1
|
Chauhan R, Dande S, Hood DB, Chirwa SS, Langston MA, Grady SK, Dojcsak L, Tabatabai M, Wilus D, Valdez RB, Al-Hamdan MZ, Im W, McCallister M, Alcendor DJ, Mouton CP, Ramesh A. Particulate matter 2.5 (PM 2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:233-263. [PMID: 39827081 DOI: 10.1080/10937404.2025.2450354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Susmitha Dande
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Darryl B Hood
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Mohammad Tabatabai
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - R Burciaga Valdez
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Washington, DC, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering (NCCHE) and Department of Civil Engineering and Department of Geology and Geological Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Wansoo Im
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Monique McCallister
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Charles P Mouton
- Department of Family Medicine, John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
2
|
Giammona A, Terribile G, Rainone P, Pellizzer C, Porro D, Cerasa A, Sancini G, Rashid AU, Belloli S, Valtorta S, Lo Dico A, Bertoli G. Effects of particulate air pollution exposure on lung-brain axis and related miRNAs modulation in mouse models. Front Cell Dev Biol 2025; 13:1526424. [PMID: 40248351 PMCID: PMC12003928 DOI: 10.3389/fcell.2025.1526424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Particulate matter exposure is linked to numerous health issues, including respiratory, cardiovascular, and neurodegenerative diseases. This review focuses on the biological mechanisms through which air pollution influences the lung-brain axis, highlighting the role of miRNAs in regulating gene pathways affected by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular processes, including inflammation, epithelial-to-mesenchymal transition (EMT), and blood-brain barrier integrity. Using mice models to study these effects allows for controlled experimentation on the systemic distribution of PM across biological barriers. Among the imaging technologies, Positron Emission Tomography is the best approach to monitor the distribution and effects of PM in vivo. The research underscores the importance of miRNA profiles as potential markers for the health effects of PM exposure, suggesting that specific miRNAs could serve as early indicators of damage to the lung-brain axis.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Paolo Rainone
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Chiara Pellizzer
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Danilo Porro
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Ameen-Ur Rashid
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Sara Belloli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Silvia Valtorta
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
3
|
Lane M, Oyster E, Luo Y, Wang H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. TOXICS 2025; 13:207. [PMID: 40137534 PMCID: PMC11946816 DOI: 10.3390/toxics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Air pollution has well-documented adverse effects on human health; however, its impact on neurological diseases remains underrecognized. The mechanisms by which various components of air pollutants contribute to neurological disorders are not yet fully understood. This review focuses on key air pollutants, including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and diesel exhaust particles (DEPs). This paper summarizes key findings on the effects of air pollution on neurological disorders, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). Although the precise biological mechanisms remain to be fully elucidated, evidence suggests that multiple pathways are involved, including blood-brain barrier disruption, oxidative stress, inflammation, and the activation of microglia and astrocytes. This review underscores the role of environmental pollutants as significant risk factors for various neurological diseases and explores their mechanisms of action. By advancing our understanding of these interactions, this work aims to inform new insights for mitigating the adverse effects of air pollution on neurological diseases, ultimately contributing to the establishment of a cleaner and healthier environment for future generations.
Collapse
Affiliation(s)
| | | | - Yali Luo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| | - Hao Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| |
Collapse
|
4
|
Kwon D, Paul KC, Kusters C, Wu J, Bronstein JM, Lill CM, Ketzel M, Raachou-Nielsen O, Hansen J, Ritz B. Interaction Between Traffic-Related Air Pollution and Parkinson Disease Polygenic Risk Score. JAMA Netw Open 2025; 8:e250854. [PMID: 40094665 PMCID: PMC11915066 DOI: 10.1001/jamanetworkopen.2025.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
Importance Genetic and environmental factors are linked to Parkinson disease (PD), but the role of genetic susceptibility in the association between traffic-related air pollution (TRAP) and PD remains unclear. Objective To assess the gene-environment interaction between the polygenic risk score (PRS) for PD and long-term TRAP exposure and to estimate the joint effect with PD risk. Design, Setting, and Participants This population-based case-control study used a meta-analytical assessment of studies conducted in central California and Denmark. The Parkinson Environment and Genes (PEG) study in California (June 1, 2000, to July 31, 2017) included 634 patients with PD and 733 controls; the Parkinson Disease in Denmark (PASIDA) study (January 1, 2006, to December 31, 2017) included 966 patients with PD and 1045 controls. Data were analyzed from July 1 to October 31, 2024. Exposures PRS was computed by summing the effect estimates of well-known risk alleles from an existing genome-wide association study's summary statistics using participants' genetic arrays. TRAP exposure was estimated using dispersion models to calculate long-term exposure (10- or 15-year means with a 5-year lag) to traffic-related pollutants (represented by carbon monoxide [CO] levels) at participants' residences. Main Outcomes and Measures The main outcome was diagnosis of PD. Using multivariable logistic regression, PD risk was estimated from interactions between PRS (per SD) and TRAP exposure (per IQR), with joint effects based on low (quartiles 1-3) and high (quartile 4) exposure levels. Results A total of 1600 patients with PD (mean [SD] age, 65.1 [9.9] years; 990 [61.9%] male) and 1778 controls (mean [SD] age, 64.5 [10.3] years; 992 [55.8%] male) were included. Meta-analytical estimates suggest that both higher PRS and increased TRAP exposure increased PD risk, with an interaction effect estimate of 1.06 (95% CI, 1.00-1.12). Joint effect analysis indicated that individuals with both high PRS and high TRAP exposure were at greatest risk of PD (odds ratio, 3.05; 95% CI, 2.23-4.19) compared with the reference group with a low PRS and low TRAP exposure, suggesting a synergistic effect. Conclusions and Relevance In this gene-environment interaction study, a combination of long-term air pollution exposure and genetic susceptibility strongly contributed to the risk of developing PD. Widespread exposure to air pollution makes TRAP an important modifiable risk factor affecting large populations globally, particularly individuals with genetic vulnerability.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Cynthia Kusters
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles
| | - Jun Wu
- Department of Environmental and Occupational Health, School of Population and Public Health, University of California, Irvine
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| | - Christina M. Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, United Kingdom
| | - Ole Raachou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Johnni Hansen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA (University of California, Los Angeles), Los Angeles
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles
| |
Collapse
|
5
|
Szwed M, de Jesus AV, Kossowski B, Ahmadi H, Rutkowska E, Mysak Y, Baumbach C, Kaczmarek-Majer K, Degórska A, Skotak K, Sitnik-Warchulska K, Lipowska M, Grellier J, Markevych I, Herting MM. Air pollution and cortical myelin T1w/T2w ratio estimates in school-age children from the ABCD and NeuroSmog studies. Dev Cogn Neurosci 2025; 73:101538. [PMID: 40086410 PMCID: PMC11952023 DOI: 10.1016/j.dcn.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Air pollution affects human health and may disrupt brain maturation, including axon myelination, critical for efficient neural signaling. Here, we assess the impact of prenatal and current long-term particulate matter (PM) and nitrogen dioxide (NO2) exposure on cortical T1w/T2w ratios - a proxy for myelin content - in school-age children from the Adolescent Brain Cognitive Development (ABCD) Study (United States; N = 2021) and NeuroSmog study (Poland; N = 577), using Siemens scanners. Across both samples, we found that NO2 and PM were not significantly associated with cortical T1w/T2w except for one association of PM10 with lower T1w/T2w in the precuneus in NeuroSmog. Superficially, ABCD Study analyses including data from all scanner types (Siemens, GE, Philips; N = 3089) revealed a negative association between NO₂ exposure and T1w/T2w ratios. However, this finding could be an artifact of between-site sociodemographic differences and large scanner-type-related measurement differences. While significant associations between air pollution and cortical myelin were largely absent, these findings do not rule out the possibility that air pollution affects cortical myelin during other exposure periods/stages of neurodevelopment. Future research should examine these relationships across diverse populations and developmental periods using unified analysis methods to better understand the potential neurotoxic effects of air pollution.
Collapse
Affiliation(s)
- Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland.
| | - Alethea V de Jesus
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Emilia Rutkowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Yarema Mysak
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Clemens Baumbach
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Katarzyna Kaczmarek-Majer
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Degórska
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Krzysztof Skotak
- Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Katarzyna Sitnik-Warchulska
- Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Małgorzata Lipowska
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Institute of Psychology, University of Gdansk, Gdansk, Poland
| | - James Grellier
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, United Kingdom
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Health and quality of life in a green and sustainable environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| |
Collapse
|
6
|
Rose M, Thomson EM. An ex vivo model of systemically-mediated effects of ozone inhalation on the brain. Toxicology 2025; 511:154052. [PMID: 39793952 DOI: 10.1016/j.tox.2025.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain. As a proof-of-concept for application in the human context, we assessed whether such effects reproduced in vivo responses to pollutant exposure. Primary rat hippocampal neurons and microglia were each treated with plasma collected from rats immediately or 24 h after ozone inhalation (0 or 0.8 ppm) ± pre-treatment with the glucocorticoid synthesis inhibitor metyrapone. Microglia were further challenged with lipopolysaccharide to evaluate modification of inflammatory responses. Plasma from the ozone-exposed group produced transcriptional changes (inflammatory, antioxidant, glucocorticoid-responsive) in neurons, some of which were glucocorticoid-dependent. Ex vivo and hippocampal responses were strongly correlated, establishing the in vivo relevance of the model. Plasma from the ozone-exposed group modified inflammatory responses to lipopolysaccharide challenge in microglia, demonstrating the model's utility to assess functional changes resulting from pollutant exposure. This study establishes that an ex vivo approach can reproduce ozone-induced effects in the brain. The model was sensitive to specific plasma mediators and temporal effects, and enabled assessment of functional responses. This approach may serve to investigate mechanisms underlying effects of pollutants on the human brain.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
7
|
Schepanski S, Ngoumou GB, Buss C, Seifert G. Assessing in-vitro models for microglial development and fetal programming: a critical review. Front Immunol 2025; 16:1538920. [PMID: 39944696 PMCID: PMC11814449 DOI: 10.3389/fimmu.2025.1538920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 05/09/2025] Open
Abstract
This review evaluates in-vitro models for studying how maternal influences during pregnancy impact the development of offspring microglia, the immune cells of the central nervous system. The models examined include primary microglia cultures, microglia cell lines, iPSC-derived microglia, PBMC-induced microglia-like cells, 3D brain organoids derived from iPSCs, and Hofbauer cells. Each model is assessed for its ability to replicate the in-vivo environment of the developing brain, with a focus on their strengths, limitations, and practical challenges. Key factors such as scalability, genetic and epigenetic fidelity, and physiological relevance are highlighted. Microglia cell lines are highly scalable but lack genetic and epigenetic fidelity. iPSC-derived microglia provide moderate physiological relevance and patient-specific genetic insights but face operational and epigenetic challenges inherent to reprogramming. 3D brain organoids, derived from iPSCs, offer an advanced platform for studying complex neurodevelopmental processes but require extensive resources and technical expertise. Hofbauer cells, which are fetal macrophages located in the placenta and share a common developmental origin with microglia, are uniquely exposed to prenatal maternal factors and, depending on fetal barrier maturation, exhibit variable epigenetic fidelity. This makes them particularly useful for exploring the impact of maternal influences on fetal programming of microglial development. The review concludes that no single model comprehensively captures all aspects of maternal influences on microglial development, but it offers guidance on selecting the most appropriate model based on specific research objectives and experimental constraints.
