1
|
Tsai YG, Chio CP, Yang KD, Lin CH, Yeh YP, Chang YJ, Chien JW, Wang SL, Huang SK, Chan CC. Long-term PM 2.5 exposure is associated with asthma prevalence and exhaled nitric oxide levels in children. Pediatr Res 2025; 97:370-377. [PMID: 38263452 DOI: 10.1038/s41390-023-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Exhaled nitric oxide concentration (FENO) is a marker of airway inflammation. This study aimed to evaluate the association of air pollution exposure with FENO levels and asthma prevalence with respiratory symptoms in school children. METHODS We analyzed 4736 school children who reside in six townships near industrial areas in central Taiwan. We evaluated asthmatic symptoms, FENO, and conducted the environmental questionnaire. The personal exposure of PM2.5, NO, and SO2 was estimated using land-use regression models data on children's school and home addresses. RESULTS Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma (OR = 1.595), exercise-induced wheezing (OR = 1.726), itchy eyes (OR = 1.417), and current nasal problems (OR = 1.334) (P < 0.05). FENO levels in the absence of infection were positively correlated with age, previous wheezing, allergic rhinitis, atopic eczema, near the road, and for children with high exposure to PM2.5 (P < 0.05). An increase of 1 μg/m3 PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels for children after adjusting for potential confounding variables, including exposures to NO and SO2. CONCLUSIONS Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children. IMPACT Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma and nasal problems and itchy eyes. Long-term exposures to PM2.5 were significantly associated with FENO levels after adjusting for potential confounding variables. This is first study to assess the association between FENO levels and long-term air pollution exposures in children near coal-based power plants. An increase of 1 μg/m3 annual PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels. Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chia-Pin Chio
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, and Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, ROC
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan, ROC
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan, ROC
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
- Johns Hopkins Asthma and Allergy Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Qiao R, Chen W, Shi Y, Chai Q, Fan Y, Hua Q, Li A, Li H, Li J, Meng X, Sheng M, Xu R, Xu Y, Yao Y, Zhang Y, Zhang Y, Danzengdunzhu, Zhuoga, Zhu T, Gong J, Liu Y. A Comparative Analysis on Indoor and Outdoor PM 2.5 and Their Hourly Associations with Acute Respiratory Inflammation Among College Students in Lhasa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22668-22677. [PMID: 39652781 DOI: 10.1021/acs.est.4c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Ambient concentrations are commonly used as proxies for personal PM2.5 exposure in epidemiological studies, despite indoor settings being the places where people spend most of their time. In a panel study of 110 nonsmoking, healthy college students in Lhasa, Tibet, indoor PM2.5 was monitored using calibrated low-cost sensors for two multiweek periods, in over 40 dormitories where participants resided. We also repeatedly measured fractional exhaled nitric oxide (FeNO), an acute respiratory inflammation biomarker, for each participant. Time-averaged indoor PM2.5 concentrations in individual dormitories ranged from 3.2 to 30 μg/m3 in the summer and from 3.6 to 57 μg/m3 in the fall, in most cases exceeding the outdoor level (4.3 and 4.9 μg/m3, respectively). The hourly mean indoor PM2.5 concentrations displayed a clear trimodal diel pattern, with peaks coincident with periods of increased activities. Further questionnaire-based analysis suggests that incense burning and smoking contributed to elevated levels of indoor PM2.5. Overnight PM2.5 levels in the dormitories were significantly associated with increased FeNO the following morning, with the effects attenuated as the hourly lag increased. In contrast, inconclusive associations were observed for ambient PM2.5. The results demonstrate that disregarding indoor exposure can result in biased estimates of acute health effects of PM2.5 in low PM2.5 areas.
Collapse
Affiliation(s)
- Ruohong Qiao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Wu Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yunxiu Shi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Qianqian Chai
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yunfei Fan
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Ailin Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Haonan Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jiajianghui Li
- School of Public Health, Peking University, Beijing 100871, PR China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Mengshuang Sheng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Ruiwei Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yuan Yao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yidan Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | | | - Zhuoga
- No.2 People's Hospital of Lhasa, Lhasa 850030, PR China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yingjun Liu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
- Center for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
3
|
Yao C, Tang J, Mo Y, Zhong G, Geng X, Yi X, Zhang Q, Li J, Ma H, Zhao S, Zhang G. Polycyclic aromatics-derived benzene carboxylic acids (BPCAs) as a fast predictor of the genotoxicity of combustion particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177632. [PMID: 39571819 DOI: 10.1016/j.scitotenv.2024.177632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Polycyclic aromatic compounds (PAC) are common toxics in combustion particles. Numerous studies on health effects of PAC mixtures focused on limited compounds. It's still challenging to quantify complex PAC mixtures in combustion particles. Recently, benzene polycarboxylic acids (BPCAs) method, which involves conversion of PAC mixtures into a few BPCAs, has been used to quantify complex PAC mixtures in particles. In this study, in vitro biossays were used to evaluate the toxicity of extractable organic matter (EOM) in combustion particles. Analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified ~1000 molecules, mostly aromatics (84.47 ± 5.32 %), that positively associate with the EOM toxicity (p < 0.05). We further employed BPCAs method to quantify PAC mixtures in the EOM of combustion particles, and observed the toxicity (especially genotoxicity) of EOM linearly increases with the abundance of PAC mixtures (r2: 0.68-0.89, p < 0.05), as it is shown by a data set referring to all source types including biomass burning, coal combustion and vehicle exhaust. The genotoxicity of PAC mixtures in EOM of combustion particles was estimated to be 10-13 times that of benzo[a]pyrene at the same mass concentration. Target analysis of 48 PAC was carried out, but a weaker relationship is found for the toxicity of EOM and the abundance of 48 PAC. Taken together, we suggest PAC-derived BPCAs as a fast predictor of the genotoxicity of combustion particles, which could be promising in routine monitoring of PAC pollution in the air.
Collapse
Affiliation(s)
- Chuxin Yao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Xin Yi
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qianyu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
4
|
Buthelezi MS, Mentz G, Wright CY, Phaswana S, Garland RM, Naidoo RN. Short-term, lagged association of airway inflammation, lung function, and asthma symptom score with PM 2.5 exposure among schoolchildren within a high air pollution region in South Africa. Environ Epidemiol 2024; 8:e354. [PMID: 39483641 PMCID: PMC11527423 DOI: 10.1097/ee9.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Background Asthma affects millions of people globally, and high levels of air pollution aggravate asthma occurrence. This study aimed to determine the association between short-term lagged PM2.5 exposure and airway inflammation, lung function, and asthma symptom scores among schoolchildren in communities in the Highveld high-pollution region in South Africa. Methods A cross-sectional study was conducted among schoolchildren aged 9-14 years in six communities in the Highveld region in South Africa, between October 2018 and February 2019. A NIOX 200 instrument was used to measure fractional exhaled nitric oxide (FeNO). Lung function indices (forced expiratory volume in one second [FEV1]; forced vital capacity [FVC] and FEV1/FVC) were collected using spirometry and the percent of predicted of these was based on the reference equations from the Global Lung Initiative, without ethnic correction. These values were further analyzed as binary outcomes following relevant thresholds (lower limits of normal for lung function and a cutoff of 35 ppb for FeNO). Asthma symptoms were used to create the asthma symptom score. Daily averages of PM2.5 data for the nearest monitoring station located in each community, were collected from the South African Air Quality Information System and created short-term 5-day lag PM2.5 concentrations. Additional reported environmental exposures were collected using standardized instruments. Results Of the 706 participating schoolchildren, only 1.13% of the participants had doctor-diagnosed asthma, compared to a prevalence of 6.94% with an asthma symptom score suggestive of asthma. Lag 1 (odds ratio [OR]: 1.01; 95% confidence interval [CI]: 1.00, 1.02, P = 0.039) and 5-day average lagged PM2.5 (OR: 1.02; 95% CI: 0.99, 1.04, P = 0.050) showed increased odds of the FeNO > 35 ppb. Lung function parameters (FEV1 < lower limit of normal [LLN] [OR: 1.02, 95% CI: 1.00, 1.03, P = 0.018], and FEV1/FVC < LLN [OR: 1.01; 95% CI: 1.00, 1.02, P < 0.001]) and asthma symptom score ≥ 2 (OR: 1.02; 95% CI: 1.00, 1.04, P = 0.039) also showed significant associations with lag 2, lag 4 and lag 1 of PM2.5, respectively. Conclusion Lagged PM2.5 exposure was associated with an increased odds of airway inflammation and an increased odds of lung function parameters below the LLN particularly for the later lags, but a significant dose-response relationship across the entire sample was not consistent.
Collapse
Affiliation(s)
- Minenhle S. Buthelezi
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Graciela Mentz
- Anesthesiology Department, Medical School, University of Michigan, Ann Arbor, Michigan
| | - Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Shumani Phaswana
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Rebecca M. Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
- Smart Places, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Liu Y, Zhang H, Wang J, Han Y, Pan C, Jiang W, Ma C, Shi Y, Jia C, Zhang Y, Li M, Wang F, Yu Y, Feng Y, Liu L, Liu A, Zhang Q, Long Z, Dai F, Zhang Y, Ji M, Ma D. Reference values for exhaled nitric oxide in healthy children aged 6-18 years in China: a cross-sectional, multicenter clinical study. Respir Res 2024; 25:340. [PMID: 39285462 PMCID: PMC11407013 DOI: 10.1186/s12931-024-02938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The reference values of eNO have certain differences among people of different countries and races. We aimed to obtain the reference value of eNO in healthy children and adolescents (6-18 years old) in China and to explore the associations between the reference values with ages, gender, heights, BMI, and regions. METHODS We measured FeNO50 levels in 5949 healthy Chinese children and adolescents, FeNO200 and CaNO levels in 658 participants from 16 provinces of 7 administrative areas in China aged 6-18. All persons were studied after obtaining informed consent from children and their parents. RESULTS The mean FeNO50 of 5949 Chinese children and adolescents aged 6-18 years was 14.1 ppb, with a 95% confidence interval of 1-38.1 ppb. The mean FeNO200 of 658 persons was 6.9 ppb with a 95% upper confidence interval of 15.0 ppb, and the mean CaNO was 3.0 ppb with a 95% upper confidence interval of 11.2 ppb. In the 6-11 age group, age and height were correlated with the logarithm of FeNO50 (P < 0.001, P < 0.05). There was no significant correlation between the logarithm of FeNO200 and gender, age, height and BMI (all P > 0.05). The logarithm of CaNO was correlated with gender (P < 0.05). In the 12-18 age group, gender, height, and region were correlated with the logarithm of FeNO50 (all P < 0.001). There was only a weak correlation between the logarithm of FeNO200 and height (P < 0.001). The logarithm of CaNO was negatively correlated with age (P < 0.05). CONCLUSIONS Higher FeNO50, FeNO200 and CaNO values were found in healthy children and adolescents in China compared with foreign reports, and is affected by age, height, gender, and region. This study provides useful references for clinical application of eNO in children, especially Asian children.
