1
|
De Battistis F, Djordjevic AB, Saso L, Mantovani A. Constitutive androstane receptor, liver pathophysiology and chemical contaminants: current evidence and perspectives. Front Endocrinol (Lausanne) 2025; 16:1472563. [PMID: 40255499 PMCID: PMC12005993 DOI: 10.3389/fendo.2025.1472563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The Constitutive Androstane Receptor (CAR) (NR1I3), a pivotal member of the xenosensor family, plays a key role in the hepatic detoxification of xenobiotic and endobiotic chemicals through the induction of the expression of drug-metabolizing enzymes and transporters. CAR's involvement extends beyond detoxification, influencing gluconeogenesis, lipogenesis, bile acid regulation, and cellular processes such as proliferation, tissue regeneration, and carcinogenesis. This review explores CAR regulation by various factors, highlighting its role in mediating metabolic changes induced by environmental contaminants. Methods A literature search was conducted to identify all articles on the PubMed website in which the CAR-contaminant and CAR-hepatic steatosis relationship is analyzed in both in vitro and in vivo models. Results Numerous contaminants, such as perfluorooctanoic acid (PFOA), Zearalenone mycotoxin, PCB, triazole fungicide propiconazole can activate hepatic nuclear receptors contributing to the development of steatosis through increased de novo lipogenesis, decreased fatty acid oxidation, increased hepatic lipid uptake, and decreased gluconeogenesis. Indirect CAR activation pathways, particularly involving PFOA, are discussed in the context of PPARα-independent mechanisms leading to hepatotoxicity, including hepatocellular hypertrophy and necrosis, and their implications in nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). The prevalence of NAFLD, a significant component of metabolic syndrome, underscores the importance of understanding CAR's role in its pathogenesis. Conclusions Experimental and epidemiological data suggest that endocrine disruptors, especially pesticides, play a significant role in NAFLD's development and progression via CAR-regulated pathways. This review advocates for the inclusion of modern toxicological risk assessment tools, such as New Approach Methodologies (NAMs), Adverse Outcome Pathways (AOPs), and Integrated Approaches to Testing and Assessment (IATA), to elucidate CAR-mediated effects and enhance regulatory frameworks.
Collapse
Affiliation(s)
- Francesca De Battistis
- Department of Food Safety, Nutrition, and Veterinary Public Health, Italian National Institute of Health, Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Alberto Mantovani
- Italian National Food Safety Committee, Rome, Italy
- Study Centre KOS - Science, Art, Society, Rome, Italy
| |
Collapse
|
2
|
Huacachino AA, Chung A, Sharp K, Penning TM. Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism. J Steroid Biochem Mol Biol 2025; 246:106641. [PMID: 39571823 PMCID: PMC11652220 DOI: 10.1016/j.jsbmb.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function. One mechanism of steroid hormone action is the pre-receptor regulation of ligand access to steroid hormone receptors by aldo-keto reductases. Here we report PFOA inhibition of AKR family 1 member C2 (AKR1C2), leading to dysregulation of androgen action. Spectrofluorimetric inhibitor screens identified PFOA as a competitive and tight binding inhibitor of AKR1C2, whose role is to inactivate 5α-dihydrotestosterone (5α-DHT). Further site directed mutagenesis studies along with molecular docking simulations revealed the importance of residue Valine 54 in mediating AKR1C2 inhibitor specificity. Binding site restrictions were explored by testing inhibition of other related PFAS chemicals, confirming that steric hinderance is a key factor. Furthermore, radiochromatography using HPLC and in line radiometric detection confirmed the accumulation of 5α-DHT as a result of PFOA inhibition of AKR1C2. We showed that PFOA could enhance the transactivation of AR in reporter genes assays in which 5α-DHT metabolism was blocked by AKR1C2 inhibition in HeLa cells. Taken together, these data suggest PFOA has a role in disrupting androgen action through inhibiting AKR1C2. Our work identifies an EDC function for PFOA not previously revealed.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Chung
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Xu L, Li Y, Chen L, Wang S, Ding X, Zhu P, Jiao J. Transplacental transfer of perfluorinated and poly-fluorinated substances in maternal-cord serum and association with birth weight: A birth cohort study, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124943. [PMID: 39260555 DOI: 10.1016/j.envpol.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Although the effects of traditional perfluorinated and polyfluorinated substances (PFASs) exposure have been extensively explored, research on novel PFASs remains limited, and there is a lack of data regarding their placental transfer and fetal impact. Herein, we aimed to examine maternal and fetal PFASs exposure levels, placental transfer efficiency (TTE), and the consequences of prenatal exposure on birth weight. The study included 214 mother-child pairs recruited in Wuxi birth cohort from 2019 to 2021. Twenty-three PFASs were quantified in maternal serum during the second trimester and umbilical serum during delivery. Median concentrations of ∑23PFASs in maternal and cord sera were 9.34 and 6.88 ng/mL, respectively. The novel alternatives exhibited elevated levels of maternal and fetal exposure, such as perfluorovaleric acid (PFPeA, 2.00 ng/mL and 1.66 ng/mL, respectively) and perfluorohexane sulfonate (PFHxS, 1.77 and 1.14 ng/mL, respectively). With increasing carbon chain length, the TTE of perfluorocarbonic acid (PFCAs) displayed a pattern of initially decreasing before subsequently increasing, with novel alternatives exhibiting a relatively high TTE. Multiple linear regression showed that exposure to perfluorobutane sulfonate (PFBS) and PFPeA in cord serum positively correlated with the birth weight of female infants (β = 231.04 g, 95% confidence interval [CI]: 21.73-440.36; β = 121.26 g, 95% CI: 29.51-213.00). No nonlinear relationship was observed between cord serum PFASs and birth weight. The weighted quantile sum (WQS) regression analysis has reaffirmed that PFPeA and PFBS were predominant contributors to the positive correlation observed between the mixture of PFASs and birth weight. Our findings suggest that novel PFASs may exhibit a heightened susceptibility for transplacental transfer and that exposure to PFBS and PFPeA during pregnancy could be linked to increased birth weight.
Collapse
Affiliation(s)
- Lingling Xu
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Limei Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Shunan Wang
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Pengfei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Jiandong Jiao
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China.
| |
Collapse
|
4
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
5
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 PMCID: PMC11567803 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
6
|
Tsai WJ, Hsieh WS, Chen PC, Liu CY. Prenatal Perfluoroalkyl Substance Exposure in Association with Global Histone Post-Translational Methylation in 2-Year-Old Children. TOXICS 2024; 12:876. [PMID: 39771091 PMCID: PMC11679469 DOI: 10.3390/toxics12120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Perfluoroalkyl substances (PFASs) have elimination half-lives in years in humans and are persistent in the environment. PFASs can cross the placenta and impact fetal development. Exposure to PFASs may lead to adverse effects through epigenetic mechanisms. This study aimed to investigate whether prenatal exposure to perfluorooctyl sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA) was associated with global histone methylation level changes among the 130 2-year-old children followed-up in a birth cohort study in Taiwan. PFOS, PFOA, PFNA, and PFUA were measured by UHPLC/MS/MS in cord blood. Global histone methylation levels were measured from the blood leukocytes of 2-year-old children by Western blotting. Multivariable regression analyses were applied to adjust for potential confounding effects. Among the 2-year-old children, an IQR increase in the natural log-transformed PFUA exposure was associated with an increased H3K4me3 level by 2.76-fold (95%CI = (0.79, 4.73), p = 0.007). PFOA and PFNA exposures was associated with a decreased H3K27me3 level by 2.35-fold (95%CI = (-4.29, -0.41), p = 0.01) and 2.01-fold (95%CI = (-4.00, -0.03), p = 0.04), respectively. Our findings suggest that prenatal PFAS exposure affected histone post-translational modifications.
Collapse
Affiliation(s)
- Wan-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
| | - Wu-Shiun Hsieh
- Department of Pediatrics, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
7
|
Wang J, Tran LN, Mendoza J, Chen K, Tian L, Zhao Y, Liu J, Lin YH. Thermal transformations of perfluorooctanoic acid (PFOA): Mechanisms, volatile organofluorine emissions, and implications to thermal regeneration of granular activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135737. [PMID: 39259991 DOI: 10.1016/j.jhazmat.2024.135737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Thermal treatment is effective for the removal of perfluorooctanoic acid (PFOA). However, how temperatures, heating methods, and granular activated carbon (GAC) influence pyrolysis of PFOA, and emission risks are not fully understood. We studied thermal behaviors of PFOA at various conditions and analyzed gaseous products using real-time detection technologies and gas chromatography-mass spectrometry (GC-MS). The thermal decomposition of PFOA is surface-mediated. On the surface of quartz, PFOA decomposed into perfluoro-1-heptene and perfluoro-2-heptene, while on GAC, it tended to decompose into 1 H-perfluoroheptane (C7HF15). Neutral PFOA started evaporating around 100 ℃ without decomposition in ramp heating. During pyrolysis, when PFOA was pre-adsorbed onto GAC, it was mineralized into SiF4 and produced more than 45 volatile organic fluorine (VOF) byproducts, including perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs). The VOF products were longer-chain (hydro)fluorocarbons (C4-C7) at low temperatures (< 500 ℃) and became shorter-chain (C1-C4) at higher temperatures (> 600 ℃). PFOA transformations include decarboxylation, VOF desorption, further organofluorine decomposition and mineralization in ramp heating of PFOA-laden GAC. Decarboxylation initiates at 120 ℃, but other processes require higher temperatures (>200 ℃). These results offer valuable information regarding the thermal regeneration of PFAS-laden GAC and further VOF control with the afterburner or thermal oxidizer.
