1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-025-09998-y. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
3
|
Khatun M, Haque N, Siddique AE, Wahed AS, Islam MS, Khan S, Jubayar AM, Sadi J, Kabir E, Shila TT, Islam Z, Sarker MK, Banna HU, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Arsenic Exposure-Related Hypertension in Bangladesh and Reduced Circulating Nitric Oxide Bioavailability. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47003. [PMID: 38573329 PMCID: PMC10993991 DOI: 10.1289/ehp13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Hypertension is a major cause of death worldwide. Although arsenic exposure has been associated with the risk of hypertension, this association appears nonuniform due to inconsistent results from studies conducted in different populations. Moreover, hypertension is a complex condition with multiple underlying mechanisms and factors. One factor is impaired production and bioavailability of vascular nitric oxide (NO). However, the implications of the effects of arsenic exposure on circulating NO and its association with hypertension in humans are largely unknown. OBJECTIVE We investigated the dose-response relationship between arsenic exposure and hypertension with vascular NO levels as a potential mediator of arsenic-related hypertension in individuals exposed to a broad range of arsenic. METHODS A total of 828 participants were recruited from low- and high-arsenic exposure areas in Bangladesh. Participants' drinking water, hair, and nail arsenic concentrations were measured by inductively coupled plasma mass spectroscopy. Hypertension was defined as a systolic blood pressure (SBP) value of ≥ 140 and a diastolic (DBP) value of ≥ 90 mmHg . Serum NO levels reflected by total serum nitrite concentrations were measured by immunoassay. A formal causal mediation analysis was used to assess NO as a mediator of the association between arsenic level and hypertension. RESULTS Increasing concentrations of arsenic measured in drinking water, hair, and nails were associated with the increasing levels of SBP and DBP. The odds of hypertension were dose-dependently increased by arsenic even in participants exposed to relatively low to moderate levels (10 - 50 μ g / L ) of water arsenic [odds ratios (ORs) and 95% confidence intervals (CIs): 2.87 (95% CI: 1.28, 6.44), 2.67 (95% CI: 1.27, 5.60), and 5.04 (95% CI: 2.71, 9.35) for the 10 - 50 μ g / L , 50.01 - 150 μ g / L , and > 150 μ g / L groups, respectively]. Causal mediation analysis showed a significant mediating effect of NO on arsenic-related SBP, DBP, and hypertension. CONCLUSION Increasing exposure to arsenic was associated with increasing odds of hypertension. The association was mediated through the reduction of vascular NO bioavailability, suggesting that impaired NO bioavailability was a plausible underlying mechanism of arsenic-induced hypertension in this Bangladeshi population. https://doi.org/10.1289/EHP13018.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa, USA
| | - Abdus S. Wahed
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Md. Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, Bangladesh
| | - Shuchismita Khan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ahsanul Mahbub Jubayar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Junayed Sadi
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Hasan Ul Banna
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
4
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Kaur G, Desai KP, Chang IY, Newman JD, Mathew RO, Bangalore S, Venditti FJ, Sidhu MS. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2023; 37:1167-1174. [PMID: 35029799 DOI: 10.1007/s10557-021-07313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karan P Desai
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Jonathan D Newman
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Roy O Mathew
- Division of Nephrology, Loma Linda VA Health Care System, Loma Linda, CA, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Ferdinand J Venditti
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
6
|
Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 2023; 201:98-113. [PMID: 35167029 DOI: 10.1007/s12011-022-03153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Arsenic is an abundant element in the earth's crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.
Collapse
Affiliation(s)
- Soudabeh Balarastaghi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Maternal blood metal concentrations are associated with C-reactive protein and cell adhesion molecules among pregnant women in Puerto Rico. Environ Epidemiol 2022; 6:e214. [PMID: 35975168 PMCID: PMC9374188 DOI: 10.1097/ee9.0000000000000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Studies have revealed a link between aberrant levels of maternal C-reactive protein (CRP) and cell adhesion molecules (CAMs) with adverse birth outcomes. Some epidemiologic studies have indicated that long-term metal exposures can modulate the levels of CRP and CAMs, but the associations between prenatal metal exposures and the levels of CRP and CAMs have yet to be studied more extensively. In this study, we assessed associations between maternal blood metal levels and CRP/CAMs among 617 pregnant women in the Puerto Rico PROTECT birth cohort.
Collapse
|
8
|
Farzan SF, Eunus HM, Haque SE, Sarwar G, Hasan AR, Wu F, Islam T, Ahmed A, Shahriar M, Jasmine F, Kibriya MG, Parvez F, Karagas MR, Chen Y, Ahsan H. Arsenic exposure from drinking water and endothelial dysfunction in Bangladeshi adolescents. ENVIRONMENTAL RESEARCH 2022; 208:112697. [PMID: 35007543 PMCID: PMC8917065 DOI: 10.1016/j.envres.2022.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 05/12/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, with ∼80% of CVD-related deaths occurring in low- and middle-income countries. Growing evidence suggests that chronic arsenic exposure may contribute to CVD through its effect on endothelial function in adults. However, few studies have examined the influence of arsenic exposure on cardiovascular health in children and adolescents. To examine arsenic's relation to preclinical markers of endothelial dysfunction, we enrolled 200 adolescent children (ages 15-19 years; median 17) of adult participants in the Health Effects of Arsenic Longitudinal Study (HEALS), in Araihazar, Bangladesh. Participants' arsenic exposure was determined by recall of lifetime well usage for drinking water. As part of HEALS, wells were color-coded to indicate arsenic level (<10 μg/L, 10-50 μg/L, >50 μg/L). Endothelial function was measured by recording fingertip arterial pulsatile volume change and reactive hyperemia index (RHI) score, an independent CVD risk factor, was calculated from these measurements. In linear regression models adjusted for participant's sex, age, education, maternal education, land ownership and body weight, individuals who reported always drinking water from wells with >50 μg/L arsenic had a 11.75% lower level of RHI (95% CI: -21.26, -1.09, p = 0.03), as compared to participants who drank exclusively from wells with ≤50 μg/L arsenic. Sex-stratified analyses suggest that these associations were stronger in female participants. As compared to individuals who drank exclusively from wells with ≤50 μg/L arsenic, the use of wells with >50 μg/L arsenic was associated with 14.36% lower RHI (95% CI: -25.69, -1.29, p = 0.03) in females, as compared to 5.35% lower RHI (95% CI: -22.28, 15.37, p = 0.58) in males for the same comparison. Our results suggest that chronic arsenic exposure may be related to endothelial dysfunction in adolescents, especially among females. Further work is needed to confirm these findings and examine whether these changes may increase risk of later adverse cardiovascular health events.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | - Fen Wu
- Department of Population Health, New York University, New York, NY, USA
| | | | | | - Mohammad Shahriar
- UChicago Research Bangladesh, Dhaka, Bangladesh; Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, New York University, New York, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of environmental toxicants in the development of hypertensive and cardiovascular diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| |
Collapse
|
10
|
Wang X, Wu Y, Sun X, Guo Q, Xia W, Wu Y, Li J, Xu S, Li Y. Arsenic exposure and metabolism in relation to blood pressure changes in pregnant women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112527. [PMID: 34311426 DOI: 10.1016/j.ecoenv.2021.112527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is concerned with cardiovascular diseases including hypertension, atherosclerosis, and endothelial dysfunction. However, what effects the arsenic exposure and the arsenic metabolism have on hypertensive disorders of pregnancy (HDP) and blood pressure changes during pregnancy remain largely unknown. Our goal was to assess the associations of arsenic exposure and arsenic metabolism with HDP and blood pressure changes in pregnant women through a prospective birth cohort study. A total of 1038 women who were pregnant (52 HDP, 986 non-HDP participants) were included. Arsenic species of spot urine samples collected at three trimesters were measured, which included inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA). Arsenic metabolism was evaluated as the percentages of iAs, MMA, and DMA respectively (i.e., iAs%, MMA%, and DMA%). Outcomes were HDP and systolic, diastolic, and mean arterial pressure changes during pregnancy. We employed mixed linear models to investigate the relationships between arsenic exposure and arsenic metabolism with changes in blood pressure during pregnancy. Poisson regression with a robust error variance with generalized estimating equations (GEE) estimation was used so that the associations of arsenic exposure and arsenic metabolism with HDP could be estimated. In this study, there was a significant relationship between the concentrations of urinary DMA and the weekly change in systolic blood pressure (SBP) (β = -0.10; 95% CI: -0.15, -0.05), diastolic blood pressure (DBP) (β = -0.07; 95% CI: -0.11, -0.02) and mean arterial pressure (MAP) (β = -0.08; 95% CI: -0.12, -0.04). Higher DMA% was accompanied with lesser weekly increase in SBP (β = -0.05; 95% CI: -0.10, 0.00), DBP (β = -0.06; 95% CI: -0.10, -0.01) and MAP (β = -0.06; 95% CI: -0.09, -0.01) during pregnancy. There was a positive association with the highest tertile of iAs% and weekly change of SBP (β = 0.08; 95% CI: 0.03, 0.13), DBP (β = 0.07; 95% CI: 0.03, 0.11) and MAP (β = 0.07; 95% CI: 0.03, 0.11). No association was found between each arsenic specie and arsenic metabolism marker in the first trimester and risk of HDP. Arsenic exposure and arsenic metabolism during pregnancy potentially change blood pressure of pregnant women. These findings may be significance as even modest elevation of blood pressure can increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Wu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Guo