Collapse
Affiliation(s)
- Yazun Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Zhang
- Outpatient Emergency Department of Shanghai Children's Medical Center, shanghai, China.
| | - Jinrong Wang
- Department of Pediatric Respiratory, Affiliated Provincial Hospital of Shandong First Medical University, Jinan, China
| | - Yuling Han
- Department of Respiratory, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Chunhong Pan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, shanghai, China
| | - Wenhui Jiang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Chunyan Ma
- Department of Pediatrics, Inner Mongolia People's Hospital, Hohhot, China
| | - Yongsheng Shi
- Department of Pediatric Respiratory Medicine, Maternity and Child-Care Hospital of Gansu Province, Lanzhou, China
| | - Chunmei Jia
- Department of Pediatrics, the Fourth Hospital of Baotou, Baotou, Inner Mongolia Autonomous Region, China
| | - Yuehua Zhang
- Department of Pediatric Infectious Disease, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Ming Li
- Department of Respiration, Kunming Children's Hospital, Kunming, China
| | - Fei Wang
- Department of Respiratory, Maternal and Child Health Care Hospital of Guiyang, Children's Hospital of Guiyang, Guiyang, China
| | - Yanyan Yu
- Department of Pediatric Asthma, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Yong Feng
- Department of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Liu
- The First Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun, China
| | - Aihong Liu
- Department of Respiratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Qiaoling Zhang
- Department of Pediatrics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, China
| | - Zhen Long
- Department of Pediatric Respiratory Medicine, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, China
| | - Fuli Dai
- Second Department of Pediatrics, Luoyang Maternal and Child Health Care Hospital, Luoyang, Henan Province, China
| | - Yanli Zhang
- Department of Pediatric Respiratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghong Ji
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Dongjun Ma
- Department of Allergy, Children's Hospital of Urumqi, Urumqi, China
| |
Collapse
|
6
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
7
|
Wu QZ, Zeng HX, Andersson J, Oudin A, Kanninen KM, Xu MW, Qin SJ, Zeng QG, Zhao B, Zheng M, Jin N, Chou WC, Jalava P, Dong GH, Zeng XW. Long-term exposure to major constituents of fine particulate matter and neurodegenerative diseases: A population-based survey in the Pearl River Delta Region, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134161. [PMID: 38569338 DOI: 10.1016/j.jhazmat.2024.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.
Collapse
Affiliation(s)
- Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mu-Wu Xu
- Department of Epidemiology and Environment Health, School of Public and Health Professions, University at Buffalo, Buffalo, 14214, USA
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Mei Zheng
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Wang S, Ma Y, Wu G, Du Z, Li J, Zhang W, Hao Y. Relationships between long-term exposure to major PM 2.5 constituents and outpatient visits and hospitalizations in Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123866. [PMID: 38537800 DOI: 10.1016/j.envpol.2024.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Ambient fine particulate matter (PM2.5) has attracted considerable attention due to its crucial role in the rising global disease burden. Evidence of health risks associated with exposure to PM2.5 and its major constituents is important for advancing hazard assessments and air pollution emission policies. We investigated the relationship between exposure to major constituents of PM2.5 and outpatient visits as well as hospitalizations in Guangdong Province, China, where 127 million residents live in a severe PM2.5 pollution environment. An approach that integrates the generalized weighted quantile sum (gWQS) regression with the difference-in-differences (DID) approach was used to assess the overall mixture effects and relative contributions of each constituent. We observed significant associations between long-term exposure to the mixture of PM2.5 constituents (WQS index) and outpatient visits (IR%, percentage increases in risk per unit WQS index increase:1.73, 95%CI: 1.72, 1.74) as well as hospitalizations (IR%:5.15, 95%CI: 5.11, 5.20). Black carbon (weight: 0.34) and nitrate (weight: 0.60) respectively exhibited the highest contributions to outpatient visits and hospitalizations. The overall mixture effects on outpatient visits and hospitalizations were higher with increased summer air temperatures (IR%: 7.54, 95%CI: 7.33, 7.74 and IR%: 9.55, 95%CI: 8.36, 10.75, respectively) or decreased winter air temperatures (IR%: 1.88, 95%CI: 1.68, 2.08 and IR%: 4.87, 95%CI: 3.73, 6.02, respectively). Furthermore, the overall mixture effects on outpatient visits and hospitalizations were significantly higher in populations with higher socioeconomic status (P < 0.01). It's crucial to address the primary sources of nitrate precursor substances and black carbon (mainly traffic-related and industrial-related air pollutants) and consider the complex interaction effects between air temperature and PM2.5 in the context of climate change. Of particular concern is the need to prioritize healthcare demands in economically disadvantaged regions and to address the health inequalities stemming from the uneven distribution of healthcare resources and PM2.5 pollution.
Collapse
Affiliation(s)
- Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujie Ma
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghua Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response Peking University, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
9
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Nazneen, Patra AK, Kolluru SSR, Penchala A, Kumar S, Mishra N, Sree NB, Santra S, Dubey R. Assessment of seasonal variability of PM, BC and UFP levels at a highway toll stations and their associated health risks. ENVIRONMENTAL RESEARCH 2024; 245:118028. [PMID: 38160974 DOI: 10.1016/j.envres.2023.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As a part of their occupation, workers at toll stations are exposed to traffic emissions during the working shift, which sometimes stretches to 12 h. To assess the exposure and subsequent health risk of these workers, a study was performed on a highway toll station in India. PM1, PM2.5, PM10, BC and UFP concentration were determined inside a toll collectors' cabin and outside in a free-flowing traffic section (125 m from the toll cabin). The concentrations varied in the following range: PM1 (40.69-226.13 μg m-3), PM2.5 (49.71-247.36 μg m-3), PM10 (83.15-458.14 μg m-3) and BC (2.1-87.5 μg m-3) and UFP: 101-53705 pt cm-3. The mean concentration inside the cabin was 1.34 (PM1), 1.35 (PM2.5), 1.16 (PM10) and 2.91 (BC) times the concentration outside for the summer season. The corresponding levels in the winter season were 1.14 (PM1), 1.11 (PM2.5), 1.11 (PM10), 2.50 (BC) and 1.82 (UFP). In addition to the exhaust emission, the non-exhaust emissions such as resuspension of crustal particles, fly ash and bioaerosols were identified. Using the Multiple Path Particle Dosimetry model for two groups - adults (18-21 years) and adults (21+ years), it was estimated that the pulmonary deposition of in-cabin workers were 50% (PM2.5) -75% (PM1) higher than the workers outside the cabin. Particle mass deposition was found to be higher for adults (21+ years) than adults (18-21 years) for both the seasons. The study quantitatively assessed the health risk faced by the workers in terms of exposure concentration and deposition in respiratory tract. More such studies at different traffic mix and climate can provide better estimates of health risk of toll workers that can be used to devise appropriate strategies for control of it.
Collapse
Affiliation(s)
- Nazneen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Aditya Kumar Patra
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India.
| | - Soma Sekhara Rao Kolluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Abhishek Penchala
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
| | - Sachidanand Kumar
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, India
| | - Namrata Mishra
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Naragam Bhanu Sree
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Samrat Santra
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Ravish Dubey
- Yale School of Environment, Yale University, USA
| |
Collapse
|
11
|
Ji N, Baptista A, Yu CH, Cepeda C, Green F, Greenberg M, Mincey IC, Ohman-Strickland P, Fiedler N, Kipen HM, Laumbach RJ. Traffic-related air pollution, chronic stress, and changes in exhaled nitric oxide and lung function among a panel of children with asthma living in an underresourced community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168984. [PMID: 38040352 DOI: 10.1016/j.scitotenv.2023.168984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
We examined associations between short-term exposure to traffic-related air pollutants (TRAP) and airway inflammation and lung function in children with asthma, and whether these associations are modified by chronic psychological stress. Residents of underresourced port-adjacent communities in New Jersey were concerned about the cumulative impacts of exposure to TRAP, particularly diesel-engine truck emissions, and stress on exacerbation of asthma among children. Children with asthma aged 9-14 (n = 35) were recruited from non-smoking households. We measured each participant's (1) continuous personal exposure to black carbon (BC, a surrogate of TRAP) at 1-min intervals, (2) 24-h integrated personal exposure to nitrogen dioxide (NO2), (3) daily fractional exhaled nitric oxide (FeNO), and (4) lung function for up to 30 consecutive days. Personal BC was recorded by micro-aethalometers. We measured daily FeNO using the NIOX MINO, forced expiratory volume in one second (FEV1), and forced vital capacity (FVC) using Easy One Frontline spirometers. Chronic stress was measured with the UCLA Life Stress Interview for Children. The association was examined using linear mixed-effect models. In the fully adjusted model, an interquartile range (IQR) increase in BC at lag 0-6 h before the FeNO measurement was associated with 8 % (95 % CI: 3 % - 12 %) increase in FeNO, whereas an IQR increase in BC at lag 7-12 h and lag 0-24 h were associated with 6 % (95 % CI: 2 % - 11 %) and 7 % (2 % - 12 %) FeNO increases, respectively. There were no significant lung function changes per IQR increase in BC. No interactions were observed between chronic stress and BC on FeNO. Chronic stress was negatively associated with individual average FeNO levels. Our findings suggest that higher levels of BC exposure within the prior 24 h increased airway inflammation levels in children with asthma, with the strongest effect observed within the first 6 h.
Collapse
Affiliation(s)
- N Ji
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - A Baptista
- The New School, New York, NY, United States of America
| | - C H Yu
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America; New Jersey Department of Health, Trenton, NJ, United States of America
| | - C Cepeda
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - F Green
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - M Greenberg
- The New School, New York, NY, United States of America
| | - I Colon Mincey
- Ironbound Community Corporation, Newark, NJ, United States of America
| | - P Ohman-Strickland
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - N Fiedler
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - H M Kipen
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - R J Laumbach
- Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America.
| |
Collapse
|
12
|
Friedman C, Dabelea D, Glueck DH, Allshouse WB, Adgate JL, Keller KP, Martenies SE, Magzamen S, Starling AP. Early-life exposure to residential black carbon and childhood cardiometabolic health. ENVIRONMENTAL RESEARCH 2023; 239:117285. [PMID: 37832765 PMCID: PMC10842121 DOI: 10.1016/j.envres.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early life exposure to air pollution, such as particulate matter ≤2.5 μm (PM2.5), may be associated with obesity and adverse cardiometabolic health outcomes in childhood. However, the toxicity of PM2.5 varies according to its chemical composition. Black carbon (BC) is a constituent of PM2.5, but few studies have examined its impact on childhood cardiometabolic health. Therefore, we examined relationships between prenatal and early childhood exposure to BC and markers of adiposity and cardiometabolic health in early childhood. METHODS This study included 578 mother-child pairs enrolled in the Healthy Start study (2009-2014) living in the Denver-metro area. Using a spatiotemporal prediction model, we assessed average residential black carbon levels during pregnancy and in the year prior to the early childhood follow-up visit at approximately 5 years old. We estimated associations between prenatal and early childhood BC and indicators of adiposity and cardiometabolic biomarkers in early childhood (mean 4.8 years; range, 4.0, 8.3), using linear regression. RESULTS We found higher early childhood BC was associated with higher percent fat mass, fat mass index, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR), and lower leptin and waist circumference at approximately 5 years old, after adjusting for covariates. For example, per interquartile range (IQR) increase in early childhood BC (IQR, 0.49 μg/m3) there was 3.32% higher fat mass (95% CI; 2.05, 4.49). Generally, we did not find consistent evidence of associations between prenatal BC and cardiometabolic health outcomes in early childhood, except for an inverse association between prenatal BC and adiponectin, an adipocyte-secreted hormone typically inversely associated with adiposity. CONCLUSIONS Higher early childhood, but not in utero, ambient concentrations of black carbon, a component of air pollution, were associated with greater adiposity and altered insulin homeostasis at approximately 5 years old. Future studies should examine whether these changes persist later in life.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Song X, Wang C, He H, Peng M, Hu Q, Wang B, Tang L, Yu F. Association of phthalate exposure with pulmonary function in adults: NHANES 2007-2012. ENVIRONMENTAL RESEARCH 2023; 237:116902. [PMID: 37625539 DOI: 10.1016/j.envres.2023.116902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Epidemiological evidence for the adverse effect of phthalate exposure on respiratory health is on the rise, but cross-sectional studies regarding its effects on lung function are limited and contradictory, especially in adults. OBJECTIVE To assess the associations between individual and a mixture of urinary phthalate metabolites and adult pulmonary function in the United States, and to identify which ones were primarily responsible for impaired respiratory function. METHODS We obtained a cross-sectional data on 3788 adults aged 20 years and older from the National Health and Nutrition Examination Survey (2007-2012). Respiratory function was evaluated using spirometry, and phthalate exposure was assessed by measuring the levels of ten urinary phthalate metabolites. The effects of individual and mixed phthalate metabolites exposure on lung function were assessed using multivariate linear regression models and the repeated holdout weighted quantile sum (WQS) regression models, respectively, after adjusting for potential confounders including age, gender, family poverty income ratio, body mass index, and serum cotinine. RESULTS When modeled as continuous variables or quantiles, urinary phthalate metabolites, including mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-iso-butyl phthalate, mono-benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(3-carboxypropyl) phthalate, and mono-carboxyoctyl phthalate, were identified to be negatively associated with forced vital capacity in percent predicted values (ppFVC) and forced expiratory volume in the first second in percent predicted values (ppFEV1). In addition, per each decile increase in the WQS index, ppFVC (β = -2.87, 95% CI: -3.56, -2.08) and ppFEV1 (β = -2.53, 95% CI: -3.47, -1.54) declined significantly, primarily due to the contribution of MEP and MECPP. Furthermore, there were no significant interactions between co-exposure to urinary phthalate metabolites and each covariate. CONCLUSION Our findings reveal that urinary phthalate metabolites are significantly associated with adult respiratory decrements, with diethyl and di-(2-ethylhexyl) phthalate contributing the most to the impaired lung function.
