1
|
Schuppe MC, Porebski P, Hahn KK, Liao K, Uhmann A, Braun A, Dasari P, Schön MP, Buhl T. Triclosan exacerbates atopic dermatitis in mouse models via thymic stromal lymphopoietin. J Dermatol Sci 2025; 118:1-8. [PMID: 40059030 DOI: 10.1016/j.jdermsci.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Triclosan, a common antimicrobial agent, is widely used in personal-care products and as a topical antiseptic in atopic dermatitis (AD). OBJECTIVE This study aimed to evaluate the topical and systemic effect of triclosan on AD in murine models, with a specific focus on the role of thymic stromal lymphopoietin (TSLP). METHODS AD-like skin disease was induced by topical application of MC903 and house dust mites in female wildtype BALB/c, C57BL/6 J, and TSLP receptor (TSLPR)-knockout mouse strains. Mice were treated with triclosan both topically and systemically. Skin inflammation was assessed by measuring ear thickness. Infiltration of immune cells was analyzed by flow cytometry and immunohistochemistry (IHC). Cytokine expression was determined by quantitative real-time PCR. RESULTS Triclosan application induced skin inflammation in a dose-dependent manner. Topical triclosan treatment increased ear inflammation and immune cell infiltration in AD-like mouse models. Systemic administration of triclosan also enhanced local AD-like skin reactions. Triclosan-induced skin inflammation was reduced in TSLP-receptor-knockout mice or by blocking TSLP, thus indicating the pivotal role of TSLP in mediating the immunological effects of triclosan. CONCLUSIONS Topical and systemic administration of triclosan exacerbates AD-like skin inflammation in murine models, with TSLP being a central mediator of this process. The translational relevance of these findings to human disease remains uncertain, as no direct human data are available.
Collapse
MESH Headings
- Animals
- Thymic Stromal Lymphopoietin
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/chemically induced
- Triclosan/adverse effects
- Triclosan/administration & dosage
- Cytokines/metabolism
- Cytokines/genetics
- Disease Models, Animal
- Female
- Mice, Knockout
- Mice
- Skin/immunology
- Skin/pathology
- Skin/drug effects
- Mice, Inbred C57BL
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Mice, Inbred BALB C
- Pyroglyphidae/immunology
- Anti-Infective Agents, Local/administration & dosage
- Anti-Infective Agents, Local/adverse effects
- Humans
- Immunoglobulins
Collapse
Affiliation(s)
- Marie Charlotte Schuppe
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany.
| | - Patryk Porebski
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Katharina Klara Hahn
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kexin Liao
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, University Medical Centre Göttingen, Göttingen, Germany
| | - Andrea Braun
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Prasad Dasari
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Michael Peter Schön
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Centre Göttingen, Göttingen, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Santana-Mayor Á, D’Orazio G, Rodríguez-Delgado MÁ, Socas-Rodríguez B. Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples. Foods 2024; 14:28. [PMID: 39796318 PMCID: PMC11720319 DOI: 10.3390/foods14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4-tert-butylphenol, 4-sec-butylphenol, 4-tert-amylphenol, 4-n-hexylphenol, 4-tert-octylphenol, 4-n-heptylphenol, 4-n-octylphenol, and 4-n-nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system. Different parameters affecting the compatibility of the non-ionic eutectic solvents with water-polar organic solvent mixtures and chromatographic and detection systems were optimized, including injection/dilution solvent, injection mode, mobile phase composition, and step gradient. With the same purpose, two stationary phases were tested, including XBridge® C18 and a mixed-phase Cogent C30-XBridge® C18. Finally, the greenness and blueness of the methodology were assessed to evaluate the environmental profile and usability of the procedure.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Rome, Italy;
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain;
| |
Collapse
|
3
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
4
|
Luo N, Chen J, Chen X, Wang M, Niu X, Chen G, Deng C, Gao Y, Li G, An T. Toxicity evolution of triclosan during environmental transformation and human metabolism: Misgivings in the post-pandemic era. ENVIRONMENT INTERNATIONAL 2024; 190:108927. [PMID: 39121826 DOI: 10.1016/j.envint.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.
Collapse
Affiliation(s)
- Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Hrčka M, Hřebečková T, Hanč A, Grasserová A, Cajthaml T. Changes in the content of emerging pollutants and potentially hazardous substances during vermi/composting of a mixture of sewage sludge and moulded pulp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123736. [PMID: 38458521 DOI: 10.1016/j.envpol.2024.123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Processing sewage sludge can be problematic due to its potential environmental toxicity. It may contain high concentrations of pharmaceuticals, polycyclic aromatic hydrocarbons, and heavy metals, as well as pathogenic microorganisms. However, it is a good source of organic matter and rich in microbial communities and enzymatic activity. This study deals with composting and vermicomposting of pre-composted mixtures of two different kinds of sewage sludge blended with moulded pulp in an operating composting plant. Of the total number and concentration of pollutants detected in individual piles, a large percentage of them were reduced by the composting process. The composting 2 process resulted in the greatest reduction in contaminating substances--a total of 19 substances by 4.39-90.4%. Some pharmaceuticals accumulated in earthworm bodies during vermicomposting; a total of 11 substances were detected. Atorvastatin showed the highest percentage reduction in compost 2 (90.4%), vermicompost 1 (65.2%) and vermicompost 2 (97.3%). Both composting and vermicomposting appeared to be effective for removal of heavy metals. A higher content of microbial phospholipid fatty acids (PLFAs) was found in composts than vermicomposts. There was a significant reduction in the content of pathogenic microorganisms in both processes, but the reduction in enterococci was not significant.
Collapse
Affiliation(s)
- M Hrčka
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Kamycka 129, Prague, 165 21, Czech Republic
| | - T Hřebečková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Kamycka 129, Prague, 165 21, Czech Republic.
| | - A Hanč
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Kamycka 129, Prague, 165 21, Czech Republic
| | - A Grasserová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 142 20, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, Prague, 128 00, Czech Republic
| | - T Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 142 20, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, Prague, 128 00, Czech Republic
| |
Collapse
|
6
|
Liao K, Zhao Y, Qu J, Yu W, Hu S, Fang S, Zhao M, Jin H. Association of serum bisphenols, parabens, and triclosan concentrations with Sjögren Syndrome in the Hangzhou, China population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170031. [PMID: 38220002 DOI: 10.1016/j.scitotenv.2024.170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to various immune deficiency disorders, including autoimmune diseases like Sjögren Syndrome (SjS). However, the detrimental effects of exposure to EDCs, including bisphenols, parabens, and triclosan (TCS), on SjS have been inadequately documented. Thus, we conducted a cross-sectional study that included both healthy individuals (controls) and patients with SjS (cases). We assessed serum concentrations of bisphenol A (BPA), bisphenol S (BPS), methyl parabens (MeP), ethyl parabens (EtP), and TCS. The relationship between the five EDCs levels and the risk of SjS was also explored. Additionally, we conducted an in-depth analysis of the collective influence of these EDCs mixtures on SjS, employing a weighted quantile sum regression model. Out of the five EDCs analyzed, EtP displayed the highest mean concentration (2.80 ng/mL), followed by BPA (2.66 ng/mL) and MeP (1.99 ng/mL), with TCS registering the lowest level (0.36 ng/mL). Notably, BPS exposure was significantly positively associated with the risk of being diagnosed with SjS (with an odds ratio [OR] of 1.17, p = 0.042). No statistically significant associations with SjS were observed for BPA, MeP, EtP, and TCS (p > 0.05). And we did not observe any significant effects of the EDCs mixture on SjS. To the best of our knowledge, this study is the first to suggest that BPS may potentially increase the risk of SjS. Although no significant effects were observed between other EDCs and SjS risk, we cannot disregard the potential harm of EDCs due to their non-monotonic dose response.