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
11
|
Souza ACF, de Paiva Coimbra JL, Ervilha LOG, Bastos DSS, Cossolin JFS, Santos EC, de Oliveira LL, Machado-Neves M. Arsenic induces dose-dependent structural and ultrastructural pathological remodeling in the heart of Wistar rats. Life Sci 2020; 257:118132. [PMID: 32710949 DOI: 10.1016/j.lfs.2020.118132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
AIM Arsenic, an environmental contaminant, represents a public health problem worldwide. Studies have shown its association with molecular mechanisms related to cardiomyocytes redox balance. However, the microstructure and ultrastructure of cardiac tissue, as well as the activity of its antioxidant defenses front of disturbances in the mineral bioavailability induced by arsenic are still scarce. Thus, the aim of this study was to evaluate if arsenic exposure might induce structural and ultrastructural damages in cardiac tissue, including pathological remodeling of the parenchyma and stroma. Moreover, its impact on micromineral distribution and antioxidant enzymes activity in heart tissue was also evaluated. MAIN METHODS Adult male Wistar rats were divided into three groups that received 0, 1 and 10 mg/L sodium arsenite in drinking water for eight weeks. The hearts were collected and subjected to structural and ultrastructural analysis, mineral microanalysis and antioxidant enzymes quantification. Functional markers of cardiac damages were evaluated using serum samples. KEY FINDINGS Arsenic exposure induced dose-dependent structural and ultrastructural remodeling of cardiac tissue, with parenchyma loss, increase of stroma components, collagen deposition, and pathological damages such as inflammation, sarcomere disorganization, mitochondria degeneration and myofilament dissociation. Moreover, this metalloid was bioaccumulated in the tissue affecting its micromineral content, which resulted in antioxidant imbalance and increased levels of oxidative stress and cardiac markers. SIGNIFICANCE Taken together, our findings indicate that the heart is a potential target to arsenic toxicity, and long-term exposure to this metalloid must be avoided, once it might induce several cardiac tissue pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliziária Cardoso Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil; Postgraduate Program in Animal Biology, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | | | | |
Collapse
|
12
|
Sobel MH, Sanchez TR, Jones MR, Kaufman JD, Francesconi KA, Blaha MJ, Vaidya D, Shimbo D, Gossler W, Gamble MV, Genkinger JM, Navas‐Acien A. Rice Intake, Arsenic Exposure, and Subclinical Cardiovascular Disease Among US Adults in MESA. J Am Heart Assoc 2020; 9:e015658. [PMID: 32067593 PMCID: PMC7070216 DOI: 10.1161/jaha.119.015658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Background Arsenic-related cardiovascular effects at exposure levels below the US Environmental Protection Agency's standard of 10 μg/L are unclear. For these populations, food, especially rice, is a major source of exposure. We investigated associations of rice intake, a marker of arsenic exposure, with subclinical cardiovascular disease (CVD) markers in a multiethnic population. Methods and Results Between 2000 and 2002, MESA (Multi-Ethnic Study of Atherosclerosis) enrolled 6814 adults without clinical CVD. We included 5050 participants with baseline data on rice intake and markers of 3 CVD domains: inflammation (hsCRP [high-sensitivity C-reactive protein], interleukin-6, and fibrinogen), vascular function (aortic distensibility, carotid distensibility, and brachial flow-mediated dilation), and subclinical atherosclerosis at 3 vascular sites (carotid intima-media thickness, coronary artery calcification, and ankle-brachial index). We also evaluated endothelial-related biomarkers previously associated with arsenic. Rice intake was assessed by food frequency questionnaire. Urinary arsenic was measured in 310 participants. A total of 13% of participants consumed ≥1 serving of rice/day. Compared with individuals consuming <1 serving of rice/week, ≥1 serving of rice/day was not associated with subclinical markers after demographic, lifestyle, and CVD risk factor adjustment (eg, geometric mean ratio [95% CI] for hsCRP, 0.98 [0.86-1.11]; aortic distensibility, 0.99 [0.91-1.07]; and carotid intima-media thickness, 0.98 [0.91-1.06]). Associations with urinary arsenic were similar to those for rice intake. Conclusions Rice intake was not associated with subclinical CVD markers in a multiethnic US population. Research using urinary arsenic is needed to assess potential CVD effects of low-level arsenic exposure. Understanding the role of low-level arsenic as it relates to subclinical CVD may contribute to CVD prevention and control.
Collapse
Affiliation(s)
- Marisa H. Sobel
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Miranda R. Jones
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD
| | | | | | | | | | | | | | - Mary V. Gamble
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Ana Navas‐Acien
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| |
Collapse
|
13
|
Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57011. [PMID: 31135185 PMCID: PMC6791539 DOI: 10.1289/ehp3849] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenic exposure affects [Formula: see text] people worldwide, including [Formula: see text] in Bangladesh. Arsenic exposure increases the risk of cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation. OBJECTIVE We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water. METHODS Methylation in whole blood DNA was measured at [Formula: see text] using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs) (capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of [Formula: see text] from 400 Bangladeshi individuals with arsenical skin lesions. RESULTS We identified 34 CpGs associated with [Formula: see text] creatinine-adjusted urinary arsenic [[Formula: see text]]. Sixteen of these CpGs annotated to the [Formula: see text] array, and 10 associations were replicated ([Formula: see text]). The top two CpGs annotated upstream of the ABR gene (cg01912040, cg10003262 ). All urinary arsenic-associated CpGs were also associated with arsenic concentration measured in drinking water ([Formula: see text]). Meta-analysis ([Formula: see text] samples) identified 221 urinary arsenic-associated CpGs ([Formula: see text]). The arsenic-associated CpGs from the meta-analysis were enriched in non-CpG islands and shores ([Formula: see text]) and depleted in promoter regions ([Formula: see text]). Among the arsenic-associated CpGs ([Formula: see text]), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory response, and tumor necrosis factor [Formula: see text] ([Formula: see text]) signaling via nuclear factor kappa-B ([Formula: see text]) hallmarks ([Formula: see text]). CONCLUSIONS The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed populations. https://doi.org/10.1289/EHP3849.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Susan A, Rajendran K, Sathyasivam K, Krishnan UM. An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 2018; 109:838-852. [PMID: 30551538 DOI: 10.1016/j.biopha.2018.10.099] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022] Open
Abstract
The industrial and technological advancements in the world have also contributed to the rapid deterioration in the environment quality through introduction of obnoxious pollutants that threaten to destroy the subtle balance in the ecosystem. The environment contaminants cause severe adverse effects to humans, flora and fauna that are mostly irreversible. Chief among these toxicants is arsenic, a metalloid, which is considered among the most dangerous environmental toxins that leads to various diseases which affect the quality of life even when present in small quantities. Treatment of arsenic-mediated disorders still remains a challenge due to lack of effective options. Chelation therapy has been the most widely used method to detoxify arsenic. But this method is associated with deleterious effects leading various toxicities such as hepatotoxicity, neurotoxicity and other adverse effects. It has been discovered that indigenous drugs of plant origin display effective and progressive relief from arsenic-mediated toxicity without any side-effects. Further, these phytochemicals have also been found to aid the elimination of arsenic from the biological system and therefore can be more effective than conventional therapeutic agents in ameliorating arsenic-mediated toxicity. This review presents an overview of the toxic effects of arsenic and the therapeutic strategies that are available to mitigate the toxic effects with emphasis on chelation as well as protective and detoxifying activities of different phytochemicals and herbal drugs against arsenic. This information may serve as a primer in identifying novel prophylactic as well as therapeutic formulations against arsenic-induced toxicity.