Collapse
Affiliation(s)
- Xinli Song
- School of Public Health, Institute of Child and Adolescent Health, Peking University, Beijing, China; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
14
|
Wang S, Zhao G, Zhang C, Kang N, Liao W, Wang C, Xie F. Association of Fine Particulate Matter Constituents with the Predicted 10-Year Atherosclerotic Cardiovascular Disease Risk: Evidence from a Large-Scale Cross-Sectional Study. TOXICS 2023; 11:812. [PMID: 37888663 PMCID: PMC10611010 DOI: 10.3390/toxics11100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Little is known concerning the associations of fine particulate matter (PM2.5) and its constituents with atherosclerotic cardiovascular disease (ASCVD). A total of 31,162 participants enrolled from the Henan Rural Cohort were used to specify associations of PM2.5 and its constituents with ASCVD. Hybrid machine learning was utilized to estimate the 3-year average concentration of PM2.5 and its constituents (black carbon [BC], nitrate [NO3-], ammonium [NH4+], inorganic sulfate [SO42-], organic matter [OM], and soil particles [SOIL]). Constituent concentration, proportion, and residual models were utilized to examine the associations of PM2.5 constituents with 10-year ASCVD risk and to identify the most hazardous constituent. The isochronous substitution model (ISM) was employed to analyze the substitution effect between PM2.5 constituents. We found that each 1 μg/m3 increase in PM2.5, BC, NH4+, NO3-, OM, SO42-, and SOIL was associated with a 3.5%, 49.3%, 19.4%, 10.5%, 21.4%, 14%, and 28.5% higher 10-year ASCVD risk, respectively (all p < 0.05). Comparable results were observed in proportion and residual models. The ISM found that replacing BC with other constituents will generate the greatest health benefits. The results indicated that long-term exposure to PM2.5 and its constituents were associated with increased risks of ASCVD, with BC being the most attributable constituent.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| | - Ge Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.Z.); (N.K.); (W.L.)
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450003, China; (S.W.); (G.Z.)
| |
Collapse
|
15
|
Xu H, Song J, He X, Guan X, Wang T, Zhu Y, Xu X, Li M, Liu L, Zhang B, Fang J, Zhao Q, Song X, Xu B, Huang W. Ambient Anthropogenic Carbons and Pediatric Respiratory Infections: A Case-Crossover Analysis in the Megacity Beijing. GEOHEALTH 2023; 7:e2023GH000820. [PMID: 37534336 PMCID: PMC10392781 DOI: 10.1029/2023gh000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Carbon loading in airway cells has shown to worsen function of antimicrobial peptides, permitting increased survival of pathogens in the respiratory tract; however, data on the impacts of carbon particles on childhood acute respiratory infection (ARI) is limited. We assembled daily health data on outpatient visits for ARI (bronchitis, pneumonia, and total upper respiratory infection [TURI]) in children aged 0-14 years between 2015 and 2019 in Beijing, China. Anthropogenic carbons, including black carbon (BC) and its emission sources, and wood smoke particles (delta carbon, ultra-violet absorbing particulate matter, and brown carbon) were continuously monitored. Using a time-stratified case-crossover approach, conditional logistic regression was performed to derive risk estimates for each outcome. A total of 856,899 children were included, and a wide range of daily carbon particle concentrations was observed, with large variations for BC (0.36-20.44) and delta carbon (0.48-57.66 μg/m3). Exposure to these particles were independently associated with ARI, with nearly linear exposure-response relationships. Interquartile range increases in concentrations of BC and delta carbon over prior 0-8 days, we observed elevation of the odd ratio of bronchitis by 1.201 (95% confidence interval, 1.180, 1.221) and 1.048 (95% CI, 1.039, 1.057), respectively. Stronger association was observed for BC from traffic sources, which increased the odd ratio of bronchitis by 1.298 (95% CI, 1.273, 1.324). Carbon particles were also associated with elevated risks of pneumonia and TURI, and subgroup analyses indicated greater risks among children older than 6 years. Our findings suggested that anthropogenic carbons in metropolitan areas may pose a significant threat to clinical manifestations of respiratory infections in vulnerable populations.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jing Song
- The First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Xinghou He
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xinpeng Guan
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic RadiationMinistry of Education of ChinaInstitute of ToxicologyCollege of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yutong Zhu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xin Xu
- China National Clinical Research Center of Respiratory DiseasesRespiratory Department of Beijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Mengyao Li
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Lingyan Liu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Bin Zhang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jiakun Fang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Qian Zhao
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xiaoming Song
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Baoping Xu
- China National Clinical Research Center of Respiratory DiseasesRespiratory Department of Beijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Wei Huang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| |
Collapse
|
16
|
Wang S, Wu G, Du Z, Wu W, Ju X, Yimaer W, Chen S, Zhang Y, Li J, Zhang W, Hao Y. The causal links between long-term exposure to major PM 2.5 components and the burden of tuberculosis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161745. [PMID: 36690108 DOI: 10.1016/j.scitotenv.2023.161745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND We aimed to estimate the causal impacts of long-term exposure to major PM2.5 components - including black carbon, organic matter, sulfate, nitrate, and ammonium - on the incidence and mortality of tuberculosis in China. METHODS We collected annual and provincial-level tuberculosis incidence and mortality, concentrations of PM2.5 components, and socioeconomic indicators from between 2004 and 2018 in mainland China. We used the difference-in-differences (DID) causal inference approach with a generalized weighted quantile sum (gWQS) regression model to estimate the long-term effects and relative contributions of PM2.5 components' exposure on tuberculosis incidence and mortality. RESULTS We found that long-term multi-components exposure was significantly associated with tuberculosis incidence (WQS index IR%:8.34 %, 95 % CI:4.54 %-12.27 %) and mortality (WQS index IR%:19.49 %, 95 % CI: 9.72 %-30.13 %). Primary pollutants, black carbon and organic matter, contributed most of the overall mixture effect (over 85 %). Nitrate showed a critical role in tuberculosis burden in not-aging provinces and in regions at the Q3 stratum (i.e., the 3rd quartile) of GDP per capita and urbanization rate. Meanwhile the contribution of sulfate to tuberculosis burden in regions at the Q1 stratum of GDP per capita and urbanization rate was the largest among the effect of secondary pollutants (i.e., sulfate, nitrate, and ammonium). CONCLUSION The mitigation of black carbon and organic matter pollution may significantly reduce the tuberculosis burden in China. Controlling nitrate emissions and increasing clean energy (i.e., energy sources with limited pollution emissions, such as natural gas and clean coal) may also be effective in certain regions.
Collapse
Affiliation(s)
- Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xu Ju
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wumitijiang Yimaer
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jinghua Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China.
| |
Collapse
|
17
|
Suner SS, Kurt SB, Demirci S, Sahiner N. The advances in functionalized carbon nanomaterials for drug delivery. FUNCTIONALIZED CARBON NANOMATERIALS FOR THERANOSTIC APPLICATIONS 2023:197-241. [DOI: 10.1016/b978-0-12-824366-4.00011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
19
|
Zhao Y, Kim B. Environmental Regulation and Chronic Conditions: Evidence from China's Air Pollution Prevention and Control Action Plan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912584. [PMID: 36231883 PMCID: PMC9566277 DOI: 10.3390/ijerph191912584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/13/2023]
Abstract
In January 2013, a dense haze covered 1.4 million kilometers of China and affected more than 800 million people. Air pollution in China had become a serious threat to the daily lives of people. The State Council of China enacted the "Air Pollution Prevention and Control Action Plan" (APPCAP) in 2013 to lower the particulate matter (PM) level. Between 2013 and 2017, each administrative division established its own environmental preservation strategy in accordance with the APPCAP. We examined the effects of the nationwide air pollution control policy, APPCAP, on chronic health conditions among adults using a nationally representative survey, CFPS, conducted in 2012, 2014, and 2016. We applied a difference-in-differences model, using the time gap when each administrative division implemented the APPCAP. We found that the APPCAP significantly reduced doctor-diagnosed chronic conditions of the respiratory and circulatory systems in the last six months. In respiratory diseases and circulatory system diseases, the treatment effect of the APPCAP was a 34.6% and 11.5% reduction in the sample mean, respectively. The poorest socioeconomic groups and the elderly benefited the most. The stronger the goal, the more positive the effects were on health; the longer the policy intervention, the better the health outcomes were.
Collapse
Affiliation(s)
- Yang Zhao
- School of Economics and Management, Yanshan University, Qinhuangdao 066004, China
| | - Beomsoo Kim
- Department of Economics, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Lin Y, Lu X, Qiu X, Yin F, Faull KF, Tseng CH, Zhang JJ, Fiehn O, Zhu T, Araujo JA, Zhu Y. Arachidonic acid metabolism and inflammatory biomarkers associated with exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2022; 212:113498. [PMID: 35613629 DOI: 10.1016/j.envres.2022.113498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with systemic inflammation, yet what mechanisms regulate PAHs' inflammatory effects are less understood. This study evaluated the change of arachidonic acid (ARA) metabolites and inflammatory biomarkers in response to increased exposure to PAHs among 26 non-smoking healthy travelers from Los Angeles to Beijing. Traveling from Los Angeles to Beijing significantly increased urinary metabolites of dibenzofuran (800%), fluorene (568%), phenanthrene (277%), and pyrene (176%), accompanied with increased C-reactive protein, fibrinogen, IL-8, and IL-10, and decreased MCP-1, sCD40L, and sCD62P levels in the blood. Meanwhile, the travel increased the levels of ARA lipoxygenase metabolites that were positively associated with a panel of pro-inflammatory biomarkers. Concentrations of cytochrome P450 metabolite were also increased in Beijing and were negatively associated with sCD62P levels. In contrast, concentrations of ARA cyclooxygenase metabolites were decreased in Beijing and were negatively associated with anti-inflammatory IL-10 levels. Changes in both inflammatory biomarkers and ARA metabolites were reversed 4-7 weeks after participants returned to Los Angeles and were associated with urinary PAH metabolites, but not with other exposures such as secondhand smoke, stress, or diet. These results suggested possible roles of ARA metabolic alteration in PAHs-associated inflammatory effects.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Fen Yin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry & Behavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Junfeng Jim Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Uzun B, Onat B, Ayvaz C, Akın Ö, Alver Şahin Ü. Effect of time-activity patterns and microenvironments on the personal exposure of undergraduate students to black carbon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:593. [PMID: 35857112 DOI: 10.1007/s10661-022-10223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, the personal exposure to and potential dose of black carbon (BC) of undergraduate students (22-27 years old, nonsmokers) were determined. BC was continuously measured by a portable device (microAeth® AE51) for four consecutive days in Istanbul between April and May 2019. The time-activity diaries filled out by each volunteer were assessed to define the activities and microenvironments (home, school, transportation and entertainment) that contributed to daily BC exposure. The overall mean concentration of BC was 2.0 μg/m3, and the mean concentrations on weekdays and weekends were 3.0 μg/m3 and 1.1 μg/m3, respectively. Transportation made the highest contribution to mean BC exposure (42%) and dose (45.8%) on weekdays, while the contributions of home-based activities to BC exposure (66.1%) and dose (63.2%) were higher on weekends. Students had the most intense exposure to (2.8% and 4.6%) and dose (3.1% and 5.8%) of BC in transportation both on weekdays and on weekends, respectively. Between transportation modes, the mean BC concentration was the highest for minibuses (14.8 μg/m3), while walking made the largest contribution to BC exposure (16.8%) on weekdays. Students spent 12.8% of their weekdays at school, and the contributions of the school environment to BC exposure and dose were 8.5% and 7%, respectively. Exposure to BC increased during cooking and eating activities in microenvironments such as the kitchen, cafe and dining hall.
