transportation, educational and environmental planning decisions to protect children from exposure to traffic-related hazards in Australia.
Collapse
Affiliation(s)
- Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Xiaoyan Wei
- Yunnan Provincial Archives of Surveying and Mapping, Kunming, Yunnan, 650034, P.R. China
- Yunnan Provincial Geomatics Center, Kunming, Yunnan, 650034, P.R. China
| | - Yajuan Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, P.R. China
| | - Jiahui Liu
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, 650051, P.R. China
| | - Yuguo Zhang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, 650051, P.R. China
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Siwei Wang
- Tangshan Gangxin Technology Development Co., Ltd, Tangshan, Hebei, 063611, P.R. China
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Suying Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Kun Han
- Guotai Junan Securities, Shanghai, 200030, P.R. China
- School of Economics, Fudan University, Shanghai, 200433, P.R. China
| | - Yimin Ding
- School of software, Tongji University, Shanghai, 200092, P.R. China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yuming Guo
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
34
|
Motesaddi Zarandi S, Hadei M, Hashemi SS, Shahhosseini E, Hopke PK, Namvar Z, Shahsavani A. Effects of ambient air pollutants on hospital admissions and deaths for cardiovascular diseases: a time series analysis in Tehran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17997-18009. [PMID: 34677770 DOI: 10.1007/s11356-021-17051-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Short-term exposures to air pollution have been associated with various adverse health effects. In this study, we investigated the associations between ambient air pollutants with the number of hospital admissions and mortality from cardiovascular diseases (CVDs). This time series study was conducted in Tehran for the years 2014-2017 (1220 day). We collected the ambient air pollutant concentration data from the regulatory monitoring stations. The health data were obtained from the Ministry of Health and Medical Education. A distributed lag non-linear model (DLNM) was used for the analyses. Total CVDs and ischemic heart disease (IHD) admissions were associated with CO for each 1 mg/m3 increase at lags of 6 and 7 days. Also, there was a positive association between total CVDs (RR 1.01; 1.001 to 1.03), IHD (RR 1.04; 1.006 to 1.07), and cerebrovascular diseases (RR 1.03; 1.005 to 1.07) mortality with SO2 at a lag of 4 days. PM2.5 and PM10 were associated with cerebrovascular disease admissions in females aged 16-65 years and 16 years and younger for each 10 µg/m3 increase, respectively. Short-term exposure to SO2, NO2, and CO was associated with hospital admissions and mortality for CVDs, IHD, cerebrovascular diseases, and other cardiovascular diseases at different lags. Moreover, females were more affected by ambient air pollutants than males in terms of their burden of CVDs. Therefore, identifying the likely harmful effects of pollutants given their current concentrations requires the planning and implementation of strategies to reduce air pollution.
Collapse
Affiliation(s)
- Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahhosseini
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Yuchi W, Brauer M, Czekajlo A, Davies HW, Davis Z, Guhn M, Jarvis I, Jerrett M, Nesbitt L, Oberlander TF, Sbihi H, Su J, van den Bosch M. Neighborhood environmental exposures and incidence of attention deficit/hyperactivity disorder: A population-based cohort study. ENVIRONMENT INTERNATIONAL 2022; 161:107120. [PMID: 35144157 DOI: 10.1016/j.envint.2022.107120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging studies have associated low greenspace and high air pollution exposure with risk of child attention deficit/hyperactivity disorder (ADHD). Population-based studies are limited, however, and joint effects are rarely evaluated. We investigated associations of ADHD incidence with greenspace, air pollution, and noise in a population-based birth cohort. METHODS We assembled a cohort from administrative data of births from 2000 to 2001 (N ∼ 37,000) in Metro Vancouver, Canada. ADHD was identified by hospital records, physician visits, and prescriptions. Cox proportional hazards models were applied to assess associations between environmental exposures and ADHD incidence adjusting for available covariates. Greenspace was estimated using vegetation percentage derived from linear spectral unmixing of Landsat imagery. Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using land use regression models; noise was estimated using a deterministic model. Exposure period was from birth until the age of three. Joint effects of greenspace and PM2.5 were analysed in two-exposure models and by categorizing values into quintiles. RESULTS During seven-year follow-up, 1217 ADHD cases were diagnosed. Greenspace was associated with lower incidence of ADHD (hazard ratio, HR: 0.90 [0.81-0.99] per interquartile range increment), while PM2.5 was associated with increased incidence (HR: 1.11 [1.06-1.17] per interquartile range increment). NO2 (HR: 1.01 [0.96, 1.07]) and noise (HR: 1.00 [0.95, 1.05]) were not associated with ADHD. There was a 50% decrease in the HR for ADHD in locations with the lowest PM2.5 and highest greenspace exposure, compared to a 62% increase in HR in locations with the highest PM2.5 and lowest greenspace exposure. Effects of PM2.5 were attenuated by greenspace in two-exposure models. CONCLUSIONS We found evidence suggesting environmental inequalities where children living in greener neighborhoods with low air pollution had substantially lower risk of ADHD compared to those with higher air pollution and lower greenspace exposure.