Collapse
Affiliation(s)
- Ann Susan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Kaviarasi Sathyasivam
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India.
| |
Collapse
|
15
|
Gao Y, Zhao Z, Yang L, Liu X, Xing X, Zhang H, Yun J, Ou X, Su X, Lu Y, Sun Y, Yang Y, Jiang J, Cui D, Zhuang Z, He Y. Arsenic exposure assists ccm3 genetic polymorphism in elevating blood pressure. Oncotarget 2017; 9:4915-4923. [PMID: 29435151 PMCID: PMC5797022 DOI: 10.18632/oncotarget.23518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic study has suggested that arsenic exposure is positively related to increased blood pressure. However, the underlying mechanism concerning interaction between genetic polymorphisms and arsenic exposure remains unclear. In present study, within 395 Chinese, the effects of interaction between arsenic exposure and CCM3 gene polymorphisms on elevation of blood pressure were probed by multiple Logistic regression models after adjusting for confounding factors. Firstly, we found that serum arsenic was positively associated with blood pressure, cholesterol, glucose and C-reactive protein. Then, adjusted for confounding factors of age, gender, smoking, alcohol consumption, BMI and degree of education, arsenic exposure incurred the hazard of increased systolic pressure and diastolic pressure, with odds ratios (ORs) being 1.725 and 1.425, respectively. Distinctly, we found that interactions between rs3804610* rs9818496, rs6784267*rs9818496, and rs3804610* rs6784267 variant genotype can increase significantly risks of SBP. Additionally, interactions between rs9818496, rs3804610 and rs6784267 genotypic variantions and arsenic exposure boosted the hazard of increased systolic pressure, with ORs being 1.496, 1.496 and 1.312. In conclusion, our fingdings suggest that As exposure of population can assist CCM3 polymorphism in elevating SBP.
Collapse
Affiliation(s)
- Yanfang Gao
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China.,Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhiqiang Zhao
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xinxia Liu
- Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong 528400, China
| | - Xiumei Xing
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Huimin Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Jianpei Yun
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518020, China
| | - Xiaoyan Ou
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Xiaolin Su
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Yao Lu
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Yi Sun
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Yarui Yang
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Jun Jiang
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Dong Cui
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| | - Zhixiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Yun He
- Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong 510080, China
| |
Collapse
|
16
|
Farzan SF, Howe CG, Zens MS, Palys T, Channon JY, Li Z, Chen Y, Karagas MR. Urine Arsenic and Arsenic Metabolites in U.S. Adults and Biomarkers of Inflammation, Oxidative Stress, and Endothelial Dysfunction: A Cross-Sectional Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:127002. [PMID: 29373859 PMCID: PMC5963594 DOI: 10.1289/ehp2062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arsenic (As) exposure has been associated with increased risk for cardiovascular disease (CVD) and with biomarkers of potential CVD risk and inflammatory processes. However, few studies have evaluated the effects of As on such biomarkers in U.S. populations, which are typically exposed to low to moderate As concentrations. OBJECTIVES We investigated associations between As exposures and biomarkers relevant to inflammation, oxidative stress, and CVD risk in a subset of participants from the New Hampshire Health Study, a population with low to moderate As exposure (n=418). METHODS Associations between toenail As, total urine As (uAs), and %uAs metabolites [monomethyl (%uMMAV), dimethyl (%uDMAV), and inorganic (%iAs) species] and plasma biomarkers, including soluble plasma vascular and cellular adhesion molecules (VCAM-1 and ICAM-1, respectively), matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-α, plasminogen activator inhibitor-1 (PAI-1), and urinary oxidative stress marker 15-F2t-isoprostane (15-F2t-IsoP), were evaluated using linear regression models. RESULTS Covariate-adjusted estimates of associations with a doubling of urinary As suggested an 8.8% increase in 15-F2t-IsoP (95% CI: 3.2, 14.7), and a doubling of toenail As was associated with a 1.7% increase in VCAM-1 (95% CI: 0.2, 3.2). Additionally, a 5% increase in %uMMA was associated with a 7.9% increase in 15-F2t-IsoP (95% CI: 2.1, 14.1), and a 5% increase in %uDMA was associated with a 2.98% decrease in 15-F2t-IsoP [(95% CI: -6.1, 0.21); p=0.07]. However, in contrast with expectations, a doubling of toenail As was associated with a 2.3% decrease (95% CI: -4.3, -0.3) in MMP-9, and a 5% increase in %uMMA was associated with a 7.7% decrease (95% CI: -12.6, -2.5) in PAI-1. CONCLUSION In a cross-sectional study of U.S. adults, we observed some positive associations of uAs and toenail As concentrations with biomarkers potentially relevant to CVD pathogenesis and inflammation, and evidence of a higher capacity to metabolize inorganic As was negatively associated with a marker of oxidative stress. https://doi.org/10.1289/EHP2062.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Michael S Zens
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Thomas Palys
- Center for Molecular Epidemiology at Dartmouth, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Jacqueline Y Channon
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
- Norris Cotton Cancer Center, Dartmouth–Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, USA
| |
Collapse
|
17
|
Howe CG, Li Z, Zens MS, Palys T, Chen Y, Channon JY, Karagas MR, Farzan SF. Dietary B Vitamin Intake Is Associated with Lower Urinary Monomethyl Arsenic and Oxidative Stress Marker 15-F 2t-Isoprostane among New Hampshire Adults. J Nutr 2017; 147:2289-2296. [PMID: 29070711 PMCID: PMC5697960 DOI: 10.3945/jn.117.253419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Arsenic exposure has been associated with an increased risk of cardiovascular disease (CVD). Growing evidence suggests that B vitamins facilitate arsenic metabolism and may protect against arsenic toxicity. However, to our knowledge, few studies have evaluated this in US populations.Objective: Our objective was to examine whether higher B vitamin intake is associated with enhanced arsenic metabolism and lower concentrations of preclinical markers of CVD among New Hampshire adults.Methods: We used weighted quantile sum (WQS) regression to evaluate the collective impact of 6 dietary B vitamins (thiamin, riboflavin, folate, niacin, and vitamins B-6 and B-12) on 1) the proportion of arsenic metabolites in urine and 2) 6 CVD-related markers [including urinary 15-F2t-isoprostane (15-F2t-IsoP)] among 418 participants (26-75 y of age) from the New Hampshire Health Study. Contributions of arsenic metabolites to B vitamin-CVD marker associations were also explored in structural equation models.Results: In WQS models, the weighted sum of B vitamin intakes from food sources was inversely associated with the proportion of monomethyl arsenic species in urine (uMMA) (β: -1.03; 95% CI: -1.91, -0.15; P = 0.02). Thiamin and vitamins B-6 and B-12 contributed the most to this association, whereas riboflavin had a negligible effect. Higher overall B vitamin intake was also inversely associated with 15-F2t-IsoP (β: -0.21; 95% CI: -0.32, -0.11; P < 0.01), with equal contributions from the 6 B vitamins, which was partially explained by differences in the proportion of uMMA (indirect effect β: -0.01; 95% CI: -0.04, -0.00).Conclusions: Among New Hampshire adults, higher intakes of certain B vitamins (particularly thiamin and vitamins B-6 and B-12 from food sources) may reduce the proportion of uMMA, an intermediate of arsenic metabolism that has been associated with an increased risk of CVD. Higher overall B vitamin intake may also reduce urinary 15-F2t-IsoP, a marker of oxidative stress and potential risk factor for CVD, in part by reducing the proportion of uMMA.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA;
| | | | | | - Thomas Palys
- Center for Molecular Epidemiology, Dartmouth College, Lebanon, NH; and
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Jacqueline Y Channon
- Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine, and
| | | | - Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
18
|
Harmon ME, Lewis J, Miller C, Hoover J, Ali AMS, Shuey C, Cajero M, Lucas S, Zychowski K, Pacheco B, Erdei E, Ramone S, Nez T, Gonzales M, Campen MJ. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:365-371. [PMID: 28120833 PMCID: PMC5781233 DOI: 10.1038/jes.2016.79] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/21/2016] [Indexed: 05/17/2023]
Abstract
Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n=145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P<0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.