Collapse
Affiliation(s)
- Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yun Zhao
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shetuan Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shuhong Fang
- College Resources & Environment, Chengdu University Information Technology, Chengdu 610225, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
7
|
Raps S, Bahr L, Karkossa I, Rossol M, von Bergen M, Schubert K. Triclosan and its alternatives, especially chlorhexidine, modulate macrophage immune response with distinct modes of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169650. [PMID: 38159774 DOI: 10.1016/j.scitotenv.2023.169650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Since European regulators restricted the use of bacteriocidic triclosan (TCS), alternatives for TCS are emerging. Recently, TCS has been shown to reprogram immune metabolism, trigger the NLRP3 inflammasome, and subsequently the release of IL-1β in human macrophages, but data on substitutes is scarce. Hence, we aimed to examine the effects of TCS compared to its alternatives at the molecular level in human macrophages. LPS-stimulated THP-1 macrophages were exposed to TCS or its substitutes, including benzalkonium chloride, benzethonium chloride, chloroxylenol, chlorhexidine (CHX) and cetylpyridinium chloride, with the inhibitory concentration (IC10-value) of cell viability to decipher their mode of action. TCS induced the release of the pro-inflammatory cytokine TNF and high level of IL-1β, suggesting the activation of the NLRP3-inflammasome, which was confirmed by non-apparent IL-1β under the NLRP3-inhibitor MCC950 treatment d. While IL-6 release was reduced in all treatments, the alternative CHX completely abolished the release of all investigated cytokines. To unravel the underlying molecular mechanisms, we used untargeted LC-MS/MS-based proteomics. TCS and CHX showed the strongest cellular response at the protein and signalling pathway level, whereby pathways related to metabolism, translation, cellular stress and migration were mainly affected but to different proposed modes of action. TCS inhibited mitochondrial electron transfer and affected phagocytosis. In contrast, in CHX-treated cells, the translation was arrested due to stress conditions, resulting in the formation of stress granules. Mitochondrial (e.g. ATP5F1D, ATP5PB, UQCRQ) and ribosomal (e.g. RPL10, RPL35, RPS23) proteins were revealed as putative key drivers. Furthermore, we have demonstrated the formation of podosomes by CHX, potentially involved in ECM degradation. Our results exhibit modulation of the immune response in macrophages by TCS and its substitutes and illuminated underlying molecular effects. These results illustrate critical processes involved in the modulation of macrophages' immune response by TCS and its alternatives, providing information essential for hazard assessment.
Collapse
Affiliation(s)
- Stefanie Raps
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Bahr
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Manuela Rossol
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
8
|
Lahiani M, Gokulan K, Sutherland V, Cunny HC, Cerniglia CE, Khare S. Early Developmental Exposure to Triclosan Impacts Fecal Microbial Populations, IgA and Functional Activities of the Rat Microbiome. J Xenobiot 2024; 14:193-213. [PMID: 38390992 PMCID: PMC10885032 DOI: 10.3390/jox14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024] Open
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, is detected in human urine, breast milk, amniotic fluid, and feces; however, little is known about its impact on the intestinal microbiome and host mucosal immunity during pregnancy and early development. Pregnant female rats were orally gavaged with TCS from gestation day (GD) 6 to postpartum (PP) day 28. Offspring were administered TCS from postnatal day (PND) 12 to 28. Studies were conducted to assess changes in the intestinal microbial population (16S-rRNA sequencing) and functional analysis of microbial genes in animals exposed to TCS during pregnancy (GD18), and at PP7, PP28 and PND28. Microbial abundance was compared with the amounts of TCS excreted in feces and IgA levels in feces. The results reveal that TCS decreases the abundance of Bacteroidetes and Firmicutes with a significant increase in Proteobacteria. At PND28, total Operational Taxonomic Units (OTUs) were higher in females and showed correlation with the levels of TCS and unbound IgA in feces. The significant increase in Proteobacteria in all TCS-treated rats along with the increased abundance in OTUs that belong to pathogenic bacterial communities could serve as a signature of TCS-induced dysbiosis. In conclusion, TCS can perturb the microbiome, the functional activities of the microbiome, and activate mucosal immunity during pregnancy and early development.
Collapse
Affiliation(s)
- Mohamed Lahiani
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Vicki Sutherland
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Helen C Cunny
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
9
|
Zheng Q, Xiao J, Zhang D, Li X, Xu J, Ma J, Xiao Q, Fu J, Guo Z, Zhu Y, Ji J, Lu S. Bisphenol analogues in infant foods in south China and implications for infant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168509. [PMID: 37977386 DOI: 10.1016/j.scitotenv.2023.168509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Bisphenol analogues (BPs) are commonly used as modifiers, stabilizers and photo-initiators in polymer materials, including those used in food packaging. Compared to adults, infants are more sensitive to chemicals because their bodies are growing and not fully developed. Therefore, it is essential to determine the concentrations of BPs in common infant foods to assess infant exposure and prevent hazards. We collected 54 infant formula (IF) samples, 90 complementary food (CMF) samples and 62 breastmilk samples from breastfeeding women in south China. Tandem mass spectrometry coupled to liquid chromatography separation (HPLC-MS/MS) was used to detect the concentrations of 8 BPs in the three types of food samples. The estimated daily intake (EDI) of infants was also assessed. The results showed that the detection frequency of bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) were relatively high among the different infant foods. BPF, BPP and BPS were predominant among the detected BPs. The lowest 95th EDI for BPA was 0.67 ng kg-bw-1 day-1, exceeding the tolerable daily intake (TDI) limit for BPA set by the European Food Safety Authority in 2023. Thus, BP exposure is a significant risk to infants. More attention should be paid to the presence of BPs in daily use products and food, and intake limits should be set for BPs other than BPA.
Collapse
Affiliation(s)
- Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Kahlberg A, Bilman V, Bugna C, Rinaldi E, Mascia D, Loschi D, Chiesa R, Melissano G. Silver acetate and Triclosan Antimicrobial Graft Evaluation for surgical Repair of aortic disease (STAGER Study). INT ANGIOL 2023; 42:402-411. [PMID: 37943291 DOI: 10.23736/s0392-9590.23.05101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND The aim of this study was to assess perioperative and late performance of a silver acetate and triclosan impregnated antimicrobial vascular graft (Intergard Synergy, Intervascular SAS, La Ciotat, France) during open surgical repair of abdominal aortic aneurysms (AAA), and to compare it with standard polyester grafts ones. METHODS This retrospective single-centre study (STAGER Study, clinicaltrials.gov: NCT04557254) included patients undergone non-infectious AAA surgical repair between 2012 and 2019, divided into two groups according to the implanted aortic prosthesis: standard polyester graft (PolyG) and silver-triclosan graft (SynG). Early primary endpoints were 30-day mortality, major adverse events (MAEs), and reintervention rates; late primary endpoints were overall and aortic-related survival, reintervention-free survival, and graft infection rate at a mean follow-up (FU) of 49.4±26.8 months. RESULTS Five hundred forty-seven patients were included [PolyG 49%, and SynG 51%]. Both groups were substantially homogeneous in risk factors and demographics. Two patients died within 30 days. In-hospital MAE rate [PolyG 14.2% vs. SynG 10.7%; P=.248] and 30-day reintervention rate were not significantly different [PolyG 2.6% vs. SynG 1.4%; P=.374]. At 5 years, overall survival in the PolyG and SynG groups were 85% and 84%, respectively. Reintervention-free survival was 82% for both groups. Aortic-related survival was 95% and 96%, respectively. Graft infection was observed in 8 (3.3%) PolyG patients and 5 (1.8%) SynG patients. CONCLUSIONS Silver acetate and triclosan impregnated grafts demonstrated good early and mid-term results, being considered safe and durable for AAA open repair. Similar graft infection and related death rates were observed compared to polyester standard grafts, supporting non-superiority of one graft over the other.
Collapse
Affiliation(s)
- Andrea Kahlberg
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Victor Bilman
- Department of Vascular Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carlotta Bugna
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy -
| | - Enrico Rinaldi
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Mascia
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diletta Loschi
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Chiesa
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Germano Melissano
- Department of Vascular Surgery, Vita-Salute University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Tursi A, Beneduci A, Nicotera I, Simari C. MWCNTs Decorated with TiO 2 as Highly Performing Filler in the Preparation of Nanocomposite Membranes for Scalable Photocatalytic Degradation of Bisphenol A in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2325. [PMID: 37630910 PMCID: PMC10458988 DOI: 10.3390/nano13162325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting compound with estrogenic behavior, is of great concern within the scientific community due to its high production levels and increasing concentration in various surface aquifers. While several materials exhibit excellent capacity for the photocatalytic degradation of BPA, their powdered nature and poor chemical stability render them unsuitable for practical application in large-scale water decontamination. In this study, a new class of nanocomposite membranes based on sulfonated polyethersulfone (sPES) and multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNTs-TiO2) were investigated as efficient and scalable photocatalysts for the photodegradation of BPA in aqueous solutions. The MWCNTs-TiO2 hybrid material was prepared through a facile and inexpensive hydrothermal method and extensively characterized by XRD, Raman, FTIR, BET, and TGA. Meanwhile, nanocomposite membranes at different filler loadings were prepared by a simple casting procedure. Swelling tests and PFG NMR analyses provided insights into the impact of filler introduction on membrane hydrophilicity and water molecular dynamics, whereas the effectiveness of the various photocatalysts in BPA removal was monitored using HPLC. Among the different MWCNTs-TiO2 content nanocomposites, the one at 10 wt% loading (sP-MT10) showed the best photoactivity. Under UV irradiation at 254 nm and 365 nm for 240 min, photocatalytic oxidation of 5 mg/L bisphenol A by sP-MT10 resulted in 91% and 82% degradation, respectively. Both the effect of BPA concentration and the membrane regenerability were evaluated, revealing that the sP-MT10 maintained its maximum BPA removal capability over more than 10 cycles. Our findings indicate that sP-MT nanocomposite membranes are versatile, scalable, efficient, and highly reusable photocatalysts for the degradation of BPA, as well as potentially for other endocrine disruptors.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- SIRiA S.r.l.-Servizi Integrati e Ricerche per l’Ambiente, c/o Department of Chemistry and Chemical Technologies, Spin-Off of the University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy
| | - Isabella Nicotera
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende, Italy; (A.T.); (A.B.); (I.N.)