Collapse
Affiliation(s)
- Weiran Yuchi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Michael Brauer
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Agatha Czekajlo
- Department of Forest Resource Management, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Hugh W Davies
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Zoë Davis
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Martin Guhn
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Ingrid Jarvis
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Michael Jerrett
- Fielding School of Public Health, University of California at Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA, the United States
| | - Lorien Nesbitt
- Department of Forest Resource Management, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Tim F Oberlander
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; Department of Pediatrics, The University of British Columbia, 4480 Oak St. Vancouver, Canada
| | - Hind Sbihi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; BC Centre for Disease Control, Vancouver, Canada
| | - Jason Su
- School of Public Health, University of California at Berkeley, 2121 Berkeley Way West, Berkeley, CA, the United States
| | - Matilda van den Bosch
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada; ISGlobal, Parc de Recerca Biomèdica de Barcelona, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Centro de Investigación Biomédica en Red Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
36
|
Bista S, Dureau C, Chaix B. Personal exposure to concentrations and inhalation of black carbon according to transport mode use: The MobiliSense sensor-based study. ENVIRONMENT INTERNATIONAL 2022; 158:106990. [PMID: 34991251 DOI: 10.1016/j.envint.2021.106990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Epidemiological evidence suggests that motorized vehicle users have a higher air pollutant exposure (especially from vehicle exhaust) than active (walking or cycling) transport users. However, studies often relied on insufficiently diverse sample and ignored that minute ventilation has an effect on individuals' inhaled dose. This study examined commuters' breathing zone concentration and inhaled doses of black carbon (BC) when travelling by different transport modes in the Grand Paris region. METHODS Personal exposure to BC was continuously measured with MicroAethalometer (MicroAeth AE51) portable monitors strapped on participants' shoulder with tube inlet at the level of the neck (breathing zone), and inhaled doses were derived from several methods estimating ventilation [based on metabolic equivalents from accelerometry [METs], heart rate, and breathing rate]. Trip stages and transport modes were assessed from GPS and mobility survey data. Breathing zone concentrations and inhaled doses of BC were compared across transport modes at the trip stage level (n = 7495 for 283 participants) using linear mixed effect models with a random intercept at individual level. RESULTS Trip stages involving public transport and private motorized transport were associated with a 2.20 µg/m3 (95% CI: 1.99, 2.41) and 2.29 µg/m3 (95% CI: 2.10, 2.48) higher breathing zone concentration to BC than walking, respectively. Trip stages with other active modes had a 0.41 µg (95% CI: 0.25, 0.57) higher inhaled dose, while those involving public transport and private motorized transport had a 0.25 µg (95% CI: -0.35, -0.15) and 0.19 µg (95 %CI: -0.28, -0.10) lower inhaled dose of BC per 30 min than walking. CONCLUSION The ranking of transport modes in terms of personal exposure was markedly different when breathing zone concentrations and inhaled doses were considered. Future studies should take both into account to explore the relationship of air pollutants in transport microenvironments with physiological response.
Collapse
Affiliation(s)
- Sanjeev Bista
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France.
| | - Clélie Dureau
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| | - Basile Chaix
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| |
Collapse
|
37
|
Filigrana P, Milando C, Batterman S, Levy JI, Mukherjee B, Pedde M, Szpiro AA, Adar SD. Exposure to Primary Air Pollutants Generated by Highway Traffic and Daily Mortality Risk in Near-Road Communities: A Case-Crossover Study. Am J Epidemiol 2022; 191:63-74. [PMID: 34347034 DOI: 10.1093/aje/kwab215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Most epidemiologic studies fail to capture the impact of spatiotemporal fluctuations in traffic on exposure to traffic-related air pollutants in the near-road population. Using a case-crossover design and the Research LINE source (R-LINE) dispersion model with spatiotemporally resolved highway traffic data, we quantified associations between primary pollutants generated by highway traffic-particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), oxides of nitrogen (NOx), and black carbon (BC)-and daily nonaccidental, respiratory, cardiovascular, and cerebrovascular mortality among persons who had resided within 1 km (0.6 mile) of major highways in the Puget Sound area of Washington State between 2009 and 2013. We estimated these associations using conditional logistic regression, adjusting for time-varying covariates. Although highly resolved modeled concentrations of PM2.5, NOx, and BC from highway traffic in the hours before death were used, we found no evidence of an association between mortality and the preceding 24-hour average PM2.5 exposure (odds ratio = 0.99, 95% confidence interval: 0.96, 1.02) or exposure during shorter averaging periods. This work did not support the hypothesis that mortality risk was meaningfully higher with greater exposures to PM2.5, NOx, and BC from highways in near-road populations, though we did incorporate a novel approach to estimate exposure to traffic-generated air pollution based on detailed traffic congestion data.