Collapse
Affiliation(s)
- Molly E Harmon
- Department of Pharmaceutical Sciences, Albuquerque, NM, USA
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Curtis Miller
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Joseph Hoover
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, UNM, Albuquerque, NM, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Miranda Cajero
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, Albuquerque, NM, USA
| | | | - Bernadette Pacheco
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Sandy Ramone
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Teddy Nez
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Melissa Gonzales
- Division of Epidemiology, School of Medicine, UNM, Albuquerque, NM, USA
| | | |
Collapse
|
19
|
Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, Howe CG, Palys T, Karagas MR. Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. ENVIRONMENTAL RESEARCH 2017; 156:426-433. [PMID: 28410520 PMCID: PMC5477637 DOI: 10.1016/j.envres.2017.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Accumulating evidence indicates that arsenic (As), a potent environmental toxicant, may increase cardiovascular disease risk and adversely affect endothelial function at high levels of exposure. Pregnancy is a vulnerable time for both mother and child; however, studies examining the association between prenatal As exposure and plasma biomarkers of inflammation and endothelial function in mothers and newborns are lacking. METHODS We examined maternal urinary As levels at gestational weeks 24-28 and levels of inflammatory biomarkers in plasma from 563 pregnant women and 500 infants' cord blood. We assessed a multiplexed panel of circulating inflammatory and endothelial function markers, including tumor necrosis factor alpha (TNFα), monocyte chemoattractant protein 1 (MCP1), intercellular adhesion molecule (ICAM1) and vascular cell adhesion molecule (VCAM1). RESULTS Compared with the bottom tertile, the highest tertile of maternal urinary As during pregnancy was associated with a 145.2ng/ml (95% CI 4.1, 286.3; p=0.04) increase in cord blood ICAM1 and 557.3ng/ml (95% CI -56.4, 1171.1; p=0.09) increase in cord blood VCAM1. Among mothers, the highest tertile of maternal urinary As during pregnancy was related to a 141.8ng/ml (95% CI 26.1, 257.5; p=0.02) increase maternal plasma VCAM1 levels. Urinary As was unrelated to MCP1 or TNFα in maternal plasma and cord blood. In structural equation models, the association between maternal urinary As and infant VCAM was mediated by maternal levels of VCAM (βmediation: 0.024, 95% CI: 0.002, 0.050). CONCLUSION Our observations indicate that As exposure during pregnancy may affect markers of vascular health and endothelial function in both pregnant women and children, and suggest further investigation of the potential impacts on cardiovascular health in these susceptible populations.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Elizabeth B Brickley
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Zhigang Li
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anala Gossai
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Thomas Palys
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
20
|
Hoffman JB, Hennig B. Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann N Y Acad Sci 2017; 1398:99-107. [PMID: 28574588 DOI: 10.1111/nyas.13365] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Human exposures to environmental contaminants around the world contribute to the global burden of disease and thus require urgent attention. Exploring preventive measures against environmental exposure and disease risk is essential. While a sedentary lifestyle and/or poor dietary habits can exacerbate the deleterious effects resulting from exposure to toxic chemicals, much emerging evidence suggests that positive lifestyle changes (e.g., healthful nutrition) can modulate and/or reduce the toxicity of environmental pollutants. Our work has shown that diets high in anti-inflammatory bioactive food components (e.g., phytochemicals or polyphenols) are possible strategies for modulating and reducing the disease risks associated with exposure to toxic pollutants in the environment. Thus, consuming healthy diets rich in plant-derived bioactive nutrients may reduce the vulnerability to diseases linked to environmental toxic insults. This nutritional paradigm in environmental toxicology requires further study in order to improve our understanding of the relationships between nutrition and other lifestyle modifications and toxicant-induced diseases.
Collapse
Affiliation(s)
- Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, Kentucky.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, Kentucky.,Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Wu F, Chen Y, Demmer RT, Parvez F, Paul RR, Shaheen I, Sarwar G, Ahmed A, Eunus M, Ahsan N, Habibullah NM, Islam T, Rundek T, Ahsan H, Desvarieux M. Periodontal diseases and carotid intima-media thickness in Bangladesh. J Clin Periodontol 2016; 43:909-917. [PMID: 27394059 DOI: 10.1111/jcpe.12597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
AIM To evaluate the relationship between periodontal diseases and subclinical atherosclerosis in a younger and lean South Asian population. METHODS We conducted a cross-sectional study in 917 subjects (mean age 46 years and mean body mass index 21.1 kg/m2 ) from the Health Effects of Arsenic Longitudinal Study in Bangladesh. Multivariate linear regression models were used to assess the associations between multiple clinical measures of periodontal diseases and carotid intima-media thickness (IMT). RESULTS Mean attachment loss (AL) and percentage of sites with AL ≥ 4 mm (% AL ≥ 4) were associated with increased IMT. The IMT was 20.0-μm (95% CI: 2.2, 37.8) and 26.5-μm (95% CI: 8.9, 44.1) higher in subjects in the top quartile of mean AL (>3.72 mm) and % AL ≥ 4 (>58.4%), respectively, compared to those in the bottom quartile. In a subset of 366 subjects, mean AL was positively associated with plasma levels of matrix metalloproteinase-9 (p < 0.05) and soluble intercellular adhesion molecule-1 (p < 0.01). CONCLUSIONS Attachment loss was associated with subclinical atherosclerosis in this young and lean Bangladeshi population. Future prospective studies are needed to confirm this association.
Collapse
Affiliation(s)
- Fen Wu
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| | - Ryan T Demmer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Mahbub Eunus
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Nafiz Ahsan
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Tariqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Tatjana Rundek
- Departments of Neurology and Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Moise Desvarieux
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Kile ML, Faraj JM, Ronnenberg AG, Quamruzzaman Q, Rahman M, Mostofa G, Afroz S, Christiani DC. A cross sectional study of anemia and iron deficiency as risk factors for arsenic-induced skin lesions in Bangladeshi women. BMC Public Health 2016; 16:158. [PMID: 26880234 PMCID: PMC4754934 DOI: 10.1186/s12889-016-2824-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the Ganges Delta, chronic arsenic poisoning is a health concern affecting millions of people who rely on groundwater as their potable water source. The prevalence of anemia is also high in this region, particularly among women. Moreover, arsenic is known to affect heme synthesis and erythrocytes and the risk of arsenic-induced skin lesions appears to differ by sex. METHODS We conducted a case-control study in 147 arsenic-exposed Bangladeshi women to assess the association between anemia and arsenic-induced skin lesions. RESULTS We observed that the odds of arsenic-related skin lesions were approximately three times higher among women who were anemic (hemoglobin < 120 g/L) compared to women with normal hemoglobin levels [Odds Ratio (OR) = 3.32, 95% Confidence Intervals (CI): 1.29, 8.52] after adjusting for arsenic levels in drinking water and other covariates. Furthermore, 75% of the women with anemia had adequate iron stores (serum ferritin ≥ 12 μg/L), suggesting that the majority of anemia detected in this population was unrelated to iron depletion. CONCLUSIONS Considering the magnitude of arsenic exposure and prevalence of anemia in Bangladeshi women, additional research is warranted that identifies the causes of anemia so that effective interventions can be implemented while arsenic remediation efforts continue.
Collapse
Affiliation(s)
- Molly L Kile
- College of Public Health and Human Sciences, Oregon State University, 15 Milam Hall, Corvallis, OR, 97331, USA.
| | - Joycelyn M Faraj
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 100 Holdsworth Way, Amherst, MA, 01003, USA.
| | - Alayne G Ronnenberg
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 100 Holdsworth Way, Amherst, MA, 01003, USA.
| | - Quazi Quamruzzaman
- Dhaka Community Hospital Trust, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, Bangladesh.
| | - Mahmudar Rahman
- Dhaka Community Hospital Trust, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, Bangladesh.
| | - Golam Mostofa
- Dhaka Community Hospital Trust, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, Bangladesh.
| | - Sakila Afroz
- Dhaka Community Hospital Trust, 190/1 Baro Moghbazar, Wireless Railgate, Dhaka, Bangladesh.
| | - David C Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA.
| |
Collapse
|
23
|
Islam MS, Mohanto NC, Karim MR, Aktar S, Hoque MM, Rahman A, Jahan M, Khatun R, Aziz A, Salam KA, Saud ZA, Hossain M, Rahman A, Mandal A, Haque A, Miyataka H, Himeno S, Hossain K. Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals. Environ Health 2015; 14:92. [PMID: 26637202 PMCID: PMC4670511 DOI: 10.1186/s12940-015-0079-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/26/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) and cancers are the major causes of chronic arsenic exposure-related morbidity and mortality. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) are deeply involved in the pathogenesis of CVDs and cancers. This study has been designed to evaluate the interactions of arsenic exposure with serum MMP-2 and MMP-9 concentrations especially in relation to the circulating biomarkers of CVDs. METHODS A total of 373 human subjects, 265 from arsenic-endemic and 108 from non-endemic areas in Bangladesh were recruited for this study. Arsenic concentrations in the specimens were measured by inductively coupled plasma mass spectroscopy (ICP-MS) and serum MMPs were quantified by immunoassay kits. RESULTS Serum MMP-2 and MMP-9 concentrations in arsenic-endemic population were significantly (p < 0.001) higher than those in non-endemic population. Both MMPs showed significant positive interactions with drinking water (r s = 0.208, p < 0.001 for MMP-2; r s = 0.163, p < 0.01 for MMP-9), hair (r s = 0.163, p < 0.01 for MMP-2; r s = 0.173, p < 0.01 for MMP-9) and nail (r s = 0.160, p < 0.01 for MMP-2; r s = 0.182, p < 0.001 for MMP-9) arsenic of the study subjects. MMP-2 concentrations were 1.02, 1.03 and 1.05 times, and MMP-9 concentrations were 1.03, 1.06 and 1.07 times greater for 1 unit increase in log-transformed water, hair and nail arsenic concentrations, respectively, after adjusting for covariates (age, sex, BMI, smoking habit and hypertension). Furthermore, both MMPs were increased dose-dependently when the study subjects were split into three (≤10, 10.1-50 and > 50 μg/L) groups based on the regulatory upper limit of water arsenic concentration set by WHO and Bangladesh Government. MMPs were also found to be significantly (p < 0.05) associated with each other. Finally, the concentrations of both MMPs were correlated with several circulating markers related to CVDs. CONCLUSIONS This study showed the significant positive associations and dose-response relationships of arsenic exposure with serum MMP-2 and MMP-9 concentrations. This study also showed the interactions of MMP-2 and MMP-9 concentrations with the circulating markers of CVDs suggesting the MMP-2 and MMP-9 -mediated mechanism of arsenic-induced CVDs.