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
12
|
Tokgöz M, Yarkent Ç, Köse A, Oncel SS. The potential of microalgal sources as coating materials: A case study for the development of biocompatible surgical sutures. Lett Appl Microbiol 2023; 76:ovad086. [PMID: 37516447 DOI: 10.1093/lambio/ovad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Sutures are considered as surgical materials that form excellent surfaces to integrate the postoperative parts of the body. These materials present suitable platforms for potential bacterial penetrations. Therefore, coating these biomedical materials with biocompatible compounds is seen as a potential approach to improve their properties while avoiding adverse effects. The aim of this study was to evaluate Arthrospira platensis, Haematacoccus pluvialis, Chlorella minutissima, Botyrococcus braunii, and Nostoc muscorum as potential surgical suture coating materials. Their crude extracts were absorbed into two different sutures as poly glycolic (90%)-co-lactic acid (10%) (PGLA) and poly dioxanone (PDO); then, their cytotoxic effects and antibacterial activities were examined. Both N. muscorum-coated sutures (PGLA and PDO) and A. platensis-coated (PGLA and PDO) sutures did not induce any toxic effect on L929 mouse fibroblast cells (>70% cell viability). The highest antibacterial activity against Staphylococcus aureus was achieved with N. muscorum-coated PGLA and A. platensis-coated PGLA at 11.18 ± 0.54 mm and 9.52 ± 1.15 mm, respectively. These sutures were examined by mechanical analysis, and found suitable according to ISO 10993-5. In comparison with the commercial antibacterial agent (chlorohexidine), the results proved that N. muscorum extract can be considered as the most promising suture coating material for the human applications.
Collapse
Affiliation(s)
- Merve Tokgöz
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, Izmir, 35100, Turkey
| | - Çağla Yarkent
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, Izmir, 35100, Turkey
| | - Ayşe Köse
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, Izmir, 35100, Turkey
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
13
|
Guo X, Liu B, Liu H, Du X, Chen X, Wang W, Yuan S, Zhang B, Wang Y, Guo H, Zhang H. Research advances in identification procedures of endocrine disrupting chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83113-83137. [PMID: 37347330 DOI: 10.1007/s11356-023-27755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bing Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
14
|
Mazzeo DEC, Dombrowski A, Oliveira FA, Levy CE, Oehlmann J, Marchi MRR. Endocrine disrupting activity in sewage sludge: Screening method, microbial succession and cost-effective strategy for detoxification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117207. [PMID: 36621316 DOI: 10.1016/j.jenvman.2022.117207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) presents a high agronomic potential due to high concentrations of organic matter and nutrients, encouraging its recycling as a soil conditioner. However, the presence of toxic substances can preclude this use. To enable the safe disposal of this waste in agriculture, SS requires additional detoxification to decrease the environmental risks of this practice. Although some alternatives have been proposed in this sense, little attention is provided to eliminating endocrine-disrupting chemicals (EDCs). To fill this gap, this study aimed to develop effective and low-cost technology to eliminate EDCs from SS. For this, a detoxification process combining microorganisms and biostimulating agents (soil, sugarcane bagasse, and coffee grounds) was performed for 2, 4, and 6 months with aerobic and anaerobic SSs. The (anti-)estrogenic, (anti-)androgenic, retinoic-like, and dioxin-like activities of SSs samples were verified using yeast-based reporter-gene assays to prove the effectiveness of the treatments. A fractionation procedure of samples, dividing the target sample extract into several fractions according to their polarity, was conducted to decrease the matrix complexity and facilitate the identification of EDCs. A decrease in the abundance and microbial diversity of the SS samples was noted along the biostimulation with the predominance of filamentous fungal species over yeasts and gram-positive bacteria and non-fermenting rods over enterobacteria. Among the 9 EDCs quantified by LC-ESI-MS/MS, triclosan and alkylphenols presented the highest concentrations in both SS. Before detoxification, the studied SSs induced significant agonistic activity, especially at the human estrogen receptor α (hERα) and the human aryl hydrocarbon receptor (AhR). The raw anaerobic sludge also activated the androgen (hAR), retinoic acid (RARα), and retinoid X (RXRα) receptors. However, no significant endocrine-disrupting activities were observed after the SS detoxification, showing that the technology applied here efficiently eliminates receptor-mediated toxicity.
Collapse
Affiliation(s)
- Dânia Elisa C Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos - UFSCAR, Araras, Brazil.
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Flávio Andrade Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Mary Rosa R Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
15
|
Au CK, Jason Chan KK, Chan W, Zhang X. Occurrence and stability of PCMX in water environments and its removal by municipal wastewater treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130550. [PMID: 37055964 DOI: 10.1016/j.jhazmat.2022.130550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Para-chloro-meta-xylenol (PCMX) is a synthetic antiseptic used extensively to control the spread of germs and viruses, and as a result, enormous amount of PCMX could be discharged to water environments through drainage. To investigate the extent of PCMX contamination, water samples were collected from rivers and coastal waters in Hong Kong, and PCMX concentrations were determined by a newly developed method using liquid chromatography-tandem mass spectrometry combined with stable isotope-dilution. We discovered widespread PCMX pollution in the water environment. Then, we revealed for the first time that PCMX in wastewater is not effectively removed by chemically enhanced primary treatment (CEPT), one of the wastewater treatment processes used in Hong Kong (∼75% of wastewater) and other megacities around the world. This suggests that the CEPT effluent or the primary treatment effluent is an unintended continuous source of pollution for PCMX in water environments. Finally, we found that PCMX was relatively stable in the water environment and could pose a risk to aquatic organisms. These findings underscore the importance of raising public awareness of the environmental consequences from overuse of PCMX-based disinfectants and the need to reevaluate the various wastewater treatment processes in removing PCMX.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - K K Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, The Hong Kong Special Administrative Region of China
| |
Collapse
|
16
|
Huang W, Cao G, Deng C, Chen Y, Wang T, Chen D, Cai Z. Adverse effects of triclosan on kidney in mice: Implication of lipid metabolism disorders. J Environ Sci (China) 2023; 124:481-490. [PMID: 36182156 DOI: 10.1016/j.jes.2021.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/16/2023]
Abstract
Triclosan (TCS) is a ubiquitous antimicrobial used in daily consumer products. Previous reports have shown that TCS could induce hepatotoxicity, endocrine disruption, disturbance on immune function and impaired thyroid function. Kidney is critical in the elimination of toxins, while the effects of TCS on kidney have not yet been well-characterized. The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice. Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day) for 13 weeks. TCS was dissolved in dimethyl sulfoxide (DMSO) and diluted by corn oil for exposure. Corn oil containing DMSO was used as vehicle control. Serum and kidney tissues were collected for study. Biomarkers associated with kidney function, oxidative stress, inflammation and fibrosis were assessed. Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine, urea nitrogen and uric acid, as well as increased oxidative stress, pro-inflammatory cytokines and fibrotic markers in a dose dependent manner, which were more significantly in 100 mg/(kg•day) group. Mass spectrometry-based analysis of metabolites related with lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day) TCS-exposed mouse kidney. These processes might lead to lipotoxicity and energy depletion, thus resulting in kidney fibrosis and functional decline. Taken together, the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney, which might contribute to renal function impairment. The present study further widens our insights into the adverse effects of TCS.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China; School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chengliang Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China; Analysis Center, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
17
|
Knot strength and antimicrobial evaluations of partially absorbable suture. Prog Biomater 2022; 12:51-59. [PMID: 36461948 PMCID: PMC9958218 DOI: 10.1007/s40204-022-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Partially absorbable suture is useful for orthopedic repair as it possesses the capacity to promote a balance between strength, degradation rate and minimal inflammation. Still, the availability of partially absorbable suture is scarce. So far, no study has examined the mechanical strength and anti-microbial properties of partially absorbable monofilament suture made of low-density polyethylene (LDPE)/polylactide (PLA)/chitosan (CHS); hence, the reason for this study with a view to improve knot strength, antimicrobial property and degradation rate. In this study, monofilament suture was extruded using different weight fractions of LDPE, PLA and CHS. In vitro degradation studies were carried out using phosphate buffer solution (PBS). Mechanical and morphological changes were also examined. A standard Fourier transform infrared spectral of 3433, 2909-2840, 1738, 1452, 1174, 1062, 706 cm-1 were assigned to OH group, C-H stretch, C=O vibration of ester, CH3 bending, alkyl ester and CH2 stretch, respectively. Tensile strength of knotted neat LDPE (4.84 MPa) exhibited 48.7% improvement in LDPE/PLA/CHS (60/39.5/0.5). This suggests that a good knot can be achieved to 40% weight fraction of PLA. The monofilament suture also demonstrated better antimicrobial property as the monofilament, LDPE/PLA/CHS (60/39.5/0.5) and LDPE/PLA/CHS (50/49.5/0.5) covered 12.7 mm zone of inhibition which is greater than the standard 1 mm. The suture's morphological phases show dark fibre-like rough surfaces with microstructural irregularities as PLA and CHS were added to the matrix, which is required for enhanced degradation. Thus, the partially absorbable suture produced in this study could serve as a suture for tendon repair.