Collapse
|
38
|
Risk and Resilience: How Is the Health of Older Adults and Immigrant People Living in Canada Impacted by Climate- and Air Pollution-Related Exposures? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010575. [PMID: 34682320 PMCID: PMC8535805 DOI: 10.3390/ijerph182010575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND In the rapidly shifting Canadian climate, an ageing population, and increased migration, a greater understanding of how local climate and air pollution hazards impact older adults and immigrant populations will be necessary for mitigating and adapting to adverse health impacts. OBJECTIVES To explore the reported health impacts of climate change and air pollution exposures in older adults and immigrant people living in Canada, identify known factors influencing risk and resilience in these populations and gaps in the literature. METHODS We searched for research focused on older adults and immigrants living in Canada, published from 2010 onward, where the primary exposures were related to climate or air pollution. We extracted data on setting, exposures, health outcomes, and other relevant contextual factors. RESULTS AND DISCUSSION We identified 52 eligible studies, most focused in Ontario and Quebec. Older people in Canada experience health risks due to climate and air pollution exposures. The extent of the risk depends on multiple factors. We found little information about the climate- and air pollution-related health impacts experienced by immigrant communities. CONCLUSIONS Further research about climate- and air pollution-related exposures, health, and which factors promote or reduce resiliency in Canada's older adults and immigrant communities is necessary.
Collapse
|
39
|
Aretz B, Janssen F, Vonk JM, Heneka MT, Boezen HM, Doblhammer G. Long-term exposure to fine particulate matter, lung function and cognitive performance: A prospective Dutch cohort study on the underlying routes. ENVIRONMENTAL RESEARCH 2021; 201:111533. [PMID: 34153335 DOI: 10.1016/j.envres.2021.111533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure to fine particulate matter and black carbon is related to cognitive impairment and poor lung function, but less is known about the routes taken by different types of air pollutants to affect cognition. OBJECTIVES We tested two possible routes of fine particulate matter (PM2.5) and black carbon (BC) in impairing cognition, and evaluated their importance: a direct route over the olfactory nerve or the blood stream, and an indirect route over the lung. METHODS We used longitudinal observational data for 49,705 people aged 18+ from 2006 to 2015 from the Dutch Lifelines cohort study. By linking current home addresses to air pollution exposure data from ELAPSE in 2010, long-term average exposure to PM2.5 and BC was assessed. Lung function was measured by spirometry and Global Initiative (GLI) z-scores of forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were calculated. Cognitive performance was measured by cognitive processing time (CPT) assessed by the Cogstate Brief Battery. Linear structural equation modeling was performed to test direct/indirect associations. RESULTS Higher exposure to PM2.5 but not BC was related to higher CPT and slower cognitive processing speed [Total Effect PM2.5: FEV1 model = 8.31 × 10-3 (95% CI: 5.71 × 10-3, 10.91 × 10-3), FVC model = 8.30 × 10-3 (95% CI: 5.69 × 10-3, 10.90 × 10-3)]. The direct association of PM2.5 constituted more than 97% of the total effect. Mediation by lung function was low for PM2.5 with a mediated proportion of 1.32% (FEV1) and 2.05% (FVC), but higher for BC (7.01% and 13.82% respectively). DISCUSSION Our results emphasise the importance of the lung acting as a mediator in the relationship between both exposure to PM2.5 and BC, and cognitive performance. However, higher exposure to PM2.5 was mainly directly associated with worse cognitive performance, which emphasises the health-relevance of fine particles due to their ability to reach vital organs directly.
Collapse
Affiliation(s)
- Benjamin Aretz
- Institute of Sociology and Demography, University of Rostock, Rostock, Germany; Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Groningen, the Netherlands.