Collapse
Affiliation(s)
- Md Shofikul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Nayan Chandra Mohanto
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Sharmin Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Mominul Hoque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Momotaj Jahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rabeya Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | | | - Aminur Rahman
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Abul Mandal
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.
| |
Collapse
|
24
|
Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, Korrick SA, Karagas MR. Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:999-1006. [PMID: 25793356 PMCID: PMC4590746 DOI: 10.1289/ehp.1408472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/18/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy. OBJECTIVES We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. METHODS The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which > 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24-28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18-45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy. RESULTS Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy. CONCLUSIONS In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Farzan SF, Karagas MR, Jiang J, Wu F, Liu M, Newman JD, Jasmine F, Kibriya MG, Paul-Brutus R, Parvez F, Argos M, Scannell Bryan M, Eunus M, Ahmed A, Islam T, Rakibuz-Zaman M, Hasan R, Sarwar G, Slavkovich V, Graziano J, Ahsan H, Chen Y. Gene-arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 2015. [PMID: 26220686 DOI: 10.1016/j.taap.2015.1007.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jieying Jiang
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Newman
- The Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Farzana Jasmine
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Rachelle Paul-Brutus
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria Argos
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Molly Scannell Bryan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Mahbub Eunus
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Alauddin Ahmed
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Tariqul Islam
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Muhammad Rakibuz-Zaman
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Rabiul Hasan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Golam Sarwar
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA; Department of Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Lemaire M, Negro Silva LF, Lemarié CA, Bolt AM, Flores Molina M, Krohn RM, Smits JE, Lehoux S, Mann KK. Arsenic Exposure Increases Monocyte Adhesion to the Vascular Endothelium, a Pro-Atherogenic Mechanism. PLoS One 2015; 10:e0136592. [PMID: 26332580 PMCID: PMC4557830 DOI: 10.1371/journal.pone.0136592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/05/2015] [Indexed: 01/24/2023] Open
Abstract
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.
Collapse
Affiliation(s)
- Maryse Lemaire
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Luis Fernando Negro Silva
- Division of Experimental Medicine, Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Catherine A. Lemarié
- Division of Experimental Medicine, Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Alicia M. Bolt
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Manuel Flores Molina
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Regina M. Krohn
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Judit E. Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stéphanie Lehoux
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Koren K. Mann
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
27
|
Prakash C, Soni M, Kumar V. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain. Biol Trace Elem Res 2015; 167:121-9. [PMID: 25764338 DOI: 10.1007/s12011-015-0284-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/24/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress is associated with the generation of reactive oxygen species (ROS), which is supposed to be one of the mechanisms of arsenic-induced neurodegeneration. Mitochondria, being the major source of ROS generation may present an important target of arsenic-mediated neurotoxicity. Hence, we planned the study to elucidate the possible biochemical and molecular alterations induced by arsenic exposure in rat brain mitochondria. Chronic sodium arsenite treatment (25 ppm for 12 weeks) resulted in decreased activity of mitochondrial complexes I, II, and IV followed by increased ROS generation. There was decrease in mitochondrial superoxide dismutase (MnSOD) activity in arsenic-treated rat brain further showing increased superoxide radical generation in mitochondria. The decrease in MnSOD activity might be responsible for the increased protein and lipid oxidation as observed in our study. Protein and messenger RNA (mRNA) levels of MnSOD and mitochondrial uncoupling protein 2 (UCP-2) were downregulated suggesting decreased removal of ROS in rat brain. Fourier transform infrared (FTIR) spectroscopy analysis revealed significant decrease in amide A, amide I, amide II, and Olefinic = CH stretching band area suggesting molecular alteration in proteins and lipids after arsenic treatment. The results of present study indicate that arsenic-induced disturbed mitochondrial metabolism, decreased removal of ROS, decrease in protein synthesis, and altered membrane lipid polarity and fluidity may be responsible for the mitochondrial oxidative damage in rat brain that may further be implicated as contributing factor in arsenic-induced neurodegeneration.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | | | | |
Collapse
|
28
|
Farzan SF, Chen Y, Rees JR, Zens MS, Karagas MR. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study. Toxicol Appl Pharmacol 2015; 287:93-97. [PMID: 26048586 PMCID: PMC4536141 DOI: 10.1016/j.taap.2015.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
High levels of arsenic exposure have been associated with increases in cardiovascular disease risk. However, studies of arsenic's effects at lower exposure levels are limited and few prospective studies exist in the United States using long-term arsenic exposure biomarkers. We conducted a prospective analysis of the association between toenail arsenic and cardiovascular disease mortality using longitudinal data collected on 3939 participants in the New Hampshire Skin Cancer Study. Using Cox proportional hazard models adjusted for potential confounders, we estimated hazard ratios and 95% confidence intervals associated with the risk of death from any cardiovascular disease, ischemic heart disease, and stroke, in relation to natural-log transformed toenail arsenic concentrations. In this US population, although we observed no overall association, arsenic exposure measured from toenail clipping samples was related to an increased risk of ischemic heart disease mortality among long-term smokers (as reported at baseline), with increased hazard ratios among individuals with ≥ 31 total smoking years (HR: 1.52, 95% CI: 1.02, 2.27), ≥ 30 pack-years (HR: 1.66, 95% CI: 1.12, 2.45), and among current smokers (HR: 1.69, 95% CI: 1.04, 2.75). These results are consistent with evidence from more highly exposed populations suggesting a synergistic relationship between arsenic exposure and smoking on health outcomes and support a role for lower-level arsenic exposure in ischemic heart disease mortality.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - M Scot Zens
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
29
|
Gene-arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 2015. [PMID: 26220686 DOI: 10.1016/j.taap.2015.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.
Collapse
|
30
|
Wu F, Jasmine F, Kibriya MG, Liu M, Cheng X, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Jiang J, Roy S, Paul-Brutus R, Slavkovich V, Islam T, Levy D, VanderWeele TJ, Pierce BL, Graziano JH, Ahsan H, Chen Y. Interaction between arsenic exposure from drinking water and genetic polymorphisms on cardiovascular disease in Bangladesh: a prospective case-cohort study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:451-7. [PMID: 25575156 PMCID: PMC4421763 DOI: 10.1289/ehp.1307883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/07/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epidemiologic data on genetic susceptibility to cardiovascular effects of arsenic exposure from drinking water are limited. OBJECTIVE We investigated whether the association between well-water arsenic and cardiovascular disease (CVD) differed by 170 single nucleotide polymorphisms (SNPs) in 17 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. METHOD We conducted a prospective case-cohort study nested in the Health Effects of Arsenic Longitudinal Study, with a random subcohort of 1,375 subjects and 447 incident fatal and nonfatal cases of CVD. Well-water arsenic was measured in 2000 at baseline. The CVD cases, 56 of which occurred in the subcohort, included 238 coronary heart disease cases, 165 stroke cases, and 44 deaths due to other CVD identified during follow-up from 2000 to 2012. RESULTS Of the 170 SNPs tested, multiplicative interactions between well-water arsenic and two SNPs, rs281432 in ICAM1 (padj = 0.0002) and rs3176867 in VCAM1 (padj = 0.035), were significant for CVD after adjustment for multiple testing. Compared with those with GC or CC genotype in rs281432 and lower well-water arsenic, the adjusted hazard ratio (aHR) for CVD was 1.82 (95% CI: 1.31, 2.54) for a 1-SD increase in well-water arsenic combined with the GG genotype, which was greater than expected given aHRs of 1.08 and 0.96 for separate effects of arsenic and the genotype alone, respectively. Similarly, the joint aHR for arsenic and the rs3176867 CC genotype was 1.34 (95% CI: 0.95, 1.87), greater than expected given aHRs for their separate effects of 1.02 and 0.84, respectively. CONCLUSIONS Associations between CVD and arsenic exposure may be modified by genetic variants related to endothelial dysfunction.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wade TJ, Xia Y, Mumford J, Wu K, Le XC, Sams E, Sanders WE. Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. Environ Health 2015; 14:35. [PMID: 25889926 PMCID: PMC4409992 DOI: 10.1186/s12940-015-0022-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Millions of people are at risk from the adverse effects of arsenic exposure through drinking water. Increasingly, non-cancer effects such as cardiovascular disease have been associated with drinking water arsenic exposures. However, most studies have been conducted in highly exposed populations and lacked individual measurements. OBJECTIVE To evaluate the association between cardiovascular disease and well-water arsenic exposure. METHODS We conducted a hospital based case control study in Inner Mongolia, China. Cases and controls were prospectively identified and enrolled from a large hospital in the Hangjin Hou area. Cases were patients diagnosed with cardiovascular disease and controls were patients free from cardiovascular disease, admitted for conditions unrelated to arsenic exposure. Water from the primary water source and toenail samples were collected from each subject and tested for inorganic arsenic. RESULTS Arsenic exposures were moderate with mean and median arsenic exposures of 8.9 μg/L and 13.1 μg/L, respectively. A total of 298 cases and 275 controls were enrolled. The adjusted odds ratio (AOR) and corresponding 95% confidence interval (95% CI) for a 10 μg/L increase in water arsenic were 1.19 (95% CI: 1.03, 1.38). Compared to exposures less than 10 μg/L, the AOR for water arsenic exposures above 40 μg/L was 4.05 (95% CI: 1.1-14.99, p = 0.04). Nail arsenic above 1.38 μg/g was also associated with an increased risk of cardiovascular disease. CONCLUSIONS By using standardized case definitions and collecting individual measurements of arsenic, this study addressed several limitations of previous studies. The results provide further evidence of the association between cardiovascular disease and arsenic at moderate exposures.