Collapse
Affiliation(s)
- Burcu Uzun
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey.
| | - Burcu Onat
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey
| | - Coşkun Ayvaz
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey
| | - Özcan Akın
- Department of Watershed Management, Faculty of Forestry, Düzce University, 81620, Düzce, Turkey
| | - Ülkü Alver Şahin
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcılar, 34320, Istanbul, Turkey
| |
Collapse
|
22
|
Zhu J, Sheng M, Shang J, Kuang Y, Shi X, Qiu X. Photocatalytic Role of Atmospheric Soot Particles under Visible-Light Irradiation: Reactive Oxygen Species Generation, Self-Oxidation Process, and Induced Higher Oxidative Potential and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7668-7678. [PMID: 35537182 DOI: 10.1021/acs.est.2c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is known that there are semiconductor oxides involved in mineral dust, which have photocatalytic properties. However, soot particles contained in carbonaceous aerosol and their photoactivity under sunlight are rarely realized. In this study, reactive oxygen species (ROS) such as superoxide anions and hydroxyl radicals were generated upon visible-light irradiation of soot particles, and the production activity was consistent with the carbonaceous core content, indicating that the atmospheric soot particles can serve as a potential photocatalyst. The increase of oxygen-containing functional groups, environmentally persistent free radicals, oxygenated polycyclic aromatic hydrocarbons, and the oxidative potential (OP) of soot after irradiation confirmed the occurrence of visible-light-triggered photocatalytic oxidation of the soot itself. The mechanism analyses suggested that the carbonaceous core caused the production of ROS, which subsequently oxidize the extractable organic species on the soot surface. It is oxidized organic extracts that are responsible for the enhancements of the OP, cell mortality, and intracellular ROS generation. These new findings shed light on both the photocatalytic role of the soot and the importance of ROS during the photochemical self-oxidation of soot triggered by visible light and will promote a more comprehensive understanding of both the atmospheric chemical behavior and health effects of soot particles.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Mengshuang Sheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Yu Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
23
|
Chen W, Han Y, Wang Y, Chen X, Qiu X, Li W, Xu Y, Zhu T. Glucose Metabolic Disorders Enhance Vascular Dysfunction Triggered by Particulate Air Pollution: a Panel Study. Hypertension 2022; 79:1079-1090. [PMID: 35193365 DOI: 10.1161/hypertensionaha.121.18889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular dysfunction is a biological pathway whereby particulate matter (PM) exerts deleterious cardiovascular effects. The effects of ambient PM on vascular function in prediabetic individuals are unclear. METHODS A panel study recruited 112 Beijing residents with and without prediabetes. Multiple vascular function indices were measured up to 7 times. The associations between vascular function indices and short-term exposure to ambient PM, including fine particulate matter (PM2.5), ultrafine particles, accumulation mode particles, and black carbon, and the modification of these associations by glucose metabolic status were examined using linear mixed-effects models. RESULTS Increases in brachial artery pulse pressure, central aortic pulse pressure, and ejection duration, and decreases in subendocardial viability ratio and reactive hyperemia index were significantly associated with at least one PM pollutant in all participants, indicating increased vascular dysfunction. For example, for an interquartile range increment in 5-day moving average ultrafine particles, brachial artery pulse pressure, and central aortic pulse pressure increased 5.4% (0.8%-10.4%) and 6.2% (1.2%-11.5%), respectively. Additionally, PM-associated changes in vascular function differed according to glucose metabolic status. Among participants with high fasting blood glucose levels (≥6.1 mmol/L), PM exposure was significantly associated with increased brachial artery systolic blood pressure, central aortic systolic blood pressure, brachial artery pulse pressure, central aortic pulse pressure, and augmentation pressure normalized to a heart rate of 75 bpm and decreased subendocardial viability ratio and reactive hyperemia index. Weaker or null associations were observed in the low-fasting blood glucose group. CONCLUSIONS Glucose metabolic disorders may exacerbate vascular dysfunction associated with short-term ambient PM exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co, Ltd, Xiongan, China (X.C.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| |
Collapse
|
24
|
Pei Z, Ning J, Zhang N, Zhang X, Zhang H, Zhang R. Genetic instability of lung induced by carbon black nanoparticles is related with Plk1 signals changes. NANOIMPACT 2022; 26:100400. [PMID: 35560285 DOI: 10.1016/j.impact.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
As a possible carcinogen, carbon black has threatened public health. However, the evidences are insufficient and the mechanism of carcinogenesis is still not specified. Thirty rats were randomly divided into 3 groups, namely 0, 5 and 30 mg/m3 Carbon Black nanoparticles (CBNPs) groups, respectively. Rats were treated with CBNPs by nose-only inhalation for 28 days, 6 h/day. The human bronchial epithelial (16HBE) cells were treated with 0, 50, 100 and 200 μg/mL CBNPs for 24 h. Polo-like kinase 1 (PLK1) overexpression cell line was established by pcDNA3.1-PLK1 stable transfection. Our results showed that CBNPs exposure could induce DNA damage and genetic changes as well as apoptosis in vivo and in vitro. The DNA repair ability increased after CBNPs exposure. Cell cycle process was retarded at the G2/M phases in 16HBE cells after CBNPs treatment. The PLK1, ChK2 GADD45α and XRCC1 expression levels changed in rat lung and 16HBE cells after CBNPs treatment. Compared with NC 16HBE cells, DNA damage and repair, numbers of apoptotic cells and micronucleus (MN) rates, as well as the ChK2, GADD45α, XRCC1 expression levels decreased, whereas cytokinesis block proliferation index (CBPI) and replicative index (RI) increase in PLK overexpression (PLK+/+) cells after CBNPs treatment. This study highlighted that PLK1 related with the genetic toxicity of CBNPs in vitro and in vivo. Our results provided evidences supporting reclassification of carbon black as a human possible carcinogen.
Collapse
Affiliation(s)
- Zijie Pei
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
25
|
Fang L, He P, Tian C, Yao Y, Chen H. Beyond the ceremony: Mega-event, air quality and political career. PLoS One 2022; 17:e0262470. [PMID: 35108314 PMCID: PMC8809592 DOI: 10.1371/journal.pone.0262470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
This paper examines whether mega-events-initiated planning regulations improved air quality in Chinese cities and explores the driving forces of the enforcement of such regulations. Using the 2008 Beijing Olympics as an example, we find that mega-events serve as an opportunity for cities to combat air pollution. The 2008 Olympics prompted a handful of Chinese cities to cut pollution and sustain a blue sky: Cities with air quality regulated for the Olympics cut their Air Pollution Index by about 16 points during the Games, compared to non-regulated cities, and 60% of that effect remained four years after the event. These achievements are obtained through effective mobilization of city leaders by associating air quality with their political careers. This study reveals that 1) a mega-event may improve urban environmental quality beyond the host cities and the event period, and 2) successful implementation of environmental regulations hinges on incentivizing local leaders.
Collapse
Affiliation(s)
- Li Fang
- Departmen of Urban and Regional Planning, Florida State University, Tallahassee, Florida, United States of America
| | - Pan He
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, United Kindom
| | - Chuanhao Tian
- School of Public Affairs, Zhejiang University, Hangzhou, Zhejiang, China
- Center of Social Welfare and Governance, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao Yao
- School of Public Affairs, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjie Chen
- School of Public Affairs, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Qiu H, Niu XY, Cao JJ, Xu HM, Xiao S, Zhang NN, Xia X, Shen ZX, Huang Y, Lau GNC, Yim SHL, Ho KF. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151217. [PMID: 34717999 DOI: 10.1016/j.scitotenv.2021.151217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An outdoor solar assisted large-scale cleaning system (SALSCS) was constructed to mitigate the levels of fine particulate matter (PM2.5) in urban areas of Xi'an China, providing a quasi-experimental opportunity to examine the biologic responses to the changes in pollution level. We conducted this outdoor SALSCS based real-world quasi-interventional study to examine the associations of the SALSCS intervention and changes in air pollution levels with the biomarkers of systemic inflammation and oxidative stress in healthy elders. We measured the levels of 8-hydrox-2-deoxyguanosine (8-OHdG), Interlukin-6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) from urine samples, and IL-6 from saliva samples of 123 healthy retired participants from interventional/control residential areas in two sampling campaigns. We collected daily 24-h PM2.5 samples in two residential areas during the study periods using mini-volume samplers. Data on PM10, gaseous pollutants and weather factors were collected from the nearest national air quality monitoring stations. We used linear mixed-effect models to examine the percent change in each biomarker associated with the SALSCS intervention and air pollution levels, after adjusting for time trend, seasonality, weather factors and personal characteristics. Results showed that the SALSCS intervention was significantly associated with decreases in the geometric mean of biomarkers by 47.6% (95% confidence interval: 16.5-67.2%) for 8-OHdG, 66% (31.0-83.3%) for TNF-α, 41.7% (0.2-65.9%) and 43.4% (13.6-62.9%) for urinary and salivary IL-6, respectively. An inter-quartile range increase of ambient PM2.5 exposure averaged on the day of the collection of bio-samples and the day before (34.1 μg/m3) was associated, albeit non-significantly so, with 22.8%-37.9% increases in the geometric mean of these biomarkers. This study demonstrated that the SALSCS intervention and decreased ambient air pollution exposure results in lower burden of systemic inflammation and oxidative stress in older adults.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
| | - Xin-Yi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Jun-Ji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Hong-Mei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Ning-Ning Zhang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xi Xia
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Gabriel Ngar-Cheung Lau
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China; The Asian School of the Environment, Nanyang Technological University, Singapore
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China.