| | - Fanny Janssen
- Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Groningen, the Netherlands; Netherlands Interdisciplinary Demographic Institute - KNAW/University of Groningen, The Hague, the Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases, Bonn, Germany
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gabriele Doblhammer
- Institute of Sociology and Demography, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
40
|
Nilsson Sommar J, Andersson EM, Andersson N, Sallsten G, Stockfelt L, Ljungman PL, Segersson D, Eneroth K, Gidhagen L, Molnar P, Wennberg P, Rosengren A, Rizzuto D, Leander K, Lager A, Magnusson PK, Johansson C, Barregard L, Bellander T, Pershagen G, Forsberg B. Long-term exposure to particulate air pollution and black carbon in relation to natural and cause-specific mortality: a multicohort study in Sweden. BMJ Open 2021; 11:e046040. [PMID: 34497075 PMCID: PMC8438896 DOI: 10.1136/bmjopen-2020-046040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To estimate concentration-response relationships for particulate matter (PM) and black carbon (BC) in relation to mortality in cohorts from three Swedish cities with comparatively low pollutant levels. SETTING Cohorts from Gothenburg, Stockholm and Umeå, Sweden. DESIGN High-resolution dispersion models were used to estimate annual mean concentrations of PM with aerodynamic diameter ≤10 µm (PM10) and ≤2.5 µm (PM2.5), and BC, at individual addresses during each year of follow-up, 1990-2011. Moving averages were calculated for the time windows 1-5 years (lag1-5) and 6-10 years (lag6-10) preceding the outcome. Cause-specific mortality data were obtained from the national cause of death registry. Cohort-specific HRs were estimated using Cox regression models and then meta-analysed including a random effect of cohort. PARTICIPANTS During the study period, 7 340 cases of natural mortality, 2 755 cases of cardiovascular disease (CVD) mortality and 817 cases of respiratory and lung cancer mortality were observed among in total 68 679 individuals and 689 813 person-years of follow-up. RESULTS Both PM10 (range: 6.3-41.9 µg/m3) and BC (range: 0.2-6.8 µg/m3) were associated with natural mortality showing 17% (95% CI 6% to 31%) and 9% (95% CI 0% to 18%) increased risks per 10 µg/m3 and 1 µg/m3 of lag1-5 exposure, respectively. For PM2.5 (range: 4.0-22.4 µg/m3), the estimated increase was 13% per 5 µg/m3, but less precise (95% CI -9% to 40%). Estimates for CVD mortality appeared higher for both PM10 and PM2.5. No association was observed with respiratory mortality. CONCLUSION The results support an effect of long-term air pollution on natural mortality and mortality in CVD with high relative risks also at low exposure levels. These findings are relevant for future decisions concerning air quality policies.
Collapse
Affiliation(s)
- Johan Nilsson Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umea University, Umeå, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerd Sallsten
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Leonard Stockfelt
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petter Ls Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
| | - Kristina Eneroth
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
| | - Lars Gidhagen
- Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
| | - Peter Molnar
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Patrik Wennberg
- Family Medicine, Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Debora Rizzuto
- Ageing Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anton Lager
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
- Department of Public Health Science, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ke Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Johansson
- SLB-analys, Environment and Health Administration, Stockholm, Sweden
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umea University, Umeå, Sweden
| |
Collapse
|
41
|
Wolf K, Hoffmann B, Andersen ZJ, Atkinson RW, Bauwelinck M, Bellander T, Brandt J, Brunekreef B, Cesaroni G, Chen J, de Faire U, de Hoogh K, Fecht D, Forastiere F, Gulliver J, Hertel O, Hvidtfeldt UA, Janssen NAH, Jørgensen JT, Katsouyanni K, Ketzel M, Klompmaker JO, Lager A, Liu S, MacDonald CJ, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pedersen NL, Pershagen G, Raaschou-Nielsen O, Renzi M, Rizzuto D, Rodopoulou S, Samoli E, van der Schouw YT, Schramm S, Schwarze P, Sigsgaard T, Sørensen M, Stafoggia M, Strak M, Tjønneland A, Verschuren WMM, Vienneau D, Weinmayr G, Hoek G, Peters A, Ljungman PLS. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet Health 2021; 5:e620-e632. [PMID: 34508683 DOI: 10.1016/s2542-5196(21)00195-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 μg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 μg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 μg/m3 for PM2·5 and 40 μg/m3 for NO2. INTERPRETATION Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING Health Effects Institute.