Collapse
Affiliation(s)
- Steven Schepanski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Gonza B. Ngoumou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- University of California, Irvine, Development, Health and Disease Research Program, Irvine, CA, United States
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Seifert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| |
Collapse
|
8
|
Odendaal L, Quek H, Cuní-López C, White AR, Stewart R. The Role of Air Pollution and Olfactory Dysfunction in Alzheimer's Disease Pathogenesis. Biomedicines 2025; 13:246. [PMID: 39857829 PMCID: PMC11761242 DOI: 10.3390/biomedicines13010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The escalating issue of air pollution contributes to an alarming number of premature fatalities each year, thereby posing a significant threat to global health. The focus of recent research has shifted towards understanding its potential association with neurodegenerative diseases, specifically Alzheimer's disease (AD). AD is recognised for its characteristic deposition of toxic proteins within the brain, leading to a steady deterioration of cognitive capabilities, memory failure, and, ultimately, death. There is burgeoning evidence implying that air pollution may be a contributing factor to this protein build up, thereby intensifying the course of AD. It has been demonstrated that the olfactory system, responsible for smell perception and processing, acts as a potential gateway for airborne pollutants to inflict brain damage. This review aims to elucidate the relationship between air pollution, olfactory deterioration, and AD. Additionally, this review aims to highlight the potential mechanisms through which pollutants might instigate the development of AD and the role of the olfactory system in disease pathogenesis. Moreover, the diverse model systems employed in exploring the correlation, public health policy ramifications, and prospective directions for future research will be discussed.
Collapse
Affiliation(s)
- Louise Odendaal
- Brain and Mental Health, Cellular and Molecular Neurodegeneration, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (L.O.); (H.Q.); (C.C.-L.); (A.R.W.)
| | - Hazel Quek
- Brain and Mental Health, Cellular and Molecular Neurodegeneration, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (L.O.); (H.Q.); (C.C.-L.); (A.R.W.)
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Carla Cuní-López
- Brain and Mental Health, Cellular and Molecular Neurodegeneration, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (L.O.); (H.Q.); (C.C.-L.); (A.R.W.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Anthony R. White
- Brain and Mental Health, Cellular and Molecular Neurodegeneration, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (L.O.); (H.Q.); (C.C.-L.); (A.R.W.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Romal Stewart
- Brain and Mental Health, Cellular and Molecular Neurodegeneration, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (L.O.); (H.Q.); (C.C.-L.); (A.R.W.)
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
9
|
Badley JR, Bhusal A, Lein PJ. A primary rat neuron-astrocyte-microglia tri-culture model for studying mechanisms of neurotoxicity. FRONTIERS IN TOXICOLOGY 2025; 6:1523387. [PMID: 39867128 PMCID: PMC11759268 DOI: 10.3389/ftox.2024.1523387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most in vitro neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures. We recently developed a tri-culture model consisting of neurons, astrocytes and microglia dissociated from the developing rat neocortex and demonstrated that this tri-culture model more faithfully mimics in vivo neuroinflammatory responses then standard neuron-only or neuron-astrocyte co-cultures. Here, we describe our protocol for generating tri-cultures of rat cortical neurons, astrocytes and microglia in which all 3 cell types can be maintained for up to 1 month in culture at the same relative ratio observed in the developing rat neocortex. We also discuss applications of this model for neurotoxicity testing, as well as the potential of this model to fill a current gap for assessing neuroinflammation in the in vitro testing battery for developmental neurotoxicity.
Collapse
Affiliation(s)
| | | | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
10
|
Elser H, Frankland TB, Chen C, Tartof SY, Mayeda ER, Lee GS, Northrop AJ, Torres JM, Benmarhnia T, Casey JA. Wildfire Smoke Exposure and Incident Dementia. JAMA Neurol 2025; 82:40-48. [PMID: 39585704 PMCID: PMC11589856 DOI: 10.1001/jamaneurol.2024.4058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Importance Long-term exposure to total fine particulate matter (PM2.5) is a recognized dementia risk factor, but less is known about wildfire-generated PM2.5, an increasingly common PM2.5 source. Objective To assess the association between long-term wildfire and nonwildfire PM2.5 exposure and risk of incident dementia. Design, Setting, and Participants This open cohort study was conducted using January 2008 to December 2019 electronic health record (EHR) data among members of Kaiser Permanente Southern California (KPSC), which serves 4.7 million people across 10 California counties. KPSC members aged 60 years or older were eligible for inclusion. Members were excluded if they did not meet eligibility criteria, if they had a dementia diagnosis before cohort entry, or if EHR data lacked address information. Data analysis was conducted from May 2023 to May 2024. Exposures Three-year rolling mean wildfire and nonwildfire PM2.5 in member census tracts from January 2006 to December 2019, updated quarterly and estimated via monitoring and remote-sensing data and statistical techniques. Main Outcome and Measures The primary outcome was incident dementia, identified using diagnostic codes in the EHR. Odds of dementia diagnoses associated with 3-year mean wildfire and nonwildfire PM2.5 exposure were estimated using a discrete-time approach with pooled logistic regression. Models adjusted for age, sex, race and ethnicity (considered as a social construct rather than as a biological determinant), marital status, smoking status, calendar year, and census tract-level poverty and population density. Stratified models assessed effect measure modification by age, sex, race and ethnicity, and census tract-level poverty. Results Among 1.64 million KPSC members aged 60 years or older during the study period, 1 223 107 members were eligible for inclusion in this study. The study population consisted of 644 766 female members (53.0%). In total, 319 521 members identified as Hispanic (26.0%), 601 334 members identified as non-Hispanic White (49.0%), and 80 993 members received a dementia diagnosis during follow-up (6.6%). In adjusted models, a 1-μg/m3 increase in the 3-year mean of wildfire PM2.5 exposure was associated with an 18% increase in the odds of dementia diagnosis (odds ratio [OR], 1.18; 95% CI, 1.03-1.34). In comparison, a 1-μg/m3 increase in nonwildfire PM2.5 exposure was associated with a 1% increase (OR, 1.01; 95% CI, 1.01-1.02). For wildfire PM2.5 exposure, associations were stronger among members less than 75 years old upon cohort entry, members from racially minoritized subgroups, and those living in high-poverty vs low-poverty census tracts. Conclusions and Relevance In this cohort study, after adjusting for measured confounders, long-term exposure to wildfire and nonwildfire PM2.5 over a 3-year period was associated with dementia diagnoses. As the climate changes, interventions focused on reducing wildfire PM2.5 exposure may reduce dementia diagnoses and related inequities.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, University of Pennsylvania, Philadelphia
- Editorial Fellow, JAMA Neurology
| | - Timothy B. Frankland
- Kaiser Permanente Hawaii Center for Integrated Health Care Research, Honolulu, Hawaii
| | - Chen Chen
- Scripps Institution of Oceanography, University of California, San Diego
| | - Sara Y. Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles
| | - Gina S. Lee
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | | | - Jacqueline M. Torres
- Department of Epidemiology & Biostatistics, University of California, San Francisco
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego
- Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| | - Joan A. Casey
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle
- Department of Epidemiology, University of Washington School of Public Health, Seattle
| |
Collapse
|
11
|
Jaiswal C, Singh AK. Particulate matter exposure and its consequences on hippocampal neurogenesis and cognitive function in experimental models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125275. [PMID: 39515570 DOI: 10.1016/j.envpol.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Exposure to air pollution is thought to cause millions of deaths globally each year. According to the Who 2018, approximately 7 million deaths annually are caused predominantly by noncommunicable diseases due to air pollution. Exposure to air particulate matter 2.5 (PM2.5) has been strongly associated with increased mortality and has significant effects on brain health. Air pollution, particularly ultrafine particulate matter, has emerged as a serious environmental concern with profound implications for human health. Studies in animal models have indicated that exposure to these pollutants during gestational development impacts prenatal and postnatal brain development. In particular, air pollution has been increasingly identified as a potential causative factor, as it affects neurogenesis in the brain's hippocampal region. The hippocampus is highly vulnerable to PM exposure, and any alteration in the structure or function of this region leads to various neurodevelopmental defects and neurodegenerative disorders via oxidative stress, microglial activation, neuronal death, and differential expression of genes. The neurogenesis process involves several steps, such as proliferation, differentiation, migration, synaptogenesis, and neuritogenesis. If any step of the neurogenesis process is hampered by environmental exposure or other factors, it can lead to neurodevelopmental defects, neurodegenerative disorders, and cognitive decline. One significant contributor to these alterations is air pollution, which ranks as the leading environmental risk factor worldwide. Some of the most common effects include oxidative stress, neuroinflammation, depressive behavior, altered cognitive processes, and microglial activation. This review explores how prenatal and postnatal PM exposure affects the hippocampal regions of the brain and the defects associated with exposure.