Collapse
|
18
|
Muacevic A, Adler JR. Ototoxicity of Triclosan: A Rat Model Study. Cureus 2022; 14:e32189. [PMID: 36505955 PMCID: PMC9728979 DOI: 10.7759/cureus.32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Triclosan is utilized as an antibacterial factor in many industrial products. Although there are many toxic features of triclosan in the literature, there is no study on the effect of triclosan on hearing. The purpose of this study is to determine the effect of triclosan on hearing in rats. METHODS In this prospective, experimental animal study, 40 healthy Sprague-Dawley rats with normal response to the distortion-product otoacoustic emission (DPOAE) measurements were divided into four groups. Group 1, as the control group, was given only corn oil, group 2 was given 5 mg/kg triclosan dissolved in corn oil, group 3 was given 10 mg/kg triclosan dissolved in corn oil, and group 4 was given 100 mg/kg triclosan dissolved in corn oil; triclosan and corn oil were administered by oral gavage to all groups. RESULTS In our study, low-dose triclosan did not cause hearing loss, but hearing loss was observed in the group that was given high-dose triclosan (100 mg/kg). CONCLUSION These findings suggest that triclosan causes hearing loss in rats. This issue should be investigated further to avoid triclosan ototoxicity in humans.
Collapse
|
19
|
Tetrabromobisphenol A and Diclazuril Evoke Tissue-Specific Changes of Thyroid Hormone Signaling in Male Thyroid Hormone Action Indicator Mice. Int J Mol Sci 2022; 23:ijms232314782. [PMID: 36499108 PMCID: PMC9738630 DOI: 10.3390/ijms232314782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
Collapse
|
20
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
21
|
Tang N, Wang D, Chen X, Zhang M, Lv W, Wang X. Maternal bisphenol A and triclosan exposure and allergic diseases in childhood: a meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83389-83403. [PMID: 35764729 DOI: 10.1007/s11356-022-21575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) and triclosan (TCS) are both endocrine-disrupting chemicals (EDCs), and pregnant women are usually exposed to them through daily consumption. This study aimed to explore the relationship between prenatal BPA and TCS exposure and allergic diseases in childhood by systematic review and meta-analysis. We searched the topic of prenatal BPA and TCS exposure and allergic diseases in childhood published before March 22, 2021, in four databases, including PubMed, Web of Science, Embase, and Cochrane. Statistical analysis was completed using Stata software (version 16.0). Seven papers on BPA and four papers on TCS were included in this meta-analysis. The association between prenatal exposure to BPA and total allergic diseases in childhood showed a pooled effect estimate of 1.13 (95% CI, 1.04, 1.23), with I2 = 0.0% (P = 0.615). The effect estimates between BPA exposure and each allergic disease were 1.18 (95% CI, 1.02, 1.36) for wheezing, 1.23 (95% CI, 1.01, 1.50) for asthma, 1.03 (95% CI, 0.89, 1.18) for eczema/rashes or hives, and 1.19 (95% CI, 0.91, 1.56) for aeroallergies. Prenatal exposure to TCS had no association with the four types of allergic disease in childhood. BPA exposure during the prenatal period was positively associated with allergic disease in childhood. Strengthening prenatal EDC exposure control is necessary for child health.
Collapse
Affiliation(s)
- Ning Tang
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofeng Chen
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Lv
- Healthcare Management Program, School of Business, Nanjing University, Nanjing, 210093, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
22
|
Abd-Elnaby YA, ElSayed IE, AbdEldaim MA, Badr EA, Abdelhafez MM, Elmadbouh I. Anti-inflammatory and antioxidant effect of Moringa oleifera against bisphenol-A-induced hepatotoxicity. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-pharmacological exposure or pharmacological drug-induced hepatic injury is the most common cause of hepatotoxicity. This study was conducted to evaluate the effect of Moringa oleifera leaf extract against bisphenol-A (BPA)-induced hepatic toxicity in rats.
Methods
Rats (n=56) were randomized into 7 groups (8 rats/each). Control groups: rats received olive oil or Moringa oleifera (400mg/kg) orally for 42 days. Hepatotoxicity groups: rats received BPA (50mg/kg BW) orally in a 1-ml olive oil for 42 days. Reversal groups: rats received Moringa oleifera (200 or 400mg/kg) and BPA (50mg/kg BW) for 42 days. Preventive groups: rats received Moringa oleifera (200 or 400mg/kg) for 30 days followed by BPA (50mg/kg BW) for 14 days. At the end of the experiments, blood samples were collected for glucose and liver function assay, while the liver tissue samples were collected and homogenated for measuring the inflammatory/oxidant and antioxidant markers.
Results
Rats with BPA-induced hepatotoxicity have significantly increased serum aspartate transaminase (AST), alanine transaminase (ALT), and glucose; liver lysate malondialdehyde (MDA); tumor necrosis factor (TNF-α); and macrophage migrating inhibitory factor (MIF) but significantly decreased levels of liver lysate reduced glutathione (GSH) and total antioxidant capacity (TAC) levels. The administration of Moringa oleifera (especially 400mg/kg BW) in both reversal and preventive groups ameliorate the toxic effects of BPA in rats, as it decreased the activities of AST, ALT, glucose, MDA, TNF-α, and MIF levels and increased the antioxidant levels of GSH and TAC.
Conclusion
Moringa oleifera has hepatoprotective effects against BPA-induced liver damage through the regulation of antioxidants and inflammatory biomarkers.
Collapse
|
23
|
Ni M, Li X, Zhang L, Kumar V, Chen J. Bibliometric Analysis of the Toxicity of Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137886. [PMID: 35805543 PMCID: PMC9266187 DOI: 10.3390/ijerph19137886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) is used worldwide and research on the toxicity of BPA has advanced rapidly in the last few decades. This study aimed to evaluate the global scientific output of toxicity of BPA and explore the hot spots and research trends. All available articles related to the toxicity of BPA until 2022 were retrieved from the Web of Science Core Collection database. The VOSviewer, a bibliometric analysis software, was used to analyze the information of included articles, including countries/institutions, international cooperation, journals, citations, and keywords. Among 1644 retrieved articles, 1611 eligible studies were identified for analysis, and the annual publications increased with time in the past three decades. China and the United States were the most active contributors in this field. Chinese Academy of Sciences and the Dow chemical company conducted relatively more research than others about BPA toxicity. The journal “Chemosphere” published the most studies on “BPA toxicity”. Before 2015, most research focused on estrogenic activity and the test system mainly utilized animal experiments. However, in recent years, research related to toxic mechanisms of BPA at the cellular level and the toxicity of its analogs have received widespread attention. Considering some critical research gaps, future research on BPA toxicology should probably focus on the molecular biology of toxic mechanism, mixture toxicity, and co-exposure of BPA substitutes. This study will help researchers understand past and current research trends, hot spots, and trends of toxicity studies of BPA and, thus, contribute to further research and risk management of BPA.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Xiaomeng Li
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Lishi Zhang
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43201 Reus, Spain
- Correspondence: (V.K.); (J.C.)
| | - Jinyao Chen
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
- Correspondence: (V.K.); (J.C.)
| |
Collapse
|
24
|
Bhouri N, Debbabi F, Lassoued MA, Abderrahmen M, Ben Abdessalem S. Wound infections preventing using antibacterial chitosan/Laurus nobilis essential oil emulsion on PET braided surgical sutures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Hwang M, Choi K, Park C. Urinary levels of phthalate, bisphenol, and paraben and allergic outcomes in children: Korean National Environmental Health Survey 2015-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151703. [PMID: 34798094 DOI: 10.1016/j.scitotenv.2021.151703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phthalates, bisphenols and parabens have been widely used in household and personal-care products. Their endocrine disrupting, sensitizing and antimicrobial properties might play a role in the occurrence of allergic diseases. However, the effects of these chemicals, particularly on humans, are relatively underexplored. OBJECTIVES This study aimed to report the concentrations of phthalate, bisphenol and paraben in urine of Korean children, and assess their relationship with allergic outcomes. METHODS Data obtained from nationally representative Korean children, a total of 1458 children between 3 and 11 years of age recruited in the Korean National Environmental Health Survey (3 rd round of KoNEHS 2015-2017), were analyzed. Associations of urinary phthalate metabolites, bisphenols, and parabens levels with atopic dermatitis and allergic rhinitis was examined by grouped into preschool (aged 3-5 years) and school children (aged 6-11 years). Allergic outcomes were obtained through questionnaires answered by their caregivers. RESULTS Atopic dermatitis was associated with urinary metabolites of DEHP, BzBP, DINP, and DIDP, and MeP and PrP in preschool children, BPA and PrP in school children. Allergic rhinitis was associated with MeP and PrP in preschool children, and metabolites of DEHP, MeP and PrP in school children. The association of urinary chemicals with atopic dermatitis and allergic rhinitis were different by gender, especially in preschool children. CONCLUSION Urinary phthalates, BPA and parabens levels in the Korean children were related with atopic dermatitis and allergic rhinitis. Considering the importance of allergic diseases in children, the public health implications of exposure to these chemicals warrant further studies. Given the cross-sectional design and confounding variables, the results of this study should be interpreted with caution.