Collapse
Affiliation(s)
- Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard W Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate, Interdisciplinary Centre for Climate Change, Aarhus University, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Giulia Cesaroni
- Department of Epidemiology-Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ulf de Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Daniela Fecht
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology-Lazio Regional Health Service, ASL Roma 1, Rome, Italy; School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - John Gulliver
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK; School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | | | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Klea Katsouyanni
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research, University of Surrey, Surrey, UK
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Conor J MacDonald
- INSERM U1018, CESP, Institut Gustave Roussy, Université Paris-Saclay, Université Paris-Sud, Villejuif, France
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Amar J Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Renzi
- Department of Epidemiology-Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Per Schwarze
- Global Health Cluster, Norwegian Institute of Public Health, Oslo, Norway
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology-Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Maciek Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - W M Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Ludwig Maximilians Universität München, Munich, Germany
| | - Petter L S Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Sommar JN, Hvidtfeldt UA, Geels C, Frohn LM, Brandt J, Christensen JH, Raaschou-Nielsen O, Forsberg B. Long-Term Residential Exposure to Particulate Matter and Its Components, Nitrogen Dioxide and Ozone-A Northern Sweden Cohort Study on Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168476. [PMID: 34444225 PMCID: PMC8393394 DOI: 10.3390/ijerph18168476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
This study aims to estimate the mortality risk associated with air pollution in a Swedish cohort with relatively low exposure. Air pollution models were used to estimate annual mean concentrations of particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5), primary emitted carbonaceous particles (BC/pOC), sea salt, chemically formed particles grouped as secondary inorganic and organic aerosols (SIA and SOA) as well as ozone (O3) and nitrogen dioxide (NO2). The exposure, as a moving average was calculated based on home address for the time windows 1 year (lag 1), 1-5 years (lag 1-5) and 1-10 years (lag 1-10) preceding the death. During the study period, 1151 cases of natural mortality, 253 cases of cardiovascular disease (CVD) mortality and 113 cases of respiratory and lung cancer mortality were observed during 369,394 person-years of follow-up. Increased natural mortality was observed in association with NO2 (3% [95% CI -8-14%] per IQR) and PM2.5 (2% [95% CI -5-9%] for an IQR increase) and its components, except for SOA where a decreased risk was observed. Higher risk increases were observed for CVD mortality (e.g., 18% [95% CI 1-39%] per IQR for NO2). These findings at low exposure levels are relevant for future decisions concerning air quality policies.
Collapse
Affiliation(s)
- Johan N. Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden;
- Correspondence: ; Tel.: +46-9-0785-3453
| | - Ulla A. Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; (U.A.H.); (O.R.-N.)
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Jesper H. Christensen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; (U.A.H.); (O.R.-N.)
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (C.G.); (L.M.F.); (J.B.); (J.H.C.)
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
43
|
Van Ryswyk K, Evans GJ, Kulka R, Sun L, Sabaliauskas K, Rouleau M, Anastasopolos AT, Wallace L, Weichenthal S. Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:628-640. [PMID: 32678304 PMCID: PMC8263338 DOI: 10.1038/s41370-020-0242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution (TRAP) is associated with increased incidence of several cardiopulmonary diseases. The elevated TRAP exposures of commuting environments can result in significant contributions to daily exposures. OBJECTIVES To assess the personal TRAP exposures (UFPs, BC, PM2.5, and PM10) of the bus transit systems of Toronto, Ottawa, and Vancouver, Canada. Personal exposure models estimated the contribution of bus commuting to daily TRAP exposures. Associations between bus type and riding exposures and bus stop/station type and waiting exposures were estimated. RESULTS Bus commuting (4.6% of the day) contributed ~59%(SD = 15%), 60%(SD = 20%), and 57%(SD = 18%) of daily PM2.5-Ba and 70%(SD = 19%), 64%(SD = 15%), and 70%(SD = 15%) of daily PM2.5-Fe, in Toronto, Ottawa, and Vancouver, respectively. Enclosed bus stations were found to be hotspots of PM2.5 and BC. Buses with diesel particulate filters (DPFs) and hybrid diesel/electric propulsion were found to have significantly lower in-bus PM2.5, UFP, and BC relative to 1983-2003 diesel buses in each city with the exception of UFP in Vancouver. SIGNIFICANCE Personal exposures for traffic-related air pollutants were assessed for three Canadian bus transit systems. In each system, bus commuting was estimated to contribute significantly toward daily exposures of fine-fraction Ba and Fe as well as BC. Exposures while riding were associated with bus type for several pollutants in each city. These associations suggest the use of hybrid diesel/electric buses equipped with diesel particulate filters have improved air quality for riders.
Collapse
Affiliation(s)
- Keith Van Ryswyk
- Air Health Science Division, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Liu Sun
- Air Health Science Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Kelly Sabaliauskas
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mathieu Rouleau
- Air Health Science Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | | | - Scott Weichenthal
- Air Health Science Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, H3A 1A2, Canada
| |
Collapse
|
44
|
Traffic Density-Related Black Carbon Distribution: Impact of Wind in a Basin Town. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126490. [PMID: 34208506 PMCID: PMC8296370 DOI: 10.3390/ijerph18126490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 01/31/2023]
Abstract
Black carbon is one of the riskiest particle matter pollutants that is harmful to human health. Although it has been increasingly investigated, factors that depend on black carbon distribution and concentration are still insufficiently researched. Variables, such as traffic density, wind speeds, and ground levels can lead to substantial variations of black carbon concentrations and potential exposure, which is even riskier for people living in less-airy sites. Therefore, this paper “fills the gaps” by studying black carbon distribution variations, concentrations, and oscillations, with special emphasis on traffic density and road segments, at multiple locations, in a small city located in a basin, with frequent temperature inversions and infrequent low wind speeds. As wind speed has a significant impact on black carbon concentration trends, it is critical to present how low wind speeds influence black carbon dispersion in a basin city, and how black carbon is dependent on traffic density. Our results revealed that when the wind reached speeds of 1 ms−1, black carbon concentrations actually increased. In lengthy wind periods, when wind speeds reached 2 or 3 ms−1, black carbon concentrations decreased during rush hour and in the time of severe winter biomass burning. By observing the results, it could be concluded that black carbon persists longer in higher altitudes than near ground level. Black carbon concentration oscillations were also seen as more pronounced on main roads with higher traffic density. The more the traffic decreases and becomes steady, the more black carbon concentrations oscillate.