Collapse
Affiliation(s)
- Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
12
|
Lei Y, Lei TH, Lu C, Zhang X, Wang F. Wildfire Smoke: Health Effects, Mechanisms, and Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21097-21119. [PMID: 39516728 DOI: 10.1021/acs.est.4c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wildfires are becoming more frequent and intense on a global scale, raising concerns about their acute and long-term effects on human health. We conducted a systematic review of the current epidemiological evidence on wildfire health risks and a meta-analysis to investigate the association between wildfire smoke exposure and various health outcomes. We discovered that wildfire smoke increases the risk of premature deaths and respiratory morbidity in the general population. Meta-analysis of cause-specific mortality and morbidity revealed that wildfire smoke had the strongest associations with cardiovascular mortality (RR: 1.018, 95% CI: 1.014-1.021), asthma hospitalization (RR: 1.054, 95% CI: 1.026-1.082), and asthma emergency department visits (RR: 1.117, 95% CI: 1.035-1.204) in the general population. Subgroup analyses of age found that adults and elderly adults were more susceptible to the cardiopulmonary effects of wildfire smoke. Next, we systematically addressed the toxicological mechanisms of wildfire smoke, including direct toxicity, oxidative stress, inflammatory reactions, immune dysregulation, genotoxicity and mutations, skin allergies, inflammation, and others. We discuss wildfire smoke risk mitigation strategies including public health interventions, regulatory measures, and personal actions. We conclude by highlighting current research limitations and future directions for wildfire research, such as elucidating the complex interactions of wildfire smoke components on human health, developing personalized risk assessment tools, and improving resilience and adaptation strategies to mitigate the health effects of wildfires in changing climate.
Collapse
Affiliation(s)
- Ying Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tze-Huan Lei
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Xue Zhang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-Communicable Diseases, School of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| |
Collapse
|
13
|
Kusters MSW, López-Vicente M, Muetzel RL, Binter AC, Petricola S, Tiemeier H, Guxens M. Residential ambient air pollution exposure and the development of white matter microstructure throughout adolescence. ENVIRONMENTAL RESEARCH 2024; 262:119828. [PMID: 39182751 DOI: 10.1016/j.envres.2024.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Recent evidence suggests an association of air pollution exposure with brain development, but evidence on white matter microstructure in children is scarce. We investigated how air pollution exposure during pregnancy and childhood impacts longitudinal development of white matter microstructure throughout adolescence. METHODS Our study population consisted of 4108 participants of Generation R, a large population-based birth cohort from Rotterdam, the Netherlands. Residential air pollution exposure to 14 air pollutants during pregnancy and childhood was estimated with land-use regression models. Diffusion tensor images were obtained around age 10 and 14, resulting in a total of 5422 useable scans (n = 3082 for wave 1 and n = 2340 for wave 2; n = 1314 for participants with data on both waves). We calculated whole-brain fractional anisotropy (FA) and mean diffusivity (MD) and performed single- and multi-pollutant analyses using mixed effects models adjusted for life-style and socioeconomic status variables. RESULTS Higher exposure to PM2.5 during pregnancy, and PM10, PM2.5, PM2.5-10, and NOX during childhood was associated with a consistently lower whole-brain FA throughout adolescence (e.g. - 0.07 × 10-2 FA [95%CI -0.12; -0.02] per 1 standard deviation higher PM2.5 exposure during pregnancy). Higher exposure to silicon (Si) in PM2.5 and oxidative potential of PM2.5 during pregnancy, and PM2.5 during childhood was associated with an initial higher MD followed by a faster decrease in MD throughout adolescence (e.g. - 0.02 × 10-5 mm2/s MD [95%CI -0.03; -0.00] per year of age per 1 standard deviation higher Si exposure during pregnancy). Results were comparable when performing the analysis in children with complete data on the outcome for both neuroimaging assessments. CONCLUSIONS Exposure to several pollutants was associated with a consistently lower whole-brain FA throughout adolescence. The association of few pollutants with whole-brain MD at baseline attenuated throughout adolescence. These findings suggest both persistent and age-limited associations of air pollution exposure with white matter microstructure.
Collapse
Affiliation(s)
- Michelle S W Kusters
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Sami Petricola
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Kim JY, Kim A, Kim JH, Gil YC, Kim YD, Shin DI, Seo JH. Ferroptosis in the Substantia Nigra Pars Compacta of Mice: Triggering Role of Ultrafine Diesel Exhaust Particles and Mitigation by α-Lipoic Acid. Neurochem Res 2024; 50:37. [PMID: 39601947 DOI: 10.1007/s11064-024-04278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Recent epidemiological and experimental studies have increasingly highlighted the association between environmental pollution, especially ultrafine particulate matter (PM), and the risk of neurodegenerative diseases, such as Parkinson's disease (PD). These previous studies suggest a potential mechanism by which ultrafine PM contributes to neuronal damage through processes, such as iron accumulation and oxidative stress. In this study, we aimed to elucidate the effects of ultrafine PM on ferroptosis, an iron-dependent form of cell death, in the mouse substantia nigra pars compacta (SNc) and to evaluate the protective role of α-lipoic acid (ALA). Mice were exposed to ultrafine diesel exhaust particles (ufDEP), a type of ultrafine PM, intranasally and injected ALA intraperitoneally for seven consecutive days. Iron accumulation and lipid peroxidation were significantly increased, and antioxidant capacity was significantly decreased in the SNc after ufDEP exposure, highlighting the deleterious effects of ufDEP on tyrosine hydroxylase (TH)-positive neurons. In contrast, ALA treatment effectively mitigated these effects by reducing iron accumulation, decreasing lipid peroxidation, and restoring antioxidant levels, resulting in the protection of TH-positive neurons from ferroptotic damage. Our results provide evidence that ufDEP can induce ferroptosis in dopaminergic neurons in the SNc, potentially contributing to PD pathogenesis. Furthermore, ALA showed protective effects against ufDEP-induced ferroptotic damage, suggesting its potential as a therapeutic intervention for PD.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - Young-Chun Gil
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
- Chungbuk Environmental Health Center, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
15
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
16
|
Marin-Castañeda LA, Gonzalez-Garibay G, Garcia-Quintana I, Pacheco-Aispuro G, Rubio C. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: a brief review. Front Aging Neurosci 2024; 16:1494356. [PMID: 39529750 PMCID: PMC11552306 DOI: 10.3389/fnagi.2024.1494356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dementia encompasses a spectrum of neurodegenerative disorders significantly impacting global health, with environmental factors increasingly recognized as crucial in their etiology. Among these, ozone, has been identified as a potential exacerbator of neurodegenerative processes, particularly in Alzheimer's disease (AD). Ozone exposure induces the production of reactive oxygen species (ROS), which penetrate the BBB, leading to oxidative damage in neuronal cells. This oxidative stress is closely linked with mitochondrial dysfunction and lipid peroxidation, processes that are foundational to the pathology observed in dementia, such as neuronal death and protein aggregation. Furthermore, ozone triggers chronic neuroinflammation, exacerbating these neurodegenerative processes and perpetuating a cycle of CNS damage. Recent studies highlight the role of peripheral biomarkers like High Mobility Group Box 1 (HMGB1) and Triggering Receptor Expressed on Myeloid cells 2 (TREM2) in mediating ozone's effects. Disruption of these and other identified proteins by ozone exposure impairs microglial function and response to amyloid plaques, suggesting a novel pathway through which ozone may influence AD pathology via immune dysregulation. This review discusses the concept of a bidirectional lung-brain axis, illustrating that systemic responses to air pollutants like ozone may reflect and contribute to neurodegenerative processes in the CNS. By delineating these mechanisms, we emphasize the critical need for integrating environmental health management into strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | | | | | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| |
Collapse
|
17
|
Ni Y, Sullivan A, Szpiro AA, Peng J, Loftus CT, Hazlehurst MF, Sherris A, Wallace ER, Murphy LE, Nguyen RH, Swan SH, Sathyanarayana S, Barrett ES, Mason WA, Bush NR, Karr CJ, LeWinn KZ. Ambient Air Pollution Exposures and Child Executive Function: A US Multicohort Study. Epidemiology 2024; 35:676-688. [PMID: 38871635 PMCID: PMC11305919 DOI: 10.1097/ede.0000000000001754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND Executive function, which develops rapidly in childhood, enables problem-solving, focused attention, and planning. Animal models describe executive function decrements associated with ambient air pollution exposure, but epidemiologic studies are limited. METHODS We examined associations between early childhood air pollution exposure and school-aged executive function in 1235 children from three US pregnancy cohorts in the ECHO-PATHWAYS Consortium. We derived point-based residential exposures to ambient particulate matter ≤2.5 µm in aerodynamic diameter (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ) at ages 0-4 years from spatiotemporal models with a 2-week resolution. We assessed executive function across three domains, cognitive flexibility, working memory, and inhibitory control, using performance-based measures and calculated a composite score quantifying overall performance. We fitted linear regressions to assess air pollution and child executive function associations, adjusting for sociodemographic characteristics, maternal mental health, and health behaviors, and examined modification by child sex, maternal education, and neighborhood educational opportunity. RESULTS In the overall sample, we found hypothesized inverse associations in crude but not adjusted models. Modified associations between NO 2 exposure and working memory by neighborhood education opportunity were present ( Pinteraction = 0.05), with inverse associations more pronounced in the "high" and "very high" categories. Associations of interest did not differ by child sex or maternal education. CONCLUSION This work contributes to the evolving science regarding early-life environmental exposures and child development. There remains a need for continued exploration in future research endeavors, to elucidate the complex interplay between natural environment and social determinants influencing child neurodevelopment.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, California, USA
| | - Alexis Sullivan
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - James Peng
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Allison Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Erin R. Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - W. Alex Mason
- College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Linnman C. Invited Perspective: Blue Skies and Alzheimer's Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:71303. [PMID: 39028626 PMCID: PMC11259244 DOI: 10.1289/ehp15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Affiliation(s)
- Clas Linnman
- Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Bai L, Wang K, Liu D, Wu S. Potential Early Effect Biomarkers for Ambient Air Pollution Related Mental Disorders. TOXICS 2024; 12:454. [PMID: 39058106 PMCID: PMC11280925 DOI: 10.3390/toxics12070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Air pollution is one of the greatest environmental risks to health, with 99% of the world's population living where the World Health Organization's air quality guidelines were not met. In addition to the respiratory and cardiovascular systems, the brain is another potential target of air pollution. Population- and experiment-based studies have shown that air pollution may affect mental health through direct or indirect biological pathways. The evidence for mental hazards associated with air pollution has been well documented. However, previous reviews mainly focused on epidemiological associations of air pollution with some specific mental disorders or possible biological mechanisms. A systematic review is absent for early effect biomarkers for characterizing mental health hazards associated with ambient air pollution, which can be used for early warning of related mental disorders and identifying susceptible populations at high risk. This review summarizes possible biomarkers involved in oxidative stress, inflammation, and epigenetic changes linking air pollution and mental disorders, as well as genetic susceptibility biomarkers. These biomarkers may provide a better understanding of air pollution's adverse effects on mental disorders and provide future research direction in this arena.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Dandan Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| |
Collapse
|
22
|
Zhang L, Xu F, Yang Y, Yang L, Wu Q, Sun H, An Z, Li J, Wu H, Song J, Wu W. PM 2.5 exposure upregulates pro-inflammatory protein expression in human microglial cells via oxidant stress and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116386. [PMID: 38657455 DOI: 10.1016/j.ecoenv.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
23
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Exposure to urban particulate matter (UPM) impairs mitochondrial dynamics in BV2 cells, triggering a mitochondrial biogenesis response. J Physiol 2024; 602:2737-2750. [PMID: 38795332 DOI: 10.1113/jp285978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 05/27/2024] Open
Abstract
World Health Organisation data suggest that up to 99% of the global population are exposed to air pollutants above recommended levels. Impacts to health range from increased risk of stroke and cardiovascular disease to chronic respiratory conditions, and air pollution may contribute to over 7 million premature deaths a year. Additionally, mounting evidence suggests that in utero or early life exposure to particulate matter (PM) in ambient air pollution increases the risk of neurodevelopmental impairment with obvious lifelong consequences. Identifying brain-specific cellular targets of PM is vital for determining its long-term consequences. We previously established that microglial-like BV2 cells were particularly sensitive to urban (U)PM-induced damage including reactive oxygen species production, which was abrogated by a mitochondrially targeted antioxidant. Here we extend those studies to find that UPM treatment causes a rapid impairment of mitochondrial function and increased mitochondrial fragmentation. However, there is a subsequent restoration of mitochondrial and therefore cell health occurring concomitantly with upregulated measures of mitochondrial biogenesis and mitochondrial load. Our data highlight that protecting mitochondrial function may represent a valuable mechanism to offset the effects of UPM exposure in the neonatal brain. KEY POINTS: Air pollution represents a growing risk to long-term health especially in early life, and the CNS is emerging a target for airborne particulate matter (PM). We previously showed that microglial-like BV2 cells were vulnerable to urban (U)PM exposure, which impaired cell survival and promoted reactive oxygen species production. Here we find that, following UPM exposure, BV2 mitochondrial membrane potential is rapidly reduced, concomitant with decreased cellular bioenergetics and increased mitochondrial fission. However, markers of mitochondrial biogenesis and mitochondrial mass are subsequently induced, which may represent a cellular mitigation strategy. As mitochondria are more vulnerable in the developing brain, exposure to air pollution may represent a greater risk to lifelong health in this cohort; conversely, promoting mitochondrial integrity may offset these risks.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
24
|
Hageman G, van Broekhuizen P, Nihom J. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:423-438. [PMID: 38593380 DOI: 10.1080/15459624.2024.2327348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Aerotoxic Syndrome may develop as a result of chronic, low-level exposure to organophosphates (OPs) and volatile organic compounds in the airplane cabin air, caused by engine oil leaking past wet seals. Additionally, acute high-level exposures, so-called "fume events," may occur. However, air quality monitoring studies concluded that levels of inhaled chemicals might be too low to cause adverse effects. The presence of aerosols of nanoparticles (NPs) in bleed air has often been described. The specific hypothesis is a relation between NPs acting as a vector for toxic compounds in the etiology of the Aerotoxic Syndrome. These NPs function as carriers for toxic engine oil compounds leaking into the cabin air. Inhaled by aircrew NPs carrying soluble and insoluble components deposit in the alveolar region, where they are absorbed into the bloodstream. Subsequently, they may cross the blood-brain barrier and release their toxic compounds in the central nervous system. Olfactory absorption is another route for NPs with access to the brain. To study the hypothesis, all published in-flight measurement studies (2003-2023) of airborne volatile (and low-volatile) organic pollutants in cabin air were reviewed, including NPs (10-100 nm). Twelve studies providing data for a total of 387 flights in 16 different large-passenger jet aircraft types were selected. Maximum particle number concentrations (PNC) varied from 104 to 2.8 × 106 #/cm3 and maximum mass concentrations from 9 to 29 μg/m3. NP-peaks occurred after full-power take-off, in tailwind condition, after auxiliary power unit (APU) bleed air introduction, and after air conditioning pack failure. Chemical characterization of the NPs showed aliphatic hydrocarbons, black carbon, and metallic core particles. An aerosol mass-spectrometry pattern was consistent with aircraft engine oil. It is concluded that chronic exposure of aircrew to NP-aerosols, carrying oil derivatives, maybe a significant feature in the etiology of Aerotoxic Syndrome. Mobile NP measuring equipment should be made available in the cockpit for long-term monitoring of bleed air. Consequently, risk assessment of bleed air should include monitoring and analysis of NPs, studied in a prospective cohort design.
Collapse
Affiliation(s)
- G Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - P van Broekhuizen
- Department of Environmental Studies (IVAM), University of Amsterdam, Amsterdam, The Netherlands
| | - J Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| |
Collapse
|
25
|
Vanbrabant K, Van Dam D, Bongaerts E, Vermeiren Y, Bové H, Hellings N, Ameloot M, Plusquin M, De Deyn PP, Nawrot TS. Accumulation of Ambient Black Carbon Particles Within Key Memory-Related Brain Regions. JAMA Netw Open 2024; 7:e245678. [PMID: 38592718 PMCID: PMC11004827 DOI: 10.1001/jamanetworkopen.2024.5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Importance Ambient air pollution is a worldwide problem, not only related to respiratory and cardiovascular diseases but also to neurodegenerative disorders. Different pathways on how air pollutants could affect the brain are already known, but direct evidence of the presence of ambient particles (or nanoparticles) in the human adult brain is limited. Objective To examine whether ambient black carbon particles can translocate to the brain and observe their biodistribution within the different brain regions. Design, Setting, and Participants In this case series a label-free and biocompatible detection technique of nonincandescence-related white light generation was used to screen different regions of biobanked brains of 4 individuals from Belgium with neuropathologically confirmed Alzheimer disease for the presence of black carbon particles. The selected biological specimens were acquired and subsequently stored in a biorepository between April 2013 and April 2017. Black carbon measurements and data analysis were conducted between June 2020 and December 2022. Main Outcomes and Measures The black carbon load was measured in various human brain regions. A Kruskal-Wallis test was used to compare black carbon loads across these regions, followed by Dunn multiple comparison tests. Results Black carbon particles were directly visualized in the human brain of 4 individuals (3 women [75%]; mean [SD] age, 86 [13] years). Screening of the postmortem brain regions showed a significantly higher median (IQR) number of black carbon particles present in the thalamus (433.6 [289.5-540.2] particles per mm3), the prefrontal cortex including the olfactory bulb (420.8 [306.6-486.8] particles per mm3), and the hippocampus (364.7 [342.0-448.7] particles per mm3) compared with the cingulate cortex (192.3 [164.2-277.5] particles per mm3), amygdala (217.5 [147.3-244.5] particles per mm3), and the superior temporal gyrus (204.9 [167.9-236.8] particles per mm3). Conclusions and Relevance This case series provides evidence that ambient air pollution particles are able to translocate to the human brain and accumulate in multiple brain regions involved in cognitive functioning. This phenomenon may contribute to the onset and development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, the Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Hannelore Bové
- Hasselt University, Department of Sciences, Diepenbeek, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
26
|
Chen J, Lai X, Song Y, Su X. Neuroimmune recognition and regulation in the respiratory system. Eur Respir Rev 2024; 33:240008. [PMID: 38925790 PMCID: PMC11216688 DOI: 10.1183/16000617.0008-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimmune recognition and regulation in the respiratory system is a complex and highly coordinated process involving interactions between the nervous and immune systems to detect and respond to pathogens, pollutants and other potential hazards in the respiratory tract. This interaction helps maintain the health and integrity of the respiratory system. Therefore, understanding the complex interactions between the respiratory nervous system and immune system is critical to maintaining lung health and developing treatments for respiratory diseases. In this review, we summarise the projection distribution of different types of neurons (trigeminal nerve, glossopharyngeal nerve, vagus nerve, spinal dorsal root nerve, sympathetic nerve) in the respiratory tract. We also introduce several types of cells in the respiratory epithelium that closely interact with nerves (pulmonary neuroendocrine cells, brush cells, solitary chemosensory cells and tastebuds). These cells are primarily located at key positions in the respiratory tract, where nerves project to them, forming neuroepithelial recognition units, thus enhancing the ability of neural recognition. Furthermore, we summarise the roles played by these different neurons in sensing or responding to specific pathogens (influenza, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, human metapneumovirus, herpes viruses, Sendai parainfluenza virus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, amoebae), allergens, atmospheric pollutants (smoking, exhaust pollution), and their potential roles in regulating interactions among different pathogens. We also summarise the prospects of bioelectronic medicine as a third therapeutic approach following drugs and surgery, as well as the potential mechanisms of meditation breathing as an adjunct therapy.