Collapse
Affiliation(s)
- Moonyoung Hwang
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Choonghee Park
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea.
| |
Collapse
|
26
|
The Presence of Triclosan in Human Hair Samples in Poland-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073796. [PMID: 35409481 PMCID: PMC8998057 DOI: 10.3390/ijerph19073796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Triclosan (TCS) is an organic substance showing antibacterial action, which is commonly used in many branches of industry, including, among others, cosmetics, pharmaceuticals and the food industry. TCS may penetrate into living organisms and negatively affect the health of humans and animals. The majority of previous investigations on TCS biomonitoring in humans have been performed on urine, but currently, studies on hair samples are becoming increasingly important. The aim of this study was to evaluate TCS concentration levels in residents of Olsztyn, a city in northeastern Poland, using a liquid chromatography-mass spectrometry technique. The presence of TCS was observed in 96.7% of samples tested, with concentration levels from 37.9 pg/mg to 3386.5 pg/mg. The mean concentration level of TCS in the present study was 402.6 (±803.6) pg/mg, and the median value was 103.3 pg/mg. Although there were some differences in TCS concentration levels between males and females, humans of various ages and humans with colored and natural hair had no statistically significant differences in TCS concentration levels. The obtained results have clearly indicated that people living in northeastern Poland are exposed to TCS to a large degree, and hair analysis, despite some limitations, is a suitable method for TCS biomonitoring in humans.
Collapse
|
27
|
Sirasanagandla SR, Sofin RS, Al-Huseini I, Das S. Role of Bisphenol A in Autophagy Modulation: Understanding the Molecular Concepts and Therapeutic Options. Mini Rev Med Chem 2022; 22:2213-2223. [DOI: 10.2174/1389557522666220214094055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bisphenol A (4,4′-isopropylidenediphenol) is an organic compound, commonly used in the plastic bottles, packaging containers, beverages and resin industry. The adverse effects of bisphenol A were studied in various systems of the body. Autophagy is a lysosomal degradation process meant for the regeneration of new cells. The role of bisphenol A on autophagy modulation in the pathogenesis of diseases is still debatable. Few research studies showed that bisphenol A-induced adverse effects were associated with autophagy dysregulation, while few showed the activation of autophagy by bisphenol A. Such contrasting views make the subject more interesting and debatable. In the present review, we discuss the different steps of autophagy, genes involved, and the effect of bisphenol A in autophagy modulation on different systems of the body. We also discuss the methods for monitoring autophagy and the roles of drugs such as chloroquine, verteporfin, and rapamycin in autophagy. Proper understanding of the role of bisphenol A in the modulation of autophagy may be important for future treatment and drug discovery.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - R.G. Sumesh Sofin
- Department of Physics, College of Science, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
28
|
Jain R, Jain A, Jain S, Thakur SS, Jain SK. Linking bisphenol potential with deleterious effect on immune system: a review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Increased Prevalence of Atopic Dermatitis in Children Aged 0-3 Years Highly Exposed to Parabens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111657. [PMID: 34770171 PMCID: PMC8583381 DOI: 10.3390/ijerph182111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
The prevalence of allergic diseases, such as bronchial asthma, atopic dermatitis, nasal allergies (pollinosis), and food allergies, has been increasing in many countries. The hygiene hypothesis was recently considered from the perspective of exposure to antimicrobial agents and preservatives, such as parabens (CAS number, 94-13-3). It currently remains unclear whether parabens, which are included in many daily consumer products such as cosmetics, shampoos, and personal care products as preservative antimicrobial agents, induce or aggravate allergies. Therefore, the aim of the present study was to examine the relationship between exposure to parabens and the prevalence of allergic diseases in Japanese children. The cross-sectional epidemiology of 236 children aged 0-3 years who underwent health examinations in Shika town in Japan assessed individual exposure to parabens using urinary concentrations of parabens. The results obtained showed that the prevalence of atopic dermatitis was significantly higher in children with high urinary concentrations of parabens than in those with low concentrations (p < 0.001). This relationship remained significant after adjustments for confounding factors, such as age, sex, Kaup's index, and passive smoking (p < 0.001). In conclusion, the present results from a population study suggested a relationship between atopic dermatitis and exposure to parabens. A longitudinal study using a larger sample number and a detailed examination of atopic dermatitis, including EASI scores and exposure to parabens, will be necessary.
Collapse
|
30
|
Chen YK, Tan YY, Yao M, Lin HC, Tsai MH, Li YY, Hsu YJ, Huang TT, Chang CW, Cheng CM, Chuang CY. Bisphenol A-induced DNA damages promote to lymphoma progression in human lymphoblastoid cells through aberrant CTNNB1 signaling pathway. iScience 2021; 24:102888. [PMID: 34401669 PMCID: PMC8350018 DOI: 10.1016/j.isci.2021.102888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Lymphoma is a group of blood cancers that develop from the immune system, and one of the main risk factors is associated with exposure to environmental chemicals. Bisphenol A (BPA) is a common chemical used in the manufacture of materials in polycarbonate and epoxy plastic products and can interfere with the immune system. BPA is considered to possibly induce lymphoma development by affecting the immune system, but its potential mechanisms have not been well established. This study performed a gene-network analysis of microarray data sets in human lymphoma tissues as well as in human cells with BPA exposure to explore module genes and construct the potential pathway for lymphomagenesis in response to BPA. This study provided evidence that BPA exposure resulted in disrupted cell cycle and DNA damage by activating CTNNB1, the initiator of the aberrant constructed CTNNB1-NFKB1-AR-IGF1-TWIST1 pathway, which may potentially lead to lymphomagenesis.
Collapse
Affiliation(s)
- Yin-Kai Chen
- Department of Hematology, National Taiwan University Cancer Center, Taipei, 106, Taiwan
| | - Yan-Yan Tan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Min Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mon-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Yun Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yih-Jen Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Tsung-Tao Huang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chia-Wei Chang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chih-Ming Cheng
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
- Mike & Clement TECH Co., Ltd., Changhua Country, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
31
|
Çetin S, Özaydın T. The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41688-41697. [PMID: 33791960 DOI: 10.1007/s11356-021-13640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), one of the endocrine disrupting chemicals, is the object of great concern because of its widespread use throughout the world. In this study, it was aimed to determine the effects of in ovo administrated BPA on the bursa of Fabricius and percentage of acid phosphatase positive lymphocyte in peripheral blood by means of histological and enzyme histochemical methods. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were used. The eggs were divided into 5 groups as control, vehicle control, 50, 100, and 250μg/egg BPA. At days 13, 18, and 21 of incubation, eggs were opened until 10 living embryos were obtained from each group. Tissue samples were taken from the obtained embryos and processed for enzyme histochemical methods in addition to routine histological techniques. It was observed that, in BPA-treated groups, embryonic development of bursa of Fabricius was retarded. It was also indicated that the percentage of peripheral blood ACP-ase positive lymphocytes was significantly decreased. These results suggested that a limited maternal transfer of BPA into the eggs might be lead to immunosuppression in chicks.
Collapse
Affiliation(s)
- Selvinaz Çetin
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey.
| |
Collapse
|
32
|
Lumio RT, Tan MA, Magpantay HD. Biotechnology-based microbial degradation of plastic additives. 3 Biotech 2021; 11:350. [PMID: 34221820 PMCID: PMC8217394 DOI: 10.1007/s13205-021-02884-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
Plastic additives are agents responsible to the flame resistance, durability, microbial resistance, and flexibility of plastic products. High demand for production and use of plastic additives is associated with environmental accumulation and various health hazards. One of the suitable methods of depleting plastic additive in the environment is bioremediation as it offers cost-efficiency, convenience, and sustainability. Microbial activity is one of the effective ways of detoxifying various compounds as microorganisms can adapt in an environment with high prevalence of pollutants. The present review discusses the use and abundance of these plastic additives, their health-related risks, the microorganisms capable of degrading them, the proposed mechanism of biodegradation, and current innovations capable of improving the efficiency of bioremediation.