| |
Collapse
|
27
|
Chen X, Luan M, Liu J, Yao Y, Li X, Wang T, Zhang H, Han Y, Lu X, Chen W, Hu X, Zheng M, Qiu X, Zhu T. Risk factors in air pollution exposome contributing to higher levels of TNFα in COPD patients. ENVIRONMENT INTERNATIONAL 2022; 159:107034. [PMID: 34906887 DOI: 10.1016/j.envint.2021.107034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollutants are found associated with various health effects in chronic obstructive pulmonary patients. Given the complicate chemical components of air pollutants, it is not clear which components are the main risk factors for these health effects. OBJECTIVES Based on the COPD in Beijing (COPDB) study and exposome concept, we examined comprehensively the air pollution components to screen out high-risk factors for systemic inflammation of COPD patients. METHODS Concentrations of PM with aerodynamic diameter ≤ 2.5 μm (PM2.5), ultrafine and accumulated-mode particles (UFPs and Acc), PM2.5-contained carbonaceous components/elements/water soluble ions, gaseous pollutants, temperature, and relative humidity (RH) were continuously monitored around participants. Urinary polycyclic aromatic hydrocarbons (PAHs) and cotinine, and serum tumor necrosis factor α (TNFα) were measured from 53 COPD and 82 non-COPD participants. Lifestyle variables were recorded using follow-up questionnaire. Linear mixed effects (LME) models were used to assess the associations of TNFα differences with exposure to air pollutants, meteorological variations, and lifestyle. RESULTS In COPD patients, the associations of TNFα differences with exposure to ozone, Cd, UFPs, Acc, 2-hydroxydibenzofuran, temperature and RH parameters, and several elements in PM2.5 were significant in certain time-windows. For example, per interquartile range (IQR) increase in average ozone concentration 14 d before visits was associated with 17.3% (95% confidence interval: 6.8%, 27.7%) TNFα difference. Associations between ozone, Cd, UFPs, Acc, the maximum value of RH, and 2-hydroxydibenzofuran exposure and TNFα differences remained robust in two-pollutant models, and contributed to 19.0%, 10.5%, 2.2%, 1.6%, 2.1%, and 1.5% TNFα differences, respectively. Among the high-risk factors for COPD patients, the responses to UFPs, Acc, and 2-hydroxydibenzofuran were not robust in non-COPD participants. DISCUSSION Ozone, Cd, UFPs, Acc, PAHs exposure and RH variation were high-risk factors of systemic inflammation for COPD patients, and the profile of high-risk factors were different from those in general population.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan 071700, China
| | - Mengxiao Luan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinming Liu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoying Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environmental and Health, Imperial College London, SW7 2AZ, UK
| | - Xinchen Lu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Bista S, Dureau C, Chaix B. Personal exposure to concentrations and inhalation of black carbon according to transport mode use: The MobiliSense sensor-based study. ENVIRONMENT INTERNATIONAL 2022; 158:106990. [PMID: 34991251 DOI: 10.1016/j.envint.2021.106990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Epidemiological evidence suggests that motorized vehicle users have a higher air pollutant exposure (especially from vehicle exhaust) than active (walking or cycling) transport users. However, studies often relied on insufficiently diverse sample and ignored that minute ventilation has an effect on individuals' inhaled dose. This study examined commuters' breathing zone concentration and inhaled doses of black carbon (BC) when travelling by different transport modes in the Grand Paris region. METHODS Personal exposure to BC was continuously measured with MicroAethalometer (MicroAeth AE51) portable monitors strapped on participants' shoulder with tube inlet at the level of the neck (breathing zone), and inhaled doses were derived from several methods estimating ventilation [based on metabolic equivalents from accelerometry [METs], heart rate, and breathing rate]. Trip stages and transport modes were assessed from GPS and mobility survey data. Breathing zone concentrations and inhaled doses of BC were compared across transport modes at the trip stage level (n = 7495 for 283 participants) using linear mixed effect models with a random intercept at individual level. RESULTS Trip stages involving public transport and private motorized transport were associated with a 2.20 µg/m3 (95% CI: 1.99, 2.41) and 2.29 µg/m3 (95% CI: 2.10, 2.48) higher breathing zone concentration to BC than walking, respectively. Trip stages with other active modes had a 0.41 µg (95% CI: 0.25, 0.57) higher inhaled dose, while those involving public transport and private motorized transport had a 0.25 µg (95% CI: -0.35, -0.15) and 0.19 µg (95 %CI: -0.28, -0.10) lower inhaled dose of BC per 30 min than walking. CONCLUSION The ranking of transport modes in terms of personal exposure was markedly different when breathing zone concentrations and inhaled doses were considered. Future studies should take both into account to explore the relationship of air pollutants in transport microenvironments with physiological response.
Collapse
Affiliation(s)
- Sanjeev Bista
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France.
| | - Clélie Dureau
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| | - Basile Chaix
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| |
Collapse
|
29
|
Wang X, Guo Y, Cai M, Qian ZM, Zhang S, Zhang Z, Yang Y, Vaughn MG, Aaron HE, Wu F, Zhang Y, Lin H. Constituents of fine particulate matter and asthma in six low- and middle-income countries. J Allergy Clin Immunol 2021; 150:214-222.e5. [PMID: 34971647 DOI: 10.1016/j.jaci.2021.12.779] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence concerning the effects of different chemical components of PM2.5 on asthma is limited, and the methodology to compare the relative importance of different PM2.5 components is lacking. OBJECTIVES To examine the associations between PM2.5 components and asthma, and investigate which constituent of PM2.5 possessed the most harmful effect on asthma. METHODS A total of 45,690 subjects were surveyed in six countries from 2007 to 2010. We geo-coded the residential community address of the participants, and used satellite remote sensing and chemical transport modeling to estimate their annual average concentrations. Mixed-effects generalized additive models were utilized to examine the associations between PM2.5 constituents and prevalence of asthma. We further used counterfactual analyses to determine the potential number of asthma cases. RESULTS We identified 6,178 asthma cases among the participants, producing a prevalence of 13.5%. The odds ratio (OR) for asthma associated with per standard deviation (SD) increment was 1.12 for PM2.5 mass, 1.12 for organic carbon (OC), 1.18 for black carbon (BC), 1.19 for sulfate, 1.28 for ammonium, and 1.21 for nitrate after controlling for potential confounders. Our counterfactual analyses suggested that ammonium was responsible for a substantial decline in asthma cases (1382, corresponding to 22.37% of overall cases) if the concentration was reduced to the 5th percentile of the current level. CONCLUSIONS Our study suggests that some chemical components (including BC, OC, sulfate, ammonium, and nitrate) of PM2.5 might be hazardous constituents contributing to the prevalence of asthma, among them, ammonium might be responsible for substantial proportion of asthma cases if reduced to a certain level.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention (Shanghai CDC), Shanghai, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, USA
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, USA
| | - Hannah E Aaron
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, USA
| | - Fan Wu
- School of Public Health, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yuqiang Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Wang J, Shi J, Zhao Y, Xue L, Li G, Wang B, Huang J, Wu S, Guo X. Cardiorespiratory responses in healthy young adults with exposure to indoor airborne PAEs: A randomized, crossover trial of air purification. ENVIRONMENT INTERNATIONAL 2021; 156:106761. [PMID: 34284317 DOI: 10.1016/j.envint.2021.106761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phthalic acid esters (PAEs) are widely used as plasticizers in industrial process and consumer products. Nowadays, PAEs are ubiquitous in the environment and are reported to be associated with cardiorespiratory diseases. However, studies about the association between indoor airborne PAEs exposure and cardiorespiratory health were limited, and the potential biological mechanism remains under-recognized. METHODS A randomized crossover trial was conducted on 57 healthy young adults in Beijing. Repeated health measurements were performed under real and sham indoor air purification with a washout interval of at least 2 weeks. The concentration of indoor airborne PAEs were determined by gas chromatography-orbit ion trap mass spectrometry. Health indicators including blood pressure, lung function, airway inflammation, and circulating biomarkers reflecting blood coagulation and systematic oxidative stress were measured. Linear mixed-effect model was used to examine the between-treatment differences in health indicators, and three models including single-constituent, constituent-fine particulate matter (PM2.5) joint, and single-constituent residual model were used to estimate the association between indoor airborne PAEs and health indicators. RESULTS The indoor airborne PAEs were reduced effectively under real air purification. The total indoor airborne di-2-ethylhexyl phthalate (DEHP), bis (4-Methyl-2-pentyl) phthalate (DMPP), diphenyl phthalate (DPP), and diethyl phthalate (DEP) were identified to be most significantly associated with the increase of blood pressure and airway inflammation, and decrease of lung function. A doubling increase in DEHP, DMPP, DPP, DEP was associated with the increase of 17.2% (95% CI: 3.9%, 32.2%), 11.7% (95% CI: 3.5%, 20.6%), 7.0% (95% CI: 2.4%, 11.8%), 6.0% (95% CI: 1.8%, 10.4%) in FeNO, respectively, in single-constituent residual model. Significant associations between specific total indoor airborne PAEs and increased levels of health biomarkers including oxidized low-density lipoprotein (ox-LDL), 8-isoprostane (8-isoPGF2α), and soluble P-selectin (sP-selectin) were observed. CONCLUSION Indoor airborne PAEs may cause adverse cardiorespiratory health effects in young healthy adults, and indoor air purification could ameliorate the adverse cardiorespiratory effects.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiazhang Shi
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
31
|
Chen X, Que C, Yao Y, Han Y, Zhang H, Li X, Lu X, Chen W, Hu X, Wu Y, Wang T, Zhang L, Zheng M, Qiu X, Zhu T. Susceptibility of individuals with lung dysfunction to systemic inflammation associated with ambient fine particle exposure: A panel study in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147760. [PMID: 34020092 DOI: 10.1016/j.scitotenv.2021.147760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The underlying mechanism on the susceptibility of chronic obstructive pulmonary disease (COPD) patients to air pollution has yet to be clarified. OBJECTIVES Based on the COPD in Beijing (COPDB) study, we examined whether lung dysfunction contributed to pollutant-associated systemic inflammation in COPD patients. METHODS Proinflammatory biomarkers including interleukin-8 (IL-8) and tumor necrosis factor α (TNFα) were measured in serum samples collected from 53 COPD and 82 healthy participants. Concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), carbonaceous components in PM2.5, and PM size distribution were continuously monitored. Linear mixed effects models were used to examine the associations of biomarker differences with particle exposure, between COPD and healthy participants, and across subgroups with different levels of lung dysfunction. RESULTS COPD patients showed higher differences in IL-8 and TNFα levels associated with exposure to measured pollutants, comparing to healthy controls. In advanced analysis, particle-associated differences in IL-8 and TNFα levels were higher in participants with poorer lung ventilation and diffusion capacity, and higher ratio of residual volume. For example, an interquartile range increase in average PM2.5 concentration 2 weeks before visits was associated with a 15.7% difference in IL-8 level in participants with the lowest ratio of measured value to predicted value of forced expiratory volume in 1 s (FEV1%pred) (65.2%), and the association decreased monotonically with increasing FEV1%pred. Associations between differences in TNFα level and average ultrafine particle concentration 1 week before visits increased gradually with increasing ratio of measured value to predicted value of residual volume/total lung capacity. CONCLUSIONS COPD patients, especially those with poorer lung function, are more susceptible to systemic inflammation associated with fine particle exposure.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Xiong'an 071700, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing 100034, China.
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environmental and Health, Imperial College London, SW7 2AZ, UK.
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoying Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinchen Lu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yusheng Wu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Lina Zhang
- Beijing Xicheng District Shichahai Community Health Center, Beijing 100000, China.