Collapse
Affiliation(s)
- Jie Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
28
|
Huang YM, Ma YH, Gao PY, Cui XH, Hou JH, Chi HC, Fu Y, Wang ZB, Feng JF, Cheng W, Tan L, Yu JT. Genetic susceptibility modifies the association of long-term air pollution exposure on Parkinson's disease. NPJ Parkinsons Dis 2024; 10:23. [PMID: 38233432 PMCID: PMC10794179 DOI: 10.1038/s41531-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Inconsistent findings exist regarding the potential association between polluted air and Parkinson's disease (PD), with unclear insights into the role of inherited sensitivity. This study sought to explore the potential link between various air pollutants and PD risk, investigating whether genetic susceptibility modulates these associations. The population-based study involved 312,009 initially PD-free participants with complete genotyping data. Annual mean concentrations of PM2.5, PM10, NO2, and NOx were estimated, and a polygenic risk score (PRS) was computed to assess individual genetic risks for PD. Cox proportional risk models were employed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between ambient air pollutants, genetic risk, and incident PD. Over a median 12.07-year follow-up, 2356 PD cases (0.76%) were observed. Compared to the lowest quartile of air pollution, the highest quartiles of NO2 and PM10 pollution showed HRs and 95% CIs of 1.247 (1.089-1.427) and 1.201 (1.052-1.373) for PD incidence, respectively. Each 10 μg/m3 increase in NO2 and PM10 yielded elevated HRs and 95% CIs for PD of 1.089 (1.026-1.155) and 1.363 (1.043-1.782), respectively. Individuals with significant genetic and PM10 exposure risks had the highest PD development risk (HR: 2.748, 95% CI: 2.145-3.520). Similarly, those with substantial genetic and NO2 exposure risks were over twice as likely to develop PD compared to minimal-risk counterparts (HR: 2.414, 95% CI: 1.912-3.048). Findings suggest that exposure to air contaminants heightens PD risk, particularly in individuals genetically predisposed to high susceptibility.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Han Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jia-Hui Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Hao-Chen Chi
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200040, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200040, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
29
|
Ning P, Guo X, Qu Q, Li R. Exploring the association between air pollution and Parkinson's disease or Alzheimer's disease: a Mendelian randomization study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123939-123947. [PMID: 37995032 DOI: 10.1007/s11356-023-31047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The correlation between air pollution and neurodegenerative diseases has garnered growing attention. Although observational studies have indicated a potential link between air pollution and neurodegenerative disease, establishing a causal relationship remains uncertain. To address this gap, we performed a two-sample Mendelian randomization analysis utilizing genetic instruments. This analysis aimed to investigate the causal connections between PM2.5, PM10, NO2, and NOX exposure and the occurrence of Parkinson's disease (PD) and Alzheimer's disease (AD). We implemented a series of filtering steps to identify suitable genetic instruments that demonstrated significant associations (P < 5 × 10-8) with PM2.5, PM10, NO2, and NOX. These instruments were derived from a comprehensive genome-wide association study (GWAS) encompassing up to 456,380 participants in the UK Biobank. To obtain summary statistics for PD (N = 482,730) and AD risk (N = 63,926), we utilized the most recent GWAS datasets available. For our primary analysis, we employed the inverse-variance weighted approach for two-sample MR. A multivariable MR (MVMR) was also performed to verify the impact of air pollution exposure on the risk of PD and AD. To ensure the robustness of our findings, sensitivity analyses and heterogeneity assessments were performed. In two-sample MR, by employing the inverse-variance weighted method, our result suggested that genetically NO2 exposure showed a significant association with an elevated risk of PD (OR = 4.07, 95% CI: 1.13 to 19.62, P = 0.034) and genetically PM10 exposure exhibited a significant association with a heightened risk of AD (OR = 1.93, 95% CI: 1.03-3.59, P = 0.040). Further MVMR analysis demonstrated that the causal effect between NO2 and PD disappeared (OR = 3.489, 95% CI: 0.01 to 2.1e + 03, P = 0.703), and only PM10 was associated with an increased risk of AD (OR = 6.500, 95% CI: 1.10 to 38.51, P = 0.039). Sensitivity analysis showed no detectable heterogeneity and pleiotropy (P > 0.05). Our findings demonstrate that NO2 and PM10 exposure may contribute to a risk of PD and AD, respectively. Future research is necessary to elucidate potential physiopathological mechanisms.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, 710068, People's Republic of China
| | - Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, 710068, People's Republic of China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China.
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, 710068, People's Republic of China.
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
30
|
Lomme J, Reedijk M, Peters S, Downward GS, Stefanopoulou M, Vermeulen R, Huss A. Traffic-related air pollution, road traffic noise, and Parkinson's disease: Evaluations in two Dutch cohort studies. Environ Epidemiol 2023; 7:e272. [PMID: 38912395 PMCID: PMC11189687 DOI: 10.1097/ee9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 06/25/2024] Open
Abstract
Background Environmental factors such as air pollution have been associated with Parkinson's disease (PD), but findings have been inconsistent. We investigated the association between exposure to several air pollutants, road traffic noise, and PD risk in two Dutch cohorts. Methods Data from 50,087 participants from two Dutch population-based cohort studies, European Prospective Investigation into Cancer and Nutrition in the Netherlands and Arbeid, Milieu en Gezondheid Onderzoek were analyzed. In these cohorts, 235 PD cases were ascertained based on a previously validated algorithm combining self-reported information (diagnosis, medication, and symptoms) and registry data. We assigned the following traffic-related exposures to residential addresses at baseline: NO2, NOx, particulate matter (PM)2.5absorbance (as a marker for black carbon exposure), PM with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), PMcoarse (size fraction 2.5-10 µm), ultrafine particles <0.1 µm (UFP), and road traffic noise (Lden). Logistic regression models were applied to investigate the associations with PD, adjusted for possible confounders. Results Both single- and two-pollutant models indicated associations between exposure to NOx, road traffic noise, and increasing odds of developing PD. Odds ratios of fully adjusted two-pollutant models in the highest compared with the lowest exposure quartile were 1.62 (95% CI = 1.02, 2.62) for NOx and 1.47 (95% CI = 0.97, 2.25) for road traffic noise, with clear trends across exposure categories. Conclusions Our findings suggest that NOx and road traffic noise are associated with an increased risk of PD. While the association with NOx has been shown before, further investigation into the possible role of environmental noise on PD is warranted.
Collapse
Affiliation(s)
- Jara Lomme
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marije Reedijk
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George S. Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
31
|
Valdez MC, Freeborn DL, Valdez JM, Henriquez AR, Snow SJ, Jackson TW, Kodavanti PRS, Kodavanti UP. Influence of Mild Chronic Stress and Social Isolation on Acute Ozone-Induced Alterations in Stress Biomarkers and Brain-Region-Specific Gene Expression in Male Wistar-Kyoto Rats. Antioxidants (Basel) 2023; 12:1964. [PMID: 38001817 PMCID: PMC10669107 DOI: 10.3390/antiox12111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with psychosocial stress often experience an exaggerated response to air pollutants. Ozone (O3) exposure has been associated with the activation of the neuroendocrine stress-response system. We hypothesized that preexistent mild chronic stress plus social isolation (CS), or social isolation (SI) alone, would exacerbate the acute effects of O3 exposure on the circulating adrenal-derived stress hormones, and the expression of the genes regulating glucocorticoid stress signaling via an altered stress adaptation in a brain-region-specific manner. Male Wistar-Kyoto rats (5 weeks old) were socially isolated, plus were subjected to either CS (noise, confinement, fear, uncomfortable living, hectic activity, and single housing), SI (single housing only, restricted handling and no enrichment) or no stress (NS; double housing, frequent handling and enrichment provided) for 8 weeks. The rats were then exposed to either air or O3 (0.8 ppm for 4 h), and the samples were collected immediately after. The indicators of sympathetic and hypothalamic-pituitary axis (HPA) activation (i.e., epinephrine, corticosterone, and lymphopenia) increased with O3 exposure, but there were no effects from CS or SI, except for the depletion of serum BDNF. CS and SI revealed small changes in brain-region-specific glucocorticoid-signaling-associated markers of gene expression in the air-exposed rats (hypothalamic Nr3c1, Nr3c2 Hsp90aa1, Hspa4 and Cnr1 inhibition in SI; hippocampal HSP90aa1 increase in SI; and inhibition of the bed nucleus of the stria terminalis (BNST) Cnr1 in CS). Gene expression across all brain regions was altered by O3, reflective of glucocorticoid signaling effects, such as Fkbp5 in NS, CS and SI. The SI effects on Fkbp5 were greatest for SI in BNST. O3 increased Cnr2 expression in the hypothalamus and olfactory bulbs of the NS and SI groups. O3, in all stress conditions, generally inhibited the expression of Nr3c1 in all brain regions, Nr3c2 in the hippocampus and hypothalamus and Bdnf in the hippocampus. SI, in general, showed slightly greater O3-induced changes when compared to NS and CS. Serum metabolomics revealed increased sphingomyelins in the air-exposed SI and O3-exposed NS, with underlying SI dampening some of the O3-induced changes. These results suggest a potential link between preexistent SI and acute O3-induced increases in the circulating adrenal-derived stress hormones and brain-region-specific gene expression changes in glucocorticoid signaling, which may partly underlie the stress dynamic in those with long-term SI.
Collapse
Affiliation(s)
- Matthew C. Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Danielle L. Freeborn
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
| | - Joseph M. Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Samantha J. Snow
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Prasada Rao S. Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
| | - Urmila P. Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| |
Collapse
|
32
|
Luo CW, Kuan YH, Chen WY, Chen CJ, Lin FCF, Tsai SCS. Association between PM2.5 exposure and risk of Parkinson's disease in individuals with chronic obstructive pulmonary disease in Taiwan: a nested case-control study. Epidemiol Health 2023; 45:e2023094. [PMID: 37905313 PMCID: PMC10876422 DOI: 10.4178/epih.e2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVES This cohort study investigated the correlation between Parkinson's disease (PD) risk and chronic obstructive pulmonary disease (COPD) risk under particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) exposure. METHODS Data from the National Health Research Institutes of Taiwan were used in this study. The Environmental Protection Administration of Taiwan established an air quality monitoring network for monitoring Taiwan's general air quality. COPD was indicated by at least 3 outpatient records and 1 hospitalization for COPD. After the implementation of age, sex, and endpoint matching at a 1:4 ratio, 137 patients and 548 patients were included in the case group and control group, respectively. Based on the 2005 World Health Organization (WHO) standards, monthly air particle concentration data were classified into the following 4 groups in analyses of exposure-response relationships: normal level, and 1.0, 1.5, and 2.0 times the WHO level ([concentration ≥2]×25 μg/m3×number of exposure months). RESULTS A multivariate logistic regression revealed that the 1.0 and 1.5 WHO level groups did not significantly differ from the normal level group, but the 2.0 WHO level did (odds ratio, 4.091; 95% confidence interval, 1.180 to 14.188; p=0.038). CONCLUSIONS Elevated PM2.5 concentrations were significantly correlated with an increased risk of PD among patients with COPD. Furthermore, exposure to high PM2.5 levels can further increase the risk of PD.
Collapse
Affiliation(s)
- Ci-Wen Luo
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Pharmacology, Chung Shan Medical University School of Medicine, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University School of Medicine, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Stella Chin-Shaw Tsai
- Superintendent Office, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University College of Medicine, Taichung, Taiwan
| |
Collapse
|
33
|
Grippo A, Zhu K, Yeung EH, Bell EM, Bonner MR, Tian L, Mendola P, Mu L. Indoor air pollution exposure and early childhood development in the Upstate KIDS Study. ENVIRONMENTAL RESEARCH 2023; 234:116528. [PMID: 37419197 PMCID: PMC11365522 DOI: 10.1016/j.envres.2023.116528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Limited human studies have investigated the impact of indoor air pollution on early childhood neurodevelopment among the US population. We aimed to examine the associations between prenatal and postnatal indoor air pollution exposure and early childhood development in a population-based birth cohort. METHODS This analysis included 4735 mother-child pairs enrolled between 2008 and 2010 in the Upstate KIDS Study. Indoor air pollution exposure from cooking fuels, heating fuels, and passive smoke during pregnancy, and at 12 and 36 months after birth were assessed by questionnaires. Five domains of child development were assessed by the Ages and Stages Questionnaire at 4, 8, 12, 18, 24, 30, and 36 months. Generalized estimating equations were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for potential confounders. RESULTS Exposure to unclean cooking fuels (natural gas, propane, or wood) throughout the study period was associated with increased odds of failing any development domain (OR = 1.28, 95% CI 1.07, 1.53), the gross motor domain (OR = 1.52, 95% CI: 1.09, 2.13), and the personal-social domain (OR = 1.36, 95% CI: 1.00, 1.85), respectively. Passive smoke exposure throughout the study period increased the odds of failing the problem-solving domain by 71% (OR = 1.71, 95% CI 1.01, 2.91) among children of non-smoking mothers. No association was found between heating fuel use and failing any or specific domains. CONCLUSION Unclean cooking fuel use and passive smoke exposure during pregnancy and early life were associated with developmental delays in this large prospective birth cohort.