Collapse
|
45
|
Wei D, Li S, Zhang L, Liu P, Fan K, Nie L, Wang L, Liu X, Hou J, Yu S, Li L, Jing T, Li X, Li W, Guo Y, Wang C, Huo W, Mao Z. Long-term exposure to PM 1 and PM 2.5 is associated with serum cortisone level and meat intake plays a moderation role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112133. [PMID: 33740488 DOI: 10.1016/j.ecoenv.2021.112133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although short-term exposure to particulate matter (PM) was associated with increased glucocorticoids (GCs) levels, available evidence on associations of long-term exposure to PM and GCs levels is still scant. Previous studies has showed that meat intake is associated with sex hormones levels, but it is unknown whether meat intake is associated with GCs levels. Furthermore, the role of meat intake in the associations between PM and GCs levels remains unclear. AIMS The aims of this study were to explore the associations of long-term exposure to PM and GCs levels among Chinese rural adults, and the role of meat intake in these associations. MATERIALS AND METHODS A total of 6223 subjects were recruited from the Henan Rural Cohort Study. Serum GCs levels were measured with liquid chromatography-tandem mass spectrometry. The concentrations of PM (PM1 and PM2.5) for each subject were assessed with machine learning algorithms. The food frequency questionnaire (FFQ) was used to obtain each participant' information on meat intake. The effects of PM and meat intake on GCs levels were assessed using generalized linear models. In addition, modification analyses were performed to identify the role of meat intake played in the associations of PM with serum GCs levels. RESULTS Per 1 μg/m3 increment in PM1 or PM2.5 concentration was associated with a 0.364 ng/ml (95% confidence interval (CI): 0.234, 0.494) or 0.227 ng/ml (95%CI: 0.110, 0.343) increase in serum cortisone, respectively. In addition, the moderation effects of total meat intake and red meat intake on the associations of long-term exposure to PM1 or PM2.5 with serum cortisone were observed (P < 0.05), indicating that individuals who had high levels of PM1 or PM2.5 and meat intake were more susceptible to have a higher state of serum cortisone. CONCLUSIONS Our findings suggested that long-term exposure to PM1 or PM2.5 was associated with serum cortisone. Moreover, meat intake was found to be a significant moderator in the association of PM1 or PM2.5 with serum cortisone levels.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
46
|
Adam MG, Tran PTM, Cheong DKW, Chandra Sekhar S, Tham KW, Balasubramanian R. Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18095028. [PMID: 34068742 PMCID: PMC8126254 DOI: 10.3390/ijerph18095028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
The combustion of fossil fuels is a significant source of particulate-bound black carbon (BC) in urban environments. The personal exposure (PE) of urban dwellers to BC and subsequent health impacts remain poorly understood due to a lack of observational data. In this study, we assessed and quantified the levels of PE to BC under two exposure scenarios (home-based and mobility-based exposure) in the city of Trivandrum in India. In the home-based scenario, the PE to BC was assessed in a naturally ventilated building over 24 h each day during the study period while in the mobility-based scenario, the PE to BC was monitored across diverse microenvironments (MEs) during the day using the same study protocol for consistency. Elevated BC concentrations were observed during the transport by motorcycle (26.23 ± 2.33 µg/m3) and car (17.49 ± 2.37 µg/m3). The BC concentrations observed in the MEs decreased in the following order: 16.58 ± 1.38 µg/m3 (temple), 13.78 ± 2.07 µg/m3 (restaurant), 11.44 ± 1.37 µg/m3 (bus stop), and 8.27 ± 1.88 µg/m3 (home); the standard deviations represent the temporal and spatial variations of BC concentrations. Overall, a relatively larger inhaled dose of BC in the range of 148.98–163.87 µg/day was observed for the mobility-based scenario compared to the home-based one (118.10–137.03 µg/day). This work highlights the importance of reducing PE to fossil fuel-related particulate emissions in cities for which BC is a good indicator. The study outcome could be used to formulate effective strategies to improve the urban air quality as well as public health.