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Jung KH, Goodwin KE, Perzanowski MS, Chillrud SN, Perera FP, Miller RL, Lovinsky-Desir S. Personal Exposure to Black Carbon at School and Levels of Fractional Exhaled Nitric Oxide in New York City. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97005. [PMID: 34495741 PMCID: PMC8425518 DOI: 10.1289/ehp8985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Schools are often located near traffic sources, leading to high levels of exposure to traffic-related air pollutants, including black carbon (BC). Thus, the school environment could play in a significant role in the adverse respiratory health of children. OBJECTIVES Our objective was to determine associations between personal BC levels at school and airway inflammation [i.e., fractional exhaled nitric oxide (FeNO)] in school-age children. We hypothesized that higher school BC (SBC) would be associated with higher FeNO. METHODS Children 9-14 years of age in New York City (NYC) (n=114) wore BC monitors for two 24-h periods over a 6-d sampling period, repeated 6 months later. SBC was defined as the average personal BC concentrations measured during NYC school hours (i.e., 0830-1430 hours). FeNO was measured following each 24-h BC monitoring period. Multivariable linear regression in generalized estimating equation models were used to examine associations between SBC and FeNO. Results are presented as percentage difference (PD) in FeNO. RESULTS Personal BC at school was associated with higher FeNO (PD=7.47% higher FeNO per 1-μg/m3 BC (95% CI: 1.31, 13.9), p=0.02]. Compared with BC exposure during school, a smaller PD in FeNO was observed in association with BC exposure while commuting to and from school [PD=6.82% (95% CI: 0.70, 13.3), p=0.03]. Personal BC in non-school environments and residential BC were not associated with FeNO (p>0.05). A significant association between personal BC at school and FeNO was observed among children with seroatopy who did not have asthma [PD=21.5% (95% CI: 4.81, 40.9), p=0.01]. DISCUSSION Schools may be important sources of BC exposure that contribute to airway inflammation in school-age children. Our results provide rationale for interventions that target improved air quality in urban schools and classrooms. https://doi.org/10.1289/EHP8985.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kathleen E. Goodwin
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Matthew S. Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, New York, New York, USA
| | - Frederica P. Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Rachel L. Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
33
|
Janjua S, Powell P, Atkinson R, Stovold E, Fortescue R. Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long-term respiratory conditions. Cochrane Database Syst Rev 2021; 8:CD013441. [PMID: 34368949 PMCID: PMC8407478 DOI: 10.1002/14651858.cd013441.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND More than 90% of the global population lives in areas exceeding World Health Organization air quality limits. More than four million people each year are thought to die early due to air pollution, and poor air quality is thought to reduce an average European's life expectancy by one year. Individuals may be able to reduce health risks through interventions such as masks, behavioural changes and use of air quality alerts. To date, evidence is lacking about the efficacy and safety of such interventions for the general population and people with long-term respiratory conditions. This topic, and the review question relating to supporting evidence to avoid or lessen the effects of air pollution, emerged directly from a group of people with chronic obstructive pulmonary disease (COPD) in South London, UK. OBJECTIVES 1. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with or without chronic respiratory conditions to reduce their exposure to outdoor air pollution. 2. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with chronic respiratory conditions reduce the personal impact of outdoor air pollution and improve health outcomes. SEARCH METHODS We identified studies from the Cochrane Airways Trials Register, Cochrane Central Register of Controlled Trials, and other major databases. We did not restrict our searches by date, language or publication type and included a search of the grey literature (e.g. unpublished information). We conducted the most recent search on 16 October 2020. SELECTION CRITERIA We included randomised controlled trials (RCTs) and non-randomised studies (NRS) that included a comparison treatment arm, in adults and children that investigated the effectiveness of an individual-level intervention to reduce risks of outdoor air pollution. We included studies in healthy individuals and those in people with long-term respiratory conditions. We excluded studies which focused on non-respiratory long-term conditions, such as cardiovascular disease. We did not restrict eligibility of studies based on outcomes. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Two review authors independently selected trials for inclusion, extracted study characteristics and outcome data, and assessed risk of bias using the Cochrane Risk of Bias tool for RCTs and the Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) as appropriate. One review author entered data into the review; this was spot-checked by a second author. We planned to meta-analyse results from RCTs and NRS separately, using a random-effects model. This was not possible, so we presented evidence narratively. We assessed certainty of the evidence using the GRADE approach. Primary outcomes were: measures of air pollution exposure; exacerbation of respiratory conditions; hospital admissions; quality of life; and serious adverse events. MAIN RESULTS We identified 11 studies (3372 participants) meeting our inclusion criteria (10 RCTs and one NRS). Participants' ages ranged from 18 to 74 years, and the duration of studies ranged from 24 hours to 104 weeks. Six cross-over studies recruited healthy adults and five parallel studies included either people with pre-existing conditions (three studies) or only pregnant women (two studies). Interventions included masks (e.g. an N95 mask designed to filter out airborne particles) (five studies), an alternative cycle route (one study), air quality alerts and education (five studies). Studies were set in Australia, China, Iran, the UK, and the USA. Due to the diversity of study designs, populations, interventions and outcomes, we did not perform any meta-analyses and instead summarised results narratively. We judged both RCTs and the NRS to be at risk of bias from lack of blinding and lack of clarity regarding selection methods. Many studies did not provide a prepublished protocol or trial registration. From five studies (184 participants), we found that masks or altered cycle routes may have little or no impact on physiological markers of air pollution exposure (e.g. blood pressure and heart rate variability), but we are very uncertain about this estimate using the GRADE approach. We found conflicting evidence regarding health care usage from three studies of air pollution alerts, with one non-randomised cross-over trial (35 participants) reporting an increase in emergency hospital attendances and admissions, but the other two randomised parallel trials (1553 participants) reporting little to no difference. We also gave the evidence for this outcome a very uncertain GRADE rating. None of our included trials reported respiratory exacerbations, quality of life or serious adverse events. Secondary outcomes were not well reported, but indicated inconsistent impacts of air quality alerts and education interventions on adherence, with some trials reporting improvements in the intervention groups and others reporting little or no difference. Symptoms were reported by three trials, with one randomised cross-over trial (15 participants) reporting a small increase in breathing difficulties associated with the mask intervention, one non-randomised cross-over trial (35 participants) reporting reduced throat and nasal irritation in the lower-pollution cycle route group (but no clear difference in other respiratory symptoms), and another randomised parallel trial (519 participants) reporting no clear difference in symptoms between those who received a smog warning and those who did not. AUTHORS' CONCLUSIONS The lack of evidence and study diversity has limited the conclusions of this review. Using a mask or a lower-pollution cycle route may mitigate some of the physiological impacts from air pollution, but evidence was very uncertain. We found conflicting results for other outcomes, including health care usage, symptoms and adherence/behaviour change. We did not find evidence for adverse events. Funders should consider commissioning larger, longer studies, using high-quality and well-described methods, recruiting participants with pre-existing respiratory conditions. Studies should report outcomes of importance to people with respiratory conditions, such as exacerbations, hospital admissions, quality of life and adverse events.
Collapse
Affiliation(s)
- Sadia Janjua
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | | | - Richard Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Elizabeth Stovold
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | - Rebecca Fortescue
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| |
Collapse
|
34
|
Traffic Density-Related Black Carbon Distribution: Impact of Wind in a Basin Town. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126490. [PMID: 34208506 PMCID: PMC8296370 DOI: 10.3390/ijerph18126490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 01/31/2023]
Abstract
Black carbon is one of the riskiest particle matter pollutants that is harmful to human health. Although it has been increasingly investigated, factors that depend on black carbon distribution and concentration are still insufficiently researched. Variables, such as traffic density, wind speeds, and ground levels can lead to substantial variations of black carbon concentrations and potential exposure, which is even riskier for people living in less-airy sites. Therefore, this paper “fills the gaps” by studying black carbon distribution variations, concentrations, and oscillations, with special emphasis on traffic density and road segments, at multiple locations, in a small city located in a basin, with frequent temperature inversions and infrequent low wind speeds. As wind speed has a significant impact on black carbon concentration trends, it is critical to present how low wind speeds influence black carbon dispersion in a basin city, and how black carbon is dependent on traffic density. Our results revealed that when the wind reached speeds of 1 ms−1, black carbon concentrations actually increased. In lengthy wind periods, when wind speeds reached 2 or 3 ms−1, black carbon concentrations decreased during rush hour and in the time of severe winter biomass burning. By observing the results, it could be concluded that black carbon persists longer in higher altitudes than near ground level. Black carbon concentration oscillations were also seen as more pronounced on main roads with higher traffic density. The more the traffic decreases and becomes steady, the more black carbon concentrations oscillate.
Collapse
|
35
|
Madaniyazi L, Xerxes S. Outdoor air pollution and the onset and exacerbation of asthma. Chronic Dis Transl Med 2021; 7:100-106. [PMID: 34136769 PMCID: PMC8180519 DOI: 10.1016/j.cdtm.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Exposure to outdoor air pollution has been consistently associated with asthma. In this study, we reviewed the epidemiological studies published within the last 5 years on the association between outdoor air pollution and exacerbation and onset of asthma. A large number of studies have been published within the last 5 years. Short-term exposure to outdoor air pollution is associated with exacerbation of pre-existing asthma, manifested as worsening of symptoms and increasing of asthma-related emergency room visits and hospital admissions. Furthermore, increasing evidence suggests that long-term exposure to outdoor air pollution can result in onset of asthma. Children are more susceptible to outdoor air pollution. Future studies should be conducted to explore the mechanisms underlying the association between air pollutants and onset of asthma, including gene involvement. In addition, disentangling the effect of a mixture of air pollutants and identifying the key components of air pollution will complete the existing evidence. More importantly, a better understanding is required on the future impact of air pollution on asthma under a changing climate.
Collapse
Affiliation(s)
- Lina Madaniyazi
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Seposo Xerxes
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
36
|
Adam MG, Tran PTM, Cheong DKW, Chandra Sekhar S, Tham KW, Balasubramanian R. Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18095028. [PMID: 34068742 PMCID: PMC8126254 DOI: 10.3390/ijerph18095028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
The combustion of fossil fuels is a significant source of particulate-bound black carbon (BC) in urban environments. The personal exposure (PE) of urban dwellers to BC and subsequent health impacts remain poorly understood due to a lack of observational data. In this study, we assessed and quantified the levels of PE to BC under two exposure scenarios (home-based and mobility-based exposure) in the city of Trivandrum in India. In the home-based scenario, the PE to BC was assessed in a naturally ventilated building over 24 h each day during the study period while in the mobility-based scenario, the PE to BC was monitored across diverse microenvironments (MEs) during the day using the same study protocol for consistency. Elevated BC concentrations were observed during the transport by motorcycle (26.23 ± 2.33 µg/m3) and car (17.49 ± 2.37 µg/m3). The BC concentrations observed in the MEs decreased in the following order: 16.58 ± 1.38 µg/m3 (temple), 13.78 ± 2.07 µg/m3 (restaurant), 11.44 ± 1.37 µg/m3 (bus stop), and 8.27 ± 1.88 µg/m3 (home); the standard deviations represent the temporal and spatial variations of BC concentrations. Overall, a relatively larger inhaled dose of BC in the range of 148.98–163.87 µg/day was observed for the mobility-based scenario compared to the home-based one (118.10–137.03 µg/day). This work highlights the importance of reducing PE to fossil fuel-related particulate emissions in cities for which BC is a good indicator. The study outcome could be used to formulate effective strategies to improve the urban air quality as well as public health.
Collapse
Affiliation(s)
- Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
| | - Phuong Thi Minh Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Faculty of Environment, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City 50608, Vietnam
| | - David Kok Wai Cheong
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Sitaraman Chandra Sekhar
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Kwok Wai Tham
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Correspondence: ; Tel.: +65-6516-5135; Fax: +65-6779-1635
| |
Collapse
|
37
|
Yao Y, Chen X, Chen W, Wang Q, Fan Y, Han Y, Wang T, Wang J, Qiu X, Zheng M, Que C, Zhu T. Susceptibility of individuals with chronic obstructive pulmonary disease to respiratory inflammation associated with short-term exposure to ambient air pollution: A panel study in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142639. [PMID: 33069482 DOI: 10.1016/j.scitotenv.2020.142639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. There is no clear evidence of whether COPD patients are more susceptible to respiratory inflammation associated with short-term exposure to air pollutants than those without COPD. OBJECTIVES This study directly compared air pollutant-associated respiratory inflammation between COPD patients and healthy controls. METHODS This study is based on the COPDB panel study (COPD in Beijing). Fractional exhaled nitric oxide (FeNO) was repeatedly measured in 53 COPD patients and 82 healthy controls at up to four clinical visits. Concentrations of carbon monoxide (CO), nitrogen monoxide, nitrogen dioxide (NO2), sulfur dioxide (SO2), fine particulate matter (PM2.5), black carbon (BC), ultrafine particles (UFPs), and accumulated-mode particles (Acc) were monitored continuously at a fixed-site monitoring station. Linear mixed-effects models were used to compare the associations between ln-transformed FeNO and average 1-23 h concentrations of air pollutants before the clinical visits. RESULTS FeNO was positively associated with interquartile range (IQR) increases in average concentrations of CO, NO2, SO2, BC, UFPs, and Acc in all participants, with the strongest associations in different time-windows (range from 6.6% for average 1 h NO2 exposure to 32.1% for average 7 h SO2 exposure). Associations between FeNO and average 13-23 h PM2.5 exposure differed significantly according to COPD status. Increases in FeNO associated with average 1-2 h NO exposure were significant in COPD patients (range 8.9-10.2%), while the associations were nonsignificant in healthy controls. Associations between FeNO and average 1-23 h CO and SO2 exposure tended to be higher in COPD patients than in healthy controls, although the differences were not significant. UFPs-associated respiratory inflammation was robust in both subgroups. CONCLUSIONS COPD patients are more susceptible to respiratory inflammation following PM2.5, NO, CO, and SO2 exposure than individuals without COPD.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China.