Collapse
Affiliation(s)
- Rob T. Lumio
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Mario A. Tan
- The Graduate School, University of Santo Tomas, Manila, Philippines
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo, Tomas, Manila, Philippines
| | - Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
33
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
34
|
Chen X, Zhong S, Zhang M, Zhong W, Bai S, Zhao Y, Li C, Lu S, Li W. Urinary parabens, bisphenol A and triclosan in primiparas from Shenzhen, China: Implications for exposure and health risks. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:251-259. [PMID: 34150233 PMCID: PMC8172738 DOI: 10.1007/s40201-020-00599-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The usage of parabens, bisphenol A and triclosan in diverse consumer products is in widespread. Nevertheless, there are limited data concerning exposure to these chemicals in human being, especially in primiparas. Biomonitoring of chemicals in primiparas is useful for the estimation of chemical exposure risks for both primiparas and their offspring. This study aims to investigate urinary levels of parabens, bisphenol A and triclosan of 84 primiparas from Shenzhen, China and to evaluate their potential health risks. Methyl, ethyl, and n-propyl parabens bisphenol A and triclosan exhibited high detection rates (DRs) (> 97%) in urine samples, suggesting that primiparas are exposed to them widely. The median concentrations of methyl, ethyl, and n-propyl parabens, bispenol A and triclosan in urine were 2.14, 4.10, 0.46, 1.30 and 3.00 µg/L, respectively. Ethyl paraben was the predominant paraben accounting for nearly half of Σ3parabens (The sum concentrations of methyl, ethyl, n-propyl parabens). Positive associations with significance (p < 0.05) were found between the usage of plastic containers and urinary concentrations of ethyl paraben or BPA, indicating plastic containers might be an important factor influencing primipara exposure to these two chemicals. Urinary concentrations of methyl paraben were positively associated (p < 0.05) with the time of computer use by participant, suggesting that indoor dust might constitute an important source of parabens. The estimated daily intakes of parabens, bisphenol A and triclosan contrasted with the acceptable daily intakes in a comparatively low level. The hazard quotients (HQs) of these chemicals were all less than 1, suggesting no health risks for primiparas from South China. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00599-1.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Shihua Zhong
- Agricultural Product Quality Safety Inspection and Testing Center of Shenzhen, 518055 Shenzhen, China
| | - Miao Zhang
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Weichuan Zhong
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Shi Bai
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Wenbo Li
- Shenzhen Center for Disease Control and Prevention, 518055 Shenzhen, China
| |
Collapse
|
35
|
Öznurlu Y, Özaydın T, Sur E, Özparlak H. The effects of in ovo administered bisphenol A on tibial growth plate histology in chicken. Birth Defects Res 2021; 113:1130-1139. [PMID: 33991407 DOI: 10.1002/bdr2.1925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The aim of this study was to determine of the effects of in ovo administered BPA on embryonic development of the tibial growth plate using histological methods in chickens. METHODS Three hundred and ten fertile eggs of Isa Brown laying parent stock were divided into five groups as untreated control, vehicle-injected control, 50, 100, and 250 μg/egg BPA. At the 13th, 18th, and 21st days of incubation, eggs were randomly opened from each group until 10 live embryos were obtained. Embryos were weighed and crown-rump length was measured. Tibial tissue samples were taken from embryos. Tibia weight, relative tibia weight and tibia length were determined. Tissue samples were fixed in 10% buffered formalin solution. Sections were stained with Safranin O staining methods and zones in the growth plate were measured. Also, proliferating cell nuclear antigen (PCNA) was stained immunohistochemically. RESULTS The mortality in the BPA treated groups was higher than untreated control group. The results have revealed that mean relative embryo weights, crown-rump length, mean tibia weight, relative tibia weight, and tibia length of BPA treated groups were significantly lower when compared to the untreated control and vehicle-injected control groups. Also, proliferative zone get significantly narrowed, whereas the transitional and hypertrophic zone thickened and PCNA positive chondrocytes increased in growth plate of BPA treated groups. CONCLUSION These results have suggested that developmental exposure to BPA adversely affected development of the tibial growth plate.
Collapse
Affiliation(s)
- Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Emrah Sur
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Haluk Özparlak
- Department of Biology, Faculty of Science, University of Selcuk, Konya, Turkey
| |
Collapse
|
36
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
37
|
Wu M, Wang S, Weng Q, Chen H, Shen J, Li Z, Wu Y, Zhao Y, Li M, Wu Y, Yang S, Zhang Q, Shen H. Prenatal and postnatal exposure to Bisphenol A and Asthma: a systemic review and meta-analysis. J Thorac Dis 2021; 13:1684-1696. [PMID: 33841959 PMCID: PMC8024800 DOI: 10.21037/jtd-20-1550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Bisphenol A (BPA) is a plasticizer with high production and ubiquitous usage in polycarbonate plastics and epoxy resins. The association between prenatal or postnatal exposure to BPA and childhood wheeze/asthma has not been well established. Our study aimed to provide further justification for the current studies. Methods Studies were searched from PubMed, Web of Science, Scopus and Embase from inception until Sep 15, 2020. Meta-analysis was performed to calculate pooled adjusted odds ratios (aOR). The methodological quality of included studies was assessed by using the Newcastle Ottawa Scale (NOS). Results Of 2,814 screened articles, 9 studies with 3,885 participants were included in the final analysis. When all studies were pooled, postnatal exposure to BPA was associated with a higher risk of childhood asthma (aOR =1.43; 95% CI: 1.28–1.59) or childhood wheeze (aOR =1.38; 95% CI: 1.18–1.62). Prenatal exposure to BPA had a small but significant increased risk of childhood asthma (aOR =1.17; 95% CI: 1.01–1.34). An increased risk of childhood wheeze was related to prenatal exposure to BPA at 16 weeks’ gestation (aOR =1.29; 95% CI: 1.07–1.55), but not at 26 weeks’ gestation (aOR =1.07; 95% CI: 0.88–1.29) nor at random-time gestation (aOR =1.02; 95% CI: 0.89–1.16). Conclusions Prenatal and postnatal exposure to BPA was related to an increased risk of childhood asthma. However, only postnatal and early gestational exposure (at 16 weeks) to BPA could induce the risk of childhood wheeze, but not late gestational exposure (at 26 weeks).
Collapse
Affiliation(s)
- Mindan Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Shuyi Wang
- School of Public Health, Sun Yet-sen University, Guangzhou, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qichuan Zhang
- Department of Respiration, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Respiratory Diseases, Guangzhou, China
| |
Collapse
|
38
|
Tsen CM, Liu JH, Yang DP, Chao HR, Chen JL, Chou WC, Ho YC, Chuang CY. Study on the correlation of bisphenol A exposure, pro-inflammatory gene expression, and C-reactive protein with potential cardiovascular disease symptoms in young adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12805-0. [PMID: 33625709 DOI: 10.1007/s11356-021-12805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a plasticizer used in the manufacture of polycarbonate and epoxy resins. It was found that higher urinary BPA levels are more likely to be associated with coronary artery disease (CVD). In recent years, the increasing incidence of CVD among young people is observed, which may be related with inflammation rather than the traditional triple-H risk factors. BPA is an endocrine-disrupting chemical, and can induce oxidative stress and chronic inflammation since its estrogenic effect. Inflammatory responses could come from the stimulation of IκB kinases (IKKs) by estrogen receptors (ERs). Therefore, this study investigated the association of BPA exposure with the gene expression of pro-inflammatory response (ERs and IKKs), an inflammation biomarker of CVD (C-reactive protein, CRP), and physiologic index potency of CVD development symptoms in young adults. This study divided BPA exposure levels into high and low groups based on the median plasma BPA level (4.34 ng/mL), and found that the high BPA group obviously had higher BMI, blood pressure, plasma CRP levels, and gene expression of ERβ and IKKβ. BMI and gene expression of IKKβ were also positively correlated with plasma CRP secretion. Furthermore, the study subjects with potential CVD development symptoms had the increased levels of BPA (OR 2.10, 95% CI 0.83-5.39), CRP (OR 2.61, 95% CI 1.03-10.6) and IKKβ (OR 4.29, 95% CI 1.51-15.6). These results indicated that exposure to BPA is potentially associated with expression of pro-inflammatory genes related to CRP secretion, which may promote the risk of CVD development symptoms in young adults. This study highlighted the possible connection between BPA exposure and CVD development but the mechanism between them needs to be further explored.