Collapse
Affiliation(s)
- Alexandra Grippo
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Edwina H Yeung
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erin M Bell
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lili Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
34
|
Li D, Ma Y, Cui F, Yang Y, Liu R, Tang L, Wang J, Tian Y. Long-term exposure to ambient air pollution, genetic susceptibility, and the incidence of bipolar disorder: A prospective cohort study. Psychiatry Res 2023; 327:115396. [PMID: 37549511 DOI: 10.1016/j.psychres.2023.115396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
There is mounting recent evidence showing that air pollution exposure may be related to the risk of mental health, yet the association between long-term exposure to air pollution and the risk of incident bipolar disorder (BD) remains unclear. Thus we aim to identify associations between air pollution and the incidence of BD in a prospective population-based cohort. In total, 482,726 participants who were free of BD from the UK Biobank were included in this prospective study. We applied time-varying Cox proportional hazards models, accounting for relevant confounders, and used annual-year moving averages of air pollution as time-varying exposures. The genetic risk for BD was categorized into three categories (low, intermediate, and high) according to the tertiles of polygenic risk score. During a median of 10.79-year follow-up, 923 incident BD events were recorded. Long-term exposures to PM2.5, PM10, NO2, and NOx were associated with increased BD risk. Estimated HRs (95% CIs) for each interquartile range increase in PM2.5, PM10, NO2, and NOx concentrations were 1.31 (1.18-1.45), 1.19 (1.09-1.31), 1.19 (1.08-1.30), and 1.16 (1.07-1.26), respectively. Associations were still observed and even stronger at pollutant concentrations lower than WHO air quality guideline. In subgroup analysis stratified by genetic risk, we observed consistent associations between all pollutants and BD risk in intermediate and high genetic risk groups, but not in low genetic risk group. For example, the HRs (95% CIs) for PM2.5 were 1.00 (0.94-1.53), 1.30 (1.06-1.59), and 1.34 (1.16-1.54) in low, intermediate, and high genetic groups, respectively. In conclusion, long-term exposure to air pollution was significantly associated with an elevated risk of BD. Associations of air pollution with BD occurred only within intermediate and high genetic risk categories and were even stronger at the pollutants levels below WHO air quality guidelines. These findings could help inform policy makers regarding ambient air quality standards and BD management.
Collapse
Affiliation(s)
- Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
35
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen MJ. Biomass smoke inhalation promotes neuroinflammatory and metabolomic temporal changes in the hippocampus of female mice. J Neuroinflammation 2023; 20:192. [PMID: 37608305 PMCID: PMC10464132 DOI: 10.1186/s12974-023-02874-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the temporal dynamics of neuroinflammation and metabolomics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6 J mice were exposed to wood smoke every other day for 2 weeks at an average exposure concentration of 0.5 mg/m3. Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-day post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of CD31Hi and CD31Med expressors, with wood smoke inhalation causing an increased proportion of CD31Hi. These populations of CD31Hi and CD31Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b+/CD45low) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules, such as glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD+ metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD+ abundance on day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated with wildfire smoke exposure.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Yan Jin
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Shahani Noor
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ed Barr
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Russell P Hunter
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rahul Kumar
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rama Gullapalli
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haiwei Gu
- Florida International University Center for Translational Sciences, Port St. Lucie, FL, 34987, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences College of Pharmacy, University of New Mexico, MSC09 5360; 1, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
36
|
Pradhan SH, Gibb M, Kramer AT, Sayes CM. Peripheral (lung-to-brain) exposure to diesel particulate matter induces oxidative stress and increased markers for systemic inflammation. ENVIRONMENTAL RESEARCH 2023; 231:116267. [PMID: 37257747 DOI: 10.1016/j.envres.2023.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Combustion-derived air pollution is a complex environmental toxicant that has become a global health concern due to urbanization. Air pollution contains pro-inflammatory stimulants such as fine and ultrafine particulate matter, gases, volatile organic compounds, and metals. This study is focused on the particulate phase, which has been shown to induce systemic inflammation after chronic exposure due to its ability to travel to the lower airway, resulting in the activation of local immune cell populations, releasing acute phase reactants to mitigate ongoing inflammation. The systemic response is a potential mechanism for the co-morbidity associated with regions with high pollution and neuropathology. We exposed diesel particulate matter (DPM) to a pulmonary cell-derived in vitro model where macrophages mimic the diffusion of cytokines into the peripheral circulation to microglia. Alveolar macrophages (transformed U937) were inoculated with resuspended DPM in an acute exposure (24-h incubation) and analyzed for MCP-1 expression and acute phase reactants (IL-1β, IL-6, IL-8, and TNF-α). Post-exposure serum was collected and filtered from cultured alveolar macrophages, introduced to a healthy culture of microglial cells (HMC3), and measured for neurotoxic cytokines, oxidative stress, and pattern recognition receptors. After DPM exposure, the macrophages significantly upregulated all measured acute phase reactants, increased H2O2 production, and increased MCP-1 expression. After collection and filtration to remove excess particulates, microglia cells were incubated with the collected serum for 48 h to allow for cytokine diffusion between the periphery of microglia. Microglia significantly upregulated IL-6, IL-8, and oxidative stress with a moderate increase in IL-1β and TNF-α. As a marker required for signaling tissue damage, CD14 indicated that compared to direct inoculation of DPM, peripheral exposure resulted in the potent activation of microglia cells. The specificity and potency of the response have implications for neuropathology through lung-to-brain mechanisms after inhalation of environmental pollutants.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
37
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
38
|
Cotter DL, Campbell CE, Sukumaran K, McConnell R, Berhane K, Schwartz J, Hackman DA, Ahmadi H, Chen JC, Herting MM. Effects of ambient fine particulates, nitrogen dioxide, and ozone on maturation of functional brain networks across early adolescence. ENVIRONMENT INTERNATIONAL 2023; 177:108001. [PMID: 37307604 PMCID: PMC10353545 DOI: 10.1016/j.envint.2023.108001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution is linked to neurodevelopmental delays, but its association with longitudinal changes in brain network development has yet to be investigated. We aimed to characterize the effect of PM2.5, O3, and NO2 exposure at ages 9-10 years on changes in functional connectivity (FC) over a 2-year follow-up period, with a focus on the salience (SN), frontoparietal (FPN), and default-mode (DMN) brain networks as well as the amygdala and hippocampus given their importance in emotional and cognitive functioning. METHODS A sample of children (N = 9,497; with 1-2 scans each for a total of 13,824 scans; 45.6% with two brain scans) from the Adolescent Brain Cognitive Development (ABCD) Study® were included. Annual averages of pollutant concentrations were assigned to the child's primary residential address using an ensemble-based exposure modeling approach. Resting-state functional MRI was collected on 3T MRI scanners. First, developmental linear mixed-effect models were performed to characterize typical FC development within our sample. Next, single- and multi-pollutant linear mixed-effect models were constructed to examine the association between exposure and intra-network, inter-network, and subcortical-to-network FC change over time, adjusting for sex, race/ethnicity, income, parental education, handedness, scanner type, and motion. RESULTS Developmental profiles of FC over the 2-year follow-up included intra-network integration within the DMN and FPN as well as inter-network integration between the SN-FPN; along with intra-network segregation in the SN as well as subcortical-to-network segregation more broadly. Higher PM2.5 exposure resulted in greater inter-network and subcortical-to-network FC over time. In contrast, higher O3 concentrations resulted in greater intra-network, but less subcortical-to-network FC over time. Lastly, higher NO2 exposure led to less inter-network and subcortical-to-network FC over the 2-year follow-up period. CONCLUSION Taken together, PM2.5, O3, and NO2 exposure in childhood relate to distinct changes in patterns of network maturation over time. This is the first study to show outdoor ambient air pollution during childhood is linked to longitudinal changes in brain network connectivity development.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire E Campbell
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Zhu Z, Yang Z, Yu L, Xu L, Wu Y, Zhang X, Shen P, Lin H, Shui L, Tang M, Jin M, Wang J, Chen K. Residential greenness, air pollution and incident neurodegenerative disease: A cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163173. [PMID: 37003317 DOI: 10.1016/j.scitotenv.2023.163173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Neurodegenerative disease has a great adverse impact on population's death and disability worldwide. However, the association of air pollution and residential greenness with neurodegenerative disease and their potential mechanisms still remain uncertain. METHODS We used data from a population-based prospective cohort in Ningbo, China. Exposure to PM2.5, PM10 and NO2 were assessed by land-use regression (LUR) models and residential greenness was estimated by Normalized Difference Vegetation Index (NDVI). Our primary outcomes were all neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's disease (AD). Cox proportional hazards regression models were used to examine the association of air pollution and residential greenness with risk of incident neurodegenerative disease. Furthermore, we also explored the potential mediation relationship and effect modification between greenness and air pollutants. RESULTS During the follow-up period, we identified a total of 617 incident neurodegenerative diseases, 301 PD and 182 AD. In single-exposure models, PM2.5 was positively associated with all outcomes (e.g. AD hazard ratio (HR): 1.41, 95 % confidence interval (CI): 1.09-1.84, per interquartile range (IQR) increment), whereas residential greenness showed protective effects (e.g. neurodegenerative disease, HR: 0.82, 95%CI: 0.75-0.90, per IQR increment for NDVI in 1000 m buffer). NO2 was positively associated with risk of neurodegenerative disease and PM10 was associated with neurodegenerative disease and AD. In two-exposure models, after adjustment for PM2.5, the association for greenness generally attenuated towards null. Moreover, we identified the significant modification effect of greenness on PM2.5 on additive and multiplicative scales. CONCLUSION In this prospective study, we found that exposure to higher residential greenness and lower concentrations of particulate matter were associated with lower risk of neurodegenerative disease, PD and AD. Residential greenness could modify the association of PM2.5 with neurodegenerative disease.