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Qi Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yunfei Fan
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China.
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
38
|
Gao S, Li T, Pan J, Han D, Lin J, Niu Q, Liu R. Toxic effect and mechanism of ultrafine carbon black on mouse primary splenocytes and two digestive enzymes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111980. [PMID: 33545408 DOI: 10.1016/j.ecoenv.2021.111980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This paper investigated the toxic effect and mechanism of ultrafine carbon black (UFCB) on splenocytes and enzymes in the digestive system. It was found that the toxicity of UFCB to splenocytes was dose-dependent. UFCB with a low concentration (<15 μg/mL) had no significant effect on splenocytes while UFCB with high concentration (>15 μg/mL) induced significant oxidative damage with increased content of reactive oxygen species (ROS) (134%) and malonaldehyde (MDA) (222.3%) along with the decreased activity of superoxide dismutase (SOD) (55.63%) and catalase (CAT) (87.73%). Analysis combined cellular and molecular levels indicated that UFCB induced splenocyte toxicity through oxidative stress. The interactions of UFCB with two important digestive enzymes, α-amylase and lipase, were also studied respectively. Results showed that the interaction of UFCB and the two enzymes altered the particle size and fluorescence intensity in both experimental systems. The formation of protein corona also resulted in the contraction of the polypeptide skeleton in both enzymes, which further inhibited their activity. Our work provided basic data on the toxicity of UFCB in the spleen and digestive system and fills the gap in the study of UFPs toxicity. CAPSULE: UFCB induced splenocyte toxicity and enzyme dysfunction through oxidative stress and protein corona formation respectively.
Collapse
Affiliation(s)
- Sichen Gao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Tong Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Jie Pan
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Dengcheng Han
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Jing Lin
- North China Sea Data & Information Service of SOA, 27# Yunling Road, Laoshan, Qingdao 266061, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
39
|
Han Y, Chatzidiakou L, Yan L, Chen W, Zhang H, Krause A, Xue T, Chan Q, Liu J, Wu Y, Barratt B, Jones R, Zhu T, Kelly FJ. Difference in ambient-personal exposure to PM 2.5 and its inflammatory effect in local residents in urban and peri-urban Beijing, China: results of the AIRLESS project. Faraday Discuss 2021; 226:569-583. [PMID: 33295898 DOI: 10.1039/d0fd00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Measurement of ambient fine particulate matter (PM2.5) is often used as a proxy of personal exposure in epidemiological studies. However, the difference between personal and ambient exposure, and whether it biases the estimates of health effects remain unknown. Based on an epidemiological study (AIRLESS) and simultaneously launched intensive monitoring campaigns (APHH), we quantified and compared the personal and ambient exposure to PM2.5 and the related health impact among residents in Beijing, China. In total, 123 urban and 128 peri-urban non-smoking participants were recruited from two well-established cohorts in Beijing. During winter 2016 and summer 2017, each participant was instructed to carry a validated personal air monitor (PAM) to measure PM2.5 concentration at high spatiotemporal resolution for seven consecutive days in each season. Multiple inflammatory biomarkers were measured, including exhaled NO, blood monocytes counts and C-reactive protein. Linear mixed-effect models were used for the associations between exposure and health outcomes with adjustment for confounders. The average level of daily personal exposure to PM2.5 was consistently lower than using corresponding ambient concentration, and the difference is greater during the winter. The personal to ambient (P/A) ratio of exposure to PM2.5 exhibited an exponentially declining trend, and showed larger variations when ambient PM2.5 levels < 25 μg m-3. Personal exposure to PM2.5 was significantly associated with the increase in respiratory and systemic inflammatory biomarkers; however, the associations were weaker or became insignificant when ambient concentrations were used. Exposure to ambient PM2.5 might not be a good proxy to estimate the health effect of exposure to personal PM2.5.
Collapse
Affiliation(s)
- Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu J, Shang J, Zhu T. A new understanding of the microstructure of soot particles: The reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116079. [PMID: 33234379 DOI: 10.1016/j.envpol.2020.116079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms of soot's photochemistry are still unclear, especially, how the microstructure and composition of soot influence its photoactivity. In the current study, we started with the exploration of the microstructure of soot particles and gained new insights. The elemental-carbon fraction of soot (E-soot), considered the core component of soot and can reflect the intrinsic characteristics of soot, was extracted by organic solvents and characterized in terms of structure and chemical reactivity. The intrinsic structure of E-soot was found to be more analogous to reduced graphene oxide than to graphene, in terms of containing similar levels of defective sites such as oxygen-containing functional groups and environmentally persistent free radicals, as well as exhibiting similar optoelectronic performance. The generation of reactive oxygen species via an electron transfer pathway under visible light suggests that reduced graphene oxide-like E-soot can serve as a potential carbo-photocatalyst, which facilitates elucidating the mechanism of E-soot's role during soot's photochemical aging. Our study reveals the intrinsic structure of soot and its role in photo-triggered reactive oxygen species production, which is vital for atmospheric and health effects.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, 5 Yiheyuan Road, Beijing, 100871, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, 5 Yiheyuan Road, Beijing, 100871, PR China.
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, 5 Yiheyuan Road, Beijing, 100871, PR China; Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, 5 Yiheyuan Road, Beijing, 100871, PR China
| |
Collapse
|
41
|
Cheng J, Su H, Xu Z. Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115698. [PMID: 33049483 DOI: 10.1016/j.envpol.2020.115698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Children's respiratory health are particularly vulnerable to outdoor air pollution, but evidence is lacking on the very acute effects of air pollution on the risk of acute upper respiratory infections (AURI) and acute lower respiratory infections (ALRI) in children. This study aimed to evaluate the risk of cause-specific AURI and ALRI, in children within 24 h of exposure to air pollution. We obtained data on emergency cases, including 11,091 AURI cases (acute pharyngitis, acute tonsillitis, acute obstructive laryngitis and epiglottitis, and unspecified acute upper respiratory infections) and 11,401 ALRI cases (pneumonia, acute bronchitis, acute bronchiolitis, unspecified acute lower respiratory infection) in Brisbane, Australia, 2013-2015. A time-stratified case-crossover analysis was used to examine the hourly association of AURI and ALRI with high concentration (95th percentile) of four air pollutants (particulate matters with aerodynamic diameter <10 μm (PM10) and <2.5 μm (PM2.5), ozone (O3), nitrogen dioxide (NO2)). We observed increased risk of acute tonsillitis associated with PM2.5 within 13-24 h (odds ratio (OR), 1.45; 95% confidence interval [CI], 1.02-2.06) and increased risk of unspecified acute upper respiratory infections related to O3 within 2-6 h (OR, 1.38, 95%CI, 1.12-1.70), NO2 within 1 h (OR, 1.19; 95%CI, 1.01-1.40), and PM2.5 within 7-12 h (OR, 1.21; 95%CI, 1.02-1.43). Cold season and nigh-time air pollution has greater effects on AURI, whereas greater risk of ALRI was seen in warm season and daytime. Our findings suggest exposures to particulate and gaseous air pollution may transiently increase risk of AURI and ALRI in children within 24 h. Prevention measures aimed at protecting children's respiratory health should consider the very acute effects of air pollution.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| |
Collapse
|
42
|
Chen X, Liu F, Niu Z, Mao S, Tang H, Li N, Chen G, Liu S, Lu Y, Xiang H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114833. [PMID: 32544661 DOI: 10.1016/j.envpol.2020.114833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 05/27/2023]
Abstract
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM10, PM2.5, black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m3 increase in air pollutants exposure concentrations. A 10 μg/m3 increase in short-term PM10, PM2.5, NO2, and SO2 exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m3 increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O3 and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960, East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
43
|
Zhang X, Cheng T, Guo H, Bao F, Shi S, Wang W, Zuo X. Study on the characteristics of black carbon during atmospheric pollution conditions in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139112. [PMID: 32470715 DOI: 10.1016/j.scitotenv.2020.139112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Black carbon (BC), not only has a negative impact on human health, but also contributes to visibility degradation and the attenuation of solar radiation due to light absorption. In this paper, we investigated the variations of BC concentration, BC optical characteristics and its effects on the physical and optical properties of atmospheric aerosols based on AERONET data during atmospheric pollution conditions in Beijing from 2012 to 2017. The results indicated that the average annual ground-level BC concentration and BC/PM2.5 were 8.9 μg m-3 and 6.7%, respectively, from 2012 to 2017 during atmospheric pollution conditions in Beijing. The annual mean ground-level BC concentration showed weak variation, but the monthly variation was pronounced during atmospheric pollution conditions. Moreover, the BC column concentration had a higher correlation with absorptive aerosol optical thickness (AAOT) at 870 nm (R2 = 0.93) than 440 nm (R2 = 0.73). The difference in AAOT between 440 nm and 870 nm was more significant under high BC column concentration. The seasonal variation of the BC column concentration that contributed to the AAOT at 870 nm displayed a consistent monthly average variation tendency. The BC column concentrations were divided into three segments of low, moderate, and high according to the results of the approximately normal distribution of the BC column concentration. Compared with high BC concentration, the single scattering albedo (SSA) and asymmetry parameter were enhanced by 0.05 and 0.04 in low BC concentrations, respectively. On the contrary, the fine mode fraction (FMF) was dropped by 12.5% in low BC concentrations. A higher BC concentration contributed to the enhancement in the AAOT and the extinction ratio of the fine mode aerosol. Meanwhile, the atmospheric particles' forward scattering ability was also attenuated under a high BC concentration.
Collapse
Affiliation(s)
- Xiaochuan Zhang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Cheng
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Guo
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangwen Bao
- Center for Oceanic and Atmospheric Science at SUSTech (COAST), Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuaiyi Shi
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China
| | - Wannan Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zuo
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Hu Q, Ma X, Yue D, Dai J, Zhao L, Zhang D, Ciren D, Lin J, You B, Zhai Y, Yuan L, Lin W. Linkage between Particulate Matter Properties and Lung Function in Schoolchildren: A Panel Study in Southern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9464-9473. [PMID: 32628453 DOI: 10.1021/acs.est.9b07463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While several scientific studies have linked PM2.5 to decreased lung function, there is still some degree of uncertainty regarding which particulate physicochemical properties are most harmful. We followed a panel of 57 healthy schoolchildren (857 person-days) to investigate the associations between a wide variety of PM2.5 and lung function in Heshan, China in 2016 for three periods. We monitored the daily concentrations of mass, chemical composition, size, number, surface area, and volume of particulate mixture. Associations of lung function with various particle metrics were estimated using generalized estimating equations and unconstrained distributed lag models. Random forest model was used to compare the relative importance of exposure metrics. Immediate (lag 0) associations of PM2.5 and carbonaceous aerosols with reduced FEV1 and MMEF, and accumulation-mode particles with FEV1 were found. Slightly delayed (lag 1, 2) effects on PEF were particularly prominent for Aitken-mode particles. Possible cumulative (lags 0-2) effects of PM2.5 and carbonaceous aerosols on PEF and Aitken-mode particles on FEV1, MMEF, and PEF were observed. This study provides comprehensive evidence that the physicochemical properties of particulate mixtures are associated with reduced lung function in children. Organic carbon (OC) may be an important risk factor for the decreased lung function related to PM exposure.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Xiaoyan Ma
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Jiajia Dai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Lu Zhao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Deji Ciren
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Jianqing Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Boning You
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Luan Yuan
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, P. R. China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
45
|
Ritz B, Hoffmann B, Peters A. The Effects of Fine Dust, Ozone, and Nitrogen Dioxide on Health. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 51-52:881-886. [PMID: 31941576 DOI: 10.3238/arztebl.2019.0881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Air pollutants, especially fine dust, ozone, and nitrogen dioxide, pose a danger to health worldwide. In 2005, the World Health Organization (WHO), in order to protect public health, issued global recommendations for maximum levels of fine dust (10 μg/m3 for fine dust particles smaller than 2.5 μm [PM2.5]), ozone, and nitrogen dioxide. The recommended levels are regularly exceeded in many places in Germany. METHODS This review is based on relevant publications retrieved by a selective search in PubMed and, in part, on an expert statement issued in the name of the International Society for Environmental Epidemiology (ISEE) and the European Respiratory Society (ERS). RESULTS Air pollutants affect the entire body, from the beginning of intrauterine development all the way to the end of life, causing premature death mainly through lung and heart disease. An epidemiological study has shown, for example, that mor- tality rises approximately 7% for every incremental long-term exposure to 5 μg/m3 PM2.5 (95% confidence interval: [2; 13]). Aside from lung and heart disease, the carcinogenic effect of fine dust is now well established. High fine-dust exposure has also been linked to metabolic diseases. For example, in a meta-analysis of cohort studies, the incidence of type 2 diabetes mellitus was found to be associated with elevated fine dust concentrations, with a 25% relative risk increase [10; 43] for every 10 µg/m3 of PM2.5. More recent studies have shown that these substances cause harm even in concentrations that are below the recommended limits. CONCLUSION It is very important for public health that the current EU standards for rkedly lowered so that health risks can be further reduced, in accordance with the recommendations of the WHO.