Collapse
Affiliation(s)
- Chao-Ming Tsen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan
- Residue Control Division, Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, Taiwan
| | - Jia-Hong Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan
| | - Da-Peng Yang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan
| | - How-Ran Chao
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung County, Taiwan
| | - Jyh-Larng Chen
- Department of Environmental Engineering and Health, College of Health Science, Yuanpei University, Hsinchu, Taiwan
| | - Wei-Chun Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Yi-Chen Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan
- Service System Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2 Kuang-Fu Road, Hsinchu, 300, Taiwan.
| |
Collapse
|
39
|
Huang W, Zhu L, Cao G, Xie P, Song Y, Huang J, Chen X, Cai Z. Integrated Proteomics and Metabolomics Assessment Indicated Metabolic Alterations in Hypothalamus of Mice Exposed to Triclosan. Chem Res Toxicol 2021; 34:1319-1328. [PMID: 33611912 DOI: 10.1021/acs.chemrestox.0c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 weeks. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential analysis defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics analysis revealed that these differentially expressed proteins and metabolites were involved in four major biological processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biological effects induced by TCS exposure.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.,School of Environment, Jinan University, Guangzhou 510632, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jialing Huang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
40
|
Gwenzi W. Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141819. [PMID: 33207461 DOI: 10.1016/j.scitotenv.2020.141819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/18/2020] [Accepted: 08/18/2020] [Indexed: 05/06/2023]
Abstract
The occurrence and health risks of toxic organic contaminants (TOCs) in the funeral industry are relatively under-studied compared to other industries. An increasing body of literature reports TOCs including emerging contaminants in the funeral industry, but comprehensive reviews of the evidence are still lacking. Hence, evidence was analysed to address the proposition that, the funeral industry constitutes several hotspot reservoirs of a wide spectrum of TOCs posing ecological and human health risks. TOCs detected include embalming products, persistent organic pollutants, synthetic pesticides, pharmaceuticals, personal care products and illicit drugs. Human cadavers, solid wastes, wastewaters and air-borne particulates from autopsy, thanatopraxy care facilities (mortuaries, funeral homes), cemeteries and crematoria are hotspots of TOCs. Ingestion of contaminated water, and aquatic and marine foods constitutes non-occupational human exposure, while occupational exposure occurs via inhalation and dermal intake. Risk factors promoting exposure to TOCs include unhygienic burial practices, poor solid waste and wastewater disposal, and weak and poorly enforced regulations. The generic health risks of TOCs are quite diverse, and include; (1) genotoxicity, endocrine disruption, teratogenicity and neurodevelopmental disorders, (2) development of antimicrobial resistance, (3) info-disruption via biomimicry, and (4) disruption of ecosystem functions and trophic interactions. Barring formaldehyde and inferential evidence, the epidemiological studies linking TOCs in the funeral industry to specific health outcomes are scarce. The reasons for the lack of evidence, and limitations of current health risk assessment protocols are discussed. A comprehensive framework for hazard identification, risk assessment and mitigation (HIRAM) in the funeral industry is proposed. The HIRAM includes regulatory, surveillance and control systems such as prevention and removal of TOCs. Future directions on the ecotoxicology of mixtures, behaviour, and health risks of TOCs are highlighted. The opportunities presented by emerging tools, including isotopic labelling, genomics, big data analytics (e.g., machine learning), and in silico techniques in toxicokinetic modelling are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
41
|
Shane HL, Othumpangat S, Marshall NB, Blachere F, Lukomska E, Weatherly LM, Baur R, Noti JD, Anderson SE. Topical exposure to triclosan inhibits Th1 immune responses and reduces T cells responding to influenza infection in mice. PLoS One 2020; 15:e0244436. [PMID: 33373420 PMCID: PMC7771851 DOI: 10.1371/journal.pone.0244436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Healthcare workers concurrently may be at a higher risk of developing respiratory infections and allergic disease, such as asthma, than the general public. Increased incidence of allergic diseases is thought to be caused, in part, due to occupational exposure to chemicals that induce or augment Th2 immune responses. However, whether exposure to these chemical antimicrobials can influence immune responses to respiratory pathogens is unknown. Here, we use a BALB/c murine model to test if the Th2-promoting antimicrobial chemical triclosan influences immune responses to influenza A virus. Mice were dermally exposed to 2% triclosan for 7 days prior to infection with a sub-lethal dose of mouse adapted PR8 A(H1N1) virus (50 pfu); triclosan exposure continued until 10 days post infection (dpi). Infected mice exposed to triclosan did not show an increase in morbidity or mortality, and viral titers were unchanged. Assessment of T cell responses at 10 dpi showed a decrease in the number of total and activated (CD44hi) CD4+ and CD8+ T cells at the site of infection (BAL and lung) in triclosan exposed mice compared to controls. Influenza-specific CD4+ and CD8+ T cells were assessed using MHCI and MHCII tetramers, with reduced populations, although not reaching statistical significance at these sites following triclosan exposure. Reductions in the Th1 transcription factor T-bet were seen in both activated and tetramer+ CD4+ and CD8+ T cells in the lungs of triclosan exposed infected mice, indicating reduced Th1 polarization and providing a potential mechanism for numerical reduction in T cells. Overall, these results indicate that the immune environment induced by triclosan exposure has the potential to influence the developing immune response to a respiratory viral infection and may have implications for healthcare workers who may be at an increased risk for developing infectious diseases.
Collapse
Affiliation(s)
- Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Sreekumar Othumpangat
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Nikki B. Marshall
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Francoise Blachere
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - John D. Noti
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States of America
| |
Collapse
|
42
|
Bisphenol A and Its Analogues in Chinese Total Diets: Contaminated Levels and Risk Assessment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8822321. [PMID: 33381270 PMCID: PMC7759395 DOI: 10.1155/2020/8822321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Bisphenol A (BPA) and its analogues (BPs) are suspected posing potential endocrine disrupting properties. They might migrate into foodstuffs through food packaging materials or contaminated water and soil. Dietary exposure is of paramount importance way for human health. European Food Safety Authority (EFSA) lowered the value of tolerable daily intake (TDI) from 50 μg/kg bw/day (d) to a temporary (t) TDI (t-TDI) of 4 μg/kg bw/d. In this study, the Chinese total dietary samples were analyzed for assessing the exposure risk of BPs by diets. BPA, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) were found in 12 kinds of food samples except for bisphenol B (BPB). A deterministic approach was used to calculate the dietary intakes of 4 kinds of compounds. For different age and gender groups, the exposure levels of BPA (178.440-403.672 ng/kg bw/d) was the highest, followed by BPS (21.372-52.112 ng/kg bw/d), BPF (20.641-50.507 ng/kg bw/d), and BPAF (0.434-1.210 ng/kg bw/d). Based on the t-TDI set by EFSA (4 μg/kg bw/d for BPA), the BPs through dietary intake pose low risks on the Chinese general population even summarization exposure levels of different BPs. However, human can be exposed to multiple endocrine disrupting chemicals rather than BPs alone; combined exposure risks should be further considered.
Collapse
|
43
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
44
|
Effect of Rinsing Canned Foods on Bisphenol-A Exposure: The Hummus Experiment. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractBisphenol-A (BPA) is associated with adverse health outcomes and is found in many canned foods. It is not understood if some BPA contamination can be washed away by rinsing. The objective of this single-blinded crossover experiment was to determine whether BPA exposure, as measured by urinary concentrations, could be decreased by rinsing canned beans prior to consumption. Three types of hummus were prepared from dried beans, rinsed, and unrinsed canned beans. Fourteen healthy participants ate two samples of each hummus over six experimental days and collected spot urine specimens for BPA measurement. The geometric mean BPA levels for dried beans BPA (GM = 0.97 ng/ml, 95%CI = 0.74,1.26) was significantly lower than rinsed (GM = 1.89 ng/ml, 1.37,2.59) and unrinsed (GM = 2.46 ng/ml, 1.44,4.19). Difference-in-difference estimates showed an increase in GM BPA from pre- to post-hummus between unrinsed and rinsed canned beans of 1.39 ng/ml, p-value = 0.0400. Rinsing canned beans was an effective method to reduce BPA exposure.