Collapse
Affiliation(s)
- Timothy J Wade
- United States Environmental Protection Agency, Office of Research and Development, Chapel Hill, North Carolina, USA.
| | - Yajuan Xia
- Inner Mongolia Centers for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China.
| | - Judy Mumford
- United States Environmental Protection Agency, Office of Research and Development, Chapel Hill, North Carolina, USA.
| | - Kegong Wu
- Inner Mongolia Centers for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China.
| | - X Chris Le
- University of Alberta, Edmonton, Alberta, Canada.
| | - Elizabeth Sams
- United States Environmental Protection Agency, Office of Research and Development, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
32
|
Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 2015; 331:78-99. [PMID: 25771173 DOI: 10.1016/j.tox.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/09/2015] [Accepted: 02/27/2015] [Indexed: 11/20/2022]
Abstract
The possibility of an association between inorganic arsenic (iAs) exposure and cardiovascular outcomes has received increasing attention in the literature over the past decade. The United States Environmental Protection Agency (US EPA) is currently revising its Integrated Risk Assessment System (IRIS) review of iAs, and one of the non-cancer endpoints of interest is cardiovascular disease (CVD). Despite the increased interest in this area, substantial gaps remain in the available information, particularly regarding the mechanism of action (MOA) by which iAs could cause or exacerbate CVD. Few studies specifically address the plausibility of an association between iAs and CVD at the low exposure levels which are typical in the United States (i.e., below 100 μg As/L in drinking water). We have conducted a review and evaluation of the animal, mechanistic, and human data relevant to the potential MOAs of iAs and CVD. Specifically, we evaluated the most common proposed MOAs, which include disturbance of endothelial function and hepatic dysfunction. Our analysis of the available evidence indicates that there is not a well-established MOA for iAs in the development or progression of CVD. Few human studies of the potential MOAs have addressed plausibility at low doses and the applicability of extrapolation from animal studies to humans is questionable. However, the available evidence indicates that regardless of the specific MOA, the effects of iAs on physiological processes at the cellular level appear to operate via a threshold mechanism. This finding is consistent with the lack of association of CVD with iAs exposure in humans at levels below 100 μg/L, particularly when considering important exposure and risk modifiers such as nutrition and genetics. Based on this analysis, we conclude that there are no data supporting a linear dose-response relationship between iAs and CVD, indicating this relationship has a threshold.
Collapse
|
33
|
Gossai A, Lesseur C, Farzan S, Marsit C, Karagas MR, Gilbert-Diamond D. Association between maternal urinary arsenic species and infant cord blood leptin levels in a New Hampshire Pregnancy Cohort. ENVIRONMENTAL RESEARCH 2015; 136:180-6. [PMID: 25460635 PMCID: PMC4262605 DOI: 10.1016/j.envres.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
Leptin is an important pleiotropic hormone involved in the regulation of nutrient intake and energy expenditure, and is known to influence body weight in infants and adults. High maternal levels of arsenic have been associated with reduced infant birth weight, but the mechanism of action is not yet understood. This study aimed to investigate the association between in utero arsenic exposure and infant cord blood leptin concentrations within 156 mother-infant pairs from the New Hampshire Birth Cohort Study (NHBCS) who were exposed to low to moderate levels of arsenic through well water and diet. In utero arsenic exposure was obtained from maternal second trimester urinary arsenic concentration, and plasma leptin levels were assessed through immunoassay. Results indicate that urinary arsenic species concentrations were predictive of infant cord blood leptin levels following adjustment for creatinine, infant birth weight for gestational age percentile, infant sex, maternal pregnancy-related weight gain, and maternal education level amongst 149 white mother-infant pairs in multivariate linear regression models. A doubling or 100% increase in total urinary arsenic concentration (iAs+MMA+DMA) was associated with a 10.3% (95% CI: 0.8-20.7%) increase in cord blood leptin levels. A 100% increase in either monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA) was also associated with an 8.3% (95% CI: -1.0-18.6%) and 10.3% (95% CI: 1.2-20.2%) increase in cord blood leptin levels, respectively. The association between inorganic arsenic (iAs) and cord blood leptin was of similar magnitude and direction as other arsenic species (a 100% increase in iAs was associated with a 6.5% (95% CI: -3.4-17.5%) increase in cord blood leptin levels), albeit not significant. These results suggest in utero exposure to low levels of arsenic influences cord blood leptin concentration and presents a potential mechanism by which arsenic may impact early childhood growth.
Collapse
Affiliation(s)
- Anala Gossai
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Corina Lesseur
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA
| | - Shohreh Farzan
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Carmen Marsit
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret R Karagas
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Diane Gilbert-Diamond
- Institute of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH 03755, USA; Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
34
|
Wu F, Molinaro P, Chen Y. Arsenic Exposure and Subclinical Endpoints of Cardiovascular Diseases. Curr Environ Health Rep 2014; 1:148-162. [PMID: 25013752 DOI: 10.1007/s40572-014-0011-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mechanistic evidence suggests that arsenic exposure from drinking water increases the production of reactive oxygen species and influences inflammatory responses and endothelial nitric oxide homeostasis. These arsenic-induced events may lead to endothelial dysfunction that increases the risk of atherosclerosis and cardiovascular disease. We reviewed accumulating epidemiologic evidence that evaluated the association between arsenic exposure and intermediate markers and subclinical measures that predict future cardiovascular risk. Cross-sectional studies have indicated positive associations between high or low-to-moderate levels of arsenic exposure with indices of subclinical atherosclerosis, QT interval prolongation, and circulating markers of endothelial dysfunction. The evidence is limited for other intermediate endpoints such as markers of oxidative stress and inflammation, QT dispersion, and lipid profiles. Prospective studies are needed to enhance the causal inferences of arsenic's effects on subclinical endpoints of cardiovascular disease, especially at lower arsenic exposure levels.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Peter Molinaro
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY
| |
Collapse
|
35
|
Wu F, Jasmine F, Kibriya MG, Liu M, Cheng X, Parvez F, Paul-Brutus R, Paul RR, Sarwar G, Ahmed A, Jiang J, Islam T, Slavkovich V, Rundek T, Demmer RT, Desvarieux M, Ahsan H, Chen Y. Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh. Toxicol Appl Pharmacol 2014; 276:195-203. [PMID: 24593923 DOI: 10.1016/j.taap.2014.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 11/26/2022]
Abstract
Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima-media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = -5.1 μm, 95% CI = -31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = -3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Farzana Jasmine
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Xin Cheng
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Rachelle Paul-Brutus
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Jieying Jiang
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ryan T Demmer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Moise Desvarieux
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, The University of Chicago, Chicago, IL, USA; The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Stea F, Bianchi F, Cori L, Sicari R. Cardiovascular effects of arsenic: clinical and epidemiological findings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:244-51. [PMID: 24019140 DOI: 10.1007/s11356-013-2113-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 05/20/2023]
Abstract
Several population studies relate exposure to high levels of arsenic with an increased incidence of ischemic heart disease and cardiovascular mortality. An association has been shown between exposure to high levels of arsenic and cardiovascular risk factors such as hypertension and diabetes mellitus, and vascular damage such as subclinical carotid atherosclerosis. The mechanisms underlying these phenomena are currently being studied and appear to indicate an alteration of vascular function. However, the effects of low levels of exposure to arsenic and their potential detrimental cardiovascular effect are less explored. The article provides an overview of the pathophysiologic mechanisms linking low-level arsenic exposure to the occurrence of cardiovascular disease and its complications, and some potential preventive strategies to implement.