Collapse
Affiliation(s)
- Junli Wang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Lillian N Tran
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Jose Mendoza
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Linhui Tian
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Yuwei Zhao
- Biotechnology Development and Applications Group, APTIM, 17 Princess Rd., Lawrenceville, NJ 08648, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
8
|
Dui W, Smith MP, Bartock SH. Development, validation, and clinical assessment of a liquid chromatography-tandem mass spectrometry serum assay for per- and polyfluoroalkyl substances (PFAS) recommended by the National Academies of Science, Engineering, and Medicine (NASEM). Anal Bioanal Chem 2024; 416:6333-6344. [PMID: 39269501 PMCID: PMC11541307 DOI: 10.1007/s00216-024-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry, residential, and consumer products. Studies have shown associations between high PFAS exposure and adverse health effects. In 2022, the National Academies of Science, Engineering, and Medicine (NASEM) published Guidance on PFAS Exposure, Testing, and Clinical Follow-up providing laboratory and clinical direction. The Guidance suggests nine PFAS should be measured in serum or plasma specimens and summed to provide a total PFAS concentration using a NASEM-recommended method. Follow-up clinical recommendations are based on the calculated PFAS NASEM summation. We developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in accordance with NASEM recommendations but distinguished by the ability to separate closely related structural isomers. As part of our validation, PFAS prevalence was evaluated in a population survey comprised of clinical donor and remnant specimens (n = 1023 in total). In this study, 82.2% of the specimens had PFAS NASEM summations of 2 to < 20 ng/mL and 2.5% had a summation ≥ 20 ng/mL. The median PFAS NASEM summation was 4.65 ng/mL in this study, lower than the 7.74 ng/mL median observed in the 2017-2020 Centers for Disease Control and Prevention, National Health and Nutrition Examination Survey (n = 3072). This lower median PFAS NASEM summation may reflect a decline in PFAS population levels over time or sample population exposure differences.
Collapse
Affiliation(s)
- Wen Dui
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA
| | - Michael P Smith
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA
| | - Sarah H Bartock
- Quest Diagnostics, 14225 Newbrook Drive, Chantilly, VA, 20151, USA.
| |
Collapse
|
9
|
Bjørke-Monsen AL, Holstad K, Huber S, Averina M, Bolann B, Brox J. PFAS exposure is associated with an unfavourable metabolic profile in infants six months of age. ENVIRONMENT INTERNATIONAL 2024; 193:109121. [PMID: 39515038 DOI: 10.1016/j.envint.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Exposure to perfluoroalkyl substances (PFAS) are reported to have numerous negative health effects and children are especially vulnerable. The aim of this study was to investigate whether maternal and infant PFAS burden have any impact on prenatal and postnatal growth, liver and lipid parameters in infants at age six months. Data on diet and growth parameters, as well as blood samples were collected from healthy pregnant women in week 18 and in the women and their infants at six months postpartum. The blood samples were analysed for liver enzymes, blood lipids and PFAS. Maternal perfluoroalkyl carboxylic acids (PFCA) and fish for dinner ≥ 3 days per week in pregnancy week 18 were associated with reduced birth weight and increased percent weight gain the first six months of life. Infant PFCA concentrations were positively associated with serum alanine aminotransferase and total- and LDL-cholesterol concentrations at six months of age. Our data demonstrate that prenatal and postnatal PFAS exposure are associated with an unfavourable metabolic profile at a very young age. This pattern is concerning as it may be linked to early conditioning of later metabolic disease. It is vital to reduce PFAS exposure in women of fertile age in order to prevent development of metabolic disease in the next generation.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Laboratory of Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway; Laboratory of Medical Biochemistry, Førde Hospital Trust, Førde, Norway.
| | - Kristin Holstad
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Bolann
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
10
|
Jiang JY, How CM, Huang CW, Luo YS, Wei CC. Comparing the obesogenic effect and regulatory mechanisms of long-term exposure to per/polyfluoroalkyl substances with different terminal groups in Caenorhabditis elegans. CHEMOSPHERE 2024; 365:143396. [PMID: 39313077 DOI: 10.1016/j.chemosphere.2024.143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Per/polyfluoroalkyl substances (PFASs) are ubiquitous, bioaccumulative, and recalcitrant contaminants, posing global exposure and health risks. The effects of chemical structures on toxicities and the mechanisms of their obesogenic effects were largely unclear. This study used the model organism Caenorhabditis elegans to assess the impact of long-term exposure to different PFASs (PFNA, PFOSA, PFBS, PFHxS, 6:2 FTS, 4:2 FTS, PFOA, and PFOS) on growth and lipid metabolism and discussed the obesogenic mechanisms of selected PFASs. The growth assays indicated longer carbon-fluorine (-CF) chains and total fluorine atoms increased developmental toxicity of PFASs, while at 8 -CF chain-length, PFNA (-COOH terminal), PFOS (-SO3 terminal), and PFOSA (-SO2NH2 terminal) exhibited differential growth inhibition. With the toxicity ranking of PFNA > PFOS > PFOSA, all PFASs significantly induced total lipid accumulation and perturbed the lipid composition in C. elegans. All three PFASs significantly induced lipogenesis gene expression and partially suppressed lipolysis genes. The results suggested that the disruption of lipid metabolism of PFOSA depends on sbp-1, while PFNA and PFOS depend on nhr-49. In conclusion, long-term exposure to PFNA, PFOSA, and PFOS triggers obesogenic effects in organisms by distinct molecular mechanisms.
Collapse
Affiliation(s)
- Jia-Yu Jiang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Lucas JH, Wang Q, Meehan-Atrash J, Pang C, Rahman I. Developmental PFOS exposure alters lung inflammation and barrier integrity in juvenile mice. Toxicol Sci 2024; 201:48-60. [PMID: 38830033 PMCID: PMC11347778 DOI: 10.1093/toxsci/kfae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Emerging epidemiological evidence indicates perfluorooctane sulfonic acid (PFOS) is increasingly associated with asthma and respiratory viral infections. Animal studies suggest PFOS disrupts lung development and immuno-inflammatory responses, but little is known about the potential consequences on respiratory health and disease risk. Importantly, PFOS exposure during the critical stages of lung development may increase disease risk later in life. Thus, we hypothesized that developmental PFOS exposure will affect lung inflammation and alveolar/airway development in a sex-dependent manner. To address this knowledge gap, timed pregnant Balb/cJ dams were orally dosed with a PFOS (1.0 or 2.0 mg/kg/d) injected mealworm or a vehicle control daily from gestational day (GD) 0.5 to postnatal day (PND) 21, and offspring were sacrificed at PND 22-23. PFOS-exposed male offspring displayed increased alveolar septa thickness. Occludin was also downregulated in the lungs after PFOS exposure in mice, indicative of barrier dysfunction. BALF macrophages were significantly elevated at 2.0 mg/kg/d PFOS in both sexes compared with vehicles, whereas BALF cytokines (TNF-α, IL-6, KC, MIP-1α, MIP-1β, and MCP-1) were suppressed in PFOS-exposed male offspring compared with vehicle controls. Multiplex nucleic acid hybridization assay showed male-specific downregulation of cytokine gene expression in PFOS-exposed mice compared with vehicle mice. Overall, these results demonstrate PFOS exposure exhibits male-specific adverse effects on lung development and inflammation in juvenile offspring, possibly predisposing them to later-in-life respiratory disease. Further research is required to elucidate the mechanisms underlying the sex-differentiated pulmonary toxicity of PFOS.
Collapse
Affiliation(s)
- Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jiries Meehan-Atrash
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Cortney Pang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
12
|
More S, Bampidis V, Benford D, Bragard C, Hernandez‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mennes W, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Fletcher T, Greiner M, Ntzani E, Pearce N, Vinceti M, Vrijheid M, Georgiadis M, Gervelmeyer A, Halldorsson TI. Scientific Committee guidance on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. EFSA J 2024; 22:e8866. [PMID: 38974922 PMCID: PMC11224774 DOI: 10.2903/j.efsa.2024.8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
EFSA requested its Scientific Committee to prepare a guidance document on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. The guidance document provides an introduction to epidemiological studies and illustrates the typical biases, which may be present in different epidemiological study designs. It then describes key epidemiological concepts relevant for evidence appraisal. This includes brief explanations for measures of association, exposure assessment, statistical inference, systematic error and effect modification. The guidance then describes the concept of external validity and the principles of appraising epidemiological studies. The customisation of the study appraisal process is explained including tailoring of tools for assessing the risk of bias (RoB). Several examples of appraising experimental and observational studies using a RoB tool are annexed to the document to illustrate the application of the approach. The latter part of this guidance focuses on different steps of evidence integration, first within and then across different streams of evidence. With respect to risk characterisation, the guidance considers how evidence from human epidemiological studies can be used in dose-response modelling with several different options being presented. Finally, the guidance addresses the application of uncertainty factors in risk characterisation when using evidence from human epidemiological studies.
Collapse
|
13
|
González-Alvarez ME, Antwi-Boasiako C, Keating AF. Effects of Per- and Polyfluoroalkylated Substances on Female Reproduction. TOXICS 2024; 12:455. [PMID: 39058107 PMCID: PMC11280844 DOI: 10.3390/toxics12070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Per- and poly-fluoroalkylated substances (PFAS) are a large group of chemicals that persist both in the environment and in the body. Legacy PFAS, e.g., perfluorooctanoic acid and perfluorooctane sulfonic acid, are implicated as endocrine disruptors and reproductive and developmental toxicants in epidemiological and animal model studies. This review describes female reproductive outcomes of reported studies and includes where associative relationships between PFAS exposures and female reproductive outcomes have been observed as well as where those are absent. In animal models, studies in which PFAS are documented to cause toxicity and where effects are lacking are described. Discrepancies exist in both human and animal studies and are likely attributable to human geographical contamination, developmental status, duration of exposure, and PFAS chemical identity. Similarly, in animal investigations, the model used, exposure paradigm, and developmental status of the female are important and vary widely in documented studies. Taken together, support for PFAS as reproductive and developmental toxicants exists, although the disparity in study conditions and human exposures contribute to the variation in effects noted.
Collapse
Affiliation(s)
| | | | - Aileen F. Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. ENVIRONMENTAL RESEARCH 2024; 250:118485. [PMID: 38373549 DOI: 10.1016/j.envres.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
16
|
Liu Y, Peng L, Li Y, Lu X, Wang F, Chen D, Lin N. Effect of liver cancer on the accumulation and hepatobiliary transport of per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133743. [PMID: 38377901 DOI: 10.1016/j.jhazmat.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.