Collapse
|
45
|
Di Pietro P, D'Auria R, Viggiano A, Ciaglia E, Meccariello R, Russo RD, Puca AA, Vecchione C, Nori SL, Santoro A. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. CHEMOSPHERE 2020; 254:126819. [PMID: 32334263 DOI: 10.1016/j.chemosphere.2020.126819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a synthetic xenoestrogen diffused worldwide. Humans are chronically exposed to low doses of BPA from food and drinks, thus BPA accumulates in tissues posing human health risk. In this study, we investigated the effects of BPA on peripheral blood mononuclear cells (PBMC) from human healthy donors, and in glia and microglia of rat offspring at postnatal day 17 (17PND) from pregnant females who received BPA soon after coupling and during lactation and weaning. Results indicated that BPA affected Phytoemagglutinin (PHA) stimulated PBMC proliferation causing an S-phase cell cycle accumulation at nanomolar concentrations while BPA was almost ineffective in resting PBMC. Furthermore, BPA induced chromosome aberrations and the appearance of shattered cells characterized by high number of fragmented and pulverized chromosomes, suggesting that the compound could cause a massive genomic rearrangement by inducing catastrophic events. The BPA-induced DNA damage was observed mainly in TCD4+ and TCD8+ subsets of T lymphocytes and was mediated by the increase of ERK1/2 phosphorylation, p21/Waf1 and PARP1 protein expression. Intriguingly, we observed for the first time that BPA-induced effects were associated to a sex specific modulation of ERα and ERβ in human PBMC. Immunofluorescence analysis of rat hippocampus corroborated in vitro findings showing that BPA induced ɣH2AX phosphorylation in microglia and astrocytosis by decreasing ERα expression within the dentate gyrus. Overall these results suggest that BPA can alter immune surveillance functions at both peripheral and central level with a potential risk for cancer, neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133, Naples, Italy
| | - Rossana Dello Russo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy; Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy; IRCCS Neuromed, Department of Vascular Physiopathology, 86077, Pozzilli, IS, Italy
| | | | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
46
|
Zhang Y, Mi K, Xue W, Wei W, Yang H. Acute BPA exposure-induced oxidative stress, depressed immune genes expression and damage of hepatopancreas in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 103:95-102. [PMID: 32325215 DOI: 10.1016/j.fsi.2020.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A is a typical endocrine disrupting chemicals (EDCs) and produce various toxic effects on animals due to its potential endocrine disruption, oxidative damage effect, mutagenic effect and hypomethylation. To study its effect on the immune system of crustaceans, the Procambarus clarkii were utilized to detect the immune related indicators after 225 μg/L BPA exposure for 1 week. Hepatopancreatic histology and ultrastructure analysis showed that the brush border disappeared, the lumen increased, and the connection between the hepatic tubules fade away in BPA treated group. BPA could significantly increase the level of ROS, inhibit the activities of antioxidant-related enzymes (SOD, POD, and CAT), and thereby cause the oxidative stress. The enzyme activities of AKP, ACP and lysozyme in hepatopancreas after BPA exposure were also depressed even after Aeromonas hydrophila infections. The relative expression profiles of immune-related genes after BPA exposure and bacterial infection showed suppressed trends of most selected genes. Under A. hydrophila infections, the cumulative mortality of 225 μg/L BPA-treated crayfish was significantly higher than other groups. All these results indicated that BPA exposure had adverse effects on the immune ability of P. clarkii. The present study will provide an important foundation for further understanding the effects of EDCs on crustacean immune functions.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wen Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
47
|
Bulka CM, Bommarito PA, Aiello AE, Fry RC. Cytomegalovirus seroprevalence, recurrence, and antibody levels: Associations with cadmium and lead exposures in the general United States population. Environ Epidemiol 2020; 4:e100. [PMID: 32832839 PMCID: PMC7423529 DOI: 10.1097/ee9.0000000000000100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The ubiquitous metals cadmium and lead are immunotoxic, but little is known about their relations to cytomegalovirus (CMV), a widespread herpesvirus. Although CMV infections are mostly asymptomatic, congenital infections are a leading cause of birth defects. In otherwise healthy individuals, there is also some evidence linking subclinical reactivations to accelerated age-related declines in immune function and chronic disease. METHODS Our objective was to evaluate associations of blood cadmium and lead biomarkers with CMV infection in a representative sample of the United States population. In seropositive individuals, we also examined associations with CMV-specific immunoglobulin G (IgG) antibody levels and suspected CMV recurrences. Using cross-sectional data from the 1999-2004 National Health and Nutrition Examination Surveys, we fit multivariable survey-weighted regression models accounting for potential confounding by sociodemographic and lifestyle factors and stratifying by age group to allow for heterogeneity. CMV recurrences were defined according to (1) the presence of either CMV-specific immunoglobulin M in sera or CMV viral DNA in urine, and (2) high CMV-specific IgG avidity. RESULTS We observed null associations for blood cadmium. Increasing blood lead quartiles were related to CMV seropositivity and higher CMV IgG levels (both P trend < 0.01), but not CMV recurrence, only among individuals who were 20-29 years of age. CONCLUSION Blood cadmium levels do not appear to be related to immunological markers of CMV infections. The possibility that lead exposures increase the risk of CMV infection and impair immune control of the virus in young adults was suggested. Prospective studies are needed to confirm.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Paige A. Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Allison E. Aiello
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Berger K, Coker E, Rauch S, Eskenazi B, Balmes J, Kogut K, Holland N, Calafat AM, Harley K. Prenatal phthalate, paraben, and phenol exposure and childhood allergic and respiratory outcomes: Evaluating exposure to chemical mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138418. [PMID: 32302842 PMCID: PMC7255953 DOI: 10.1016/j.scitotenv.2020.138418] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chemicals found in personal care products and plastics have been associated with asthma, allergies, and lung function, but methods to address real life exposure to mixtures of these chemicals have not been applied to these associations. METHODS We quantified urinary concentrations of eleven phthalate metabolites, four parabens, and five other phenols in mothers twice during pregnancy and assessed probable asthma, aeroallergies, and lung function in their age seven children. We implemented Bayesian Profile Regression (BPR) to cluster women by their exposures to these chemicals and tested the clusters for differences in outcome measurements. We used Bayesian Kernel Machine Regression (BKMR) to fit biomarkers into one model as joint independent variables. RESULTS BPR clustered women into seven groups characterized by patterns of personal care product and plastic use, though there were no significant differences in outcomes across clusters. BKMR showed that monocarboxyisooctyl phthalate and 2,4-dichlorophenol were associated with probable asthma (predicted probability of probable asthma per IQR of biomarker z-score (standard deviation) = 0.08 (0.09) and 0.11 (0.12), respectively) and poorer lung function (predicted probability per IQR = -0.07 (0.05) and -0.07 (0.06), respectively), and that mono(3-carboxypropyl) phthalate and bisphenol A were associated with aeroallergies (predicted probability per IQR = 0.13 (0.09) and 0.11 (0.08), respectively). Several biomarkers demonstrated positive additive effects on other associations. CONCLUSIONS BPR and BKMR are useful tools to evaluate associations of biomarker concentrations within a mixture of exposure and should supplement single-chemical regression models when data allow.
Collapse
Affiliation(s)
- Kimberly Berger
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Eric Coker
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - John Balmes
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Katie Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA 30341, USA.
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA.
| |
Collapse
|
49
|
Weatherly LM, Shane HL, Friend SA, Lukomska E, Baur R, Anderson SE. Topical Application of the Antimicrobial Agent Triclosan Induces NLRP3 Inflammasome Activation and Mitochondrial Dysfunction. Toxicol Sci 2020; 176:147-161. [PMID: 32321163 PMCID: PMC7367438 DOI: 10.1093/toxsci/kfaa056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
5-Chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) is an antimicrobial chemical widely used in consumer household and clinical healthcare products. Human and animal studies have associated triclosan exposure with allergic disease. Mechanistic studies have identified triclosan as a mitochondrial uncoupler; recent studies suggest that mitochondria play an important role in immune cell function and are involved in activation of the NLRP3 inflammasome. In this study, early immunological effects were evaluated via NLRP3 activation following dermal triclosan application in a BALB/c murine model. These investigations revealed rapid caspase-1 activation and mature IL-1β secretion in the skin and draining lymph nodes (dLNs) after 1.5% and 3% triclosan exposure. Correspondingly, pro-Il-1b and S100a8 gene expression increased along with extracellular ATP in the skin. Peak gene expression of chemokines associated with caspase-1 activation occurred after 2 days of exposure in both skin tissue and dLNs. Phenotypic analysis showed an increase in neutrophils and macrophages in the dLN and myeloid and inflammatory monocytes in the skin tissue. Triclosan also caused mitochondrial dysfunction shown through effects on mitochondrial reactive oxygen species, mass, mitochondrial membrane potential, and mitochondrial morphology. These results indicate that following triclosan exposure, activation of the NLRP3 inflammasome occurs in both the skin tissue and dLNs, providing a possible mechanism for triclosan's effects on allergic disease and further support a connection between mitochondrial involvements in immunological responses.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Sherri A. Friend
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| |
Collapse
|
50
|
Atolani O, Baker MT, Adeyemi OS, Olanrewaju IR, Hamid AA, Ameen OM, Oguntoye SO, Usman LA. COVID-19: Critical discussion on the applications and implications of chemicals in sanitizers and disinfectants. EXCLI JOURNAL 2020; 19:785-799. [PMID: 32636732 PMCID: PMC7332783 DOI: 10.17179/excli2020-1386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Olubunmi Atolani
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | | | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Kwara State, Nigeria
| | | | | | - Oloduowo M. Ameen
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | | | - Lamidi A. Usman
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|