Collapse
Affiliation(s)
- Beate Ritz
- University of California, Los Angeles, USA; Institute of Occupational, Social, and Environmental Medicine, University of Düsseldorf; Helmholtz Center Munich and University of Munich
| | | | | |
Collapse
|
46
|
Chen X, Han Y, Chen W, Wang Y, Qiu X, Li W, Hu M, Wu Y, Wang Q, Zhang H, Zhu T. Respiratory Inflammation and Short-Term Ambient Air Pollution Exposures in Adult Beijing Residents with and without Prediabetes: A Panel Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67004. [PMID: 32484751 PMCID: PMC7263737 DOI: 10.1289/ehp4906] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Accumulating evidence suggests that individuals with glucose metabolism disorders are susceptible to mortality associated with fine particles. However, the mechanisms remain largely unknown. OBJECTIVES We examined whether particle-associated respiratory inflammation differed between individuals with prediabetes and healthy control participants. METHODS Based on a panel study [A prospective Study COmparing the cardiometabolic and respiratory effects of air Pollution Exposure on healthy and prediabetic individuals (SCOPE)] conducted in Beijing between August 2013 and February 2015, fractional exhaled nitric oxide (FeNO) was measured from 112 participants at two to seven visits to indicate respiratory inflammation. Particulate pollutants-including particulate matter with an aerodynamic diameter of ≤2.5μm (PM2.5), black carbon (BC), ultrafine particles (UFPs), and accumulated-mode particles-were monitored continuously at a single central monitoring site. Linear mixed-effects models were used to estimate associations between ln-FeNO with pollutant concentrations at individual 1-h lags (up to 24 h) and with average concentrations at 8 and 24 h before the clinical visit. We evaluated glucose metabolism disorders as a potential modifier by comparing associations between participants with high vs. low average fasting blood glucose (FBG) and homeostasis model assessment insulin resistance (HOMA-IR) levels. RESULTS FeNO was positively associated with all pollutants, with the strongest associations for an interquartile range increase in 1-h lagged exposures (ranging from 21.3% for PM2.5 to 74.7% for BC). Associations differed significantly according to average HOMA-IR values when lagged 6-18 h for PM2.5, 15-19 h for BC, and 6-15 h for UFPs, with positive associations among those with HOMA-IR≥1.6 while associations were closer to the null or inverse among those with HOMA-IR<1.6. Associations between PM2.5 and FeNO were consistently higher among individuals with average FBG≥6.1 mmol/L vs. low FBG, with significant differences for multiple hourly lags. DISCUSSION Glucose metabolism disorders may aggravate respiratory inflammation following exposure to ambient particulate matter. https://doi.org/10.1289/EHP4906.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- Hebei Xiongan Green-Research Inspection and Certification Co., Ltd., Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Min Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yusheng Wu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Qi Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China
| |
Collapse
|
47
|
Zhao Y, Xue L, Chen Q, Kou M, Wang Z, Wu S, Huang J, Guo X. Cardiorespiratory responses to fine particles during ambient PM 2.5 pollution waves: Findings from a randomized crossover trial in young healthy adults. ENVIRONMENT INTERNATIONAL 2020; 139:105590. [PMID: 32278195 DOI: 10.1016/j.envint.2020.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND PM2.5 pollution waves (PPWs) are severe air pollution events with extremely high-level concentration of ambient PM2.5. PPWs, such as haze days, were suggested to be associated with increased cardiopulmonary mortality and morbidity. However, the biological mechanism response to ambient PM2.5 during PPWs is still unclear. METHODS A randomized crossover trial was conducted on 29 healthy young adults. Repeated health measurements were performed before, during and after two typical PPWs under filtered and sham indoor air purification, with a washout interval of at least 2 weeks. Health parameters including blood pressure (BP), pulmonary function, fractional exhaled nitric oxide (FeNO) and circulating biomarkers which reflect platelet activation, blood coagulation and systematic oxidative stress were measured. RESULTS Ambient PM2.5 levels elevated apparently during PPWs. Under sham purification, significant increase in FeNO and soluble P-selectin (sP-selectin) and decreases in pulmonary function were observed from pre-PPWs period to during-PPWs period. The changes in health biomarkers as mentioned above became attenuated and insignificant under filtered condition. For instance, sP-selectin increased by 12.0% (95% CI: 3.8%, 20.8%) during-PPWs periods compared with pre-PPWs periods under sham purification, while non-significant change was observed under filtered condition. Significant associations between time-weighted personal PM2.5 exposure and increased levels of health biomarkers including FeNO, sP-selectin, oxidized low-density lipoprotein (ox-LDL) and 8-isoprostane (8-isoPGF2α) were found. CONCLUSION PPWs could affect cardiopulmonary health through systematic oxidative stress, platelet activation and respiratory inflammation in healthy adults, and short-term indoor air purification could alleviate the adverse cardiopulmonary effects.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Minghao Kou
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Zemin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
48
|
Zhou H, Lin J, Shen Y, Deng F, Gao Y, Liu Y, Dong H, Zhang Y, Sun Q, Fang J, Tang S, Wang Y, Du Y, Cui L, Ruan S, Kong F, Liu Z, Li T. Personal black carbon exposure and its determinants among elderly adults in urban China. ENVIRONMENT INTERNATIONAL 2020; 138:105607. [PMID: 32142915 DOI: 10.1016/j.envint.2020.105607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/10/2023]
Abstract
Personal exposure to air pollution is affected by its concentration in the microenvironment and individual time-activity patterns. To investigate personal black carbon (BC) exposure levels and identify their potential determinants, we conducted a panel study among 67 elderly residents aged 60-69 years in Jinan, China. Personal BC exposure was measured using portable real-time monitors, while corresponding ambient BC concentrations and meteorological conditions were also collected from the local central site. Time-activity and household characteristics were recorded. A linear mixed-effects model was used to identify potential determinants of personal BC exposure. The daily average personal BC exposure concentration was 4.1 ± 2.0 μg/m3 (±standard deviation, SD), which was significantly lower than the ambient concentration (4.6 ± 2.5 μg/m3) (p < 0.001). Strong correlation (Spearman's r = 0.63, p < 0.001) was found between personal and ambient BC concentrations. The fixed-site monitoring ambient concentration cannot fully reflect the actual personal exposure concentration. Ambient BC concentration, ambient temperature, relative humidity, education level and air purifier use were significant determinants of personal BC exposure. Our findings highlight the need for detailed assessment of personal exposure on health risk assessment of BC and also help develop strategies for targeted risk reduction.
Collapse
Affiliation(s)
- Huichan Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jingjing Lin
- Shandong Provincial Eco-environmental Monitoring Center, Jinan, China
| | - Yu Shen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuchang Deng
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; College of Biotechnology, Southwest University, Chongqing, China
| | - Ying Gao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingjian Zhang
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Qinghua Sun
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Du
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangliang Cui
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Shiman Ruan
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Fanling Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zhaorong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
49
|
Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments. REMOTE SENSING 2020. [DOI: 10.3390/rs12040648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sea breeze (SB) phenomena may strongly influence air quality and lead to important effects on human health. In order to study the impact of SB dynamics on the properties and toxicity of aerosols, an atmospheric mobile unit was deployed during a field campaign performed in an urbanized and industrialized coastal area in Northern France. This unit combines aerosol samplers, two scanning lidars (Doppler and elastic) and an air-liquid interface (ALI, Vitrocell®) in vitro cell exposure device. Our study highlights that after the passage of an SB front, the top of the atmospheric boundary layer collapses as the thermal internal boundary layer (TIBL) develops, which leads to high aerosol extinction coefficient values (>0.4 km−1) and an increase of PM2.5 and NOx concentrations in the SB current. The number-size distribution of particles indicates a high proportion of fine particles (with diameter below 500 nm), while the volume-size distribution shows a major mode of coarse particles centered on 2–3 µm. Individual particle analyses performed by cryo-transmission scanning electron microscopy (cryo-TSEM)-EDX highlights that submicronic particles contained a high fraction of secondary compounds, which may result from nucleation and/or condensation of condensable species (vapors or gaseous species after photo-oxidation). Secondary aerosol (SA) formation can be enhanced in some areas, by the interaction between the SB flow and the upper continental air mass, particularly due to the effect of both turbulence and temperature/humidity gradients between these two contrasting air masses. Potential areas of SA formation are located near the ground, during the SB front passage and in the vicinity of the SB current top. During the sea breeze event, an increase in the oxidative stress and inflammation processes in exposed lung cells, compared to the unexposed cells, can also be seen. In some instances, short singularity periods are observed during SB, corresponding to a double flow structure. It consists of two adjacent SB currents that induce an important increase of the TIBL top, improving the pollutants dispersion. This is associated with a substantial decrease of aerosol mass concentrations.
Collapse
|
50
|
Zhou L, Li P, Zhang M, Han B, Chu C, Su X, Li B, Kang H, Ning J, Zhang B, Ma S, Su D, Pang Y, Niu Y, Zhang R. Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a. CHEMOSPHERE 2020; 241:125075. [PMID: 31683435 DOI: 10.1016/j.chemosphere.2019.125075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Carbon black nanoparticle (CBNP) is a core constituent of air pollutants like fine particulate matter (PM2.5) as well as a common manufactural material. It was proved to pose adverse effects on lung function and even provoke pulmonary fibrosis. However, the underlying mechanisms of CBNPs-induced pulmonary fibrosis remain unclear. The present study aimed to investigate the mechanism of fibrotic effects caused by CBNPs in rat lung and human bronchial epithelial (16HBE) cells. Forty-nine male rats were randomly subjected to 7 groups, means the 14-day exposure group (30 mg/m3), the 28-day exposure groups (5 mg/m3 and 30 mg/m3), the 90-day exposure group (30 mg/m3) and their respective controls. Rats were nose-only-inhaled CBNPs. 16HBE cells were treated with 0, 50, 100 and 200 μg/mL CBNPs respectively for 24 h. Besides, Forkhead transcription factor class O (FOXO)3a and miR-96 overexpression or suppression 16HBE cells were established to reveal relative mechanisms. Our results suggested CBNPs induced pulmonary fibrosis in time- and dose-dependent manners. CBNPs induced persisting inflammation in rat lung as observed by histopathology and cytology analyses in whole lung lavage fluid (WLL). Both in vivo and in vitro, CBNPs exposure significantly increased the expression of NLRP3 inflammasome, accompanied by the increased reactive oxygen species (ROS), decreased miR-96 and increased FOXO3a expressions dose -and time-dependently. MiR-96 overexpression or FOXO3a suppression could partially rescue the fibrotic effects through inhibiting NLRP3 inflammasome. Conclusively, our research show that CBNPs-induced pulmonary fibrosis was at least partially depended on activation of NLRP3 inflammasome which modulated by miR-96 targeting FOXO3a.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengyue Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dong Su
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|