Collapse
Affiliation(s)
- Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, the Hong Kong Special Administrative Region of China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Chen Z, Chen Z, Gao S, Shi J, Li X, Sun F. PFOS exposure destroys the integrity of the blood-testis barrier (BTB) through PI3K/AKT/mTOR-mediated autophagy. Reprod Biol 2024; 24:100846. [PMID: 38160586 DOI: 10.1016/j.repbio.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Partington JM, Rana S, Szabo D, Anumol T, Clarke BO. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2024; 416:895-912. [PMID: 38159142 DOI: 10.1007/s00216-023-05075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Collapse
Affiliation(s)
- Jordan M Partington
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Sahil Rana
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Department of Materials and Environmental Chemistry, Stockholm University, 11418, Stockholm, Sweden
| | - Tarun Anumol
- Agilent Technologies Inc, Wilmington, DE, 19808, USA
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
19
|
Zheng T, Kelsey K, Zhu C, Pennell KD, Yao Q, Manz KE, Zheng YF, Braun JM, Liu Y, Papandonatos G, Liu Q, Shi K, Brochman S, Buka SL. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960-1966. ENVIRONMENTAL RESEARCH 2024; 241:117010. [PMID: 37696323 DOI: 10.1016/j.envres.2023.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Prior animal and epidemiological studies suggest that per- and polyfluoroalkyl substances (PFAS) exposure may be associated with reduced birth weight. However, results from prior studies evaluated a relatively small set of PFAS. OBJECTIVES Determine associations of gestational PFAS concentrations in maternal serum samples banked for 60 years with birth outcomes. METHODS We used data from 97 pregnant women from Boston and Providence that enrolled in the Collaborative Perinatal Project (CPP) study (1960-1966). We quantified concentrations of 27 PFAS in maternal serum in pregnancy and measured infant weight, height and ponderal index at birth. Covariate-adjusted associations between 11 PFAS concentrations (>75% detection limits) and birth outcomes were estimated using linear regression methods. RESULTS Median concentrations of PFOA, PFNA, PFHxS, and PFOS were 6.189, 0.330, 14.432, and 38.170 ng/mL, respectively. We found that elevated PFAS concentrations during pregnancy were significantly associated with lower birth weight and ponderal index at birth, but no significant associations were found with birth length. Specifically, infants born to women with PFAS concentrations ≥ median levels had significantly lower birth weight (PFOS: β = -0.323, P = 0.006; PFHxS: β = -0.292, P = 0.015; PFOA: β = -0.233, P = 0.03; PFHpS: β = -0.239, P = 0.023; PFNA: β = -0.239, P = 0.017). Similarly, women with PFAS concentrations ≥ median levels had significantly lower ponderal index (PFHxS: β = -0.168, P = 0.020; PFHxA: β = -0.148, P = 0.018). CONCLUSIONS Using data from this US-based cohort study, we found that 1) maternal PFAS levels from the 1960s exceeded values in contemporaneous populations and 2) that gestational concentrations of certain PFAS were associated with lower birth weight and infant ponderal index. Additional studies with larger sample size are needed to further examine the associations of gestational exposure to individual PFAS and their mixtures with adverse birth outcomes.
Collapse
Affiliation(s)
- T Zheng
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA.
| | - K Kelsey
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - C Zhu
- West China School of Public Health, Sichuan University, Sichuan, 610044, China
| | - K D Pennell
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Q Yao
- West China School of Public Health, Sichuan University, Sichuan, 610044, China
| | - K E Manz
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Y F Zheng
- Department of Gynecology, Hubei Provincial Women and Children Hospital, Wuhan, 430070, China; Wuhan Science and Technology University, Wuhan, 430062, China
| | - J M Braun
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - Y Liu
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - G Papandonatos
- Department of Biostatistics, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - Q Liu
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - K Shi
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - S Brochman
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - S L Buka
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA.
| |
Collapse
|
20
|
Zhang R, Yu G, Luo T, Zeng X, Sun Y, Huang B, Liu Y, Zhang J. Transcriptomic and metabolomic profile changes in the liver of Sprague Dawley rat offspring after maternal PFOS exposure during gestation and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115862. [PMID: 38157801 DOI: 10.1016/j.ecoenv.2023.115862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Epidemiological and experimental research has indicated an association between perfluorooctane sulfonate (PFOS) exposure and liver disease. However, the potential hepatotoxic effects and mechanisms of low-level prenatal PFOS exposure in offspring remain ambiguous. The objective of this research was to examine the alterations in liver transcriptomic and metabolomic profiles in offspring rats at postnatal day (PND) 30 following gestational and lactational exposure to PFOS (from gestational day 1 to 20 and PND 1 to 21). Pregnant Sprague-Dawley rats were separated into a control group (3% starch gel solution, oral gavage) and a PFOS exposure group (0.03 mg/kg body weight per day, oral gavage). Histopathological changes in liver sections were observed by hematoxylin and eosin staining. Biochemical analysis was conducted to evaluate changes in glucose and lipid metabolism. Transcriptomic and metabolomic analyses were utilized to identify significant genes and metabolites associated with alterations of liver glucose and lipid metabolism through an integrated multi-omics analysis. No significant differences were found in the measured biochemical parameters. In total, 167 significant differentially expressed genes (DEGs) related to processes such as steroid biosynthesis, PPAR signaling pathway, and fat digestion and absorption were identified in offspring rats in the PFOS exposure group. Ninety-five altered metabolites were exhibited in the PFOS exposure group, such as heptaethylene glycol, lysoPE (0:0/18:0), lucidenic acid K, and p-Cresol sulfate. DEGs associated with steroid biosynthesis, PPAR signaling pathway, fat digestion and absorption were significantly upregulated in the PFOS exposure group (P < 0.05). The analysis of correlations indicated that there was a significant inverse correlation between all identified differential metabolites and the levels of fasting blood glucose, high-density lipoprotein, and triglycerides in the PFOS exposure group (P < 0.05). Our findings demystify that early-life PFOS exposure can lead to alterations in transcriptomic and metabolomic profiles in the offspring's liver, which provided mechanistic insights into the potential hepatotoxicity and developmental toxicity associated with environmentally relevant levels of PFOS exposure.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Yan Sun
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, 200233, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
21
|
Linakis MW, Van Landingham C, Gasparini A, Longnecker MP. Re-expressing coefficients from regression models for inclusion in a meta-analysis. BMC Med Res Methodol 2024; 24:6. [PMID: 38191310 PMCID: PMC10773134 DOI: 10.1186/s12874-023-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Meta-analysis poses a challenge when original study results have been expressed in a non-uniform manner, such as when regression results from some original studies were based on a log-transformed key independent variable while in others no transformation was used. Methods of re-expressing regression coefficients to generate comparable results across studies regardless of data transformation have recently been developed. We examined the relative bias of three re-expression methods using simulations and 15 real data examples where the independent variable had a skewed distribution. Regression coefficients from models with log-transformed independent variables were re-expressed as though they were based on an untransformed variable. We compared the re-expressed coefficients to those from a model fit to the untransformed variable. In the simulated and real data, all three re-expression methods usually gave biased results, and the skewness of the independent variable predicted the amount of bias. How best to synthesize the results of the log-transformed and absolute exposure evidence streams remains an open question and may depend on the scientific discipline, scale of the outcome, and other considerations.
Collapse
Affiliation(s)
- Matthew W Linakis
- Ramboll U.S. Consulting, Raleigh, NC, 27612, USA, 3214 Charles B Root Wynd #130.
| | | | | | | |
Collapse
|
22
|
Breton C, Kessel K, Robinson A, Altaf K, Luth ES. Sublethal perfluorooctanoic acid and perfluorooctanesulfonic acid delay C. elegans larval development and population growth but do not alter egg hatching. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:22-32. [PMID: 37818790 DOI: 10.1080/15287394.2023.2265419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are polyfluoroalkyl substances (PFAS) used as surface coatings in manufacturing. Exposure to PFAS was shown to be correlated with infertility, low birth weight, and delayed aspects of pubertal development in mammals. Despite many correlational studies, there have been few direct investigations examining the link between PFAS exposure and early animal development. The aim of this study was to (1) examine the effects of PFOA on development and reproduction using the roundworm Caenorhabditis elegans, a model with a high predictive value for human reproductive toxicity and (2) compare observations to exposure to PFOS. PFAS exposure did not markedly alter egg hatching but delayed population growth, in part due to slower larval development. PFAS-exposed worms took longer to progress through larval stages to reach reproductive maturity, and this was not attributed to PFOA-induced toxicity to their food. Our results provide a robust benchmark for testing developmental and reproductive toxicity for other PFAS and PFAS-alternatives which continue to be used in manufacturing and released into the environment.