Collapse
Affiliation(s)
- Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Luhua Yu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Xinhan Zhang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo, 315040, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
40
|
Aquino GV, Dabi A, Odom GJ, Lavado R, Nunn K, Thomas K, Schackmuth B, Shariff N, Jarajapu M, Pluto M, Miller SR, Eller L, Pressley J, Patel RR, Black J, Bruce ED. Evaluating the effect of acute diesel exhaust particle exposure on P-glycoprotein efflux transporter in the blood-brain barrier co-cultured with microglia. Curr Res Toxicol 2023; 4:100107. [PMID: 37332622 PMCID: PMC10276163 DOI: 10.1016/j.crtox.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
A growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aβ transporter and multidrug resistant pump, P-glycoprotein (P-gp). However, the response of this efflux transporter is not well understood in the context of environmental exposures, such as to DEP. Moreover, microglia are seldom included in in vitro BBB models, despite their significance in neurovascular health and disease. Therefore, the goal of this study was to evaluate the effect of acute (24 hr.) DEP exposure (2000 μg/ml) on P-gp expression and function, paracellular permeability, and inflammation profiles of the human in vitro BBB model (hCMEC/D3) with and without microglia (hMC3). Our results suggested that DEP exposure can decrease both the expression and function of P-gp in the BBB, and corroborated that DEP exposure impairs BBB integrity (i.e. increased permeability), a response that was significantly worsened by the influence of microglia in co-culture. Interestingly, DEP exposure seemed to produce atypical inflammation profiles and an unexpected general downregulation in inflammatory markers in both the monoculture and co-culture, which differentially expressed IL-1β and GM-CSF. Interestingly, the microglia in co-culture did not appear to influence the response of the BBB, save in the permeability assay, where it worsened the BBB's response. Overall, our study is important because it is the first (to our knowledge) to investigate the effect of acute DEP exposure on P-gp in the in vitro human BBB, while also investigating the influence of microglia on the BBB's responses to this environmental chemical.
Collapse
Affiliation(s)
- Grace V. Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Amjad Dabi
- Department of Bioinformatics and Computational Biology, University of North Carolina Chapel Hill, 120-Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Sempel College of Public Health, Florida International University, 11200, SW 8th Street, AHC4-470, Miami, FL 33199, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kaitlin Nunn
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kathryn Thomas
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Nazeel Shariff
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Manogna Jarajapu
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Morgan Pluto
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Sara R. Miller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Leah Eller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Justin Pressley
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Rishi R. Patel
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Jeffrey Black
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Erica D. Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| |
Collapse
|
41
|
Scieszka D, Jin Y, Noor S, Barr E, Garcia M, Begay J, Herbert G, Hunter RP, Bhaskar K, Kumar R, Gullapalli R, Bolt A, McCormick MA, Bleske B, Gu H, Campen M. Neuroinflammatory and Metabolomic Temporal Dynamics Following Wood Smoke Inhalation. RESEARCH SQUARE 2023:rs.3.rs-3002040. [PMID: 37333410 PMCID: PMC10275049 DOI: 10.21203/rs.3.rs-3002040/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.
Collapse
Affiliation(s)
| | - Yan Jin
- Florida International University, Center for Translational Sciences
| | - Shahani Noor
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Ed Barr
- University of New Mexico, College of Pharmacy
| | | | | | - Guy Herbert
- University of New Mexico, College of Pharmacy
| | | | - Kiran Bhaskar
- University of New Mexico, Department of Molecular Genetics and Microbiology
| | - Rahul Kumar
- University of New Mexico, Department of Pathology
| | | | - Alicia Bolt
- University of New Mexico, College of Pharmacy
| | - Mark A McCormick
- University of New Mexico, Department of Biochemistry and Molecular Biology
| | - Barry Bleske
- University of New Mexico, Department of Pharmacy Practice and Administrative Science
| | - Haiwei Gu
- Florida International University, Center for Translational Sciences
| | | |
Collapse
|
42
|
Jami MS, Murata H, Barnhill LM, Li S, Bronstein JM. Diesel exhaust exposure alters the expression of networks implicated in neurodegeneration in zebrafish brains. Cell Biol Toxicol 2023; 39:641-655. [PMID: 34057650 PMCID: PMC10406705 DOI: 10.1007/s10565-021-09618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a major cause of disability in the world, but their etiologies largely remain elusive. Genetic factors can only account for a minority of risk for most of these disorders, suggesting environmental factors play a significant role in the development of these diseases. Prolonged exposure to air pollution has recently been identified to increase the risk of Alzheimer's and Parkinson's diseases, but the molecular mechanisms by which it acts are not well understood. Zebrafish embryos exposed to diesel exhaust particle extract (DEPe) lead to dysfunctional autophagy and neuronal loss. Here, we exposed zebrafish embryos to DEPe and performed high throughput proteomic and transcriptomic expression analyses from their brains to identify pathogenic pathways induced by air pollution. DEPe treatment altered several biological processes and signaling pathways relevant to neurodegenerative processes, including xenobiotic metabolism, phagosome maturation, and amyloid processing. The biggest induction of gene expression in brains was in Cyp1A (over 30-fold). The relevance of this expression change was confirmed by blocking induction using CRISPR/Cas9, which resulted in a dramatic increase in sensitivity to DEPe toxicity, confirming that Cyp1A induction was a compensatory protective mechanism. These studies identified disrupted molecular pathways that may contribute to the pathogenesis of neurodegenerative disorders. Ultimately, determining the molecular basis of how air pollution increases the risk of neurodegeneration will help in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- M Saeid Jami
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Hiromi Murata
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Lisa M Barnhill
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Sharon Li
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Kilian JG, Mejias-Ortega M, Hsu HW, Herman DA, Vidal J, Arechavala RJ, Renusch S, Dalal H, Hasen I, Ting A, Rodriguez-Ortiz CJ, Lim SL, Lin X, Vu J, Saito T, Saido TC, Kleinman MT, Kitazawa M. Exposure to quasi-ultrafine particulate matter accelerates memory impairment and Alzheimer's disease-like neuropathology in the AppNL-G-F knock-in mouse model. Toxicol Sci 2023; 193:175-191. [PMID: 37074955 PMCID: PMC10230292 DOI: 10.1093/toxsci/kfad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-β pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-β buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.
Collapse
Affiliation(s)
- Jason G Kilian
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Marina Mejias-Ortega
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Department of Cell Biology, Genetics and Physiology, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Heng-Wei Hsu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - David A Herman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Janielle Vidal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Hansal Dalal
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Siok-Lam Lim
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Xiaomeng Lin
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Joan Vu
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
| | - Masashi Kitazawa
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, California 92697-1830, USA
- Institute for Memory Impairmants and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, USA
| |
Collapse
|
44
|
Evtyugina MG, Gonçalves C, Alves C, Corrêa SM, Daemme LC, de Arruda Penteado Neto R. Exhaust emissions of gaseous and particle size-segregated water-soluble organic compounds from diesel-biodiesel blends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63738-63753. [PMID: 37059947 PMCID: PMC10172243 DOI: 10.1007/s11356-023-26819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
This study assessed the emissions of gaseous pollutants and particle size distributed water-soluble organics (WSO) from a diesel vehicle fuelled with ultralow sulphur diesel (B0) and 10 (B10), 20 (B20), and 30% (B30) biodiesel blends in a chassis dynamometer tested under transient mode. Particulate emission sampling was carried out in an ultraviolet (UV) test chamber using a 10-stage impactor. Samples were grouped into three size fractions and analysed by gas chromatography-mass spectrometry. Increasing the biofuel ratio up to 30% in the fuel reduced WSO emissions by 20.9% in comparison with conventional diesel. Organic acids accounted for 82-89% of WSO in all tested fuels. Dicarboxylic acids were the most abundant compound class, followed by hydroxy, aromatic, and linear alkanoic acids. Correlations between compounds demonstrated that adding biodiesel to diesel fuel reduces the emissions of nitrogen oxides (NOx), benzene, toluene, ethylbenzene and xylenes (BTEX), methane (CH4), total and nonmethane hydrocarbons (THC and NMHC), and dicarboxylic and hydroxy acids, but increases emissions of carbon dioxide (CO2) and alkanoic and aromatic acids. Emissions of dicarboxylic and hydroxy acids were strongly correlated with the biodiesel content. WSO emissions of coarse and fine (1.0-10 μm) particles decreased with the increasing biofuel content in fuel blend. The total share of ultrafine (0.18-1.0 μm) and nanoparticles (< 0.18 μm) increased in WSOs emissions from B20 and B30 blends, when compared with petrodiesel. The biodiesel content also affected the chemical profile of WSO size fractions.
Collapse
Affiliation(s)
- Margarita G Evtyugina
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Gonçalves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sérgio M Corrêa
- Faculty of Technology, Rio de Janeiro State University, Resende, RJ, 27537-000, Brazil
| | - Luiz Carlos Daemme
- LACTEC - Technology Institute for Development, Curitiba, PR, 80210-170, Brazil
| | | |
Collapse
|
45
|
Wang Y, Crowe M, Knibbs LD, Fuller-Tyszkiewicz M, Mygind L, Kerr JA, Wake M, Olsson CA, Enticott PG, Peters RL, Daraganova G, Mavoa S, Lycett K. Greenness modifies the association between ambient air pollution and cognitive function in Australian adolescents, but not in mid-life adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121329. [PMID: 36822308 DOI: 10.1016/j.envpol.2023.121329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Exposure to ambient air pollution has been associated with reduced cognitive function in childhood and later life, with too few mid-life studies to draw conclusions. In contrast, residential greenness has been associated with enhanced cognitive function throughout the lifecourse. Here we examine the extent to which (1) ambient air pollution and residential greenness predict later cognitive function in adolescence and mid-life, and (2) greenness modifies air pollution-cognitive function associations. PARTICIPANTS 6220 adolescents (51% male) and 2623 mid-life adults (96% mothers) from the Longitudinal Study of Australian Children. MEASURES Exposures: Annual average particulate matter <2.5 μm (PM2.5), nitrogen dioxide (NO2) and greenness (Normalised Difference Vegetation Index) for residential addresses from validated land-use regression models over a 10-13-year period. OUTCOMES Cognitive function from CogState tests of attention, working memory and executive function, dichotomised into poorer (worst quartile) versus not poor. ANALYSES Adjusted mixed-effects generalised linear models with residential greenness assessed as an effect modifier (high vs. low divided at median). The annual mean for PM2.5 and NO2 across exposure windows was 6.3-6.8 μg/m3, and 5.5-7.1 ppb, respectively. For adolescents, an IQR increment of NO2 was associated with 19-24% increased odds of having poorer executive function across all time windows, while associations weren't observed between air pollution and other outcomes. For adults, high NO2 predicted poorer cognitive function across all outcomes, while high PM2.5 predicted poorer attention only. There was little evidence of associations between greenness and cognitive function in adjusted models for both generations. Interactions were found between residential greenness, air pollutants and cognitive function in adolescents, but not adults. The magnitude of effects was similar across generations and exposure windows. Findings highlight the potential benefits of cognitive health associated with the regulation of air pollution and urban planning strategies for increasing green spaces and vegetation.