Collapse
Affiliation(s)
- Francesco Stea
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | |
Collapse
|
37
|
Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW. Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 2013; 224:130-40. [PMID: 24157283 DOI: 10.1016/j.toxlet.2013.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
Arsenic (As), a well-known high toxic metal, is an important environmental and industrial contaminant, and it induces oxidative stress, which causes many adverse health effects and diseases in humans, particularly in inorganic As (iAs) more harmful than organic As. Recently, epidemiological studies have suggested a possible relationship between iAs exposure and neurodegenerative disease development. However, the toxicological effects and underlying mechanisms of iAs-induced neuronal cell injuries are mostly unknown. The present study demonstrated that iAs significantly decreased cell viability and induced apoptosis in Neuro-2a cells. iAs also increased oxidative stress damage (production of malondialdehyde (MDA) and ROS, and reduction of Nrf2 and thioredoxin protein expression) and induced several features of mitochondria-dependent apoptotic signals, including: mitochondrial dysfunction, the activations of PARP and caspase cascades, and the increase in caspase-3 activity. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively reversed these iAs-induced responses. iAs also increased the phosphorylation of JNK and ERK1/2, but did not that p38-MAPK, in treated Neuro-2a cells. NAC and the specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) abrogated iAs-induced cell cytotoxicity, caspase-3/-7 activity, and JNK and ERK1/2 activation. Additionally, exposure of Neuro-2a cells to iAs triggered endoplasmic reticulum (ER) stress identified through several key molecules (GRP 78, CHOP, XBP-1, and caspase-12), which was prevented by NAC. Transfection with GRP 78- and CHOP-specific si-RNA dramatically suppressed GRP 78 and CHOP expression, respectively, and attenuated the activations of caspase-12, -7, and -3 in iAs-exposed cells. Therefore, these results indicate that iAs induces ROS causing neuronal cell death via both JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-triggered apoptosis pathways.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Department of Physiology, and Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, De Vizcaya-Ruiz A, Del Razo LM. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1090-6. [PMID: 23757599 PMCID: PMC3764073 DOI: 10.1289/ehp.1205994] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 06/07/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk. OBJECTIVES The aim of this study was to investigate associations of arsenic exposure with cIMT, ADMA, and endothelial adhesion molecules [soluble intercellular cell adhesion molecule-1 (sICAM-1); soluble vascular cell adhesion molecule-1 (sVCAM-1)] in children who had been exposed to environmental inorganic arsenic (iAs). METHODS We conducted a cross-sectional study in 199 children 3-14 years of age who were residents of Zimapan, México. We evaluated cIMT using ultrasonography, and plasma lipid profiles by standard methods. We analyzed ADMA, sICAM-1, and sVCAM-1 by ELISA, and measured the concentrations of total speciated arsenic (tAs) in urine using hydride generation cryotrapping atomic absorption spectrometry. RESULTS In the multiple linear regression model for cIMT, tAs categories were positively associated with cIMT increase. The estimated cIMT diameter was greater in 35- to 70-ng/mL and > 70-ng/mL groups (0.035 mm and 0.058 mm per 1-ng/mL increase in urinary tAs, respectively), compared with the < 35-ng/mL group. In addition to tAs level, plasma ADMA was a significant predictor of cIMT. In the adjusted regression model, cIMT, percent iAs, and plasma sVCAM-1 were significant predictors of ADMA levels (e.g., 0.419-μmol/L increase in ADMA per 1-mm increase in cIMT). CONCLUSIONS Arsenic exposure and plasma ADMA levels were positively associated with cIMT in a population of Mexican children with environmental arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu Y, Tokar EJ, Person RJ, Orihuela RG, Ngalame NNO, Waalkes MP. Recruitment of normal stem cells to an oncogenic phenotype by noncontiguous carcinogen-transformed epithelia depends on the transforming carcinogen. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:944-950. [PMID: 23687063 PMCID: PMC3734505 DOI: 10.1289/ehp.1306714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) drive tumor initiation, progression, and metastasis. The microenvironment is critical to the fate of CSCs. We have found that a normal stem cell (NSC) line from human prostate (WPE-stem) is recruited into CSC-like cells by nearby, but noncontiguous, arsenic-transformed isogenic malignant epithelial cells (MECs). OBJECTIVE It is unknown whether this recruitment of NSCs into CSCs by noncontact co-culture is specific to arsenic-transformed MECs. Thus, we used co-culture to examine the effects of neighboring noncontiguous cadmium-transformed MECs (Cd-MECs) and N-methyl-N-nitrosourea-transformed MECs (MNU-MECs) on NSCs. RESULTS After 2 weeks of noncontact Cd-MEC co-culture, NSCs showed elevated metalloproteinase-9 (MMP-9) and MMP-2 secretion, increased invasiveness, increased colony formation, decreased PTEN expression, and formation of aggressive, highly branched duct-like structures from single cells in Matrigel, all characteristics typical of cancer cells. These oncogenic characteristics did not occur in NSCs co-cultured with MNU-MECs. The NSCs co-cultured with Cd-MECs retained self-renewal capacity, as evidenced by multiple passages (> 3) of structures formed in Matrigel. Cd-MEC-co-cultured NSCs also showed molecular (increased VIM, SNAIL1, and TWIST1 expression; decreased E-CAD expression) and morphologic evidence of epithelial-to-mesenchymal transition typical for conversion to CSCs. Dysregulated expression of SC-renewal genes, including ABCG2, OCT-4, and WNT-3, also occurred in NSCs during oncogenic transformation induced by noncontact co-culture with Cd-MECs. CONCLUSIONS These data indicate that Cd-MECs can recruit nearby NSCs into a CSC-like phenotype, but MNU-MECs do not. Thus, the recruitment of NSCs into CSCs by nearby MECs is dependent on the carcinogen originally used to malignantly transform the MECs.
Collapse
Affiliation(s)
- Yuanyuan Xu
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chen Y, Wu F, Graziano JH, Parvez F, Liu M, Paul RR, Shaheen I, Sarwar G, Ahmed A, Islam T, Slavkovich V, Rundek T, Demmer RT, Desvarieux M, Ahsan H. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 2013; 178:372-81. [PMID: 23788675 DOI: 10.1093/aje/kwt001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010-2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: -0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes.
Collapse
Affiliation(s)
- Yu Chen
- Departments of Population Health and Environmental Medicine, School of Medicine, New York University, 650 First Avenue, Room 510, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water. J Hypertens 2013. [PMID: 23203141 DOI: 10.1097/hjh.0b013e32835c175f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Essential hypertension is associated with chronic exposure to high levels of inorganic arsenic in drinking water. However, early signs of risk for developing hypertension remain unclear in people exposed to chronic low-to-moderate inorganic arsenic. OBJECTIVE We evaluated cardiovascular stress reactivity and recovery in healthy, normotensive, middle-aged men living in an arsenic-endemic region of Romania. METHODS Unexposed (n = 16) and exposed (n = 19) participants were sampled from communities based on WHO limits for inorganic arsenic in drinking water (<10 μg/l). Water sources and urine samples were collected and analyzed for inorganic arsenic and its metabolites. Functional evaluation of blood pressure included clinical, anticipatory, cold pressor test, and recovery measurements. Blood pressure hyperreactivity was defined as a combined stress-induced change in SBP (> 20 mmHg) and DBP (>15 mmHg). RESULTS Drinking water inorganic arsenic averaged 40.2 ± 30.4 and 1.0 ± 0.2 μg/l for the exposed and unexposed groups, respectively (P < 0.001). Compared to the unexposed group, the exposed group expressed a greater probability of blood pressure hyperreactivity to both anticipatory stress (47.4 vs. 12.5%; P = 0.035) and cold stress (73.7 vs. 37.5%; P = 0.044). Moreover, the exposed group exhibited attenuated blood pressure recovery from stress and a greater probability of persistent hypertensive responses (47.4 vs. 12.5%; P = 0.035). CONCLUSIONS Inorganic arsenic exposure increased stress-induced blood pressure hyperreactivity and poor blood pressure recovery, including persistent hypertensive responses in otherwise healthy, clinically normotensive men. Drinking water containing even low-to-moderate inorganic arsenic may act as a sympathetic nervous system trigger for hypertension risk.
Collapse
|
42
|
Karim MR, Rahman M, Islam K, Mamun AA, Hossain S, Hossain E, Aziz A, Yeasmin F, Agarwal S, Hossain MI, Saud ZA, Nikkon F, Hossain M, Mandal A, Jenkins RO, Haris PI, Miyataka H, Himeno S, Hossain K. Increases in Oxidized Low-Density Lipoprotein and Other Inflammatory and Adhesion Molecules With a Concomitant Decrease in High-Density Lipoprotein in the Individuals Exposed to Arsenic in Bangladesh. Toxicol Sci 2013; 135:17-25. [DOI: 10.1093/toxsci/kft130] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 2012; 14:542-55. [PMID: 22968315 PMCID: PMC3483370 DOI: 10.1007/s11883-012-0280-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In epidemiologic studies, high-chronic arsenic exposure has been associated with cardiovascular disease, despite methodological limitations. At low-moderate arsenic levels, the evidence was inconclusive. Here, we update a previous systematic review (Am J Epidemiol 2005;162:1037-49) examining the association between arsenic exposure and cardiovascular disease. Eighteen studies published since 2005 were combined with 13 studies from the previous review. We calculated pooled relative risks by comparing the highest versus the lowest exposure category across studies. For high exposure (arsenic in drinking water > 50 μg/L), the pooled relative risks (95 % confidence interval) for cardiovascular disease, coronary heart disease, stroke, and peripheral arterial disease were 1.32 (95 % CI:1.05-1.67), 1.89 (95 % CI:1.33-2.69), 1.08 (95 % CI:0.98-1.19), and 2.17 (95 % CI:1.47-3.20), respectively. At low-moderate arsenic levels, the evidence was inconclusive. Our review strengthens the evidence for a causal association between high-chronic arsenic exposure and clinical cardiovascular endpoints. Additional high quality studies are needed at low-moderate arsenic levels.