Collapse
Affiliation(s)
- Celine Breton
- Department of Biology, Simmons University, Boston, MA, USA
| | - Kaitlyn Kessel
- Department of Biology, Simmons University, Boston, MA, USA
| | - Ariel Robinson
- Department of Biology, Simmons University, Boston, MA, USA
| | - Kainat Altaf
- Department of Biology, Simmons University, Boston, MA, USA
| | - Eric S Luth
- Department of Biology, Simmons University, Boston, MA, USA
| |
Collapse
|
23
|
Verma S, Mezgebe B, Hejase CA, Sahle-Demessie E, Nadagouda MN. Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress. NEXT MATERIALS 2024; 2:1-12. [PMID: 38840836 PMCID: PMC11151751 DOI: 10.1016/j.nxmate.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are oxidatively recalcitrant organic synthetic compounds. PFAS are an exceptional group of chemicals that have significant physical characteristics due to the presence of the most electronegative element (i.e., fluorine). PFAS persist in the environment, bioaccumulate, and have been linked to toxicological impacts. Epidemiological and toxicity studies have shown that PFAS pose environmental and health risks, requiring their complete elimination from the environment. Various separation technologies, including adsorption with activated carbon or ion exchange resin; nanofiltration; reverse osmosis; and destruction methods (e.g., sonolysis, thermally induced reduction, and photocatalytic dissociation) have been evaluated to remove PFAS from drinking water supplies. In this review, we will comprehensively summarize previous reports on the photodegradation of PFAS with a special focus on photocatalysis. Additionally, challenges associated with these approaches along with perspectives on the state-of-the-art approaches will be discussed. Finally, the photocatalytic defluorination mechanism of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) following complete mineralization will also be examined in detail.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
| | - Bineyam Mezgebe
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, US EPA, Ada, OK 74820, USA
| | - Charifa A. Hejase
- Pegasus Technical Services INC., Cincinnati, OH 45219, USA
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Endalkachew Sahle-Demessie
- Land Remediation and Technology Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| | - Mallikarjuna N. Nadagouda
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, US EPA, Cincinnati, OH 45268, USA
| |
Collapse
|
24
|
Currie SD, Doherty JP, Xue KS, Wang JS, Tang L. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122429. [PMID: 37619695 DOI: 10.1016/j.envpol.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a diverse class of industrial chemicals that have been used for decades in industrial and commercial applications. Due to their widespread usages, persistence in the environment, and bioaccumulation in animals and humans, great public health concerns have been raised on adverse health risks of PFAS. In this study, ten PFAS were selected according to their occurrence in different water bodies. The wild-type worms were exposed to individual PFAS at 0, 0.1, 1,10, 100, and 200 μM, and the toxic effects of PFAS on growth, development, fecundity, and behavior at different life stages were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS), 1H,1H, 2H, 2H-perfluorooctanesulfonamidoacetic acid (NEtFOSAA), perfluorobutanesulfonic (PFBS), and perfluorohexanesulfonic acid (PFHxS) exhibited significant inhibitive effects on the growth in the L4 larva and later stages of worms with concentrations ranging from 0.1 to 200 μmol/L. PFOS and PFBS significantly decreased the brood size of worms across all tested concentrations (p < 0.05), and the most potent PFAS is PFOS with BMC of 0.02013 μM (BMCL, 1.6e-06 μM). During adulthood, all PFAS induced a significant reduction in motility (p < 0.01), while only PFOS can significantly induce behavior alteration at the early larvae stage. Furthermore, the adverse effects occurred in larval stages were found to be the most susceptible to the PFAS exposure. These findings provide valuable insights into the potential adverse effects associated with PFAS exposure and show the importance of considering developmental stages in toxicity assessments.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Joseph Patrick Doherty
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
25
|
Fan Y, Guo L, Wang R, Xu J, Fang Y, Wang W, Lv J, Tang W, Wang H, Xu DX, Tao L, Huang Y. Low transplacental transfer of PFASs in the small-for-gestational-age (SGA) new-borns: Evidence from a Chinese birth cohort. CHEMOSPHERE 2023; 340:139964. [PMID: 37633609 DOI: 10.1016/j.chemosphere.2023.139964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Early life in utero exposure to per- and polyfluoroalkyl substances (PFASs) and infiltration through the placenta into cord blood pose significant risk to fetal development. Accumulating knowledge suggests that PFASs pass through the placenta in multiple transportation ways, not limiting to passive transport but also active transport or facilitated diffusion. Therefore, we propose that the transplacental transfer efficiency (TTE) could be re-evaluated as traditional cord to maternal ratio-based method might overlook certain biological or health information from the mother and fetus. In this study, we investigated 30 PFAS chemicals in paired maternal and cord serum from 195 births classified as small-for-gestational-age (SGA) and matched appropriate-for-gestational-age (AGA). PFASs were ubiquitously detected in the maternal and serum samples, with PFOA, PFOS, 6:2 Cl-PFESA and other dominant compounds. We adopted a modified TTE estimation method (TTEm), taking into consideration of the total burden mass of PFASs in the blood from mother to fetus. Using the modified TTEm, a significant (p < 0.05) decrease was observed in the PFAS transplacental transfer potential in SGA (1.6%-11.3%) compared to AGA (2.3%-21.1%), suggesting a reverse association between TTE and SGA birth risk. This is the first study attempted to re-evaluate the TTE of PFAS and indicates that TTEm might be more advantageous to reflect the transplacental transfer potency of chemicals particularly when transportation mechanisms are multi-faceted.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruolan Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenxin Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Zhang H, Wang S, Chen Y, Li J, Zhai Y, Tang Y, Li H, Sang J, Wang H, Lv J, Ge RS. Carbon chain length of perfluoroalkylated carboxylic acids determines inhibitory strength on gonadal 3β-hydroxysteroid dehydrogenases in humans, rats, and mice. Toxicol Lett 2023; 389:45-58. [PMID: 37871704 DOI: 10.1016/j.toxlet.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Perfluoroalkylated carboxylic acids (PFCAs) are a subclass of man-made chemicals that have been widely used in industrial production and consumer products. As a result, PFCAs have been found to accumulate in the environment and bioaccumulate in organisms, leading to potential health and environmental impacts. This study investigated the inhibition of 11 PFCAs on gonadal 3β-hydroxysteroid dehydrogenases in humans, rats, and mice. We observed a V-shaped inhibition pattern against human granulosa (KGN) cell 3β-HSD2 starting from C9 (half-maximal inhibitory concentration, IC50, 100.8 μM) to C11 (8.92 μM), with a V-shaped turn. The same V-shaped inhibition pattern was also observed for PFCAs against rat testicular 3β-HSD1 from C9 (IC50, 50.43 μM) to C11 (6.60 μM). Mouse gonadal 3β-HSD6 was insensitive to the inhibition of PFCAs, with an IC50 of 50.43 μM for C11. All of these PFCAs were mixed inhibitors of gonadal 3β-HSDs. Docking analysis showed that PFCAs bind to the nicotinamide adenine dinucleotide (NAD+)/steroid binding sites of these enzymes and bivariate correlation analysis showed that molecular length determines the inhibitory pattern of PFCAs on these enzymes. In conclusion, the carbon chain length determines the inhibitory strength of PFCAs on human, rat, and mouse gonadal 3β-HSDs, and the inhibitory strength of PFCAs against human and rat 3β-HSD enzymes shows V-shaped turn.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ya Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingna Zhai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
27
|
Dangudubiyyam SV, Bosse B, Yadav P, Song R, Hofmann A, Mishra JS, Kumar S. Restoring Angiotensin Type 2 Receptor Function Reverses PFOS-Induced Vascular Hyper-Reactivity and Hypertension in Pregnancy. Int J Mol Sci 2023; 24:14180. [PMID: 37762482 PMCID: PMC10531530 DOI: 10.3390/ijms241814180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy induces hypertension with decreased vasodilatory angiotensin type-2 receptor (AT2R) expression and impaired vascular reactivity and fetal weights. We hypothesized that AT2R activation restores the AT1R/AT2R balance and reverses gestational hypertension by improving vascular mechanisms. Pregnant Sprague-Dawley rats were exposed to PFOS through drinking water (50 μg/mL) from gestation day (GD) 4-20. Controls received drinking water with no detectable PFOS. Control and PFOS-exposed rats were treated with AT2R agonist Compound 21 (C21; 0.3 mg/kg/day, SC) from GD 15-20. In PFOS dams, blood pressure was higher, blood flow in the uterine artery was reduced, and C21 reversed these to control levels. C21 mitigated the heightened contraction response to Ang II and enhanced endothelium-dependent vasorelaxation in uterine arteries of PFOS dams. The observed vascular effects of C21 were correlated with reduced AT1R levels and increased AT2R and eNOS protein levels. C21 also increased plasma bradykinin production in PFOS dams and attenuated the fetoplacental growth restriction. These data suggest that C21 improves the PFOS-induced maternal vascular dysfunction and blood flow to the fetoplacental unit, providing preclinical evidence to support that AT2R activation may be an important target for preventing or treating PFOS-induced adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| |
Collapse
|
28
|
Surma M, Sawicki T, Piskuła M, Wiczkowski W. Relationship between the Consumption of Fermented Red Beetroot Juice and Levels of Perfluoroalkyl Substances in the Human Body's Fluids and Blood Parameters. Int J Mol Sci 2023; 24:13956. [PMID: 37762257 PMCID: PMC10530276 DOI: 10.3390/ijms241813956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated, organic, man-made chemicals; they do not occur naturally in the environment. This study aimed to determine the profile and content of PFASs in the volunteers' blood plasma and urine after the consumption of fermented red beetroot juice and then correlated it with the blood parameters. Over 42 days, 24 healthy volunteers ingested 200 mL/60 kg of body weight of fermented red beetroot juice. PFASs were analyzed using the micro-HPLC-MS/MS method. Five perfluoroalkyl substances were found in the volunteers' body fluids. After consuming the juice, it was discovered that regarding the perfluorocarboxylic acids, a downward trend was observed, while regarding the perfluoroalkane sulfonates, and their plasma content showed a statistically significant upward trend. Analysis of the hematology parameters indicated that the intake of fermented red beetroot juice showed a significant decrease in mean corpuscular volume (MCV), platelets concentration, mean platelet volume (MPV), platelet large cell ratio (P-LCR) at the significance level p < 0.01, and hematocrit (p < 0.05). On the other hand, the dietary intervention also indicated a significant (p < 0.01) increase in corpuscular/cellular hemoglobin concentration (MCHC). In the case of blood biochemistry, no significant change was observed in the blood samples after the intake of the fermented beetroot juice. However, a decreasing tendency of total cholesterol and low-density lipoprotein concentration (LDL-C) was observed. Based on the presented results, there is a need to analyze and monitor health-promoting food regarding undesirable substances and their impact on consumer health.
Collapse
Affiliation(s)
- Magdalena Surma
- Malopolska Centre of Food Monitoring, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F St., 10-719 Olsztyn, Poland
| | - Mariusz Piskuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10 St., 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10 St., 10-748 Olsztyn, Poland
| |
Collapse
|
29
|
Guo D, Zhou Y, Chen F, Wang Z, Li H, Wang N, Gan H, Fang S, Bao R. Temporal variation of per- and polyfluoroalkyl substances (PFASs) abundances in Shenzhen Bay sediments over past 65 years. MARINE POLLUTION BULLETIN 2023; 194:115387. [PMID: 37595453 DOI: 10.1016/j.marpolbul.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
We examined the vertical distribution of per- and polyfluoroalkyl substances (PFASs) and total organic carbon in sediment cores located in Shenzhen Bay area. We investigated the 210Pbex specific activity of the sediments and calculated the flux of PFASs to understand the temporal variation of PFASs in the past 65 years. The results showed that the concentrations of PFASs generally decreased with depth, ranging from 13 to 251 pg/g dw. The highest PFASs detected were perfluorobutanesulfonic acid, perfluorooctanoic acid, and perfluorohexanoic acid, which correspond to raw materials used in fire-fighting foam and food packaging industries. The flux of PFASs in Shenzhen Bay showed varying growth after 1978 when China's GDP entered a rapid growth stage. Our findings suggest that the vertical distribution of PFASs in Shenzhen Bay is fluctuating with the changes in industrial types and economic development, with implications for studying the fate of other persistent pollutants in the oceans.