Collapse
Affiliation(s)
- Yichao Wang
- Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, 3220, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| | - Mallery Crowe
- Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, 3220, Australia
| | - Luke D Knibbs
- School of Public Health, University of Sydney, Sydney, NSW, 2006, Australia; Public Health Unit, Sydney Local Health District, Camperdown, NSW, 2050, Australia
| | - Matthew Fuller-Tyszkiewicz
- Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, 3220, Australia
| | - Lærke Mygind
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, 3125, Australia; Unit of Medical Psychology, University of Copenhagen, Copenhagen, 1353, Denmark; Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, The Capital Region of Denmark, Copenhagen, 2000, Denmark
| | - Jessica A Kerr
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia; Department of Psychological Medicine, University of Otago Christchurch, New Zealand
| | - Melissa Wake
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia; Liggins Institute, University of Auckland, New Zealand
| | - Craig A Olsson
- Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, 3220, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia; Psychological Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, 3125, Australia
| | - Rachel L Peters
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Galina Daraganova
- Psychological Sciences, University of Melbourne, Parkville, VIC, 3010, Australia; Business Intelligence, South Eastern Melbourne Primary Health Network, Melbourne, VIC, 3202, Australia
| | - Suzanne Mavoa
- Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia; Environmental Public Health Branch, Environment Protection Authority Victoria, Melbourne, VIC, 3001, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kate Lycett
- Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, 3220, Australia; Population Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| |
Collapse
|
46
|
Tang J, Chen A, He F, Shipley M, Nevill A, Coe H, Hu Z, Zhang T, Kan H, Brunner E, Tao X, Chen R. Association of air pollution with dementia: a systematic review with meta-analysis including new cohort data from China. ENVIRONMENTAL RESEARCH 2023; 223:115048. [PMID: 36529331 DOI: 10.1016/j.envres.2022.115048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
It remains unclear whether a total exposure to air pollution (AP) is associated with an increased risk of dementia. Little is known on the association in low- and middle-income countries. Two cohort studies in China (in Anhui cohort 1402 older adults aged ≥ 60 followed up for 10 years; in Zhejiang cohort 6115 older adults followed up for 5 years) were conducted to examine particulate matter - PM2.5 associated with all dementia and air quality index (AQI) with Alzheimer's disease, respectively. A systematic literature review and meta-analysis was performed following worldwide literature searched until May 20, 2020 to identify 15 population-based cohort studies examining the association of AP with dementia (or any specific type of dementia) through PubMed, MEDLINE, PsycINFO, SocINDEX, CINHAL, and CNKI. The cohort studies in China showed a significantly increased relative risk (RR) of dementia in relation to AP exposure; in Anhui cohort the adjusted RR was 2.14 (95% CI 1.00-4.56) in people with PM2.5 exposure at ≥ 64.5 μg/m3 versus <63.5 μg/m3 and in Zhejiang cohort the adjusted RR was 2.28 (1.07-4.87) in AQI>90 versus ≤ 80. The systematic review revealed that all 15 studies were undertaken in high income countries/regions, with inconsistent findings. While they had reasonably good overall quality of studies, seven studies did not adjust smoking in analysis and 13 did not account for depression. Pooling all eligible data demonstrated that dementia risk increased with the total AP exposure (1.13, 1.08-1.19). Data analysis of air pollutants showed that the RR significantly increased with PM2.5 (1.06, 1.03-1.10 in 2nd tertile exposure; 1.13, 1.07-1.19 in 3rd tertile versus 1st tertile), PM10 (1.05, 0.86-1.29; 1.62, 0.60-4.36), carbon monoxide (1.69, 0.72-3.93; 1.52, 1.35-1.71), nitrogen dioxide (1.06, 1.03-1.09; 1.18, 1.10-1.28) and nitrogen oxides (1.09, 1.04-1.15; 1.26, 1.13-1.41), but not ozone. Controlling air pollution and targeting on specific pollutants would reduce dementia globally.
Collapse
Affiliation(s)
- Jie Tang
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Anthony Chen
- Faculty of Sciences and Technology, Middlesex University, UK
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Martin Shipley
- Department of Epidemiology and Public Health, University College London, UK
| | - Alan Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Hugh Coe
- Centre for Atmospheric Science, University of Manchester, UK
| | - Zhi Hu
- School of Health Administration, Anhui Medical University, China
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haidong Kan
- School of Public Health, Fudan University, China
| | - Eric Brunner
- Department of Epidemiology and Public Health, University College London, UK
| | - Xuguang Tao
- Division of Occupational and Environmental Medicine, Johns Hopkins School of Medicine, John Hopkins University, USA
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Division of Occupational and Environmental Medicine, Johns Hopkins School of Medicine, John Hopkins University, USA.
| |
Collapse
|
47
|
Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ 2023; 381:e071620. [PMID: 37019461 PMCID: PMC10498344 DOI: 10.1136/bmj-2022-071620] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the role of air pollutants in risk of dementia, considering differences by study factors that could influence findings. DESIGN Systematic review and meta-analysis. DATA SOURCES EMBASE, PubMed, Web of Science, Psycinfo, and OVID Medline from database inception through July 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies that included adults (≥18 years), a longitudinal follow-up, considered US Environmental Protection Agency criteria air pollutants and proxies of traffic pollution, averaged exposure over a year or more, and reported associations between ambient pollutants and clinical dementia. Two authors independently extracted data using a predefined data extraction form and assessed risk of bias using the Risk of Bias In Non-randomised Studies of Exposures (ROBINS-E) tool. A meta-analysis with Knapp-Hartung standard errors was done when at least three studies for a given pollutant used comparable approaches. RESULTS 2080 records identified 51 studies for inclusion. Most studies were at high risk of bias, although in many cases bias was towards the null. 14 studies could be meta-analysed for particulate matter <2.5 µm in diameter (PM2.5). The overall hazard ratio per 2 μg/m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 1.09). The hazard ratio among seven studies that used active case ascertainment was 1.42 (1.00 to 2.02) and among seven studies that used passive case ascertainment was 1.03 (0.98 to 1.07). The overall hazard ratio per 10 μg/m3 nitrogen dioxide was 1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). Ozone had no clear association with dementia (hazard ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four studies). CONCLUSION PM2.5 might be a risk factor for dementia, as well as nitrogen dioxide and nitrogen oxide, although with more limited data. The meta-analysed hazard ratios are subject to limitations that require interpretation with caution. Outcome ascertainment approaches differ across studies and each exposure assessment approach likely is only a proxy for causally relevant exposure in relation to clinical dementia outcomes. Studies that evaluate critical periods of exposure and pollutants other than PM2.5, and studies that actively assess all participants for outcomes are needed. Nonetheless, our results can provide current best estimates for use in burden of disease and regulatory setting efforts. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021277083.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marwa Osman
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
48
|
Yu Y, Su J, Jerrett M, Paul KC, Lee E, Shih IF, Haan M, Ritz B. Air pollution and traffic noise interact to affect cognitive health in older Mexican Americans. ENVIRONMENT INTERNATIONAL 2023; 173:107810. [PMID: 36870315 PMCID: PMC11121505 DOI: 10.1016/j.envint.2023.107810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Both air pollution and noise exposures have separately been shown to affect cognitive impairment. Here, we examine how air pollution and noise exposures interact to influence the development of incident dementia or cognitive impairment without dementia (CIND). METHODS We used 1,612 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007. Air pollution (nitrogen dioxides, particulate matter, ozone) and noise exposure levels were modeled with a land-use regression and via the SoundPLAN software package implemented with the Traffic Noise Model applied to the greater Sacramento area, respectively. Using Cox proportional hazard models, we estimated the hazard of incident dementia or CIND from air pollution exposure at the residence up to 5-years prior to diagnosis for the members of each risk set at event time. Further, we investigated whether noise exposure modified the association between air pollution exposure and dementia or CIND. RESULTS In total, 104 incident dementia and 159 incident dementia/CIND cases were identified during the 10 years of follow-up. For each ∼2 µg/m3 increase in time-varying 1- and 5-year average PM2.5 exposure, the hazard of dementia increased 33% (HR = 1.33, 95%CI: 1.00, 1.76). The hazard ratios for NO2-related dementia/CIND and PM2.5-related dementia were stronger in high-noise (≥65 dB) exposed than low-noise (<65 dB) exposed participants. CONCLUSION Our study indicates that PM2.5 and NO2 air pollution adversely affect cognition in elderly Mexican Americans. Our findings also suggest that air pollutants may interact with traffic-related noise exposure to affect cognitive function in vulnerable populations.
Collapse
Affiliation(s)
- Yu Yu
- Center for Health Policy Research, University of California Los Angeles, California, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Jason Su
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, California, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Eunice Lee
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, California, USA
| | - I-Fan Shih
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Mary Haan
- Department of Epidemiology & Biostatistics, University of California San Francisco, California, USA
| | - Beate Ritz
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California, USA; Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, California, USA.
| |
Collapse
|
49
|
Greve HJ, Dunbar AL, Lombo CG, Ahmed C, Thang M, Messenger EJ, Mumaw CL, Johnson JA, Kodavanti UP, Oblak AL, Block ML. The bidirectional lung brain-axis of amyloid-β pathology: ozone dysregulates the peri-plaque microenvironment. Brain 2023; 146:991-1005. [PMID: 35348636 PMCID: PMC10169526 DOI: 10.1093/brain/awac113] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 11/14/2022] Open
Abstract
The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aβ plaques, leading to augmented dystrophic neurites and increased Aβ plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Hendrik J Greve
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - August L Dunbar
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carla Garza Lombo
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandrama Ahmed
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morrent Thang
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evan J Messenger
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christen L Mumaw
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Johnson
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle L Block
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
50
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 PMCID: PMC11792093 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel L. Costa
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27713, USA
| |
Collapse
|