Collapse
Affiliation(s)
- Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
| | - Phuong Thi Minh Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Faculty of Environment, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City 50608, Vietnam
| | - David Kok Wai Cheong
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Sitaraman Chandra Sekhar
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Kwok Wai Tham
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Correspondence: ; Tel.: +65-6516-5135; Fax: +65-6779-1635
| |
Collapse
|
47
|
Kasdagli MI, Katsouyanni K, de Hoogh K, Lagiou P, Samoli E. Associations of air pollution and greenness with mortality in Greece: An ecological study. ENVIRONMENTAL RESEARCH 2021; 196:110348. [PMID: 33127394 DOI: 10.1016/j.envres.2020.110348] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epidemiological studies have documented the adverse effects of long-term exposure to fine particulate matter (PM2.5) on health, while there has been less research on the effects of nitrogen dioxide (NO2), black carbon (BC) and especially ozone (O3). Furthermore, there is limited evidence for the synergistic effects of exposure to pollutants and greenness. We investigated the association of long-term exposure to air pollution and greenness with natural-cause, cardiovascular and respiratory mortality in Greece using an ecological study design. METHODS Mortality and socioeconomic data were obtained from 1035 municipal units from the 2011 census data. Annual average PM2.5, NO2, BC and O3 concentrations for 2010 were derived from 100 × 100 m surfaces predicted by hybrid LUR models. The normalized difference vegetation index was used to assess greenness. We applied Poisson regression models on standardized mortality rates adjusted for socioeconomic indicators and lung cancer rates, accounting for spatial autocorrelation. The analysis was conducted initially for the whole country and then separately for urban and rural areas. We assessed interactions between pollutants and greenness and applied two-exposure models. RESULTS An interquartile range (IQR) increase in PM2.5, NO2 and BC was associated with increases in natural-cause mortality (Relative Risk (RR) 1.09, 95% confidence interval (CI): 1.08, 1.11; RR 1.03 (95% CI: 1.03, 1.04) and RR 1.02 (95% CI: 1.02, 1.03), respectively), while PM2.5 and NO2 were also associated with cause-specific mortality. Greenness was associated with lower natural-cause (RR 0.95, 95% CI: 0.94, 0.96 per IQR) and cause-specific mortality. For all outcomes we estimated a protective association with O3 (natural-cause mortality RR 0.79, 95% CI: 0.76, 0.82 per IQR). All associations were stronger in urban areas. We estimated negative statistically significant interactions between air pollution and greenness for respiratory morality and positive ones for cardiovascular mortality. Estimates were mostly robust to co-exposure adjustment. CONCLUSIONS Our findings support associations of air pollution and greenness with mortality, both in urban and rural areas of Greece. Further research is needed to elaborate on the synergies in cause-specific mortality. Our results on the interactions between pollutants and greenness may imply differential biological mechanisms for cause-specific mortality and warrant further investigation.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, MRC Centre for Environment and Health, Imperial College, United Kingdom
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
48
|
Krecl P, de Lima CH, Dal Bosco TC, Targino AC, Hashimoto EM, Oukawa GY. Open waste burning causes fast and sharp changes in particulate concentrations in peripheral neighborhoods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142736. [PMID: 33268251 DOI: 10.1016/j.scitotenv.2020.142736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
The open burning of municipal solid waste (MSW) -frequently observed in developing countries- emits harmful pollutants, including fine particulate matter (PM2.5) and black carbon (BC), and deteriorates the air quality in urban areas. This work reports on PM2.5 and BC measurements (fixed and mobile) conducted in a residential neighborhood on the outskirts of a Brazilian city (Londrina), complemented by a public opinion survey to understand the open burning in the context of waste management. Mean (± standard deviation) BC concentration (1.48 ± 1.40 μg m-3) at the fixed sites of the neighborhood was lower than downtown, while PM2.5 (9.68 ± 8.40 μg m-3) concentration was higher. The mobile monitoring showed higher mean PM2.5 concentrations but lower BC/PM2.5 ratios than downtown, with sharp and fast spikes (up to 317.87 and 565.21 μg m-3 for BC and PM2.5, respectively). The large spatial heterogeneity of particulate concentrations was associated with the occurrence of MSW burning events. Our observations were verified by the survey respondents who identified poor waste management practices: garbage in streets, waste burning, and illegal dump sites. Even though the area has a municipal waste collection service, the majority of the respondents (87%) had seen waste burning close to their homes on a weekly basis, and think that people burn waste out of habit (54%) and because they are not patient to wait for the collection services (67%). To combat this illegal practice, we suggest raising the public awareness through campaigns at local level, adopting education initiatives and economic incentives for correct waste segregation, and enforcing regular inspection of burning events by the authorities. Our research method proved to be a time- and cost-effective approach for mapping particulate concentrations and for identifying undesirable waste practices, and could be effectively applied to other global cities.