Collapse
Affiliation(s)
- Katherine Moon
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W7604, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
44
|
Zheng LY, Umans JG, Tellez-Plaza M, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, Guallar E, Howard BV, Weaver VM, Navas-Acien A. Urine arsenic and prevalent albuminuria: evidence from a population-based study. Am J Kidney Dis 2012; 61:385-94. [PMID: 23142528 DOI: 10.1053/j.ajkd.2012.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long-term arsenic exposure is a major global health problem. However, few epidemiologic studies have evaluated the association of arsenic with kidney measures. Our objective was to evaluate the cross-sectional association between inorganic arsenic exposure and albuminuria in American Indian adults from rural areas of Arizona, Oklahoma, and North and South Dakota. STUDY DESIGN Cross-sectional. SETTING & PARTIPANTS: Strong Heart Study locations in Arizona, Oklahoma, and North and South Dakota. 3,821 American Indian men and women aged 45-74 years with urine arsenic and albumin measurements. PREDICTOR Urine arsenic. OUTCOMES Urine albumin-creatinine ratio and albuminuria status. MEASUREMENTS Arsenic exposure was estimated by measuring total urine arsenic and urine arsenic species using inductively coupled plasma mass spectrometry (ICPMS) and high-performance liquid chromatography-ICPMS, respectively. Urine albumin was measured by automated nephelometric immunochemistry. RESULTS The prevalence of albuminuria (albumin-creatinine ratio ≥30 mg/g) was 30%. Median value for the sum of inorganic and methylated arsenic species was 9.7 (IQR, 5.8-15.6) μg per gram of creatinine. Multivariable-adjusted prevalence ratios of albuminuria (albumin-creatinine ratio ≥30 mg/g) comparing the 3 highest to lowest quartiles of the sum of inorganic and methylated arsenic species were 1.16 (95% CI, 1.00-1.34), 1.24 (95% CI, 1.07-1.43), and 1.55 (95% CI, 1.35-1.78), respectively (P for trend <0.001). The association between urine arsenic and albuminuria was observed across all participant subgroups evaluated and was evident for both micro- and macroalbuminuria. LIMITATIONS The cross-sectional design cannot rule out reverse causation. CONCLUSIONS Increasing urine arsenic concentrations were cross-sectionally associated with increased albuminuria in a rural US population with a high burden of diabetes and obesity. Prospective epidemiologic and mechanistic evidence is needed to understand the role of arsenic as a kidney disease risk factor.
Collapse
Affiliation(s)
- Laura Y Zheng
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu F, Jasmine F, Kibriya MG, Liu M, Wójcik O, Parvez F, Rahaman R, Roy S, Paul-Brutus R, Segers S, Slavkovich V, Islam T, Levy D, Mey JL, van Geen A, Graziano JH, Ahsan H, Chen Y. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers. Am J Epidemiol 2012; 175:1252-61. [PMID: 22534204 PMCID: PMC3372314 DOI: 10.1093/aje/kwr464] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/14/2011] [Indexed: 01/20/2023] Open
Abstract
The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Chen
- Correspondence to Dr. Yu Chen, Departments of Environmental Medicine and Medicine, New York University School of Medicine, 650 First Avenue, Room 510, New York, NY 10016 (e-mail: )
| |
Collapse
|
46
|
Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol 2012; 86:849-56. [PMID: 22422340 DOI: 10.1007/s00204-012-0803-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
Abstract
Epidemiological and experimental studies have demonstrated the atherogenic effects of environmental toxicant arsenic and fluoride. Inflammatory mechanism plays an important role in the pathogenesis of atherosclerosis. The aim of the present study is to determine the effect of chronic exposure to arsenic and fluoride alone or combined on inflammatory response in rabbit aorta. We analyzed the expression of genes involved in leukocyte adhesion [P-selectin (P-sel) and vascular cell adhesion molecule-1(VCAM-1)], recruitment and transendothelial migration of leukocyte [interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)] and those involved in pro-inflammatory cytokines [interleukin-6 (IL-6)]. We found that fluoride and arsenic alone or combined increased the expression of VCAM-1, P-sel, MCP-1, IL-8, and IL-6 at the RNA and protein levels. The gene expressions of inflammatory-related molecules were attenuated when co-exposure to the two toxicants compared with just one of them. We also examined the lipid profile of rabbits exposed to fluoride and (or) arsenic. The results showed that fluoride slightly increased the serum lipids but arsenic decreased serum triglyceride. We showed that inflammatory responses but not lipid metabolic disorder may play a crucial role in the mechanism of the cardiovascular toxicity of arsenic and fluoride.
Collapse
|
47
|
Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic. Toxicol Appl Pharmacol 2012; 259:187-94. [DOI: 10.1016/j.taap.2011.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/19/2022]
|
48
|
Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol 2011; 2011:870125. [PMID: 21912545 PMCID: PMC3168898 DOI: 10.1155/2011/870125] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/28/2011] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.
Collapse
Affiliation(s)
- Eman M. Alissa
- Faculty of Medicine, King Abdul Aziz University, P.O. Box 12713, Jeddah 21483, Saudi Arabia
| | - Gordon A. Ferns
- Institute for Science & Technology in Medicine, Faculty of Health, University of Keele, Staffordshire ST4 7QB, UK
| |
Collapse
|
49
|
Chen Y, Graziano JH, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G, Levy D, van Geen A, Ahsan H. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 2011; 342:d2431. [PMID: 21546419 PMCID: PMC3088786 DOI: 10.1136/bmj.d2431] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association. DESIGN Prospective cohort study with arsenic exposure measured in drinking water from wells and urine. SETTING General population in Araihazar, Bangladesh. PARTICIPANTS 11,746 men and women who provided urine samples in 2000 and were followed up for an average of 6.6 years. MAIN OUTCOME MEASURE Death from cardiovascular disease. RESULTS 198 people died from diseases of circulatory system, accounting for 43% of total mortality in the population. The mortality rate for cardiovascular disease was 214.3 per 100,000 person years in people drinking water containing <12.0 µg/L arsenic, compared with 271.1 per 100,000 person years in people drinking water with ≥ 12.0 µg/L arsenic. There was a dose-response relation between exposure to arsenic in well water assessed at baseline and mortality from ischaemic heart disease and other heart disease; the hazard ratios in increasing quarters of arsenic concentration in well water (0.1-12.0, 12.1-62.0, 62.1-148.0, and 148.1-864.0 µg/L) were 1.00 (reference), 1.22 (0.65 to 2.32), 1.35 (0.71 to 2.57), and 1.92 (1.07 to 3.43) (P = 0.0019 for trend), respectively, after adjustment for potential confounders including age, sex, smoking status, educational attainment, body mass index (BMI), and changes in urinary arsenic concentration since baseline. Similar associations were observed when baseline total urinary arsenic was used as the exposure variable and for mortality from ischaemic heart disease specifically. The data indicate a significant synergistic interaction between arsenic exposure and cigarette smoking in mortality from ischaemic heart disease and other heart disease. In particular, the hazard ratio for the joint effect of a moderate level of arsenic exposure (middle third of well arsenic concentration 25.3-114.0 µg/L, mean 63.5 µg/L) and cigarette smoking on mortality from heart disease was greater than the sum of the hazard ratios associated with their individual effect (relative excess risk for interaction 1.56, 0.05 to 3.14; P = 0.010). CONCLUSIONS Exposure to arsenic in drinking water is adversely associated with mortality from heart disease, especially among smokers.
Collapse
Affiliation(s)
- Yu Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Protective Effects of Selenium, Calcium, and Magnesium Against Arsenic-Induced Oxidative Stress in Male Rats. Arh Hig Rada Toksikol 2010; 61:153-9. [DOI: 10.2478/10004-1254-61-2010-1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective Effects of Selenium, Calcium, and Magnesium Against Arsenic-Induced Oxidative Stress in Male RatsInorganic arsenic is a potent carcinogen and environmental pollutant. More than one hundred million people are reported to be exposed to elevated concentrations of arsenic mainly via drinking water. Essential trace elements can affect toxicity of metals by interacting with metals at the primary site of action and can also modify the body's response to toxic metals by altering their metabolism and transport. This study investigates the effects of concomitant administration of selenium, magnesium, and calcium with arsenic on blood biochemistry and oxidative stress. Selenium was the most effective in reducing arsenic-induced inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity and liver oxidative stress. Calcium and magnesium also showed favourable effects on haematological and other biochemical parameters. Because selenium was the most effective, it should be added to chelation therapy to achieve the best protective effects against arsenic poisoning in humans.
Collapse
|