Collapse
Affiliation(s)
- Danxu Guo
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China
| | - Fang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China.
| | - Zimin Wang
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Huayang Gan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China.
| | - Rui Bao
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
30
|
Girardi P, Lupo A, Mastromatteo LY, Scrimin S. Behavioral outcomes and exposure to perfluoroalkyl substances among children aged 6-13 years: The TEDDY child study. ENVIRONMENTAL RESEARCH 2023; 231:116049. [PMID: 37207732 DOI: 10.1016/j.envres.2023.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Although some studies report that exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and early life stages of a child could adversely impact neurodevelopment, literature shows mixed evidence. OBJECTIVES Using an ecological framework for human development, we assessed the association of risk factors for environmental PFAS exposure and childhood PFAS concentrations with behavioral difficulties among school-age children exposed to PFAS from birth, while also controlling for the important influence of the parenting and familial environment. METHODS The study participants included 331 school-age children (6-13 years) born in a PFAS-contaminated area in the Veneto Region (Italy). We study the associations between environmental risk factors of maternal PFAS exposure (residential time, consumption of tap water, residence in Red zone A or B), and breastfeeding duration with parent assessments of children's behavioral problems (using the Strengths and Difficulties Questionnaire [SDQ]), adjusting for socio-demographic, parenting and familial variables. The direct relationships between serum blood PFAS concentrations and SDQ scores was evaluated in a subset of children (n = 79), both with single PFAS and weighted quantile sum (WQS) regressions. RESULTS Poisson regression models reported positive associations between high consumption of tap water and externalizing SDQ scores (Incidence Rate Ratio [IRR]: 1.18; 95% confidence interval [CI]: 1.04-1.32) and total difficulty scores (IRR: 1.14; 95% CI: 1.02-1.26). Childhood perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were associated with higher internalizing SDQ scores (4th vs. 1st quartile, PFOS IRR: 1.54, 95% CI: 1.06-2.25), externalizing scores (4th vs. 1st quartile, PFHxS IRR: 1.59, 95% CI: 1.09-2.32), and total difficulty scores (4th vs. 1st quartile, PFOS IRR: 1.37, 95% CI: 1.05-1.71; PFHxS IRR: 1.54, 95% CI: 1.09-1.90). The WQS regressions confirmed the associations reported by single-PFAS analyses. CONCLUSIONS We observed cross-sectional associations of tap water consumption and childhood PFOS, and PFHxS concentrations with greater behavioral difficulties.
Collapse
Affiliation(s)
- Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venezia-Mestre, Italy.
| | - Alice Lupo
- Department of Developmental Psychology and Socialization, University of Padova, Italy.
| | | | - Sara Scrimin
- Department of Developmental Psychology and Socialization, University of Padova, Italy.
| |
Collapse
|
31
|
Fujiwara Y, Miyasaka Y, Ninomiya A, Miyazaki W, Iwasaki T, Ariyani W, Amano I, Koibuchi N. Effects of Perfluorooctane Sulfonate on Cerebellar Cells via Inhibition of Type 2 Iodothyronine Deiodinase Activity. Int J Mol Sci 2023; 24:12765. [PMID: 37628946 PMCID: PMC10454525 DOI: 10.3390/ijms241612765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRβ1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Ayane Ninomiya
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Wataru Miyazaki
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki 036-8564, Japan;
| | | | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| |
Collapse
|
32
|
Yang W, Ling X, He S, Cui H, Yang Z, An H, Wang L, Zou P, Chen Q, Liu J, Ao L, Cao J. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach. ENVIRONMENT INTERNATIONAL 2023; 178:108138. [PMID: 37572494 DOI: 10.1016/j.envint.2023.108138] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous environmental contaminants with well-documented hepatotoxicity. However, the mechanistic linkage between PFAS exposure and non-alcoholic fatty liver disease (NAFLD) remains largely elusive. OBJECTIVES This study aimed to explore PFAS-to-NAFLD link and the relevant molecular mechanisms. METHODS The cross-sectional analyses using National Health and Nutrition Examination Survey (NHANES) data were conducted to investigate the association between PFAS exposure and NAFLD. A combination of in silico toxicological analyses, bioinformatics approaches, animal experiments, and in vitro assays was used to explore the molecular initiating events (MIEs) and key events (KEs) in PFAS-induced hepatic lipid metabolism disorders. RESULTS The cross-sectional analyses with NHANES data revealed the significant association between PFAS exposure and hepatic steatosis/NAFLD. The in silico toxicological analyses showed that PPARα activation induced by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), prototypical representatives of PFAS, is the critical MIE associated with NAFLD-predominant liver diseases. Transcriptome-based bioinformatic annotation and analyses identified that transcriptional upregulation of hepatic acyl-CoA oxidase 1 (ACOX1) in PPARα-regulated peroxisomal β-oxidation pathway was the KE involved with PFOA/PFOS-perturbed hepatic lipid metabolic pathways in humans, mice and rats. The in vivo and in vitro assays further verified that ACOX1-mediated oxidative stress contributed to mitochondrial compromise and lipid accumulation in PFOA/PFOS-exposed mouse hepatocytes, which could be mitigated by co-treatment with ACOX1 inhibitor and mitochondria ROS scavenger. Additionally, we observed that besides PFOA and PFOS, hepatic ACOX1 exhibited good-fit response to short-term exposures of long-chain (C7-C10) perfluoroalkyl carboxylic acids (PFHpA, PFNA, PFDA) and perfluoroalkyl sulfonic acids (PFHpS, PFDS) in human hepatocyte spheroids through benchmark dose (BMD) modeling. CONCLUSION Our study unveils a novel molecular target for PFAS-induced hepatic lipid metabolic disorders, shedding new light on prediction, assessment, and mitigation of PFAS hepatotoxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
33
|
Lan L, Wei H, Chen D, Pang L, Xu Y, Tang Q, Li J, Xu Q, Li H, Lu C, Wu W. Associations between maternal exposure to perfluoroalkylated substances (PFASs) and infant birth weight: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89805-89822. [PMID: 37458883 DOI: 10.1007/s11356-023-28458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
The objective of this study was to determine the associations between maternal exposure to PFASs and infant birth weight and to explore evidence for a possible dose-response relationship. Four databases including PubMed, Embase, Web of Science, and Medline before 20 September 2022 were systematically searched. A fixed-effect model was used to estimate the change in infant birth weight (g) associated with PFAS concentrations increasing by 10-fold. Dose-response meta-analyses were also conducted when possible. The study follows the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 21 studies were included. Among these studies, 18 studies examined the associations between PFOA and birth weight, 17 studies reported PFOS, and 11 studies discussed PFHxS. Associations between PFHxS (ES = -5.67, 95% CI: -33.92 to 22.59, P = 0.694) were weaker than those for PFOA and PFOS (ES = -58.62, 95% CI: -85.23 to -32.01, P < 0.001 for PFOA; ES = -54.75, 95% CI: -84.48 to -25.02, P < 0.001 for PFOS). The association was significantly stronger in the high median PFOS concentration group (ES = -107.23, 95% CI: -171.07 to -43.39, P < 0.001) than the lower one (ES = -29.15, 95% CI: -63.60 to -5.30, P = 0.097; meta-regression, P = 0.045). Limited evidence of a dose-response relationship was found. This study showed negative associations between maternal exposure to PFASs and infant birth weight. Limited evidence of a dose-response relationship between exposure to PFOS and infant birth weight was found. Further studies are needed to find more evidence.
Collapse
Affiliation(s)
- Linchen Lan
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liya Pang
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Stanford University Medical Center, Stanford, CA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huijun Li
- Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Murase W, Kubota A, Ikeda-Araki A, Terasaki M, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology 2023:153577. [PMID: 37302725 DOI: 10.1016/j.tox.2023.153577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluorinated eight-carbon organic chemical, has been reported to induce hepatotoxicity, including increased liver weight, hepatocellular hypertrophy, necrosis, and increased peroxisome proliferation in rodents. Epidemiological studies have demonstrated associations between serum PFOA levels and various adverse effects. In this study, we investigated the gene expression profiles of human HepaRG cells exposed to 10 and 100 μM PFOA for 24h. Treatment with 10 and 100 μM PFOA significantly modulated the expression of 190 genes and 996 genes, respectively. In particular, genes upregulated or downregulated by 100µM PFOA included peroxisome proliferator-activated receptor (PPAR) signaling genes related to lipid metabolism, adipocyte differentiation, and gluconeogenesis. In addition, we identified the "Nuclear receptors-meta pathways" following the activation of other nuclear receptors: constitutive androstane receptor (CAR), pregnane X receptor (PXR) and farnesoid X receptor (FXR), and the transcription factor, nuclear factor E2-related factor 2 (Nrf2). The expression levels of some target genes (CYP4A11, CYP2B6, CYP3A4, CYP7A1, and GPX2) of these nuclear receptors and Nrf2 were confirmed using quantitative reverse transcription polymerase chain reaction. Next, we performed transactivation assays using COS-7 or HEK293 cells to investigate whether these signaling-pathways were activated by the direct effects of PFOA on human PPARα, CAR, PXR, FXR and Nrf2. PFOA activated PPARα in a concentration-dependent manner, but did not activate CAR, PXR, FXR, or Nrf2. Taken together, these results suggest that PFOA affects the hepatic transcriptomic responses of HepaRG cells through direct activation of PPARα and indirect activation of CAR, PXR FXR and Nrf2. Our finding indicates that PPARα activation found in the "Nuclear receptors-meta pathways" functions as a molecular initiating event for PFOA, and indirect activation of alternative nuclear receptors and Nrf2 also provide important molecular mechanisms in PFOA-induced human hepatotoxicity.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
35
|
Wang Z, Zhang J, Dai Y, Zhang L, Guo J, Xu S, Chang X, Wu C, Zhou Z. Mediating effect of endocrine hormones on association between per- and polyfluoroalkyl substances exposure and birth size: Findings from sheyang mini birth cohort study. ENVIRONMENTAL RESEARCH 2023; 226:115658. [PMID: 36894112 DOI: 10.1016/j.envres.2023.115658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to affect fetus growth, but current results were inconsistent and their mechanism remained unclear. OBJECTIVES We aimed to evaluate the associations of prenatal exposure to single and/or multiple PFAS with birth size and to elucidate whether thyroid hormones and reproductive hormones mediate these associations. METHODS A total of 1087 mother-newborn pairs from Sheyang Mini Birth Cohort Study were included in the present cross-sectional analysis. 12 PFAS, 5 thyroid hormones and 2 reproductive hormones were measured in cord serum. Multiple linear regression models and Bayesian kernel machine regression (BKMR) models were used to examine the associations of PFAS with either birth size or endocrine hormones. One-at-a-time pairwise mediating effect analysis was applied to estimate the mediating effect of single hormone in the association between individual chemical and birth size. High-dimensional mediation approach including elastic net regularization and Bayesian shrinkage estimation were further performed to reduce exposure dimension and figure out the global mediation effects of joint endocrine hormones. RESULTS Perfluorononanoic acid (PFNA) exposure was positively associated to weight for length z score [WLZ, per log10-unit: regression coefficient (β) = 0.26, 95% confidence intervals (CI): 0.04, 0.47] and ponderal index (PI, β = 0.56, 95% CI: 0.09, 1.02), and PFAS mixture results fit by BKMR model showed consistent consequences. High-dimensional mediating analyses revealed that thyroid stimulating hormone (TSH) explained 6.7% of the positive association between PFAS mixtures exposure and PI [Total effect (TE) = 1.499 (0.565, 2.405); Indirect effect (IE) = 0.105 (0.015, 0.231)]. Besides, 7.3% of the PI variance was indirectly explained by 7 endocrine hormones jointly [TE = 0.810 (0.802, 0.819); IE = 0.040 (0.038, 0.041)]. CONCLUSIONS Prenatal PFAS mixtures exposure, especially PFNA, was positively associated to birth size. Such associations were partly mediated by cord serum TSH.