Collapse
Affiliation(s)
- Patricia Krecl
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, Brazil.
| | - Caroline Hatada de Lima
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, Brazil
| | | | - Admir Créso Targino
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, Brazil
| | - Elizabeth Mie Hashimoto
- Graduate Program in Environmental Engineering, Federal University of Technology, Londrina, Brazil
| | | |
Collapse
|
49
|
Alexeeff SE, Deosaransingh K, Liao NS, Van Den Eeden SK, Schwartz J, Sidney S. Particulate Matter and Cardiovascular Risk in Adults with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2021; 204:159-167. [PMID: 33662228 DOI: 10.1164/rccm.202007-2901oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: People with chronic obstructive pulmonary disease (COPD) have an increased risk of cardiovascular disease and may be more susceptible to air pollution exposure. However, no study has examined the association between long-term fine particulate matter exposure (≤2.5 μm in aerodynamic diameter) and risk of cardiovascular events in this potentially vulnerable population. Objectives: To estimate the association between long-term fine particulate matter and risk of cardiovascular events among adults with COPD. Methods: This retrospective cohort study included 169,714 adults with COPD who were members of the Kaiser Permanente Northern California health plan during 2007-2016. Electronic health record data were linked to 1 km modeled particulate matter ≤2.5 μm in aerodynamic diameter exposure estimates. We fit Cox proportional hazard models, adjusting for age, sex, race/ethnicity, calendar year, smoking, body mass index, comorbidities, medications, and socioeconomic status. In low exposure analyses, we examined effects below the current regulation limit (12 μg/m3). Measurements and Main Results: Among adults with COPD, a 10-μg/m3 increase in 1-year mean fine particulate matter exposure was associated with an elevated risk of cardiovascular mortality (hazard ratio, 1.10; 95% confidence interval [CI], 1.01-1.20). Effects were stronger in low exposure analyses (hazard ratio, 1.88; 95% CI, 1.56-2.27). Fine particulate matter exposure was not associated with acute myocardial infarction or stroke in overall analyses. Conclusions: Long-term fine particulate matter exposure was associated with an increased risk of cardiovascular mortality among adults with COPD. Current regulations may not sufficiently protect those with COPD.
Collapse
Affiliation(s)
- Stacey E Alexeeff
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, California; and
| | - Kamala Deosaransingh
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, California; and
| | - Noelle S Liao
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, California; and
| | | | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, California; and
| |
Collapse
|
50
|
Systematic review and meta-analysis of cohort studies of long term outdoor nitrogen dioxide exposure and mortality. PLoS One 2021; 16:e0246451. [PMID: 33539450 PMCID: PMC7861378 DOI: 10.1371/journal.pone.0246451] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/10/2021] [Indexed: 01/04/2023] Open
Abstract
Objective To determine whether long term exposure to outdoor nitrogen dioxide (NO2) is associated with all-cause or cause-specific mortality. Methods MEDLINE, Embase, CENTRAL, Global Health and Toxline databases were searched using terms developed by a librarian. Screening, data extraction and risk of bias assessment were completed independently by two reviewers. Conflicts were resolved through consensus and/or involvement of a third reviewer. Pooling of results across studies was conducted using random effects models, heterogeneity among included studies was assessed using Cochran’s Q and I2 measures, and sources of heterogeneity were evaluated using meta-regression. Sensitivity of pooled estimates to individual studies was examined and publication bias was evaluated using Funnel plots, Begg’s and Egger’s tests, and trim and fill. Results Seventy-nine studies based on 47 cohorts, plus one set of pooled analyses of multiple European cohorts, met inclusion criteria. There was a consistently high degree of heterogeneity. After excluding studies with probably high or high risk of bias in the confounding domain (n = 12), pooled hazard ratios (HR) indicated that long term exposure to NO2 was significantly associated with mortality from all/ natural causes (pooled HR 1.047, 95% confidence interval (CI), 1.023–1.072 per 10 ppb), cardiovascular disease (pooled HR 1.058, 95%CI 1.026–1.091), lung cancer (pooled HR 1.083, 95%CI 1.041–1.126), respiratory disease (pooled HR 1.062, 95%CI1.035–1.089), and ischemic heart disease (pooled HR 1.111, 95%CI 1.079–1.144). Pooled estimates based on multi-pollutant models were consistently smaller than those from single pollutant models and mostly non-significant. Conclusions For all causes of death other than cerebrovascular disease, the overall quality of the evidence is moderate, and the strength of evidence is limited, while for cerebrovascular disease, overall quality is low and strength of evidence is inadequate. Important uncertainties remain, including potential confounding by co-pollutants or other concomitant exposures, and limited supporting mechanistic evidence. (PROSPERO registration number CRD42018084497)
Collapse
|