Collapse
Affiliation(s)
- Zheng Wang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
36
|
Forster ALB, Zhang Y, Westerman DC, Richardson SD. Improved total organic fluorine methods for more comprehensive measurement of PFAS in industrial wastewater, river water, and air. WATER RESEARCH 2023; 235:119859. [PMID: 36958221 DOI: 10.1016/j.watres.2023.119859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are high-profile environmental contaminants, many having long persistence in the environment and widespread presence in humans and wildlife. Following phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in North America and restrictions in Europe, PFAS replacements are now widely found in the environment. While liquid chromatography (LC)-mass spectrometry (MS) is typically used for measurement, much of the PFAS is missed. To more comprehensively capture organic fluorine, we developed sensitive and robust methods using activated carbon adsorption, solid phase extraction, and combustion ion chromatography (CIC) to measure total organic fluorine (TOF) in industrial wastewaters, river water, and air. Two extraction techniques, adsorbable organic fluorine (AOF) and extractable organic fluorine (EOF), were optimized and compared using 39 different PFAS, including replacements, such as GenX and perfluorobutanesulfonate. Our AOF method achieves 46-112% and 87% recovery for individual PFAS and PFAS mixtures, respectively, with 0.5 µg/L limit of detection (LOD) for a 50 mL sample volume and a 0.3 μg/L LOD for a 500 mL sample volume . Our EOF method achieves 72-99% and 91% recovery for individual PFAS and PFAS mixtures, respectively, with 0.2 µg/L LOD for a 500 mL sample volume and 0.1 μg/L LOD for 1200 mL. In addition to 39 anionic PFAS, two zwitterionic PFAS and two neutral PFAS were evaluated using the optimized TOF methods. Substantially higher TOF values were measured in industrial wastewater, river water, and air samples compared to LC-MS/MS, demonstrating how TOF methods provided a more comprehensive measurement of the total PFAS present, capturing known and unknown organic fluorine.
Collapse
Affiliation(s)
- Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ying Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
37
|
Kaiser AM, Forsthuber M, Widhalm R, Granitzer S, Weiss S, Zeisler H, Foessleitner P, Salzer H, Grasl-Kraupp B, Moshammer H, Hartmann C, Uhl M, Gundacker C. Prenatal exposure to per- and polyfluoroalkyl substances and pregnancy outcome in Austria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115006. [PMID: 37182303 DOI: 10.1016/j.ecoenv.2023.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent industrial chemicals that can harm reproductive health. PFAS levels were analysed to determine the current sources of exposure and possible associations between prenatal PFAS exposure and adverse pregnancy outcome. Samples from 136 mother-newborn pairs recruited between 2017 and 2019 were analysed for the presence of 31 target PFAS in maternal serum, umbilical cord serum, and placental tissue by high-performance liquid chromatography coupled to a tandem mass spectrometer. Questionnaires and medical records were used to survey sources of exposure and pregnancy outcome, including small for gestational age (SGA), fetal growth restriction (FGR), preeclampsia (PE), preterm birth, large for gestational age (LGA) and gestational diabetes mellitus (GDM). Data were analysed for individual PFAS and sum4PFAS (sum of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) serum levels) in logistic regression analyses and categorical regression analyses. Compared to data from a previous Viennese study in 2010-12, sum4PFAS levels were generally lower. Sum4PFAS serum levels of three women (2.2%) exceeded 6.9 µg/L, a level that corresponds to the recently established tolerable weekly intake (TWI) of EFSA for nursing mothers aged 35 years; in the 2010/2012 study it was 13.6%. The large contribution of unidentified extractable organofluorine (EOF) fractions to total PFAS exposure is a concern. Study site, mean maternal corpuscular hemoglobin (MCH), use of facial lotion, and owning upholstered furniture were significantly influencing maternal exposure. While no effect of sum4PFAS on pregnancy outcome could be detected, we found highest placental PFDA levels in SGA births. PFHxS levels in umbilical cord and placenta were highest in preterm births. Further studies are needed to elucidate the relationship of prenatal PFAS exposure and pregnancy outcome, in particular to confirm whether and how placental PFDA levels may contribute to an increased risk for SGA.
Collapse
Affiliation(s)
- Andreas-Marius Kaiser
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria; Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria; Department of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Raimund Widhalm
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefan Weiss
- Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, A-1090 Vienna, Austria
| | - Philipp Foessleitner
- Department of Obstetrics and Gynecology, Medical University Vienna, A-1090 Vienna, Austria; Department of Gynecology and Obstetrics, University Hospital St. Pölten, A-3100 St. Pölten, Austria
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Hospital Tulln, A-3430 Tulln, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
38
|
Prince N, Begum S, Mínguez-Alarcón L, Génard-Walton M, Huang M, Soeteman DI, Wheelock C, Litonjua AA, Weiss ST, Kelly RS, Lasky-Su J. Plasma concentrations of per- and polyfluoroalkyl substances are associated with perturbations in lipid and amino acid metabolism. CHEMOSPHERE 2023; 324:138228. [PMID: 36878362 PMCID: PMC10080462 DOI: 10.1016/j.chemosphere.2023.138228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) through the environment can lead to harmful health outcomes and the development of disease. However, little is known about how PFAS impact underlying biology that contributes to these adverse health effects. The metabolome represents the end product of cellular processes and has been used previously to understand physiological changes that lead to disease. In this study, we investigated whether exposure to PFAS was associated with the global, untargeted metabolome. In a cohort of 459 pregnant mothers and 401 children, we quantified plasma concentrations of six individual PFAS- PFOA, PFOS, PFHXS, PFDEA, and PFNA- and performed plasma metabolomic profiling by UPLC-MS. In adjusted linear regression analysis, we found associations between plasma PFAS and perturbations in lipid and amino acid metabolites in both mothers and children. In mothers, metabolites of 19 lipid pathways and 8 amino acid pathways were significantly associated with PFAS exposure at an FDR<0.05 threshold; in children, metabolites of 28 lipid pathways and 10 amino acid pathways exhibited significant associations at FDR<0.05 with PFAS exposure. Our investigation found that metabolites of the Sphingomyelin, Lysophospholipid, Long Chain Polyunsaturated Fatty Acid (n3 and n6), Fatty Acid- Dicarboxylate, and Urea Cycle showed the most significant associations with PFAS, suggesting these may be particular pathways of interest in the physiological response to PFAS. To our knowledge, this is the first study to characterize associations between the global metabolome and PFAS across multiple periods in the life course to understand impacts on underlying biology, and the findings presented here are relevant in understanding how PFAS disrupt normal biological function and may ultimately give rise to harmful health effects.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Djøra I Soeteman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Health Decision Science, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Craig Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute, Stockholm, Sweden
| | - Augusto A Litonjua
- Golisano Children's Hospital, Division of Pulmonary Medicine, University of Rochester, Rochester, NY, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Zhang Y, Mustieles V, Sun Q, Coull B, McElrath T, Rifas-Shiman SL, Martin L, Sun Y, Wang YX, Oken E, Cardenas A, Messerlian C. Association of Early Pregnancy Perfluoroalkyl and Polyfluoroalkyl Substance Exposure With Birth Outcomes. JAMA Netw Open 2023; 6:e2314934. [PMID: 37256622 PMCID: PMC10233420 DOI: 10.1001/jamanetworkopen.2023.14934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Prenatal perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to adverse birth outcomes. Previous research showed that higher folate concentrations are associated with lower blood PFAS concentrations in adolescents and adults. Further studies are needed to explore whether prenatal folate status mitigates PFAS-related adverse birth outcomes. Objective To examine whether prenatal folate status modifies the negative associations between pregnancy PFAS concentrations, birth weight, and gestational age previously observed in a US cohort. Design, Setting, and Participants In a prospective design, a prebirth cohort of mothers or pregnant women was recruited between April 1999 and November 2002, in Project Viva, a study conducted in eastern Massachusetts. Statistical analyses were performed from May 24 and October 25, 2022. Exposure Plasma concentrations of 6 PFAS compounds were measured in early pregnancy (median gestational week, 9.6). Folate status was assessed through a food frequency questionnaire and measured in plasma samples collected in early pregnancy. Main Outcomes and Measures Birth weight and gestational age, abstracted from delivery records; birth weight z score, standardized by gestational age and infant sex; low birth weight, defined as birth weight less than 2500 g; and preterm birth, defined as birth at less than 37 completed gestational weeks. Results The cohort included a total of 1400 mother-singleton pairs. The mean (SD) age of the mothers was 32.21 (4.89) years. Most of the mothers were White (73.2%) and had a college degree or higher (69.1%). Early pregnancy plasma perfluorooctanoic acid concentration was associated with lower birth weight and birth weight z score only among mothers whose dietary folate intake (birth weight: β, -89.13 g; 95% CI, -166.84 to -11.42 g; birth weight z score: -0.13; 95% CI, -0.26 to -0.003) or plasma folate concentration (birth weight: -87.03 g; 95% CI, -180.11 to 6.05 g; birth weight z score: -0.14; 95% CI, -0.30 to 0.02) were below the 25th percentile (dietary: 660 μg/d, plasma: 14 ng/mL). No associations were found among mothers in the higher folate level groups, although the tests for heterogeneity did not reject the null. Associations between plasma perfluorooctane sulfonic acid and perfluorononanoate (PFNA) concentrations and lower birth weight, and between PFNA and earlier gestational age were noted only among mothers whose prenatal dietary folate intake or plasma folate concentration was in the lowest quartile range. No associations were found among mothers in higher folate status quartile groups. Conclusions and Relevance In this large, US prebirth cohort, early pregnancy exposure to select PFAS compounds was associated with adverse birth outcomes only among mothers below the 25th percentile of prenatal dietary or plasma folate levels.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Instituto de Investigación Biosanitaria Ibs, Consortium for Biomedical Research in Epidemiology and Public Health Grenada, Spain
| | - Qi Sun
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas McElrath
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Leah Martin
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yang Sun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Emily Oken
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston
| |
Collapse
|
40
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
41
|
Adu O, Ma X, Sharma VK. Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130805. [PMID: 36669401 DOI: 10.1016/j.jhazmat.2023.130805] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of legacy and emerging contaminants containing at least one aliphatic perfluorocarbon moiety. They display rapid and extensive transport in the environment due to their generally high water-solubility and weak adsorption onto soil particles. Because of their widespread presence in the environment and known toxicity, PFAS has become a serious threat to the ecosystem and public health. Plants are an essential component of the ecosystem and their uptake and accumulation of PFAS affect the fate and transport of PFAS in the ecosystem and has strong implications for human health. It is therefore imperative to investigate the interactions of plants with PFAS. This review presents a detailed discussion on the mechanisms of the bioavailability and plant uptake of PFAS, and essential factors affecting these processes. The phytotoxic effects of PFAS at physiological, biochemical, and molecular level were also carefully reviewed. At the end, key research gaps were identified, and future research needs were proposed.
Collapse
Affiliation(s)
- Olatunbosun Adu
- Department of Water Management and Hydrological Science, Texas A&M University, College Station, TX 77843, USA; Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
42
|
Wang J, Wang J, Qiu T, Wu J, Sun X, Jiang L, Liu X, Yang G, Cao J, Yao X. Mitochondrial iron overload mediated by cooperative transfer of plasma membrane ATP5B and TFR2 to mitochondria triggers hepatic insulin resistance under PFOS exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114662. [PMID: 36801541 DOI: 10.1016/j.ecoenv.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase β subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.
Collapse
Affiliation(s)
- Jianyu Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jinling Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jialu Wu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofang Liu
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jun Cao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
43
|
Padula AM, Ning X, Bakre S, Barrett ES, Bastain T, Bennett DH, Bloom MS, Breton CV, Dunlop AL, Eick SM, Ferrara A, Fleisch A, Geiger S, Goin DE, Kannan K, Karagas MR, Korrick S, Meeker JD, Morello-Frosch R, O’Connor TG, Oken E, Robinson M, Romano ME, Schantz SL, Schmidt RJ, Starling AP, Zhu Y, Hamra GB, Woodruff TJ. Birth Outcomes in Relation to Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Stress in the Environmental Influences on Child Health Outcomes (ECHO) Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37006. [PMID: 36920051 PMCID: PMC10015888 DOI: 10.1289/ehp10723] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous chemicals associated with risk of adverse birth outcomes. Results of previous studies have been inconsistent. Associations between PFAS and birth outcomes may be affected by psychosocial stress. OBJECTIVES We estimated risk of adverse birth outcomes in relation to prenatal PFAS concentrations and evaluate whether maternal stress modifies those relationships. METHODS We included 3,339 participants from 11 prospective prenatal cohorts in the Environmental influences on the Child Health Outcomes (ECHO) program to estimate the associations of five PFAS and birth outcomes. We stratified by perceived stress scale scores to examine effect modification and used Bayesian Weighted Sums to estimate mixtures of PFAS. RESULTS We observed reduced birth size with increased concentrations of all PFAS. For a 1-unit higher log-normalized exposure to perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), we observed lower birthweight-for-gestational-age z-scores of β = - 0.15 [95% confidence interval (CI): - 0.27 , - 0.03 ], β = - 0.14 (95% CI: - 0.28 , - 0.002 ), β = - 0.22 (95% CI: - 0.23 , - 0.10 ), β = - 0.06 (95% CI: - 0.18 , 0.06), and β = - 0.25 (95% CI: - 0.37 , - 0.14 ), respectively. We observed a lower odds ratio (OR) for large-for-gestational-age: OR PFNA = 0.56 (95% CI: 0.38, 0.83), OR PFDA = 0.52 (95% CI: 0.35, 0.77). For a 1-unit increase in log-normalized concentration of summed PFAS, we observed a lower birthweight-for-gestational-age z-score [- 0.28 ; 95% highest posterior density (HPD): - 0.44 , - 0.14 ] and decreased odds of large-for-gestational-age (OR = 0.49 ; 95% HPD: 0.29, 0.82). Perfluorodecanoic acid (PFDA) explained the highest percentage (40%) of the summed effect in both models. Associations were not modified by maternal perceived stress. DISCUSSION Our large, multi-cohort study of PFAS and adverse birth outcomes found a negative association between prenatal PFAS and birthweight-for-gestational-age, and the associations were not different in groups with high vs. low perceived stress. This study can help inform policy to reduce exposures in the environment and humans. https://doi.org/10.1289/EHP10723.
Collapse
Affiliation(s)
- Amy M. Padula
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Xuejuan Ning
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivani Bakre
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Tracy Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Abby Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Dana E. Goin
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Morello-Frosch
- School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Morgan Robinson
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Anne P. Starling
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tracey J. Woodruff
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
44
|
Wang X, Zhang W, Lamichhane S, Dou F, Ma X. Effects of physicochemical properties and co-existing zinc agrochemicals on the uptake and phytotoxicity of PFOA and GenX in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43833-43842. [PMID: 36680712 DOI: 10.1007/s11356-023-25435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Even though the potential toxicity and treatment methods for per- and polyfluoroalkyl substances (PFAS) have attracted extensive attention, the plant uptake and accumulation of PFAS in edible plant tissues as a potential pathway for human exposure received little attention. Our study in a hydroponic system demonstrated that perfluorooctanoic acid (PFOA) and its replacing compound, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX) displayed markedly different patterns of plant uptake and accumulation. For example, the root concentration factor (RCF) of PFOA in lettuce is almost five times of that of GenX while the translocation factor (TF) of GenX is about 66.7% higher than that for PFOA. The co-presence of zinc amendments affected the phyto-effect of these two compounds and their accumulation in plant tissues, and the net effect on their plant accumulation depended on both the properties of Zn amendments and PFAS. Zinc oxide nanoparticles (ZnONPs) at 100 mg/L did not affect the uptake of PFOA in either lettuce roots or shoots; however, Zn2+ at the same concentration significantly increased PFOA accumulation in both tissues. In contrast, both Zn amendments significantly lowered the accumulation of GenX in lettuce roots, but only ZnONPs significantly hindered the GenX accumulation in lettuce shoots. The co-exposure to ZnONPs and PFOA/GenX resulted in lower oxidative stress than the plants exposed to PFOA or GenX alone. However, both zinc agrochemicals with or without PFAS led to lower root dry biomass. The results shed light on the property-dependent plant uptake of PFAS and the potential impact of co-existing nanoagrochemicals and their dissolved ions on plant uptake of PFOA and GenX.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | | | - Fugen Dou
- Texas A&M Agrilife Research Center, Beaumont, TX, 77713, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
45
|
Rivera-Núñez Z, Kinkade CW, Khoury L, Brunner J, Murphy H, Wang C, Kannan K, Miller RK, O'Connor TG, Barrett ES. Prenatal perfluoroalkyl substances exposure and maternal sex steroid hormones across pregnancy. ENVIRONMENTAL RESEARCH 2023; 220:115233. [PMID: 36621543 PMCID: PMC9977559 DOI: 10.1016/j.envres.2023.115233] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Poly- and perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants that may act as endocrine disruptors in utero, but the specific endocrine pathways are unknown. OBJECTIVE We examined associations between maternal serum PFAS and sex steroid hormones at three time points during pregnancy. METHODS Pregnant women participating in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaire, and medical record data in each trimester (n = 285). PFAS (including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) were analyzed in second-trimester serum samples by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). Total testosterone [TT], free testosterone [fT], estrone [E1], estradiol [E2], and estriol [E3]) were measured by LC-MS/MS in serum samples from each trimester. Linear mixed models with random intercepts were used to examine associations between log-transformed PFAS concentrations and hormone levels, adjusting for covariates, and stratifying by fetal sex. Results are presented as the mean percentage difference (Δ%) in hormone levels per ln-unit increase in PFAS concentration. RESULTS In adjusted models, PFHxS was associated with higher TT (%Δ = 20.0, 95%CI: 1.7, 41.6), particularly among women carrying male fetuses (%Δ = 15.3, 95%CI: 1.2, 30.7); this association strengthened as the pregnancy progressed. PFNA (%Δ = 7.9, 95%CI: 3.4, 12.5) and PFDA (%Δ = 7.2, 95%CI: 4.9, 9.7) were associated with higher fT, with associations again observed only in women carrying male fetuses. PFHxS was associated with higher levels of E2 and E3 in women carrying female fetuses (%Δ = 13.2, 95%CI: 0.5, 29.1; %Δ = 17.9, 95%CI: 3.2, 34.8, respectively). No associations were observed for PFOS and PFOA. CONCLUSION PFHxS, PFNA, and PFDA may disrupt androgenic and estrogenic pathways in pregnancy in a sex-dependent manner.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Leena Khoury
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Jessica Brunner
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Hannah Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, And Department of Environmental Medicine, New York University, Grossman School of Medicine, NY, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
46
|
Wang H, Li W, Yang J, Wang Y, Du H, Han M, Xu L, Liu S, Yi J, Chen Y, Jiang Q, He G. Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159747. [PMID: 36309289 DOI: 10.1016/j.scitotenv.2022.159747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is one potential mechanism for the effects of gestational exposure to perfluoroalkyl substances (PFASs) on fetal growth. We investigated 180 pregnant women who participated in a cohort study conducted in Tangshan City, Northern China, and determined the concentrations of 11 PFASs and the methylation of two genes related to fetal growth [insulin-like growth factor 2 (IGF2) and nuclear receptor subfamily 3 group C member 1 (NR3C1)] and one surrogate marker for global methylation [long interspersed nuclear element-1 (LINE-1)] in placenta tissue. Multiple linear regression analysis was performed to examine the associations of log transformed PFASs with the DNA methylation and birth size. Weighted quantile sum regression was used to determine the mixture effect of PFASs. After adjusting for potential confounders, perfluorooctane sulfonate (PFOS) was negatively associated with the overall methylation of LINE-1. PFASs mixture was negatively associated with the methylation of all CpG loci of LINE-1 and overall methylation of NR3C1. Perfluorootanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and the PFASs mixture showed negative associations with head circumference. After stratified by newborns' sex, PFOA, PFNA and the PFASs mixture was negatively associated with overall methylation of LINE-1 only in the male subgroup and the methylation of all CpG loci of LINE-1 was negatively associated with ponderal index only in the female subgroup. The interaction of newborns' sex with PFOS and PFOA on overall methylation of IGF2 was statistically significant and so was the interaction of sex with PFOS on overall methylation of LINE-1. These findings suggested that intrauterine exposure to PFASs affected placental DNA methylation and reduced fetal growth, which might be modified by sex.
Collapse
Affiliation(s)
- Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yuanping Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Hongyi Du
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minghui Han
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linji Xu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Shuping Liu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Jianping Yi
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing C. The Association between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031668. [PMID: 36767045 PMCID: PMC9914055 DOI: 10.3390/ijerph20031668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 05/30/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy has been suggested to be associated with neurobehavioral problems in offspring. However, current epidemiological studies on the association between prenatal PFAS exposure and neurobehavioral problems among offspring, especially attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are inconsistent. Therefore, we aimed to study the relationship between PFAS exposure during pregnancy and ADHD and ASD in offspring based on meta-analyses. Online databases, including PubMed, EMBASE, and Web of Science, were searched comprehensively for eligible studies conducted before July 2021. Eleven studies (up to 8493 participants) were included in this analysis. The pooled results demonstrated that exposure to perfluorooctanoate (PFOA) was positively associated with ADHD in the highest quartile group. Negative associations were observed between perfluorooctane sulfonate (PFOS) and ADHD/ASD, including between perfluorononanoate (PFNA) and ASD. There were no associations found between total PFAS concentration groups and neurobehavioral problems. The trial sequential analyses showed unstable results. Our findings indicated that PFOA and PFOS exposure during pregnancy might be associated with ADHD in offspring and that prenatal PFOS and PFNA exposure might be associated with ASD in offspring. According to the limited evidence obtained for most associations, additional studies are required to validate these findings.
Collapse
Affiliation(s)
- Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xueqiong Weng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Ding J, Dai Y, Zhang J, Wang Z, Zhang L, Xu S, Tan R, Guo J, Qi X, Chang X, Wu C, Zhou Z. Associations of perfluoroalkyl substances with adipocytokines in umbilical cord serum: A mixtures approach. ENVIRONMENTAL RESEARCH 2023; 216:114654. [PMID: 36309220 DOI: 10.1016/j.envres.2022.114654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), a kind of emerging environmental endocrine disruptors, may interfere with the secretion of adipokines and affect fetal metabolic function and intrauterine development. However, the epidemiological evidence is limited and inconsistent. We examined the associations of single and multiple PFAS exposures in utero with adipocytokine concentrations in umbilical cord serum. METHODS This study included 1111 mother-infant pairs from Sheyang Mini Birth Cohort Study (SMBCS), and quantified 12 PFAS and two adipokine in umbilical cord serum. Generalized linear models (GLMs) and Bayesian Kernel Machine Regression (BKMR) models were applied to estimate the associations of single- and mixed- PFAS exposure with adipokines, respectively. Furthermore, sex-stratification was done in each model to assess the sexually dimorphic effects of PFAS. RESULTS 10 PFAS were detected with median concentrations (μg/L) ranging from 0.04 to 3.97, (except 2.7% for PFOSA and 1.7% for PFDS, which were excluded). In GLMs, for each doubling increase in PFBS, PFHpA, PFHxS, PFHpS, PFUnDA and PFDoDA, leptin decreased between 14.04% for PFBS and 22.69% for PFHpS (P < 0.05). PFAS, except for PFNA, were positively associated with adiponectin, and for each doubling of PFAS, adiponectin increased between 3.27% for PFBS and 12.28% for PFHxS (P < 0.05). In addition, infant gender modified the associations of PFAS with adipokines, especially the associations of PFBS, PFOA and PFHxS with adiponectin. Similarly, significant associations of PFAS mixtures with leptin and adiponectin were observed in the BKMR models. PFDA, PFOS, PFNA and PFHpS were identified as important contributors. In the sex-stratified analysis of BKMR models, the associations between PFAS mixtures and adipokines were more pronounced in males. CONCLUSIONS PFAS levels were significantly associated with adipokines in cord serum, suggesting that intrauterine mixture of PFAS exposure may be related to decreased fetal leptin level but increased fetal adiponectin level and the associations may be sex-specific.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Ruonan Tan
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
49
|
Xia X, Zheng Y, Tang X, Zhao N, Wang B, Lin H, Lin Y. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances in Cord Blood Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17061-17069. [PMID: 36343112 DOI: 10.1021/acs.est.2c04820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can penetrate the placental barrier and reach embryos through cord blood, probably causing adverse birth outcomes. Therefore, novel PFASs identification in cord blood and their relationships with birth outcomes are essential to evaluate prenatal exposure risk of PFASs. Herein, 16 legacy and 12 novel PFASs were identified in 326 cord blood samples collected from pregnant women in Jinan, Shandong, China. The presence of perfluoropolyether carboxylic acids, hydrogen-substituted polyfluoroetherpropane sulfate, and 3:3 chlorinated polyfluoroalkyl ether alcohol in cord blood was reported for the first time. Two extensive OECD (Organization for Economic Co-operation and Development)-defined PFASs named fipronil sulfone and 2-chloro-6-(trifluoromethyl)pyridine-3-ol were also identified. Quantification results showed that the emerging and OECD-defined PFASs separately accounted for 9.4 and 9.7% of the total quantified PFASs, while the legacy PFOA, PFOS, and PFHxS were still the most abundant PFASs with median concentrations of 2.12, 0.58, and 0.37 ng/mL, respectively. Several PFASs (C9-C12 PFCAs, C6-C8 PFSAs, and 6:2 Cl-PFESA) showed significantly higher levels for older maternities than younger ones. PFHxS levels were positively associated with birth weight and ponderal index (p < 0.05). The results provide comprehensive information on the presence and exposure risks of several novel PFASs during the early life stage.
Collapse
Affiliation(s)
- Xiaowen Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao266071, China
| | - Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| |
Collapse
|
50
|
Romano ME, Heggeseth BC, Gallagher LG, Botelho JC, Calafat AM, Gilbert-Diamond D, Karagas MR. Gestational per- and polyfluoroalkyl substances exposure and infant body mass index trajectory in the New Hampshire Birth Cohort Study. ENVIRONMENTAL RESEARCH 2022; 215:114418. [PMID: 36162478 PMCID: PMC9841894 DOI: 10.1016/j.envres.2022.114418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent, potential metabolic disruptors of concern for infants. Mothers participating in the New Hampshire Birth Cohort Study (NHBCS) provided a plasma sample during pregnancy to measure concentrations of seven PFAS, and infant weight and length were abstracted from well-child visits between birth and 12 months. Sex-specific growth patterns of child body mass index (BMI) were fit using a growth mixture model (GMM) and the relative risk ratios (RRR) and 95% Confidence Intervals (95% CI) for the association of maternal plasma PFAS with BMI growth patterns during infancy were estimated by using multinomial logistic model for the group probabilities in the GMM. Four growth patterns were identified: Group 1) a steep increase in BMI during the first 6 months, then a leveling off; Group 2) a gradual increase in BMI across the year; Group 3) a steep increase in BMI during months 1-3, then stable BMI; and Group 4) a gradual increase in BMI with plateau around 3 months (reference group). For boys, higher maternal pregnancy perfluorooctanoate concentrations were associated with a 60% decreased chance of being in group 3 as compared to group 4, after adjusting for potential confounding variables (RRR = 0.4; 95% CI: 0.1, 0.9). For girls, higher maternal perfluorooctane sulfonate (PFOS) concentrations during pregnancy were associated with a higher likelihood of following the growth pattern of groups 2 (RRR = 2.5; 95% CI: 1.0, 6.1) and 3 (RRR = 2.8; 95% CI: 1.0, 7.6) as compared to group 4, adjusting for potential confounding variables. In this cohort, sex-specific associations of maternal plasma PFAS concentrations during pregnancy with growth patterns during the first year of life were observed, with greater BMI growth observed among infant girls born to mothers with higher pregnancy concentrations of PFOS.
Collapse
Affiliation(s)
- Megan E Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA.
| | - Brianna C Heggeseth
- Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - Lisa G Gallagher
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|